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Abstract

Medical image analysis, particularly ultrasonography, has involved increasing attention in computer
science and engineering due to its potential for automated and scalable interpretation. Ultrasound
imaging is widely used in prenatal care because of its non-invasive nature and cost-effectiveness.
Automated analysis of fetal ultrasound images can improve diagnostic accuracy and reduce inter-observer
variability. However, challenges such as speckle noise, low contrast, and anatomical variations across
trimesters make automated interpretation difficult, requiring robust preprocessing, segmentation, and
classification methods.

This study proposes a hybrid ensemble deep learning framework for analyzing fetal ultrasound images.
The framework integrates a denoising autoencoder for noise reduction and image enhancement, as well as
seven segmentation architectures (U-Net, DeepLabV3+, DenseNet-U-Net, MFP-UNet, Attention U-Net,
MobileNet-U-Net, and ResNet-U-Net), and five ensemble strategies (maximum voting, majority voting,
weighted voting, confidence-based fusion, and averaging) to enhance segmentation performance. A
multi-input classification approach is also introduced, combining individual and ensemble segmentation
outputs in a fine-tuned DenseNet121 for trimester categorization (first, second, and third trimesters)
based on head circumference and femur length.

The framework is evaluated using Dice score, mean intersection over union, accuracy, precision, recall,
and F1-score. Experimental results show that ensemble strategies significantly improve segmentation.
The multi-input classification achieves 92.50% accuracy for head circumference and 90.60% for femur
length on the custom dataset, as well as 83.68% on the HC18 dataset, outperforming individual models.

The main contributions include (1) a hybrid ensemble strategy for robust segmentation and (2) a multi-
input trimester classification method. The proposed framework is generalizable and can be extended to
other medical imaging applications beyond fetal ultrasound analysis.

Categories: Image Processing and Analysis, Medical Expert systems, Deep Learning
Keywords: ultrasound medical image, medical image analysis, image segmentation, ensemble approach, trimester-based
image classification, multi-input classification, deep learning techniques, feature extraction

Introduction

Ultrasound imaging is a crucial diagnostic modality in prenatal healthcare due to its affordability,
portability, and non-invasive nature without ionizing radiation [1]. Clinicians monitor fetal development
across three trimesters (0-13, 14-26, and 27-40 weeks) using biometric parameters such as Head
Circumference (HC), Femur Length (FL), Abdominal Circumference (AC), and Crown-Rump Length to
estimate gestational age and assess developmental progression [2-5]. However, automated fetal
ultrasound analysis is challenging due to high intra-class variability caused by inconsistent anatomical
views, fetal movement, and gestational changes, along with imaging artifacts such as speckle noise,
acoustic shadowing, and low tissue contrast. These factors obscure anatomical boundaries and increase
diagnostic errors, necessitating robust computational techniques for accurate structure detection and
biometric measurement [6-9].

Traditional computer vision approaches, including Gaussian and median filtering for denoising, Otsu’s
thresholding, edge detection, and region-growing for segmentation, have shown limited success because
they rely on handcrafted features and rigid assumptions, often leading to over-smoothing and loss of
anatomical details [10-12]. Similarly, classical machine learning methods, such as Support Vector
Machines and Random Forests, require manual feature extraction and fail to capture complex spatial
relationships in fetal anatomy, making them vulnerable to intensity variations and artifacts in ultrasound
images [13-15]. Although deep learning-based models have improved segmentation accuracy, most
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existing studies are trimester-agnostic, training on mixed-trimester data without accounting for the
anatomical and contrast variability observed across gestational stages. For instance, first trimester (FT)
images often show small fetal heads with low contrast and poorly defined boundaries, whereas second
trimester (ST) and third trimester (TT) images display larger head sizes, brighter skull edges, and increased
ossification. FL images similarly exhibit trimester-dependent variations in size, shape, and orientation,
causing inconsistent performance when models trained on mixed data are applied to different gestational
stages [16-20]. These differences are visually demonstrated in Figure I, where trimester-wise ultrasound
samples show clear anatomical variability: (a) our created dataset containing images with HC and FL
parameters and (b) the publicly available HC18 dataset containing images with HC parameters.

The originality of this study lies in its trimester-aware, multi-stage computational pipeline designed
specifically for fetal biometric analysis. Unlike existing approaches, our framework incorporates a
trimester-specific classification module, enabling gestational-stage-aware processing and allowing the
model to adapt to trimester-dependent anatomical variability [21-24]. Additionally, a denoising
autoencoder is integrated as a dedicated preprocessing stage to enhance ultrasound image quality while
preserving fine anatomical details, an aspect rarely explored in trimester-specific fetal analysis.
Furthermore, an ensemble of seven state-of-the-art architectures (U-Net, DeepLabV3+, DenseNet-U-Net,
MFP-UNet, Attention U-Net, MobileNet-U-Net, and ResNet-U-Net) is employed not as a simple reuse of
existing models but to leverage their complementary strengths, such as robust encoder-decoder design,
attention mechanisms, and multi-path feature aggregation, to achieve consistent segmentation across
diverse anatomical presentations [25-30]. By aligning computational modeling with fetal developmental
stages, the proposed method significantly improves segmentation consistency and biometric
measurement precision, supports early anomaly detection, and contributes to evidence-based clinical
decision-making and improved prenatal care [31-34].

The main contributions of this study are summarized as follows:

« Creation of a new custom dataset including 1,426 HC and 1,404 FL ultrasonic images across all
trimesters.

« Integration of fetal age as a crucial feature, which was absent in HC18, enabling precise trimester-based
analysis.

« A new pipeline is designed, integrating a denoising autoencoder, an ensemble of segmentation models,
and a trimester-specific classification module tailored for fetal biometric parameters.

« Extensive experiments classifying HC and FL parameters into FT, ST, and TT, providing detailed
trimester-specific insights.

