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Abstract—Detection of anomalies from the medical image
dataset improves prognosis by discovering new facts hidden in
the data. The present study aims to discuss anomaly detection
using autoencoders and convolutional neural networks. The
autoencoder identifies the imbalance between normal and
abnormal samples. They create learning models flexible and
accurate on training data. The problem is addressed in four
stages: 1) training: an autoencoder is initialized with the hyper-
parameters and trained on the lung cancer CT scan images,
2) test: the autoencoder reconstructs the input from the latent
space representation with a slight variation from the original
data, indicated by a reconstruction error as Mean Squared Error
(MSE), 3) evaluate: the MSE value of the training and test
dataset are compared. The MSE values of anomalous data are
higher than a base threshold, detecting those as anomalies,
4) validate: the efficiency metrics such as accuracy and MSE
scores are used at both training and validation phases. The
dataset was further classified as benign and malignant. The
accuracy reported for outlier detection and the classification task
is 98% and 97.2%. Thus, the proposed autoencoder-based
anomaly detection could positively isolate anomalies from the CT
scan images of lung cancer.

Keywords—Anomalies; autoencoder; convolutional neural
networks (CNN) (ConvNets); deep neural network architecture;
regularization

I.  INTRODUCTION

Outliers are the data that are not normal when compared to
the rest of the information in any dataset. They indicate
extreme values which usually diverge from the general model
[1]. The occurrence of outliers in the dataset is possible for
many reasons, such as a fault in the system, manual errors,
fraudulent errors, equipment errors, and the data may vary for
inexplicable reasons camouflaging a few unseen motifs. At
times, these unusual patterns indicate hidden knowledge about
the data. For instance, irregular Electrocardiography (ECG)
data may suggest heart-related problems because it will be
dissimilar from the ECG report of a healthy person. Thus,
identifying outliers is an essential part of the knowledge
discovery process [2]. Because of this reason, outlier detection
has always been an exciting factor for researchers, scientists,
and data analysts. Outlier detection is widely employed in
nearly all subject areas such as medical, fraud detection, credit
card analysis, financial sectors, social network analysis, and
weather forecast analysis. Outliers are of different types:
univariate, multivariate, point/global, context, and collective
outliers [3]. The outlier detection approaches [4] are broadly
classified into three categories; 1) Statistical method: this

approach is used in a typical univariate environment where the
data distribution is normal/  Gaussian-like.  Here,
approximately 68% of the data fall with the normal
distribution anchored to the 1st standard deviation measure.
About 98% of data distribution fall in the 2nd standard
deviation and 99.7% of data value belong to the 3rd standard
deviation. The approach vyields faster results. The compact
representation of the model facilitates anomaly detection even
on large datasets. However, the statistical methods often fail in
a multidimensional dataset environment, and also, they require
prior knowledge about the anomaly pattern [5], 2) supervised
method: The model is trained on the labeled features that
differentiate between a normal and an abnormal data class.
The unseen data is fed to the system, i.e., test data, and the
model determines to which category the data point belongs.
Interestingly, they do not rely on any prior knowledge of the
anomaly pattern and it is easy to train the model. Again, this
model fails in a high-dimensional space, further attributed
with the local neighborhood problem [6], 3) unsupervised
method: the anomalies are detected through a heuristic
approach with certain assumptions of segregating the regular
instances versus other data points that deviate from the cluster.
K-means and DBSCAN are the prominent techniques here [7].
These methods are highly dependent on users’ perception
making the outlier detection task quite spontaneous. The main
drawback of this approach is the binary nature of data
separation, which is used for data grouping. Several
algorithms have been proposed in the realm of anomaly
detection however, they focus on arbitrary labels in the
classification of datasets to distinguish between previously
observed outlier samples. The protocols for feature selection
are not indicated, making the model detect only the previously
known anomalies. Moreover, the statistical methods will lead
to high false negatives that may skip identifying the actual
anomalies, and the rule-based models are highly dependent on
user-set parameters, whereby changing these features will
negatively impact the performance of the model [8].
Therefore, to fill the research gap of the existing methods, the
present study uses a deep learning approach — autoencoder and
convolution neural network (CNN). These methods have been
doing miracles on a diverse range of datasets amidst any
complexities in the structure. Thus, the main objective of the
present study is to use an autoencoder with encoder and
decoder arrangement to detect and eliminate outliers on lung
cancer computerized tomography (CT) scan images [9].
During the training, the encoder will learn the latent
representation of the normal data at the core layer. Thereon,
the decoder will use the information present in the core layer
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to reconstruct the data. The normal and abnormal data’s
behavior is separated by using a Mean Squared Error (MSE)
score. The MSE calculates the difference between the original
input data and the data the model constructed at the output
side. For a good model, the MSE scores should be small. In
further steps, the images are subsequently classified into
benign and malignant. The significant contributions of the
proposed work are as follows:

