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Abstract—Cancer is often caused by missense mutations,
where a single nucleotide substitution leads to an amino acid
change and affects protein function. This study proposes a novel
machine learning (ML) approach to calculate missing values in
the tp53 database for three computational methods: SIFT,
Provean, and Mutassessor scores. The computed values are
compared with those obtained from the imputation method.
Using these values, an ML classification model trained on 80,406
samples achieves an accuracy of 85%, while the impute method
achieves 75%. The scores and statistics are used to classify
samples into five classes: Benign, likely pathogenic, possibly
pathogenic, pathogenic, and a variant of uncertain significance.
Additionally, a comparative analysis is conducted on 58,444
samples, evaluating six ML techniques. The accuracy obtained by
each of these is mentioned alongside the algorithm: logistic
regression (89%), k-nearest neighbor (99%b), decision tree (95%),
random forest (99.8%), support vector machine with the
polynomial kernel (91%), support vector machine with RBF
kernel (84%), and deep neural networks (98.2%). These results
demonstrate the effectiveness of the proposed ML approach for
pathogenicity prediction.

Keywords—Decision tree (DT); deep neural networks (DNN);
imputation; k-nearest neighbor (KNN); logistic regression (LR);
missense mutations; Mutassessor; pathogenicity; Provean; random
forest (RF); SIFT; support vector machine (SVM)

. INTRODUCTION

Years of research have identified the tp53 gene, a tumor
suppressor gene that encodes the tumor protein p53 (tp53), as
a significant barrier in cancer development [1][2][3]. The tp53
protein acts as a tumor suppressor by regulating cell division,
growth, and apoptosis processes. It has been found that
approximately 90% of cancer cases exhibit tp53 mutations [4].
Notably, the mutations commonly occur between positions
102-292, resulting in approximately 190 mutated codons, with
over 60% of them being missense mutations [5]. Studies by
Fiamma Montovani et al. discuss the role of mutant p53
proteins in supporting malignant cell survival and cancer
evolution, as well as therapeutic opportunities related to tp53
missense mutations [6]. Gaoyang Zhu et al. explore
therapeutic options targeting the Gain-of-Function (GOF)
feature of full-length p53 mutant proteins [7]. Additionally,
Alvarado-Ortiz E et al. investigate the impact of mutp53 on
metabolic reprogramming and the Warburg effect observed in
cancer cells, highlighting chemo-resistance and the role of
autophagy in survival [8]. Xiang Zhou et al. identify tp53
hotspots as potential barriers for novel cancer therapies and

study the mechanisms underlying GOF for p53 [9].
Furthermore, cancer cells employ various strategies to disarm
p53 and promote their growth and survival [10]. One approach
involves mutating the tp53 gene itself, removing the protective
function and allowing unmonitored cell activities [11].
Nonsynonymous Single-Nucleotide Variants (nsSNVs) are
considered a primary reason for cancer, as they alter proteins
with a single residue change in the amino acids [12][13].
Yong Li et al. demonstrate the predictive value of tp53 in the
untranslated region (UTR) of cancer specimens, highlighting
the impact of germline SNVs on tp53 protein levels and cell
apoptosis [14]. Oliver Poirion et al. propose using expressed
SNVs (eSNVs) from RNA sequences to locate tp53 variations
in tumor subpopulations [15]. Computational procedures have
been developed to assess the influence of amino acid
substitutions and the frequent occurrence of missense variants
in cancer patients [16] [17]. Understanding the effect of
missense mutations is crucial for clinical use, especially in
distinguishing pathogenic and infectious variants among
NUMErous missense variants.

Il.  RELATED WORK

With the rapid development of Machine Learning (ML)
and its applications in various fields, ML has emerged as a
potential solution for cancer research [19][20]. Efforts have
been made to apply ML/AI-based diagnostics for cancer using
vast genomic data. Techniques such as REVEL, CADD,
FATHMM, and PolyPhen employ ML algorithms like
Random Forest (RF), Naive Bayes (NB), and Logistic
Regression (LR) to predict pathogenicity [21][22]. Jiaying Lai
et al. introduce LYRUS, a machine-learning tool that predicts
pathogenicity based on missense variants [23]. LYRUS
utilizes an XGBoost classifier incorporating sequence,
structure, and dynamic features. The tool is evaluated using F-
scores and specificity metrics, outperforming alternative
methods. However, LYRUS estimates pathogenicity based on
the actual protein structure and does not consider the mutated
protein. It is also limited to proteins with available structures
in the Protein Data Bank (PDB). Hua Tan et al. differentiate
cancer-causing driver mutations from normal ones using SVM
classification based on distinguishing features [24]. Their
approach demonstrates higher efficiency compared to existing
methods. In clinical research, computational techniques such
as SIFT, Mutassessor, and Provean are used to predict the
pathogenicity of missense mutations. However, there is a lack
of ML-based methods to calculate these scores. Therefore, the
present study proposes a novel approach to calculate SIFT,
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Provean, and Mutassessor scores using K-nearest neighbors
(KNN) regression. The study also focuses on classifying
samples into pathogenicity classes based on the guidelines
suggested by the American College of Medical Genetics and
Genomics (ACMG) [25]. Section 11 of the paper delves into
the materials and methods utilized in the research study.
Following this, Section IV elaborates on the implementation
of the algorithms employed. The subsequent section, Section
V, presents the results and output obtained from the study,
providing a detailed analysis. Finally, in Section VI, the paper
concludes by summarizing the main findings and implications,
offering a comprehensive conclusion to the research.