» Demonstration of significant improvements in classification accuracy compared to HC18, validating the
new dataset's value in more accurate fetal measurements.
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First Trimester

Second Trimester Third Trimester

-

FIGURE 1: Trimester-wise ultrasound samples: (a) Created dataset
containing images with HC and FL parameters. (b) The publicly available
HC18 dataset containing images with HC parameters

FL, Femur Length; HC, Head Circumference

Related work

Mengistu et al. [3] have developed a deep learning model for detecting fetal head abnormalities from
ultrasound images using data from Ethiopian healthcare facilities. Among various architectures, SegNet
achieved the best performance, with 98% accuracy and a Dice coefficient of 0.97. The model accurately
classified microcephaly, macrocephaly, and normal cases using WHO guidelines and showed strong
agreement with expert measurements for BPD and HC.

Danish et al. [5] have introduced a dataset of 500 ultrasound scans from 4 to 10 weeks of gestation created
for gestational sac segmentation. UNet, UNet++, DeepLabV3, and ResUNet models, each with a ResNet50
encoder, were trained and evaluated using 5-fold cross-validation. Among them, ResUNet outperformed
others with a Dice score of 0.978 and intersection over union (IoU) of 0.946. A new biometry-based
method was also proposed for automatic gestational age estimation, achieving a low mean absolute error
of just 0.07 weeks compared to expert sonographers.

Chougule et al. [6] have proposed a method to measure fetal HC from 2D ultrasound images using a
combination of biometry-based image processing and segmentation techniques. Models like SegNet, GCN,
and HRNet were evaluated for semantic segmentation, with HRNet achieving the highest performance,
yielding an average Dice score of 96%.

Halder et al. [7] have presented the Residual U-Net, demonstrating superior performance over traditional
U-Net and Attention U-Net in fetal head segmentation, effectively addressing the vanishing gradient
problem. It achieved a highest Dice coefficient of 97.17% and Jaccard Index of 94.51% on the validation
set. The study also included fetal HC measurement and head position estimation.

Alzubaidi et al. [9] have introduced ETLM, a novel method that combines transfer learning with ensemble
learning for fetal head segmentation and measurement in ultrasound images. After evaluating eight
segmentation networks, their ensemble approach achieved an mean IoU (MIoU) is 98.53%.
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Ashkani Chenarlogh et al. [10] have proposed the Fast U-Net, a lightweight architecture designed to
reduce computational load in clinical settings. Evaluated on datasets for AC and HC segmentation, the
model maintained a Dice coefficient of 97.45% to standard U-Net while significantly reducing processing
time, making it suitable for real-time clinical deployment.

Dubey et al. [12] have proposed the DR-ASPnet model for fetal head (FH) segmentation and HC estimation
in ultrasound images. To tackle issues like image blurring and pixel size variation, they employed pre-
processing and data augmentation techniques. The model combines appearance-based and hierarchical
density regression with a deep convolutional classifier to improve segmentation precision. It achieved a
Dice coefficient of 98.86%.

Sobhaninia et al. [15] have proposed a multi-task deep learning model based on the Link-Net architecture
for fetal head segmentation and circumference estimation in 2D ultrasound. Incorporating an Ellipse
Tuner module, the model trained on 999 images demonstrated improved segmentation performance over
single-task networks, producing smoother and more accurate elliptical outlines.

Zeng et al. [17] have introduced DAG V-Net, a deeply supervised attention-gated V-Net model for fetal
head segmentation in ultrasound images. By integrating attention mechanisms and deep supervision, DAG
V-Net outperformed traditional U-Net and V-Net models, achieving a DSC of 97.63%.

Nagabotu et al. [19] have developed an enhanced U-Net model that incorporates attention mechanisms
and scale information to improve the segmentation of fetal head measurements from 2D ultrasound
images [35-36]. The model demonstrated superior accuracy, with DSC values of 97.90% and MIoU values of
97.81%, in predicting key parameters, including head circumference, occipitofrontal diameter, and
biparietal diameter, compared to existing approaches.

Rayed et al. [20] have comprehensively reviewed deep learning techniques in medical image
segmentation, discussing commonly used preprocessing steps, datasets, and architectures. The review
assesses the strengths and limitations of current methods, outlining ongoing challenges and providing
valuable guidance for future research and innovation in the field.

Al-Razgan et al. [22] have developed the AG-CNN model, which uses adaptive feature extraction and
attention mechanisms to enhance fetal anatomical plane detection. The model outperformed
DenseNet169, ResNet50, and VGG16, achieving lower losses and higher accuracies on curated datasets.
The AG-CNN model achieved an accuracy of 94%.

Wang et al. [24] have introduced the FT Decoder, an efficient fine-tuning strategy for U-Net, targeting
improved fetal head segmentation in ultrasound images from low-resource settings. By training only the
decoder stack, the approach reduces trainable parameters by 85.8%. The FT Decoder enhances the average
DSC by 1.7% and 7.87% for high- and low-resource settings, respectively, demonstrating its effectiveness
for resource-constrained scenarios.

Sivasubramanian et al. [26] have proposed a lightweight Al architecture incorporating CNNs and attention
mechanisms to classify a large-scale fetal ultrasound dataset comprising 12,000 images. Utilizing
EfficientNet backbones (B0 and V2B0) pre-trained on ImageNet1k and enhanced with attention modules,
the model achieved impressive results: 96.25% Top-1 accuracy, 99.80% Top-2 accuracy, and an F1-score of
95.76%, outperforming conventional models while using 40 times fewer parameters. Grad-CAM-based
explainability further enabled clinical interpretability, making the model suitable for real-time
deployment on edge devices to support prenatal diagnostics.

Ghabri et al. [28] have developed deep learning models using InceptionResNetV2, InceptionNet,
DenseNet, MobileNet, and ResNet50 to classify fetal ultrasound images. By applying image cropping,
augmentation, and data cleaning, they enhanced the quality of a public dataset. Their transfer learning
approach achieved remarkable performance, with 99.78% accuracy, 99.77% F1-score, and 99.78% AUC,
demonstrating its potential for deployment in resource-constrained healthcare settings.