e Image datasets are highly sparse with a complex
structure. Thus, the study empirically demonstrates a
deep neural architecture to detect the medical image
outliers.

e The input data distribution is transformed into output
distribution space with the least amount of feature loss
(distortion).

e A reconstruction error is calculated for the training and
test data for understanding the gap between normal and
abnormal data samples. A base threshold is pivotal for
this mapping function [10].

e The proposed method works on an unsupervised
dataset without any labels, making the framework
efficient enough to ascertain the unusual patterns in the
underlying data.

The remainder of the paper is organized in the following
sections. Section 2 discusses various works related to the
present study. Section 3 introduces the autoencoder. The
implementation details are shown in Section 4. Section 5
delivers results and analysis of the proposed model. Lastly, the
paper culminates with Sections 6 and 7, highlighting the
discussions, scope for future research, and conclusion.

Il. LITERATURE STUDY

The problems associated with anomaly detection are found
abundantly in the literature. Various researchers have
proposed various models and methods globally in the past two
decades [11] [12]. In [13], LUNA16 dataset, CT scan images
with label nodules are used by the authors to detect cancer
using 3D-CNN. Initially, the raw images are preprocessed
using a threshold approach, and later vanilla 3D NN
architecture is used to classify the images into cancerous and
non-cancerous. The model achieved 80% accuracy with 120-
sec computational time. Though the results of this research
work are better than the previous results, it uses a relatively
small amount of dataset (~100 CT images). The same
LUNAU16 (lung nodule analysis 2016) datasets have been used
by the authors Gritli, et al. in [14]. The aim was to classify the
datasets into benign and malignant using 3D AlexNet
architecture. Through 10-fold cross-validation, the proposed
approach resulted in 97%, proving to be efficient than the
existing methods even at low-dose CT scan images. However,
the layers at the semantic network are tiny and light, making
the class activation function not perform well. There was a
significant amount of data lost in the process of maintaining
the class equivalence. The lung cancer detection in CT scan
images using CNN is proposed by Sharma, et al. in [15]. The
researchers have performed preprocessing and segmentation.
Later U-net model is used to classify the patients’ nodules into
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cancerous or non-cancerous. The authors claim to obtain 77%
accuracy but the proposed model suffers from data-imbalance
problems, due to which the accuracy is dropped. Rasha, et al.
[16] have worked on anomaly detection in lung cancer image
datasets. The features have been selected through techniques
such as local binary pattern (LBP), discrete wavelet transform
(DWT), and histogram of oriented gradients (HOG). The
firefly algorithm is used to optimize the selected features and
later on support vector machine (SVM) is applied to classify
the normal instance of the image. The authors have not shown
the real-time datasets taken from Moulana hospital. The
details of the preprocessing of the dataset are not discussed.
When the training set contains a small fraction of outliers, it
becomes extremely challenging to identify anomalies in the
given image dataset. Thus Laura Beggel, et al. in [17] have
proposed a unique anomaly detection using adversarial
autoencoders that places anomaly patterns in low likelihood
regions. The proposed model is performed on the MNIST
image dataset. The model resulted in some overlap with
reconstruction images making the task rely on a supervised
training mode. The performance is not studied for a high-
dimensional dataset. The 3D-National lung screening trial
(NLST) datasets have been used to study anomaly detection
using deep generative models in [18]. The model works on the
fact that positive samples are available in scarce; thus, the
likelihood of the unseen data is estimated without the
implications of the negative samples, thereby identifying the
samples as low likelihood datapoints. However, the
applicability is not suited when the complexity of the data
increases. The results of the 0.62 score under ROC results are
still not good enough for determining anomalies at the nodule
level. Mehdi, et al. [19] have proposed lung cancer detection
using an autoencoder that is semi-automatically trained on
datasets from the Lung Image Database Consortium image
collection (LIDC-IDRI) database. The dataset of healthy
patients is used for training, later the output was fed to a
segmentation process, and the variation in a pattern other than
healthy patients was removed. However, the segmentation
network could fail while training on abnormalities of the
diseased images.