I1l.  MATERIALS AND METHODS

A. Computational Techniques for Pathogenicity Prediction

1) SIFT score: The SIFT (Sorting Intolerant from
Tolerant) method is a prediction tool that assesses the
relationship between amino acid substitutions and protein
functions [26]. It is based on the hypothesis that amino acids
tend to be conserved within a protein family. Therefore, any
changes at well-conserved amino acid positions are likely to
be damaging. SIFT also considers the presence of hydrophilic
amino acids, such as valine, and checks if the substituted
amino acid is another hydrophilic amino acid, like isoleucine
or leucine. In such cases, the changes are predicted as
tolerated. However, substitutions to other types of amino acids
are assumed to result in functional changes. The SIFT method
takes the protein sequence as input and aligns it with related
proteins. It calculates the probability of amino acid occurrence
at each position during the alignment. If the probability falls
below a certain threshold, SIFT predicts the substitution as
deleterious, otherwise, it is considered tolerated. The threshold
value typically ranges from 0.0 to 1.0, where scores between
0.0 and 0.05 are considered deleterious, and scores greater
than 0.05 are considered tolerated.

2) Provean score: The Provean (Protein Variation Effect
Analyzer) score operates similarly to the SIFT method [27]. It
calculates an alignment score for each protein sequence. A set
of closely related sequences, typically the top 30 clusters, is
selected as a supporting sequence set. The scores within each
cluster are averaged, resulting in a Provean score. This score is
then compared to a predefined threshold, typically set as -2.5.
If the score is equal to or lower than the threshold, the protein
variant is considered deleterious; otherwise, it is considered
"neutral."

3) Mutassessor score: The Mutassessor score (Mutation
Accessor) predicts the functional impact of an amino acid
change based on the evolutionary conservation of the affected
amino acid among protein homologs [28]. The default
threshold for pathogenicity classification is set to -1.93,
distinguishing high or medium functional impact variants
from low or neutral predicted variants.

Note: These scores, namely SIFT, Provean, and
Mutassessor, are utilized in computational techniques to
predict the pathogenicity or functional impact of missense
mutations in proteins.
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B. The Proposed ML-based Method to Calculate the Missing
Values of SIFT, Provean, and Mutassessor Scores

In this section, two algorithms related to the present
research study are discussed. Algorithm-1 presents the
proposed ML-based approach for calculating missing values
of three different computational scores. Algorithm-2 outlines
the process of classifying each sample into pathogenicity
classes. The classification results are compared using six
different ML techniques.

Algorithm — 1: Proposed algorithm for predicting the
missing values of Sift, Provean, and Mutassessor Scores in
tp53 database

Input: tp53 mutation samples (80346, 133) — 80346 rows X
133 columns; Output: Predicted scores for the missing values
in Sift, Provean, and Mutassessor scores

Step 1: Preprocess the tp53 original dataset.

Step 2: Perform feature selection to select the features
required for the proposed task.

Step 3: Separate rows with and without Sift scores.

Step 4: Consider the rows that have Sift scores.

i. Create a dataframe (x_train) to store the features.

ii. Create another dataframe (y_train) to store the
corresponding labels.

iii. Use the KNN regressor model to predict values of
y_train, and save the predictions as y_predict.

iv. Compute the Mean Absolute Error (MAE) score of
y_train and y_predict for each 'k’ value from 2 to 20.

v. Determine the 'k’ value with the minimum MAE score
among all the MAE scores.

vi. Train a new model using this 'k' value and save it as
final_model.

Step 5: Use final_model to calculate the missing values of
Sift scores from step 3 using the KNN regressor technique:

i. Consider the complete feature set of missing and
present Sift values.

ii. Calculate the Euclidean distance (ED) for each feature
set where Sift scores are present and where Sift scores are
missing.

iii. Tabulate all ED values in ascending order.

iv. Select the top 'k’ values (from step 4.vi).

v. Calculate the average of these scores and save it as the
new predicted Sift score.

vi. Return the new predicted Sift score.

Step 6: Predict Sift scores using all the features selected in
step 2 with the help of the impute method.

Step 7: Compare the final predicted values from steps 5
and 6.

Step 8: Repeat steps 3-5 to determine Provean scores.

Step 9: Repeat steps 3-5 to determine Mutassessor scores.

Step 10: Stop.
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Algorithm - 2: Classification of samples into five
classes of pathogenicity using different ML techniques

Input: tp53 mutation samples.
Output: Pathogenicity classification.

Step 1: Choose features and labels from the tp53 database (features
computational scores + stat scores).
Step 2: Remove samples with null values.
Step 3: Perform the classification of each sample into pathogenicity
classes using the following ML techniques:

i) Logistic regression,

ii) KNN,

iii) SVM,

iv) Decision tree,

v) Random forest,

vi) Feedforward neural network.
Step 4: Compare the results of each technique using evaluation
metrics.
Step 5: Tabulate the results.
Step 6: Stop.