Hasan et al. [32] have introduced an ensemble deep transfer learning framework for automatic fetal brain
plane classification, combining U-Net for segmentation with a majority voting ensemble of three pre-
trained classifiers. The model achieved 97.68% accuracy on a blind test set, exhibiting superior
performance and robustness compared to existing methods in the domain.

Fiorentino et al. [34] have reviewed advancements in deep learning techniques for fetal ultrasound image
analysis, focusing on standard plane detection, anatomical structure analysis, and biometric estimation.
Evaluating 145 studies since 2017, the review highlights the strengths and limitations of existing methods
while addressing challenges related to dataset availability, clinical relevance, and evaluation metrics.

In the past decade, researchers have explored various methods for analysing fetal images and detecting
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abnormalities using different image processing techniques. Image representation and description are
essential early steps in this process. Many researchers have contributed valuable work in this area. A
summary of recent studies is provided in Table 1.

Parameters Methodology

HC

GS

HC

HC

HC

HC, FL, AC

HC

HC

Multi-Organ

HC

HC, FL, AC

SegNet

ResUNet

SegNet, GCN, and
HRNet

Ensemble Transfer
Learning

DR-ASPnet

U-Net

Deeply supervised

attention-gated
(DAG) V-Net

U-Net

AG-CNN

Mobilenet V2

U-Net, Deeplabv3+

Results

DSC = 97%,
Accuracy = 98%

DSC = 97.8%,
Accuracy = 98%,
MloU = 94.6%

DSC =96%

MloU = 98.53%

DSC = 98.86%

Accuracy = 99.86%

DSC =97.63%

DSC = 97.90%, MioU

=97.81%

Accuracy = 94%

PA =97.77%, DSC =
96.28%, MloU =
92.87%

HC: MloU = 93%, FL:

MloU = 89%, AC:
MloU = 61%

TABLE 1: Summary of recent work and limitations

AC, Abdominal Circumference; DSC, Dice Similarity Coefficient; FL, Femur Length; GS, Gestational Sac; HC, Head Circumference; MloU, Mean Intersection

over Union; PA, Pixel Accuracy

Limitations

Small dataset; needs more diverse data. The model does not
replace clinical diagnosis.

Limited generalizability due to single-center data and manual
plane selection; expand data sources and add real-time image
analysis.

It depends on segmentation accuracy; it lacks real-time
validation and large-scale clinical evaluation.

Limited feasibility of deploying US machines in all settings;
resolution constraints may affect measurement accuracy.

Image quality issues due to maternal factors, anatomical
variability, and limited access to 3D imaging in low-resource
settings.

Limited sample size; lower segmentation accuracy.

Limited sample size; lower segmentation accuracy in the first
trimester; higher measurement error in the third trimester.

Challenges include noise in ultrasound images, variations in
fetal head development, and the presence of overlapping
sutures and blurred boundaries.

Needs a more diverse dataset, real-time deployment validation,
and collaboration with clinicians for clinical translation.

Limited data access in low-resource settings and difficulty in
optimizing fine-tuning strategies.

Limited training data; not yet integrated with plane detection;
needs validation through expert vs. novice comparison.

Although there has been progress in fetal biometry, a significant research gap remains in the trimester-

based classification of fetal HC and FL. Existing methods often fail to capture the variations in these

parameters across different trimesters, limiting the accuracy of fetal growth assessments. Notably, there is
a lack of specialized datasets specifically designed for trimester-wise analysis of HC and FL. To address
this gap, the present study introduces a comprehensive, multi-stage computational pipeline incorporating

a deep learning framework tailored for both segmentation and trimester-based classification. This
approach involves the creation of a dataset that systematically categorizes ultrasound images by
trimester, thereby enhancing the model’s ability to predict HC and FL. The proposed methodology,
detailed in the following sections, is designed to overcome existing limitations through robust deep
learning strategies and efficient data handling techniques.

Materials And Methods

Proposed method

The proposed methodology aims to perform a comprehensive analysis of fetal biometric parameters,
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specifically HC and FL, through a trimester-aware multi-stage deep learning pipeline designed for
ultrasound image processing. This framework integrates both the publicly available HC18 benchmark
dataset and a newly curated custom dataset (1,426 HC and 1,404 FL images), allowing for a more diverse
and representative evaluation of fetal development across various gestational stages. The pipeline
consists of three primary components: pre-processing, segmentation, and classification. The proposed
model is shown in Figure 2.

Image Acquisition

-

.
— e
— =

& gt

Labeling, Cropping, and Noise
Removal Process (Denoise-
Autoencoder Techniques)

Ensemble methed combining seven
deep learning models

Performance Measures

1 1 Third Trimester Cont

:Dlm Score  Accuracy - Classification .
b Lo Individual Classifier Ensemble Model, gt ‘Weighted
Recall Fl-Score - and Multi-Input Fusion Segmentation
‘Confusion Matrix 1

FIGURE 2: Block diagram of the proposed model

New Dataset Creation

In the present study, we have created a dataset comprising ultrasound images for HC and FL parameters.
The dataset includes 1,426 HC images and 1,404 FL images, each categorized into FT, ST, and TT with
guidance from medical professionals. The images were acquired using a VOLUSON P6 ultrasound machine
at Metgud Hospital - Advanced Laparoscopy Centre and IVF, located in Belagavi, Karnataka, India. All
images were captured in JPG format at an original resolution of 640 x 480 pixels and subsequently cropped
to 300 = 300 pixels to focus on the region of interest. The dataset is provided without predefined training
or testing splits, allowing researchers to partition the data according to their specific requirements. For
annotation, an experienced sonographer manually labelled each image: the skull region is marked with an
ellipse for HC measurement, and the femur region is enclosed within a rectangle for accurate FL
assessment. Figure 5 shows sample ultrasound images from the dataset with important fetal biometric
annotations. Image (a) displays the FL, and image (b) shows the HC. These examples help to show the

clear structure and consistent labeling in the dataset.
TT TT Annotation

FT Annotation ST (a) ST Annotation

FT Annotation ST Annotation TT Annotation

(b)