I1l. ARCHITECTURE RECURRENT OUTLIER DETECTION
USING DEEP NEURAL ARCHITECTURE — AUTOENCODERS

Autoencoders (AE), a multi-layered feed-forward neural
network, is an unsupervised machine learning approach [20]
used for dimensionality reduction in a multivariate data
environment. However, on a univariate dataset, the
autoencoders are similar to linear regression or a typical
principal component analysis (PCA) problem [21]. Though
PCA and other clustering algorithms perform reasonably well
on multidimensional data, the autoencoder does a better job
because of hyper-parameters [22]. A significant difference
between a PCA and an AE is that the latter perform analysis
on the data with a non-linear activation function on the hidden
layers. Architecturally, an AE is a simple feed-forward
network because the information is fed to the input layer,
passed through a set of hidden layers. Each has a varied
number of nodes/neurons to transform the input and arrives at
the output. The nodes are extrapolated into different layers,
each connected to all the nodes on the previous layers. The
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input and the output layers have the same number of nodes,
‘n,” due to the symmetric arrangement of the autoencoder that
intends to reconstruct input at the output side. The values
predicted at each node through activation functions are passed
into consecutive layers ahead. The general representation of
AE is shown in Fig. 1. An AE consists of two main stages, an
encoder and a decoder [23]. An encoder maps the given input
into a compressed representation, and a decoder transforms
the compressed data back into the original input. Alongside,
an encoder wraps the original data by hidden layers into a
squeezed vector representation.

Xn = Z en (Wen XO + ben) (1)
i=1

Where, © is an encoding function of the hidden layer
ranging between 1 and n, “erand b are the weight and bias

parameters at layer ‘n’ and Xois the original input vector from
the input layer. Similarly, at the decoder side, the output will
be the same as the input that the system received initially but
with a difference that the output at encoder represents the

input (X) as a reconstruction error for %o,

X' = Z dn (dexn + bdn)
@

Where, X is a decoding function at nth decoding hidden
layer with the weights and bias being represented for the

corresponding nth decoding layer as Wan and Pan

The AE extracts the crucial features and stuff in a latent
space representation between an encoder and a decoder.
Besides, this representation contains a low-dimensional
version of the original input. Thereby, at the decoder, the AE
reconstructs the input data as the output from the latent space
features. This reconstruction is dependent on the training data,
i.e., an AE cannot build a new representation of the input but
only specific to what has been trained. Furthermore, the
autoencoder calculates the reconstruction error through MSE.
For a normal data sample, the reconstruction error is small.
However, these numbers are usually large and above a certain
base threshold for the anomalous data, typically set by the
user.

The encoding section takes the input image; the
autoencoder captures only the spatial features and converts
them to a low dimensional image. Further, in the decoding
section, the image is reconstructed.