C. ML Techniques used in the Proposed Research Study

e To predict the computational scores

1) K-Neighbors Regressor: This technique is a regression
method derived from the KNN model. It calculates values
based on the representation of the 'k’ nearest neighboring
target values from the training dataset. The values present in
the training class are stored, while those that are missing are
later calculated using similarity scores such as Euclidean,
Manhattan, or Hamming distance. The accuracy of the
calculated values relies on the selection of a primary measure,
'k'. Choosing an appropriate 'k' value is crucial, as a large 'k’
value can potentially exploit the distance boundaries and result
in overfitting or blurring of the feature space. Conversely, a
low 'k' value can lead to underfitting of the model [29]. Hence,
an optimal 'k' value is determined by discarding the missing
values from the target variable field and predicting the target
variable values using different 'k' values. These predicted
values are then compared with the actual target values, and the
difference is evaluated using the Mean Absolute Error (MAE)
score. The 'k' value that yields the lowest MAE score is
selected as the final 'k’ value for the K-Neighbors Regressor.
Table I provides a tabular representation of the procedure.

TABLE I. THE KNN REGRESSOR METHOD WAS USED TO CALCULATE
THE MISSING VALUES. THE TABLE SHOWS THE SAMPLE VALUES TAKEN
FROM THE TP53 DATABASE. IT CONTAINS A COMBINATION OF VALUES
PRESENT AND ABSENT INDICATED WITH DIFFERENT COLORS

data_pre=>train_X, ifdiflylldata_abs=>Xdim NS

i C_sta | T_sta | G_sta | S_sta | Sm_sta | Sift_scor
t t t t t t e

0.08

2.80

Note: L: Leukaemia, C: Cell_line, T: Tumor, G: Germline, S: Solid_state, Sm: Somatic, ED: Euclidean
Distance

Vol. 14, No. 6, 2023

Calculating ED individually for rows (i), (ii), and (iv)
containing SIFT score values and SIFT score=? Different
arrows indicate this in Table I. Below is the ED calculation for
row (i).

V(0.014 — 0)2 + (0.082 — 0.001)3+(0.053 — 0.001)2 +
(0.071 — 0)?+(0.331 — 0.01)? = 0.342
Likewise, EDs for all the rows (ii and iv) w.r.t data_pre

Sort ED: 0.34, 0.91, 5.83. Consider, k=2, so pick the first 2
points and take the average.

0.34+0.91
2

The new sift_score predicted is 0.625

= 0.625

D. To Classify Samples into Various Pathogenicity Classes

e Feature selection: With the help of data visualization
and pre-processing using principal component analysis
(PCA), the dataset was prepared for the training phase
[30]. With PCA, highly correlated features (both
positive and negative) were removed from the original
dataset. For the strongly correlated features, only one of
the features is retained. To decide this, the following
aspects were identified; if two features are to -1, they
are negatively correlated, and if the values are closer to
+1, they are positively correlated. After performing the
feature reduction process, the dataset had 58444 X 10
records that were finally used for the classification
process using six different ML techniques. In the end,
each ML technique is compared to study the best
method for classifying a sample. The model was
evaluated using F-score and parameter tuning to ensure
robustness. Finally, the models are evaluated on the test
set for full and reduced features. Feature reduction,
indeed, has an impact on the overall algorithm
performance of these ML techniques. Fig. 1 depicts the
framework of this modeling process. The implications
of these methods are described below.

TP33 dataset (30444 X 133)
Data Prepreprocessing ML-Based Approach Final result
= ML Techniques il Metrics
/ Feature -
\ selection / i S | prediction on ;in;a::
T @ test data Recall
Selected feature p Macro and Miers
A
(5844 X 10) IEI verage
.
| Compare |
e
¥ 17 v
T, ||| [T za || G
models (30:20 evaluation \ /

Fig. 1. The proposed schematic hybrid framework of the modelling process
to predict the pathogenicity of a sample using tp53 database and various ML
algorithms such as Logistic Regression (LR), K-nearest neighbors (KNN),
Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF)
and lastly, Feed-Forward Neural Network (NN).
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e Logistic regression: The LR is, by default, a regression
model whose prediction is based on the logistic function
[31]. The decision is associated with the probability that
a given feature belongs to some categorical class, say,
1. If a sigmoid logistic function is used to make the
prediction, then if sigmoid function (S) resorts to an
infinite value when the prediction variable (§) will
become one and § will be 0 if ‘S’ is a negative value,
given by Eq. 1

1
146X

(1)

A crucial parameter in logistic regression for the present
classification task is multinomial data distribution since the
categories of the classes (5 pathogenicity classes) are without
any specific ordering. The classification of a sample is
performed based on the threshold. The threshold value is vital
in estimating the probability that a sample belongs to one out
of these five classes. Say if ¥ ranges between 0-0.2, then the
sample is classified as ‘0 - benign’, for § between 0.2 — 0.4,
the sample will be classified as ‘1-LP’, with a range between
0.4 - 0.6 the class will be 2-P’, 0.6 — 0.8 for class ‘3-PP’ and
finally 0.8 — 1.0 for class ‘4-VUS’. This is usually the first ML
algorithm to be used for any classification task.

e K-Nearest Neighbors: This is the simplest of all the ML
techniques that intend to classify a record (unlabelled)
based on the class of the neighbouring data points
(labelled) [32]. Using a distance measure, say ED, the
distance between the features of the unlabelled and
labelled records is calculated. Using an optimal k’
value, the nearest top ‘k’ neighbours are chosen.
Finally, the class label with the highest number is
tagged for the unlabelled data point. The main idea
behind this intuition is that similar points tend to be
close to each other. As this is a multi-class classification
problem, a sample will be classified into one of the five
classes. The best ‘k’ value obtained on the dataset is 5.
Thus, k=5 was used to train the final model.