FIGURE 3: Sample ultrasound images from the created dataset
illustrating annotated fetal biometric parameters: (a) Femur length and
(b) head circumference

FT, First Trimester; ST, Second Trimester; TT, Third Trimester

The HC18 dataset presents several limitations that restrict trimester-specific fetal analysis. It does not
include trimester labels for individual images and provides only HC measurements along with pixel size
information [1]. Furthermore, the test set lacks HC values and segmentation annotations, making it
difficult to perform detailed evaluations on unseen data. Although the dataset reports the total number of
images per trimester, it does not specify the trimester category for each image. To address these
limitations, a custom dataset is developed containing gestational age information for each fetus. This
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addition enables accurate classification of images by trimester, allowing for more structured analysis of
fetal development across different stages of pregnancy. The custom dataset also includes both HC and
FL parameters, offering a larger number of samples than the HC18 dataset. These improvements enhance
the statistical robustness of model training and validation. Table 2 presents the distribution of fetal
ultrasound images by trimester for both the HC18 and the proposed custom dataset.

Datasets First Trimester Second Trimester Third Trimester
Custom dataset-HC 148 380 898
Custom dataset-FL 112 395 897
HC18 165 693 141

TABLE 2: Trimester-wise distribution of fetal ultrasound images in the HC18 and custom datasets

HC, Head Circumference; FL, Femur Length

Limitations of Custom Dataset

This study aims to analyse fetal ultrasound images across different trimesters of pregnancy. A longitudinal
dataset containing images of the same fetus in the FT, ST, and TT would be ideal for capturing continuous
developmental changes. Such data could enhance model performance by providing consistent growth
patterns and improving generalization. However, due to practical limitations, it is not possible to collect
images from the same individuals across all trimesters. Data collection is constrained by limited patient
availability, privacy concerns, and ethical regulations that restrict direct patient interaction at the host
institution. As a result, the study relies solely on pre-recorded and ethically approved ultrasound data
provided by hospital personnel.

Preprocessing Noise Removal

Ultrasound images used in this study were acquired using the VOLUSON P6 Ultrasound Machine, which
provides high-resolution imaging suitable for visualizing fetal anatomical structures. The images were
exported in JPG format and systematically organized into structured folders for efficient storage, retrieval,
and further analysis. Before model training, a structured preprocessing pipeline is implemented to
enhance image quality and highlight critical anatomical features [16]. This preprocessing is not merely for
visual enhancement but directly supports downstream analysis by improving boundary clarity and
structural detail, which are essential for accurate segmentation and biometric measurement. Initially,
each image is inspected, and the region of interest is identified to focus on relevant fetal structures [31-
34]. The images are then cropped to remove background artifacts, converted to grayscale to reduce
computational complexity, and standardized to 300 x 300 pixels, ensuring uniformity and standardized
input for the deep learning models [37-40].

As ultrasound images are likely to contain speckle noise, which reduces contrast and complicates the
delineation of anatomical boundaries, a convolutional denoising autoencoder (CDAE) is employed for
noise suppression. Unlike traditional denoising filters such as Gaussian or median filters, which often
oversmooth and blur critical anatomical details, the CDAE effectively suppresses noise while preserving
edges and fine structural information [41-43]. The CDAE follows an encoder-decoder architecture,
consisting of two convolutional layers for encoding and two transposed convolutional layers for decoding.
Rectified Linear Unit activations are used in all layers except the output layer, where a sigmoid function is
applied to constrain pixel intensity values to the range (0,1). For training, grayscale images are
synthetically corrupted with noise to simulate realistic multiplicative speckle noise. The dataset is divided
into 90% training and 10% validation sets. The CDAE is trained using the Adam optimizer with a learning
rate of 0.001 and mean squared error (MSE) as the loss function, with early stopping (patience = 10
epochs) to prevent overfitting. Denoising performance is quantitatively assessed using peak signal-to-
noise ratio (PSNR) and structural similarity index measure (SSIM), both of which demonstrated significant
improvements after denoising [44-49]. The trained CDAE is finally applied to the entire dataset, producing
cleaner images with enhanced anatomical boundaries. This step is critical, as high-quality images
substantially improve segmentation accuracy for delineating HC and FL regions. The block diagram of the
CDAE architecture is presented in Figure 4.
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FIGURE 4: Block diagram of the convolutional denoising autoencoder
used for speckle noise reduction

FL, Femur Length; HC, Head Circumference; MSE, Mean Squared Error; PSNR, Peak Signal-to-Noise Ratio; SSIM,
Structural Similarity Index Measure

Figure 5 presents a comprehensive visual and statistical analysis of the proposed denoising method's
performance on (a) the publicly available HC18 dataset and (b) a custom-created dataset with HC and (c) a
custom-created dataset with FL parameters. The analysis demonstrates qualitative improvements through
side-by-side image comparisons and quantitative validation via multiple metrics, including PSNR, SSIM,
pixel correlation analysis, and intensity distribution statistics, providing complete evidence of effective
noise reduction while preserving structural image details.

{ i — - | .

I - -

FIGURE 5: Comprehensive performance evaluation of the proposed
denoising method across (a) the publicly available HC18 dataset with
HC parameter, (b) the custom dataset with HC parameter, and (c) the
custom dataset with FL parameter.

FL, Femur Length; HC, Head Circumference

Feature Extraction for Segmentation

Image segmentation in medical imaging is critical for delineating anatomical structures and identifying
abnormalities, thereby supporting accurate diagnosis, treatment planning, and disease monitoring [34]. It
serves as a fundamental component in automated medical image analysis pipelines. In this study,
segmentation is performed to isolate HC and FL regions, enabling a quantitative understanding of
anatomical variations across trimesters. This step directly influences biometric measurement accuracy
and helps analyze how anatomical changes impact image analysis performance.