(%)

Spatial
Features

Latent Space
Representation

Fig. 1. A Diagrammatic view of an Autoencoder Network.
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IV. AUTOENCODERS AND ITS COMPONENTS IN ANOMALY
DETECTION

The fundamental role of an AE in anomaly detection is to
determine how much the output data (reconstructed data)
deviates from the input data. Thus, the AE is essentially
trained on the theory of minimizing the reconstruction error.
The following parameters are considered during the training
process:

e The number of hidden layers — The decision boundary
is observed to split the input data into several classes,
and later these classes are expressed as a straight line
[24]. The joining curve of these lines indicates the
number of hidden layers, and the number of
consecutive lines decides the number of neurons in
these hidden layers. In an AE, the number of neurons
in the input and the output layers are the same.

e Regularization — The main objective of using any
machine learning approach is to make the model fit for
both training and test data to avoid overfitting and
underfitting. In both cases, the model will not
generalize well. The regularization techniques are
adopted to minimize the error rate on the test data at
the cost of boosting the training error. Lasso regression
(L1) and Ridge regression (L2) are the two popular
regularization methods [25]. Here, L1 regularization
[26] is used since this is particularly useful for the
feature selection process on a wide range of input
values. The loss function is given by;

Loss Function

n p
=) (Z, _Z i ?
i=1 j=1 (3)
Here, Zi is the input variable at some neuron layer ‘i’ (i €
1 to ‘n’ inputs), and vyij is the output layer obtained at some
neuron layer ‘j” corresponding to the input ‘i’. The output has
‘> layers, the same as the input layer such that je 1 to ‘p’
outputs. aj is the reconstruction error. The entire component is
squared to eliminate any negative value. The L1 regression
defines an absolute value of the magnitude for a penalty term
along with loss function [27], and it is given by;

Regularization Function (L1) =

p
p2|a1|

Loss Function + i 4)

e Learning rate: Indicates the number of weights updated
at every epoch. It tunes the algorithm to achieve
minimum reconstruction error.

e Batch size: This refers to the number of training
samples used at different iterations from which the
model learns.

e Optimizer: An optimizer is used to combat the time
complexity of the algorithm. Adam Optimization
algorithm [28] is a replacement for a traditional
stochastic gradient descent method to update the
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training network’s weights. The learning rate is
calculated for wvarious parameters and frequently
preserved for individual network weights. These values
are finally adopted as a learning process unfolds.

A. Training a Deep Neural Network through ConvNets

When an input image passed through a standard neural
network, many of the temporal [29] (time-related: pictures that
were taken at different time intervals) and spatial [30] (space-
related: properties related to a single image such as
coordinates, gradients, resolution and so on) features are lost.
Convolutional Neural Network — ConvNet — CNN [31] model
is used to overcome this problem. Spatial elements are
essential to reconstruct the images as they describe each
image’s characteristics. An AE retains only spatial features,
eliminating the images’ temporal aspects. The encoder
comprises three ConvNet layers with different dimensions. At
the core, there is a hidden layer that is dense and fully
connected autoencoder with neurons. Once the image is
resized, a low-dimensional version of the input is stored in the
latent space. The decoder comprising three deConvNets
reconstructs the input image with limited features. Each image
is 512x512 pixels. The first layer of ConvNet is a
convolutional layer with 32 filters such that each filter is of
size 5x5. Only one feature out of 32 will be considered at each
evaluation step, indicated by 512x512x1. The second layer is
pooling with a 3x3 pool size. The output size is 509x509 since
pooling prunes 3x3 pixels from each side. Here, the image
would be reduced to 169x169 (509/3 ~ 169) with 32 filters (a
similar process is repeated for the 2nd and 3rd ConvNets). The
flattening process induces the product of these numbers. The
pooled features of the input image are mapped onto columnar
representation. The fully connected layer in the core is then
turned on with batch size = 128. The spatial features are
juxtaposed to form many attributes sufficient to create the
original input image. At the decoding side of DeConvNets, the
same process is reversed by retaining the dimensions constant.