e Support Vector Machine (SVM): SVM is a versatile
algorithm used for classification and regression tasks. It
aims to find an optimal hyperplane, or decision
boundary, that maximizes the separation between
different classes [33]. When classes are not linearly
separable, SVM employs the kernel trick, using
functions like linear, polynomial, RBF, or sigmoid.
Data points close to the hyperplane are called support
vectors. For multi-class classification, SVM utilizes the
one-vs.-one  approach, explicitly indicated by
defined_function_shape=ovo. By default, it uses the
one-vs.-rest approach (defined_function_shape=ovr),
where data points of one class are compared with the
rest [33]. In our case with five pathogenicity classes,
SVM is applied using both 'rbf* and 'poly' kernels, with
specified parameters such as gamma=0.5, C=0.1, and
degree=3 for 'rbf', and C=1 for 'poly'.

sig(s) =

e Decision Tree: This rule-based classifier resembles a
tree-like structure and makes decisions based on a series
of questions. At each node, a question is asked, and
depending on the answer (yes or no), the algorithm

Vol. 14, No. 6, 2023

progresses to other nodes at subsequent levels, similar
to an if-else structure. Decision trees consider one
feature at a time from the input data (X) to create
branches. The feature can be categorical or continuous,
using categories or thresholds as decision criteria.
Different criteria, such as Gini impurity and Entropy,
can be used to determine the root node and subsequent
decision-makers. Gini impurity calculates the frequency
at which a sample in the dataset will be incorrectly
labeled, while Entropy measures the disorder of features
(X) with respect to the target label (y) [34].

Gini Impurity =1 — ¥,;p? @

Entropy = — ¥ i09 b (3)

Where Pi is the probability for class ‘i’ such that i=1 to 5.
In the present study, the question would be: ‘is the
leukemia_stat greater than a threshold value, say, x? Or is
leukemia_stat less than or equal to the threshold value? Thus,
the DT will traverse each node and evaluate the condition
before deciding which branch to proceed with until the leaf
node (last) is hit. Here, there will be a total of five leaf nodes
for each pathogenicity class. Both entropy and Gini impurities
are used separately in the present study with max_depth=3.

e Random Forest: It is based on the concept of ensemble
algorithms, which combines multiple classifiers, and
decision trees, solves the problem independently, and
combines the results in the last step [35]. With this
approach, the overall performance is improved. The
model with correct prediction is retained, and incorrect
predictions are pruned. The prediction rules are not
visible to the user, thus enforcing a black-box concept.
The multiple final DTs are combined, and the class with
a majority vote will be assigned to the sample. With
multiple DTs, the model obtains a higher accuracy and
eliminates the problem of overfitting. RF will achieve
the best accuracy compared to the previous models
discussed here. The following parameters are used in
the present study; n_estimators=100 (overall trees the
forest has), bootstrap = True (randomize the samples in
the dataset), max_features = ‘sqrt’ (takes the square root
of the total features present in the dataset. Total features
= 10 (computational scores+stat values + pathogenic
class). V10 ~ 3, so three features are tried randomly for
each tree).

o Artificial Neural Network: ANN represents the working
of a real human brain where the brain will generate
outputs based on the past information trained earlier in
life. ANN is suitable for any function, especially
datasets that exhibit non-linear relationships.
Feedforward neural network is a variation of ANN with
three layers, an input layer, one or more hidden layers,
and an output layer. Every layer has multiple
nodes/neurons to process the input. The neural networks
learn when fed with input and propagate to subsequent
layers; hidden and output. This is called the
learning/training phase. At each node at every layer, the
network calculates the product of input values and
weights, and the sum of these product terms along with
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a bias value is calculated at every hidden node and
sends the value to the next layer. That is, the network
calculates a function, say ‘f’, for a predetermined input
feature in ‘X’ and results in a training pair (X,y) such

that f(X) ~ (y). The actual and predicted values are
calculated to understand the loss incurred by the
network [36]. At the output layer, an activation function
is used to obtain the result. The activation functions are:
Sigmoid (the output value ranges between 0 and 1),
tanh (ranges between -1 and +1), Rectified Linear Unit
(ReLU) (returns the max (0, X)), softmax (return the
probability of belonging to each output class, such that,
when the values are added, we get 1). In the present
study, a simple sequential model is trained using Keras
that uses TensorFlow objects. The input_dim was set to
9, matching the number of input parameters
(computational scores + stat values), and the activation
was ReLU with 16 neurons in the input layer. Two
hidden layers were used, each with 32 and 64 neurons
and the same activation function. The output layer has
five neurons as there were five pathogenicity classes
with softmax activation. The loss function was
""sparse_categorical_crossentropy"”,  optimizer="adam,
metrics were set to accuracy with 100 epochs.