Denoised images and their corresponding ground truth masks are used as inputs to deep learning models
for segmentation tasks. A total of seven architectures are evaluated: U-Net, featuring an encoder-decoder
structure with skip connections to preserve spatial information; DeepLabV3+, integrating atrous spatial
pyramid pooling for multi-scale feature extraction; DenseNet-U-Net, leveraging densely connected blocks
for feature reuse; MFP-UNet, employing a multi-scale feature pyramid for detailed object segmentation;
Attention U-Net, enhancing feature selection via attention mechanisms; MobileNet-U-Net, using
depthwise separable convolutions for computational efficiency; and ResNet-U-Net, incorporating residual
connections to facilitate deeper network training.

All models are implemented in PyTorch, with images resized to 256 x 256 pixels and normalized using
ImageNet statistics. The dataset is split into 80% training and 20% validation sets. Training is conducted
for 30 epochs using the Adam optimizer and a combined Dice-Binary Cross-Entropy (BCE) loss function.
Segmentation performance is assessed using Dice, IoU, and pixel accuracy to evaluate the impact of the
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proposed preprocessing and ensemble strategies on fetal image analysis [10,14]. Additional metrics such
as precision, recall, and F1-score are also calculated. Automated checkpointing preserved the best-
performing model based on the validation Dice coefficient.

To further improve segmentation accuracy, an ensemble learning approach is implemented to leverage the
complementary strengths of all seven architectures. Five fusion strategies are explored: (i) average
ensemble, combining predictions via arithmetic mean; (ii) weighted ensemble, assigning dynamic weights
based on individual model performance; (iii) maximum ensemble, selecting the highest-confidence
prediction per pixel; (iv) majority voting ensemble, applying threshold-based binary decisions; and (v)
confidence-based ensemble, weighting predictions by model certainty scores [9,47-49]. The ensemble
approach is validated on a separate 20% test split, and performance metrics are computed for each fusion
strategy to identify the optimal combination for the segmentation task. Figure 6 illustrates the proposed
ensemble deep learning framework for fetal image segmentation.

FIGURE 6: Ensemble deep learning framework for fetal image
segmentation

Figure 7 presents the segmentation results of fetal biometric parameters using both the custom-created
dataset and the publicly available HC18 dataset. Each subfigure illustrates the original ultrasound image,
its corresponding annotated mask, and the outputs from seven different segmentation models: U-Net,
DeepLabV3+, DenseNet-U-Net, MFP-U-Net, U-Net with Attention, MobileNet-U-Net, and ResNet-U-Net
[9]. Subfigure (a) corresponds to HC segmentation from the custom dataset, subfigure (b) shows FL
segmentation, and subfigure (c) displays HC segmentation from the HC18 dataset. The figure highlights
the visual differences in segmentation quality across architectures, demonstrating the robustness and
adaptability of each model across datasets and biometric targets.
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MFP Attention MobileNet ResNet -
-U-Net U-Net

Original  Annotated U-Net DeepLabV3+ DenseNet

FIGURE 7: Segmentation results using seven deep learning models: (a)
HC-custom dataset, (b) FL-custom dataset, and (c) HC-HC18 dataset,
showing original image, ground truth annotation, and predicted mask.

FL, Femur Length; HC, Head Circumference

Figure 8 displays qualitative segmentation results of fetal biometric parameters using ensemble fusion
strategies applied to ultrasound images from both the custom-created dataset and the publicly available
HC18 dataset. Each row shows the original fetal ultrasound image, the ground truth mask, and the outputs
from five ensemble strategies: arithmetic averaging, maximum probability, confidence-based fusion,
majority voting, and weighted averaging. The ensemble-based segmented masks are presented both as
binary masks and as color overlays on the original ultrasound images to facilitate visual comparison with
the annotated ground truth. Subfigures (a), (b), and (c) correspond to different biometric parameters and
datasets: (a) HC segmentation from the custom dataset, (b) FL segmentation from the custom dataset, and
(c) HC segmentation from the HC18 dataset. The ensemble outputs show improved anatomical alignment,
reduced segmentation variability, and smoother contours compared to individual model predictions.
These visual improvements demonstrate the strength of the ensemble approach in combining multiple
model outputs to enhance segmentation robustness, especially in the presence of ultrasound artifacts or
low-contrast regions. Overall, the figure highlights the effectiveness of ensemble learning in accurately
delineating fetal biometric structures across diverse datasets and imaging conditions.
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FIGURE 8: Ensemble segmentation results for fetal biometric
parameters. Shown are original images, ground truth masks, and
outputs from five ensemble methods for (a) the custom dataset HC
parameter, (b) the custom dataset FL parameter, and (c) the publicly
available HC18 dataset

FL, Femur Length; HC, Head Circumference

Classification

Image classification plays a pivotal role in trimester-specific fetal growth assessment, as accurate
categorization depends on detecting subtle anatomical variations across different gestational stages. In
this study, data augmentation techniques, including horizontal flipping and 90-degree clockwise rotation,
were employed to improve model generalization. Each original ultrasound image was transformed into
five variants (original, brightened, cropped, flipped, and rotated) [35-37]. Class labels are automatically
extracted from filenames using regular expressions to identify the three trimester categories: FT, ST, and
TT.

In this study, a multi-input classification strategy is proposed as the primary contribution because fetal
growth assessment depends on the correlated nature of biometric parameters. HC and FL provide
complementary information; therefore, combining them improves trimester classification consistency and
reduces misclassification compared to single-parameter models. To enrich the feature space, the
classification framework utilized segmentation-driven inputs, where five different segmentation
strategies: maximum probability, averaging, confidence-based, voting, and weighted fusion are applied to
generate multiple representations of each ultrasound image. These segmentation strategies emphasize
different anatomical details, enabling the classification models to capture both fine-grained
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morphological structures and broader contextual information. The overall classification pipeline is
illustrated in Figure 9, which shows the stages of individual model training, multi-input feature fusion,
and final prediction.