The architecture of a CNN model is shown in three stages,
Fig. 2.

e Convolutional Layer: The feature space is created for
an input image and preserves the relationship between
the pixels through filtering. The filters” values are
usually; 1, -1, and 0 — a positive value for feature
brightness, a negative value for darkness, and 0 for a
grey image. These values are placed indefinitely at
different locations in the filters. When an original
image passes through the filters, the filtered image
features produce two types of high and low scores for a
match and low for a no-match/mismatch. The filters
here represent the number of features that the model
can extract. However, with a more significant number
of filters, the training process is prolonged. The filter
values are 32, 64, 128, and so on.

e Activation Function: The activation function helps the
model map the resulting feature values into a
normalized value between 0 to 1 and -1 to +1. In the
proposed system, two activation functions are Sigmoid
and ReLu. The sigmoid function squashes the feature
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values between 0 and 1. The ReLu — Rectified Linear
Unit — substitutes a negative value to zero [32].

e Pooling: This is used to reduce the size of filter vectors.
For instance, in max-pooling, if the filter is 3X3, the
highest value is chosen at every 3X3 matrix. Once the
pooling is completed, the filtered images are stacked
up to form a list.

Y| e ", 4
e Ll .
{ ; xldutd q n Net3

Debonsg  PREIR
Ox128 DeCone ”=
' il
$4x8du6d

ConNet3 264618
1601633

ConvNet] 4
e N

Fully comnzcted Tzyer

Fig. 2. The Encoding and Decoding Processes of an Autoencoder using
ConvNets and DeConvNets, Respectively. The Encoding and Decoding
Processing are Symmetric and have the Same Layers in each Section.

B. Training Algorithm for ConvNets-Autoencoders using
Adam Optimization Technique

Adam optimizer is used to train a deep neural network
using ConvNets. Here, the learning curve is estimated based
on the lower-order moments with fewer memory
requirements. Algorithm 1 illustrates the training process
adopted for this research study.

Algorithm 1: Training algorithm for ConvNets using Adam
Optimization Technique

Input: Training data split (d); the input vector (*); Adam’s learning
rate parameters 3 = (en,We",ben); the number of hidden layers; the
number of epochs; batch size; p is the regularization parameter;

Output: Trained model with decoding function (X ) returns a; as
reconstruction error; fw,d(X)~ x

1: start

2: arrange the data required for the training model with the dataset (d)

3: initialize the parameters = (en Wen Fen y:

4:forP € (1,2, 3, 4... epochs)

5: for ge (1, 2, 3, 4... batch size)

6: for fw,d(x) Vxind

7: transform the input layer vectors into their
corresponding hidden layers in a series of
encoder layers and compute output layer with
decoding function [eg. 1 and eq. 2]

8: calculate the reconstruction error o; by using
eq. 4
9: update Adam’s learning rate parameters f§ = (e" ,
Wen ’bsn);
for each iteration
10: end for
12: end for
13: end for

14: train the model with the results of the above steps and return
15: stop
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V. IMPLEMENTATION

A. Dataset Description

CT scan images of lung cancer are used as a dataset’. The
dataset is a subset of the LUNA16 Grand Challenge®. The
dataset is efficient enough to analyze the model because it
contains the images exposed to a two-phase annotation
process by four different radiologists. Thus, it makes the
dataset suited for testing with an emphasis on identifying
anomalies. Further, the images are adequately compressed,
due to which no additional image compression techniques are
used in the present study. A total of 297 images are separately
marked for training and testing purposes. Convolutional
autoencoders are implemented on the Spyder platform version
4.1.5 3pby adopting a high-level neural network application
package — Keras 2.3.0 * ,which runs on Tensorflow v2.4.1 ° at
the background. The code is written in python 3.8.8 ¢

B. Parameter Setting and Preprocessing

The details of the hyper-parameters used for the
implementation are as follows: learning rate: 0.01, epochs: 40,
batch size: 30, Adam optimizer parameters: alpha (learning
rate) = 0.001, betal (exponential decay rate for the first
estimate) = 0.9, beta2 (exponential decay rate for the second
estimate) and epsilon (to overrule divide by zero error) = 10E-
8, input images: 297, corresponding to 297 neurons in each
hidden layer, sequential CNN model with kernel size = (3,3) at
convolution layer and pool size = (2,2) at MaxPooling layer.