IV. IMPLEMENTATION

A. Dataset Collection

The dataset used in this study was collected from the
UMD-tp53 database (Universal Mutation Database). The
database, which initially had only 360 mutations in 1992, has
now grown to contain over 80,000 mutation samples [37]. It
consists of two files: variant and mutation. The mutation
database includes samples of all patients with a tp53 mutation,
while the variant database contains unique tp53 variants found
in these patients. For this study, the mutation database with
80,406 samples (TP53 Mutated data, 2017 Release R2,
available at https://p53.fr/the-database) was utilized. The
database includes various variant classifications for mutant
types, such as missense (58,517), nonsense (8,460), Frame-
shift-del (5,212), splice-site (2,348), synonymous (2,016),
frame-shift-ins (1,701), Indel (1,194), Ins (290), and others
(668). The database was downloaded in CSV format.

B. Data Pre-Processing Phase

The initial mutant database downloaded from the tp53
website consisted of 80,406 rows and 133 columns. The
prediction scores were based on various statistical values and
computational scores present in the database. However, when
the features start DNA and end_DNA had a value of '?', most
of the remaining features also had '?' (119 columns), and the
pathogenicity class was labelled as 'no prediction.' Therefore,
the rows with values start DNA and end DNA = '?' were
removed as the first step in the pre-processing phase. This
resulted in 80,346 rows and ten columns. Additionally, the
start and end_DNA features were not used in the prediction or
classification process, so they were dropped from the feature
set, resulting in a final dataset size of 80,346 X 8. The next
step in pre-processing was to handle null values. Although
there were no null values, three features (Sift, Mutassessor,
and Provean scores) contained string values such as 'No data,’

Vol. 14, No. 6, 2023

'‘No protein,” 'Not known," and 'Inframe." As part of data
cleaning, these string values were replaced with '?', as these
values would be calculated using the proposed algorithm.
Furthermore, the pathogenicity feature consisted of categorical
data such as benign, likely pathogenic, pathogenic, possibly
pathogenic, and VUS. To handle this, a label encoder was
used to transform the string values into integer values. The
respective classes were assigned the numbers 0, 1, 2, 3, and 4.
C. Data-Splitting:

The new DataFrame (new_df) with a size of 80,346 X 8
was further divided into two DataFrames: data_abs, which
contained rows where the Sift_score was '?', with a size of
21,902 X 8, and data_pre, which included rows with available
Sift_score values, with a size of 58,444 X 8. From data_pre,
the features and labels were separated and named
data_pre_temp and 'y, respectively. The ".values' function was
used to convert the DataFrame data pre temp into a list
named Xin. The KNeighborsRegressor class was then
employed to train the model using Xin as the input features
and y as the target labels in an 80:20 ratio. To find an ideal 'k’
value, the 'k’ value was varied from 2 to 20, and the Mean
Absolute Error (MAE) was calculated for each 'k' value. The
MAE represents the mean absolute difference between the
actual and predicted values. The 'k’ value that yielded the
lowest MAE value was considered the optimal 'k’ value for
training the final model to predict the missing values. The
DataFrame data_abs was split into data_abs_temp (features)
and ydim (labels). The ".values' of data_abs_temp were stored
in Xdim as features, with ydim representing the labels. A new
DataFrame named data_predict was created with a column of
the same name, Sift-score, to store the predicted values of
ydim. This DataFrame was then joined with data_abs_temp
and renamed as 'dataframe_1'. The values of Sift_score were
extracted from data_pre and stored in a new DataFrame called
df_join, which was further joined with data_pre_temp and
renamed as ‘dataframe_2'. Finally, dataframe 1 and
dataframe_2 were concatenated to form a new DataFrame
named 'dataframe’ with a size of 80,346 X 8, which matched
the original size of the initial DataFrame new_df. The
DataFrame 'dataframe’ now contained values that originally
had missing values (21,902)

V. RESULTS

The predicted values obtained using the proposed
algorithmic approach were compared with the state-of-the-art
ML library method called Impute. KNNImputer was utilized
with the same 'k’ value as in the previous method. The values
calculated by both methods were compared, and it was found
that they were 85% similar. Additionally, two KNN models
were trained separately, one using the proposed method and
the other using the imputer method. The proposed model
demonstrated superior accuracy compared to the built-in
method.

A. Evaluation of Computational Scores Prediction using the
Proposed Method and Built-In Method
The objective is to develop an ML-based approach to
calculate missing values in three important pathogenicity
prediction methods based on amino acid substitutions in
protein sequences. In the tp53 database, certain values for
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these three features were missing. Instead of using existing
algorithms, this study employs the KNN regressor, an ML
technique, for estimating these values. Additionally, each
method requires a threshold, which can be adjusted based on
user requirements. Hence, the threshold value was redefined to
align with the existing value range. Table Il presents the
threshold used in this study to classify the scores into their
respective variant classes. Fig. 2(a) to 2(c) shows the graphical
illustration of the values computed for all three computational
scores from both methods impute and code-based.

TABLE II. THE THRESHOLD VALUES ARE USED FOR DIFFERENT
COMPUTATIONAL METHODS IN THE PATHOGENICITY CLASSIFICATION TASK

Computational .
Methods Threshold values: Class type

sift <=0.05: >0.05: _
Harmful Tolerated
<=25: .