Individual Segmentation Models

As a baseline, five separate DenseNet121 models are trained, each processing images derived from one
segmentation strategy. Transfer learning is applied using ImageNet pre-trained weights, where initially
only the newly added classification layers are trained. The last 20 layers of the DenseNet121 base model
are later unfrozen for fine-tuning to adapt the models to fetal ultrasound image characteristics. Each
segmentation strategy contributed uniquely to feature learning. The maximum probability segmentation
model produced sharp and deterministic anatomical boundaries, allowing the model to learn confident
morphological features. The averaging-based model captured smooth transitions, making it sensitive to
subtle tissue variations that are critical for trimester differentiation. The confidence-based model focused
on high-certainty regions, improving robustness to noise and poor-quality scans. The voting-based model
reduced individual model bias by emphasizing consensus anatomical structures, while the weighted
segmentation model learned hierarchical feature relevance by assigning higher importance to more
reliable predictions. These individual models provided valuable baseline comparisons for evaluating the
proposed approach.

DenseNet121 Architecture

V' 4

Ensemble Segmented
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Head
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FIGURE 9: DenseNet121-based multi-segmentation input classification
framework

Ensemble Learning Approach

To exploit the complementary strengths of the baseline models, a prediction-level ensemble learning
approach is implemented. During testing, the softmax probability vectors produced by each model are
combined using arithmetic averaging [9,59-41]. This fusion strategy balanced sharp morphological details
from the maximum probability model, smooth tissue transitions from the averaging model, high-certainty
features from the confidence-based model, stable consensus structures from the voting model, and
optimized feature weighting from the weighted fusion model. Although the ensemble strategy enhanced
prediction stability and reduced bias compared to individual models, it is limited because the fusion
occurred only at the decision level, preventing the network from learning deeper inter-feature
correlations [45-49]. This process can be described by Equation (1).

N

Pensemble(c ‘ l‘) = %Z‘PZ(C ’ CE) (1>

i=1

where, Pensemble(ClX) represents the ensemble-predicted probability that input x belongs to class ¢, Nis

the number of models, and Pj(c|x) is the probability assigned by the ith model. The arithmetic mean

ensures equal contribution from each model, enhancing prediction robustness.
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Multi-Input Neural Network Architecture

To address this limitation, a multi-input DenseNet121 architecture is developed as the proposed
classification framework and represents the core innovation of this study. Unlike the ensemble approach,
which combines model predictions after they are generated, the multi-input network integrates
complementary features during the feature extraction stage, allowing it to learn optimal correlations
across different segmentation variants. The architecture consists of five parallel DenseNet121 branches,
each independently processing a distinct segmentation variant. Features extracted from these branches
are concatenated into a unified feature vector and passed through fully connected layers with Batch
Normalization and Dropout for final trimester classification [46-49]. This integrated design allows the
network to automatically determine the most informative segmentation-derived features, effectively
combining sharp morphological indications, smooth contextual transitions, and reliable compromise
information.

The multi-input architecture demonstrated superior performance compared to both single-input and
ensemble strategies. As discussed in Experimental Results, the proposed approach significantly improved
trimester classification accuracy and F1-score while reducing misclassification errors, confirming its
effectiveness for trimester-specific fetal analysis [48-51]. Furthermore, feature visualization using
Principal Component Analysis and t-distributed Stochastic Neighbor Embedding revealed well-separated
clusters for the FT, ST, and TT classes across all datasets, further validating the discriminative capability
and generalization power of the proposed architecture (Figure 10).

BSNE for F-SNE for the Multh input Mods! Features of Crasted FL Parametss Datasat SME for e NAuitiinput Model Festures of HC18 Datasel

FIGURE 10: t-SNE visualizations of features from the multi-input
DenseNet121 model on three datasets: (a) The custom dataset HC
parameter. (b) The custom dataset FL parameter. (c) The publicly
available HC18 dataset

FL, Femur Length; HC, Head Circumference; t-SNE, t-distributed Stochastic Neighbor Embedding

Dataset Splits Across Modeling Objectives

In this study, different dataset splits were applied across modeling objectives to ensure appropriate
training and evaluation. For the noise reduction autoencoder, a 90:10 (training: validation) split was used
to fine-tune the model and prevent overfitting. For the segmentation objective, an 80:20 (training:
validation) split was employed, where the validation set guided model selection and supported
ensembling of multiple models. For the classification objective, the dataset was divided into 80:20
(training: testing), with the testing set strictly reserved for final evaluation. Data augmentation
techniques (brightness adjustment, cropping, flipping, and rotation) were applied to the training data to
enhance generalization. In addition, controlled augmentations were applied to the testing data in the
form of test-time augmentation to evaluate robustness under varying imaging conditions. Importantly,
the testing data remained unseen during training and was used solely for reporting the final classification
performance.

Results And Discussion

Dataset and evaluation

The HC18 publicly available dataset comprises 1,334 fetal head ultrasound images (800 x 540 pixels),
including 999 for training and 335 for testing. Pixel sizes range from 0.052 to 0.326 mm. Training data
include HC measurements and pixel sizes, while only pixel sizes are available for the test set. The images
were collected from 551 pregnant women across all three trimesters at Radboud University Medical
Center, Netherlands, using Voluson E8 and Voluson 730 ultrasound machines. Certified sonographers
annotated the skull regions with ellipses, following ethical approval (CMO Arnhem-Nijmegen) and the
Declaration of Helsinki [1]. Gestational age classification was performed based on HC values using
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threshold ranges derived from standard fetal growth charts [2,7-9]. Instances with HC values outside
reference ranges are labelled as “Abnormal” or “<8 weeks.” Trimesters are defined as follows: the first (up
to 13 weeks), the second (14-26 weeks), and the third (27-40 weeks). All annotations and labels are
compiled in a structured CSV file for further analysis [1-3].