The images were preprocessed before the model is
executed on the input. Those are; a function was called to load
images from the folder onto an array variable. Further, images
in the dataset had varying sizes. Thus, the height and width
were rescaled to 512 pixels each to maintain uniformity
throughout. The pixel values of the image (0 —black to 255 —
white) are scaled between the ranges of 0 and 1 in the process
called normalization (the ImageDataGenerator divides the
pixel value by 255, for instance, 1/255 = 0.0039). This is
performed because a neural network usually works with small
weights used to update the neurons. If a large value is used,
the network consumes a great deal of time, slowing down the
learning process. With 40 epochs, the model attained an
accuracy of 98% and an MSE value as low as 0.011. With
every epoch, the model learns the features better with extra
latent manifolds. The relevant features are then retained, and
the characteristics that are not scalable for latent space
representation are pruned.

C. Results

Out of 297 images, the dataset was split into three
categories as training: 70% (207 images), validation: 10% (29
images), and test: 20% (61 images). The efficacy of the
proposed system is measured at both the times — training and
validation. The terms used are:

! https://www.kaggle.com/kmader/finding-lungs-in-ct-data
2 https://lunal6.grand-challenge.org/Data/

® https://www.spyder-ide.org/

* https://keras.io/

® https://www.tensorflow.org/

€ https://www.python.org/
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e Overall accuracy — accuracy is calculated at every
epoch as, accuracy= images the system constructed
correctly / the total number of images in each epoch
(batch size).

e MSE - MSE defines an average square of the
difference between the original input image and the
image constructed by the model.

1 .
S - X )
MSE = le ()

Here, ‘B’ indicates the batch size since the parameters are
considered for individual batches. The error score of the

original input image at the ‘i’ instance is given by Xi, and the

error score of the reconstructed image at ‘i’ is provided by ..
MSE score of the anomalous data tends to be above the
normal data threshold. The MSE scores for all samples are
calculated to set the base threshold. The distribution of these
MSE scores determines the threshold; 92% of the data was in
the range of 0.011 to 0.6. The remaining 8% of the data had
many variations in their MSE scores, such as 17.5, 2.5, 9.2,
and 11.3, so on. Therefore, by looking at this distribution, the
base threshold for anomaly detection was set as 0.7. The MSE
score of the reconstructed images of the normal samples will
be less than or equal to 0.7, and for abnormal images, the
score will be greater than 0.7.

Of the 297 images, 23 images are identified as anomalies,
with an MSE score greater than 0.7, and the 274 images are
identified as normal samples, as demonstrated in Fig. 3(a).
Initially, the accuracy was low even for a low MSE score;
however, it is evident that, as the epoch progressed, the
accuracy increased for normal data; however, the accuracy
dropped as low as 11%, indicating a very high MSE score
(17.5) for some data. Nevertheless, it is observed that the
samples with high MSE scores have low accuracy values
indicating the presence of the outliers. The accuracy achieved
with low MSE scores was excelled, nearing 98%. The data
with high MSE and low accuracy indicate the presence of the
outliers, which were identified through the MSE scores.

e Val loss: This is applied to the test data. val_loss is a
good sign of how the model performs on the unseen
data. Smaller val_loss indicates that there is no
problem with overfitting. Consequently, if the model is
trained heavily on the data, the val_loss increases as
evidence of overfitting.