Provean . >2.5: Neutral --
Deleterious

Mutassessor <=1.0: Neutral 10 &<=2.0: >2'0. &<=4.0:

Low Medium

Note: Shown in bold letters are the category labels used for each of the threshold values
Do the values computed by the proposed procedure
outperform the reference method? - A Case study:

As depicted in Fig. 2, the computed missing values from
both methods closely align, with minor variations observed at
the beginning and end of the graph. However, the question
arises whether these slight differences hold any predictive
significance. Therefore, a case study was conducted to
demonstrate that the proposed method exhibits superior
classification performance for tp53 mutation samples. After
calculating the missing values, an SVC classifier was
employed to classify the samples based on pathogenicity
variants using the computational methods. To further assess
the results, the impute method, an ML library method for
calculating missing values, was employed, and the same
process was repeated. The trained SVC classifier effectively
classified the samples using both the code-based and impute
methods. The code-based approach achieved higher
classification accuracy compared to the existing impute
method for all three computational techniques. Additionally,
the match percentage for each variant class was also
calculated. The proposed and built-in methods achieved a
match rate of over 81%. The significance of this evaluation is
summarized in Table 111

SIFT Score

e» e» (Code-based

— |mpute

@
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Mutassessor Score &

e |mpute e» @» Code-based

(b)

Provean Score

@» e» (Code-based e |mpute

(©
Fig. 2. (a) SIFT scores computed using code-based and reference methods
(impute)., (b) Mutassessor scores computed using code-based and reference
methods (impute)., (c) Provean scores computed using code-based and
reference methods (impute).

TABLE Ill.  THE NUMBER OF SAMPLES CLASSIFIED TO EACH
PATHOGENICITY LABEL FOR BOTH PROPOSED AND BUILT-IN METHODS. THE
CLASSIFICATION ACCURACY IS THE MEASURE CALCULATED FOR THE
CLASSIFIED DATA IN COLUMN-WISE, REPRESENTED IN BLUE COLOUR. THE
GREY COLOUR FIELD REPRESENTS THE PERCENTAGE OF A MATCH IN THE
VALUES CALCULATED BY BOTH APPROACHES

A % of a match
Computation Mrla_boise%d Ilsnli' IEtlg between
al Method 2 F:oach me?ho d proposed and
PP built-in method

Sift Damaging 74761 73092 85.32

Tolerated 5585 7254 '

Classificati

on 0.879 0.764

Accuracy
Provean Deleterious | 72733 71838 8191

Neutral 7613 8508 '

Classificati

on 0.875 0.781

Accuracy
Mutassessor Medium 73810 73894

Low 4539 4203 84.89

Neutral 1997 2249

Classificati

on 0.872 0.783

Accuracy
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B. Evaluation Metrics to Assess ML Model Performances

TABLE IV.  THE NUMBER OF SAMPLES IN EACH PATHOGENICITY CLASS

FOR THE TRAINING AND TEST DATASET

0:BENIGN, 1:LIKELY PATHOGENIC, 2: PATHOGENIC, 3: POSSIBLY
PATHOGENIC, 4:VUS

Data split Class #
80:20 0 1 2 3 4
No. of
training 46755 80% 50 5146 30509 7981 3069
samples
No. of test
11689 20% 11 1303 7636 1998 741
samples
Total 58444 100% 61 6449 38145 9979 3810
Table 1V gives the number of samples in each

pathogenicity class for the training and test dataset.

Confusion Matrix (CM) is a tabular representation of the
performance in the classification task [38]. It contains the true
values along the y-axis and estimated values along the x-axis.
The number of rows and columns depends on the number of
classification classes.

TABLE V. A CONFUSION MATRIX FOR A RANDOM FOREST ALGORITHM
FOR MULTI-CLASS CLASSIFICATION OF PATHOGENICITY LABELS

N REPRESENTS A CLASS NAME; CM 1S THE CONFUSION MATRIX C. A GREEN
COLOUR ROW REPRESENTS AN FN, AND THE YELLOW COLUMN REPRESENTS
AN FP, AND PINK IS THE ACTUAL TRUE POSITIVE FOR THE CLASS N=1.
ACTUAL CLASS : AC

C
M Prediction Class
(C

)

class | N=0 N=1 N=2 N=3 N=4

Table V describes a CM matrix of the RF algorithm,
illustrating the different numbers obtained from the ML
model. Here, CCNN indicates the correctly classified samples,
T is the count of test samples, AN is the total times a sample is
correctly classified to its actual class, and PN represents the
number of times a sample is predicted. The main components
of a CM are as follows: A true positive (TP) is when a true
class 0 (benign) is predicted as 0 (benign). A true negative
(TN) is when an actual class is not 0 and is predicted correctly
as not class 0. A false positive (FP) is when a true class 0 is
wrongly predicted as class 1 or any other class, and lastly, a
false negative (FN) is when a true class is not O but is
mispredicted as class 0. Further, the standard performance
metrics derived from CM are described in Eq. [4 — 7]. Those
are i) A recall is a measure of all positive samples that the
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model predicted correctly for the class; this indicates how
much the model correctly predicted for the total samples of
class 0. ii) A precision indicates the quality of the prediction,
i.e., how many times the model correctly predicted a sample
as class 0 out of all the total number of class 0 true samples.
iii) F-Score is the average of both recall and precision. iv)
accuracy is the actual number of samples that the model
correctly classifies over the total number. v) The macro
average scores are calculated by considering the weighted
mean for each R, P, and F for every predicted class without
considering each label’s proportion. vi) The weighted average
score is calculated by taking the product of the sum of
individual recall, precision, and f-score and each classified
sample over the actual number of samples for the
classification class. This is similar to the macro score except
that the weighted score considers the proportion of individual
labels. vii) The micro average considers the total TP, FP, and
FN irrespective of the prediction made by the model for each
class

TP
Recall (R) = P 4)
Precision (P) = TP 5
recision = Toirp (5)
F Score = 2 =% (6)

P+R

_ TP+TN

Accuracy = TP+FN+TN+FP (7

Table VI illustrates the performance achieved for each of
the ML techniques on the test dataset.