Implementation details

The training configurations and hyperparameters adopted for the denoising autoencoder, ensemble
segmentation, and classification tasks are summarized in Table 3. These include input image sizes,
learning rates, optimizers, batch sizes, and evaluation metrics tailored to the requirements of each task.
For the denoising autoencoder, evaluation emphasizes structural quality using PSNR and SSIM, whereas
classification performance is measured with accuracy, precision, recall, F1-score, and AUC [31-34]. The
ensemble segmentation models further integrate multiple fusion strategies, such as averaging, voting, and
confidence-based methods, to enhance prediction robustness and reliability.
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Hyperparameter

Value/Setting

Hyperparameter Settings for Denoising Autoencoder

Input Image Size

Batch Size

Learning Rate
Optimizer

Max Epochs

Early Stopping Patience

Evaluation Metrics

300 x 300
8

1x103
Adam
150

10

PSNR, SSIM

Hyperparameter Settings for the Ensemble Segmentation Approach

Image Size

Batch Size

Model Paths

Ensemble Methods

Save All Predictions

256 x 256

4

Multiple .pth files

['average', 'weighted', 'max’, 'vote',
'confidence’]

True

Hyperparameter Settings for Classification approach

Input Image Size
Optimizer

Fine-Tuning Learning
Rate

Loss Function

Batch Size (single model)
Batch Size (multi-input)
Epochs (single model)
Epochs (multi-input)
Dropout Rate

Dense Layers

Learning Rate Scheduler
Early Stopping Patience
Activation Function

Evaluation Metrics

224 x 224 x 3

Adam

1x10°

Categorical Cross-Entropy
16

8

30

40

0.5 (1st layer), 0.3 (2nd layer)
512 — 256 units
ReduceLROnPlateau

10 epochs

Softmax

Accuracy, Precision, Recall, F1, AUC

Description

Resized grayscale input dimensions

Number of samples per training batch

Initial learning rate for the Adam optimizer
Optimization algorithm used for training
Maximum number of training epochs

Stop training if validation loss does not improve

Used to assess image quality after denoising

Input size for resizing images and masks
Number of samples processed per batch

Pretrained weights used for ensemble (UNet, ResNetUNet,
etc.)

Fusion strategies to combine predictions from multiple models

Saves predictions for all images in both validation and test sets

Standard input size for DenseNet121

Adaptive learning rate optimization algorithm

Lower rate to update base layers

For multi-class classification

Number of samples per training step

Reduced due to higher memory requirements

Number of complete passes through the training data
More training is required for complex architecture
Prevents overfitting by randomly deactivating neurons
Fully connected layers for final classification

Reduces learning rate when validation loss plateaus
Stops training if no improvement is seen in validation loss
For multi-class probability output

Comprehensive performance measurement

TABLE 3: Hyperparameter settings for denoising autoencoder, ensemble segmentation, and
classification approaches

AUC, Area Under the Curve; PSNR, Peak Signal-to-Noise Ratio; SSIM, Structural Similarity Index Measure

The choice of hyperparameters, including input image size, batch size, and learning rates, is tailored to the
requirements of each task. For the denoising autoencoder, a larger input size of 300 x 300 is selected to
retain fine-grained structural details critical for preserving anatomical information during noise
reduction. In the segmentation task, images are resized to 256 x 256 to strike a balance between capturing

2025 Gornale et al. Cureus J Comput Sci 2 : es44389-025-09506-x. DOI https://doi.org/10.7759/s44389-025-09506-x

15 of 39



Cureus Journal of Computer Science

spatial resolution and ensuring feasible training with multiple ensemble models under GPU memory
constraints. For the classification task, an input size of 224 x 224 x 3 is adopted to ensure compatibility
with standard pretrained convolutional neural network (CNN) backbones (e.g., DenseNet121), enabling
effective transfer learning. Differences in batch size, epochs, and dropout rates across tasks reflect the
varying complexity and computational needs of each pipeline. Furthermore, the evaluation metrics are
also task-specific: PSNR and SSIM were used to assess the perceptual quality of denoised images, Dice and
IoU measured spatial overlap for segmentation, and accuracy, precision, recall, F1, and AUC captured
discriminative ability for classification. Overall, hyperparameter and metric choices are carefully
optimized to balance performance, generalization, and computational efficiency for their respective
objectives.

Quantitative Performance Measures

Speckle Noise Modelling: Speckle noise is simulated by the following multiplicative model and is defined
by Equation (2):

]noise(xa y) = clean(m7 ?J) + Iclean(-rv y) ' N(l‘a y) (2)

where, [, hoise (L y) is the noisy fetal ultrasound image at pixel coordinates (x,y), 1 clean (x, y) is the
corresponding clean image, and N(x,y) represents multiplicative noise at that pixel location. This
formulation simulates realistic ultrasound artifacts by adding noise proportional to pixel intensity, aiding
in model robustness evaluation during fetal image segmentation and classification experiments.

Loss Function: The MSE between the reconstructed image and the clean ground truth image 7 as the
objective function is represented by Equation (3):

Lyise = %Z (@ —%)* (3)

=0

where, Lysg denotes the mean squared error loss, n is the total number of pixels, x; represents the true

pixel intensity, and 7 is the predicted pixel intensity at the ith position. This loss function penalizes
large deviations between predicted and ground truth images, making it suitable for evaluating
reconstruction quality in fetal ultrasound image segmentation and enhancement tasks.

PSNR is the standard image quality metric and is defined by Equation (4):

MAXI) (4)

PSNR =20-1o —
£10 ( NSE

where, PSNR measures the quality of a reconstructed or denoised fetal ultrasound image. MAX ; denotes

the maximum possible pixel intensity value in the image, and MSE is the mean squared error between the
ground truth and reconstructed images. Higher PSNR values indicate better image quality, which is
essential for preserving diagnostic details in fetal imaging.