e Val _accuracy: The overall accuracy is an indicator of
the classification performed on the training data. But
for the test data, val _acc is crucial as it tests the
accuracy of the unseen data. A neural network model is
considered good when the val_loss starts decreasing,
and the val_acc starts increasing [33], as shown in
Fig. 3(b). Here, the number of examples used to
calculate the loss/ error gradient is called a batch size
or simply a batch. However, the training epoch
indicates that the model has made learning for a
randomly selected batch. As the validation loss is
calculated in terms of samples, the term batch is used.
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e Val _mse: The MSE score for the validation/test data

The overall evaluation of the proposed model is plotted in
a line chart for the key terms explained so far. This is shown
in Fig. 4. It must be noted that, as the epochs progress, the
accuracy metrics increases, and the MSE values decreases.
Additionally, val_loss is also reduced, indicating that the
model is trained appropriately. Fig. 5 shows a set of images
identified as anomalies and normal data. Once the outliers are
removed, the image dataset is classified into either benign or
malignant with simple neural network architecture [34].

The predicted output is put forward in the form of a
confusion matrix in Fig. 6. Out of 297 input images, 259
images were correctly classified as benign (TP), and 22 out of
24 (actual number of malignant) images were classified as
outliers (TN), 5 images that are non-benign (actual malignant)
but are identified incorrectly as benign (FP) and 11 images
were obtained incorrectly as malignant (FN). The ROC
(Receiver-Operating-Curve) is plotted to determine the model
performance based on predicting the probabilities of outcome
(whether an image is an outlier or not) as illustrated in Fig. 7.
The ROC is plotted against True Positive Rate (TPR) and
False Positive Rate (FPR) for a wide range of threshold
values. TPR — Recall — Sensitivity is given by, TPR = (TP) /
(TP + FN) and FPR is given by, FPR = (FP) / (FP + TN).
Area-Under-Curve (AUC) measures the degree of separation,
which tells how capable the system is at distinguishing
between the classes.

MSE score vs Accura
100 = model loss

— train
— fest

2 .. 15
M . 10
00 25 50 7% 00 25 160 15 0 o k-l £ a9 0
MsE Bitch
(@) (b)

Fig. 3. (a) A Graphical Representation of Variation in the Accuracy and the
MSE Scores. The Accuracy Increased, and the MSE Value is Dropped to a
Minimum towards the End of 40 Epochs, (b) A Graphical Representation of
Variation in Training and Test v_loss. As Observed, the val_ loss of Test Data
is Slightly Reduced at Encircled Points.
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Fig. 4. The Evaluation Metrics Such as MSE, Val_loss, Val_acc, val_MSE,
and Overall Accuracy Plotted across 40 Epochs.
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€

Fig. 5. A Series of Data for both Anomalous (Black Background) and
Normal (White Background) as Identified by the Proposed Model.
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Fig. 6. A Confusion Matrix for the Two Classes — benign and Malignant
Plotted against the True and Predicted Classes. Here, 259 Indicates TP, FP =
5, FN =11 and TN = 22. The Ranking is shown for all the 297 Input Samples.
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Fig. 7. ROC Curve for Cumulative Results of the Classification Task. The
Value of AUC =0.972 (97%) Reveals that the Model is Excellent in
Distinguishing between the benign and Malignant Classes.

D. Comparison of Various Outlier Detection Methods with
the Proposed Model

In this subsection, the proposed model is compared with
the classical state-of-art systems. The result of this comparison
is described in Table 1. The proposed model outperformed the
other conventional methods by achieving 98% accuracy. This
indicates that the model can be well adapted even for distinct
datasets with complex structures.
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TABLE I. COMPARISON OF THE PROPOSED MODEL WITH THE OTHER
STATE-OF-ART TRADITIONAL SYSTEMS IN TERMS OF ACCURACY
Accuracy
Grltl_l. et.al in [14]. 3D AlexNet 97%
architecture.
Shar_ma. et.al in [15]. CNN-based 77%
architecture
Rasha. et.al [16]. Firefly algorithm with 78%
SVM
Laura Beggel. et al. in [17]. Adversarial 0.62
autoencoder-based [Under 0.62]
AnoGAN deep convolution using 84%
adversarial network [35]
98% - outlier detection
Our proposed method 97.2% - classification task