TABLE VI. THE TABULATION OF VARIOUS EVALUATION METRICS ON THE
TEST DATASET FOR EACH ML METHOD. THE RF RESULTED IN THE HIGHEST
ACCURACY, CLOSELY FOLLOWED BY KNN AND DL METHODS

C
| . .
Method | a| P R F Macr | Mi | Weigh Accuracy
s 0 cro ted
s
10| 10| 1.0 0.9
0 0 0 0 P | 0.99 9 0.99
09109 | 09 0.9
1 9 9 P R | 0.98 9 0.99 0.994
=z 10| 10 | 1.0 0.9
E 2 0 0 0 F | 0.98 9 0.99
3 09 [ 10 | 09
7 0 9
4 09 [ 09 | 09
6 5 5
0 10| 10 | 1.0 p| 086 0.9 091
0| o | o0 1 Poly:
1 Og o7 067 R| oss | %] oo | o910
RBF: 0.84
= 09| 09 | 09 0.9
5) 2 9 9 9 F| 0385 1 0.91
3 0.7 | 0.8 | 0.7
4 5 9
4 0.8 | 0.6 | 0.7
0 1 0
1.0 | 1.0 | 1.0 0.8
0 0 0 0 P | 0.85 9 0.89
o 08 | 0.4 | 0.6 0.8
% 1 4 8 1 R| 079 9 0.89 0.891
09 [ 09 | 09 0.8
2 9 9 9 F| 081 9 0.89
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5[ 06 [ 08 [ 07
7|9 |6
4| 07 [06 [ 06
7 10| 7
10 | 10 | 1.0 09
%9 oo |P]%2] 5 | % | Giioos
09 [ 08| 09 0.9 4
. 2 7 0 B e 5 s Entropy:0.
- 10 [ 10 | 1.0 0.9 952
5 2| 0RO E 072 | 91 oos
5[ 08 [ 09|08
8|09
4070808
8 |10
10 | 10 | 1.0 70
of L0 L0110 bl 099 | 01 100
09 [ 09| 09 1.0
1 %1% 1% r| 100 | 12| 100 0.998
" 10 [ 10 | 1.0 10
ko 2 ORI E 00 | 5] 100
L[ 10 [ 10| L0
0|0l o
4| 090909
8 | 9| 9
10 [ 10 | 1.0 09
of L0 L0110 bl 096 | 00| o8
09 [ 09| 09 0.9
1[ %1091 %9 R og7 | % | ooe 0.982
» 10 | 10 | 1.0 0.9
a2 |2/ E 0o | % | oo
5[ 09 (09 [ 09
7|5 |6
4| 080909
8|20

Cross-validation is the most famous evaluation metric to
estimate the actual prediction of an ML model [39]. This
method splits the entire dataset into ten folds (k-cross fold
where k=10) to form a training and test set with 0-9 folds
consisting of 0 - 5844 samples and the 10" fold containing
5845 - 5848 samples. After executing the final model 10
times, all ten folds accuracy scores were obtained using
cross_val_score (Table VII). The average scores for all 10-
folds are obtained using cross_val_predict.

TABLE VII. TABULATION OF ACCURACY FOR EACH ML METHOD FOR
EACH FOLD IN CROSS-VALIDATION APPROACH. THE K VALUE 1S 10, WHERE 0-
9 FOLDS RANDOMLY SERVE AS THE TRAINING SET, AND THE REMAINING ONE

FOLD ACTS AS A TEST SET

1 2 3 4 5 6 7 8 9 10

KN |09 09| 09]|09]|09 |09 |09 ]|09]|09]|09
N 93 92 92 88 92 94 92 91 88 94

LR

Sv |09 08|09 |09 |09 |09|09]|09]09]09
M 15 99 14 12 07 24 09 16 06 17

DT | 55 | 52 | 51 | 53 | 50 | 54 | 50 | 57 | 51 | 61
| 09 [ 09 [ 09 [09 [09 [ 09 |09 |09 |09 |09

98 | 96 | 97 | 96 | 97 | 98 | 97 | 98 | 96 | 98
. [ 09 [09 [ 09 [ 09|09 0909090909

C. Discussions

So far, the pathogenicity of cancer types has been studied
using computational scores calculated using various statistical
approaches. However, the rapid growth of machine learning
applications has sparked interest in designing an ML-based
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strategy for calculating these scores. In the first approach of
this research study, three computational scores were calculated
based on the data available in the tp53 database. The
thresholds for these scores were kept unchanged, consistent
with those used in the tp53 repository. The results were
compared with the existing ML library's impute method.
Subsequently, a separate KNN model was trained using the
calculated scores from the code and the built-in approaches. It
was observed that the code approach outperformed the built-in
method in terms of accuracy. This process was repeated for all
three computational techniques used to calculate the scores.
Furthermore, when three or more statistical scores were equal
to zero, the predicted Sift score was always zero. However,
when these values were utilized for the classification task, the
model achieved only 78% accuracy. Consequently, input
features with a high number of zero values were dropped, and
the remaining samples were considered for the classification
task. In the second part of the study, six different ML
techniques were evaluated to classify tp53 samples into
pathogenicity classes. The investigation revealed that ML
algorithms efficiently classified the data with very high
accuracy in most models. Among the six algorithms, the RF
algorithm yielded the best results, achieving an F-score of 1 in
many cases. As mentioned in the introduction, missense
mutations are highly prevalent in approximately 80% of
cancer samples. Scientists worldwide dedicate their valuable
time to understanding the significance of these mutations and
devising novel techniques to combat cancer. Therefore, the
present research study offers practical solutions in
significantly less time compared to manual evaluation. In
terms of clinical significance, clinicians can utilize these
techniques to swiftly obtain computational scores and classify
records into pathogenicity classes without the need for clinical
tools or equipment intervention. Moreover, RF and NN
techniques could be adopted for risk analysis and the design of
predictive diagnostic procedures. Although this hypothesis
was not proven in the present study, literature reports suggest
that NN techniques could outperform other ML algorithms in
such tasks.

1) Drawbacks: The present study has several limitations.
Firstly, the proposed prediction strategy heavily relies on the
existing dataset values. It can only predict missing values in a
feature column, assuming that the column already contains
some pre-processed values. Consequently, the predictive
ability of ML models is contingent upon the values present in
the database, which may result in sampling errors when
applying feature selection techniques. Furthermore, the study
compares the classification accuracy of six prominent ML
algorithms. However, without any specific reason, other
efficient ML models were not investigated. For instance, deep
neural network-based models could have potentially addressed
the problem of feature selection in a more effective manner.
The omission of such efficient algorithms limits the
comprehensive exploration of potential solutions for feature
selection. These limitations should be taken into consideration
when interpreting the results and implications of the study.
Future research should aim to overcome these drawbacks and
explore the application of additional ML models to improve
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feature selection and enhance the predictive performance of
the proposed approach.

2) Future work: There are several potential areas for
further extension in this research study. First, it involves
locating the actual disease-causing missense variants among
all gene-specific mutations in a patient's sample. Typically, a
single cancer patient may have approximately 500 missense
mutations. However, only a few of these mutations exhibit
cancer-related symptoms, while the majority may be non-
cancerous or benign. ML-based models can assist in
narrowing down the candidate mutations based on predictive
scores, thereby reducing the time required for pathogenicity
prediction and minimizing diagnostic costs. Second, a
prediction model can be developed for pathogenicity
classification based on different types of mutations, such as
missense and frameshift mutations. Such a model can utilize
amino acid sequences as input features and forecast the
functional domains of genes and proteins involved in causing
these deleterious mutations. Third, the focus could be on
identifying the pathogenic components within a gene and
searching for symptoms associated with similar diseases. This
knowledge can aid in determining appropriate treatment
approaches, potentially using similar strategies employed for
identical diseases. It may also facilitate the process of target
identification for prospective drug development. Fourth, it is
important to identify the proteins involved in each malignant
mutation, analyze their characteristics, and identify drugs that
target these proteins in both Gain-of-function and Loss-of-
function situations. For instance, in the case of tp53, Loss-of-
function is considered. Fifth, incorporating patient-specific
gene information can help assess interactions between
genomic variants. This approach could provide a likelihood
ratio for disease-causing genes and enable the targeting of
these genes for effective drug interventions, further supported
by in-vitro methodologies. Lastly, creating a multi-layer
neural network model can enhance understanding of clinical
carcinogenesis and evolutionary conservation by analyzing
amino acids conserved throughout the progression. The gene
and protein information obtained from previous steps can be
leveraged for this prediction task.

VI. CONCLUSION

The present research study focused on two key aspects:
estimating the missing scores using a novel ML method and
comparing and analyzing different ML algorithms for a
classification task. The proposed ML-based approach for
calculating missing values in three pathogenicity prediction
computational scores has two strong points for medical use.
First, there haven't been any such algorithms to calculate these
scores using an ML technique that exhibits high accuracy
compared to the built-in ML library method. The other point is
leveraging this idea to classify the samples from the tp53
database into their appropriate pathogenicity class, as defined
by ACMG guidelines. Furthermore, missing values in
databases are a common hindrance to achieving high
accuracy. Thus, the proposed technique could calculate these
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missing values in a diverse range of databases. Additionally,
the research used six different ML techniques to classify the
tp53 database based on the pathogenicity class. It was found
that RF and DL outperformed other methods in terms of
various performance metrics. The study also suggested that
logistic regression performed poorly with an accuracy of 89%
compared to other techniques. The features used in this study
could help unravel effective biomarkers related to the tp53
database. Clinicians may perform complementary analyses in
terms of validation and clinical trials by adopting the proposed
framework. The best-performing model could further be
enhanced by training it on a different dataset. Once approved
by standard authorities, the ML-based clinical tool may collect
blood samples from patients, predict the values of
computational scores, and provide the likelihood of
pathogenicity. Overall, this research study offers promising
insights into addressing missing values and improving
classification accuracy in the field of pathogenicity prediction.
The proposed ML-based approach has the potential to enhance
diagnostic capabilities and facilitate personalized treatment
decisions in clinical settings.
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