VI. DISCUSSIONS

Like any other expert system, the proposed model also
deals with some limitations. The model is highly dependent on
the training data. As a result, when unseen data — a typical
healthy heart image — was fed as an input, the system calls it
an anomaly. This could be a potential problem mainly when
the corpus is more generic than domain-specific. The
proposed model considers only the spatial features, thereby
removing the temporal characteristics of the image in the
cleaning step. Thus, the edges and variations in the local
binary pattern of the images are skipped, leading to
misrepresentation of features sometimes. Interestingly, the
global minimum MSE score is 0.01, and it cannot be reduced
even with further training. This hypothesis helped to shorten
the input size and exemplify the latent space representation.
Additionally, a sparse hierarchical model is witnessed in most
activations, mainly when the spatial features are selected.
Further, the complex representation is brought down to lower
dimensions in the encoder and later decoded into an original
image. During this transformation, the model may memorize
the data during the training process leading to overfitting.
Therefore, the proposed method restricts the number of
neurons in the core layer, usually half of the number of input
variables in the network. This will ensure that the model is
learning the key patterns, rules, and essential features from the
input data. It is imperative to note that no training labels are
used in the model, making it completely unsupervised.
However, each neuron at the hidden layers is driven by the
data on hand that makes the system data-reliant. Thus, when
the input features change, the activation function triggers
different neurons and results in a different output through the
network. While the latent space representation stress enough
on the encoding and decoding process, the regularization used
in the network minimizes the error rate through the L1
regularization technique. Though the proposed model
performs reasonably well, there is still room for improvement.
For instance, the gradient-weighted activation mapping
technique could be used to obtain visual explanations of the
predictions made by the system, and using a larger dataset
could further improve the performance.

The future direction of this research study is to identify the
nodule location and size measurement using Deep NN
techniques and later categorize it into different cancer stages.

Vol. 12, No. 7, 2021

The present work could be implemented on different types of
autoencoder for a complex dataset and study the performance.
The hyper-parameters may be tweaked to refine the CNN
model and check if the accuracy is improved. The outliers can
be grouped into different clusters and analyze their behavior in
each set. Alongside, the feature rules can be generated to
highlight the anomaly score of each group to understand the
depth of anomalies present in the data. The accuracy could be
improved further by choosing a giant database such as
LUNA16 or LIDC/IDRI. The results obtained will help
clinicians detect cancer more accurately with an anomaly-free
dataset.

VII. CONCLUSION

A study on outliers in medical data has been one of the
leading research concerns over the past few years. By and
large, the anomalies in the medical data are inevitable but
impose complications if left unnoticed. Previously known
anomaly detection approaches using PCA are equally
efficient; however, PCA attempts to uncover the lower-level
features of the input data, but autoencoders learn features from
the data having higher dimensions with any complex and non-
linear structures. With the help of an encoder and a decoder,
clustered in multiple convolutional layers, the autoencoders
efficiently remove the outliers without any training labels in
the dataset. The encoder absorbs significant features of the
images. The original image is reconstructed at the decoder
side. Of the 297 images, 23 images are identified as
anomalies, with an MSE score greater than 0.7, and the 274
images are identified as normal samples. With 40 epochs, the
model attained an accuracy of 98% and an MSE value as low
as 0.011. With every epoch, the model learns the features
better with extra latent manifolds. The outputs are further
classified into benign and malignant. The confusion matrix
indicates a good classification of the two classes. Out of 297
input images, 259 images were correctly classified as benign,
and 22 out of 24 images were classified as outliers, 5 images
that are non-benign but are identified incorrectly as benign,
and 11 images were obtained wrongly as malignant. The
ROC-AUC curve showed 97.2% efficiency on the
classification task. Thus, autoencoder could be a one-stop
destination to remove the outliers from complex multivariate
data.
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