SSIM is the standard image quality metric and is defined by Equation (5):

(2papty + C1)(204y + Cs)
(kg + i + C1)(0F + of + )

SSIM(zx,y) = (5)

where, SSIM quantifies the perceptual similarity between two fetal ultrasound images x and y. Here, u, and
Hy are the mean intensities, and 05 are the variances, and oy, is the covariance between the images.
Cp and Cy are small constants that stabilize the division. Higher SSIM values indicate better structural

preservation, which is critical for maintaining anatomical details in medical imaging.

Hybrid Loss Function: The hybrid loss function that merges BCE loss with Dice loss is given by Equation
(6):

Luybria = Lce + Lpice  (6)

where, LBCE is the Binary Cross-Entropy loss defined by Equation (7):
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Lycg = —

3l log(i) + (1 -y log(1 — )] (1)

where, LBCE is the Binary Cross-Entropy loss, N denotes the total number of pixels, y; is the ground

truth label for the ith pixel (1 for foreground, 0 for background), and  j; is the predicted probability of
that pixel belonging to the foreground. This loss function measures the divergence between predicted
probabilities and actual binary labels, making it well-suited for fetal ultrasound segmentation tasks where
accurate boundary delineation is critical.

LDice is the Dice loss, derived from the Dice coefficient, defined by Equation (8)

2 Zfil Yili +€
Zfil Yi + 21111 Ui te€

where, LDice is the Dice loss, N is the total number of pixels, y; is the ground truth binary label for the

LDice =1-

(8)

ith pixel, and ¢}, is the predicted probability for that pixel. The constant € is a small smoothing term to
avoid division by zero. Dice loss is widely used in medical image segmentation, including fetal ultrasound,
as it directly optimizes spatial overlap between predicted and ground truth regions.

Dice Coefficient: The Dice coefficient is a measure of overlap between two samples. It ranges from 0 (no
overlap) to 1 (perfect overlap) and is defined by Equation (9):

Dice Coefficient = 2x(AnB) 9)

A+ B
where, A is the set of pixels belonging to the predicted segmentation mask, and B is the set of pixels in the
ground truth mask. ANB represents the intersection between the two sets. The Dice coefficient measures
the spatial overlap between prediction and ground truth, with values ranging from 0 (no overlap) to 1
(perfect overlap). In fetal ultrasound segmentation, a higher Dice coefficient indicates more accurate
delineation of anatomical structures.

Mean Intersection over Union: IoU evaluates the extent of overlap between the actual and predicted areas,
and it is determined using Equation (10):

ANB

IoU =212
oU=20B

(10)

where, A is the set of pixels in the predicted segmentation mask, B is the set of pixels in the ground truth
mask, ANB represents their intersection, and AUB denotes their union. IoU, also known as the Jaccard
index, quantifies the proportion of overlapping area between prediction and ground truth. In fetal
ultrasound segmentation, a higher IoU score reflects greater accuracy in identifying and delineating
relevant anatomical regions.

Performance Metrics

Precision: Precision measures the proportion of true positives out of the total predicted positives and is
given by Equation (11):

TP
Precision = TP+ FP (11)

where, TP (true positives) represents the number of fetal ultrasound images correctly classified as
belonging to a specific gestational category, and FP (false positives) represents the number of images
incorrectly classified as belonging to that category. Precision reflects the proportion of correctly identified
cases among all cases predicted as positive, which is critical in reducing false alarms in medical
diagnostics.

Recall (R): Recall measures the proportion of true positives out of the actual positives and is given by
Equation (12):

TP
Reca” = m (12)
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where, TP (true positives) denotes the number of fetal ultrasound images correctly classified into the
target gestational category, and FN (false negatives) represents the number of images that belong to the
category but were misclassified. Recall measures the model’s ability to correctly identify all relevant cases,
which is crucial in minimizing missed diagnoses in medical imaging.

F1-Score (F1): F1-Score is the harmonic mean of Precision and Recall, which provides a balance between
the two metrics, and is given by Equation (13):

Precision x Recall
F S =2 X 13
1 DeoTe Precision + Recall (13)

where, Precision is the proportion of correctly identified positive fetal ultrasound images among all
predicted positives, and Recall is the proportion of correctly identified positives among all actual
positives. The F; Score is the harmonic mean of Precision and Recall, providing a balanced measure of

accuracy that is particularly valuable in medical imaging when both false positives and false negatives
must be minimized.

Ensemble Prediction Methods

Average: The average ensemble method computes the final prediction by taking the mean of the outputs
from all N models, treating each model equally, and is given by Equation (14):

1 N
Y = >V (14)
=1

where, Y;wg represents the average predicted output across an ensemble of N models, and )A/Z denotes

the prediction from the ith model for a given fetal ultrasound image. This averaging approach reduces
prediction variance and enhances robustness in both classification and segmentation tasks for fetal
imaging.

Weighted: In the weighted ensemble method, each model's prediction is multiplied by a weight w;,

typically based on its validation performance, and the final output is the weighted sum of all models. It is
determined using Equation (15):

N N
}Afweighted = Z Wy Y/z with Z w; =1 (15)
=1 i=1

where, Yiei shted is the weighted ensemble prediction for a given fetal ultrasound image, w; denotes the
weight assigned to the ith model’s prediction }A/;., and N is the total number of models. The weights w;

sum to 1, ensuring proportional contribution from each model. This method allows higher-performing
models to influence the final decision more strongly, improving accuracy in fetal image classification and
segmentation.

Max: The max ensemble selects the highest prediction score among all models for each pixel, emphasizing
the most confident prediction, and is determined using Equation (16):

Viax = maxY; (16)

where, }A/max represents the final ensemble prediction obtained by selecting the maximum predicted

probability among N models for a given fetal ultrasound image. This approach prioritizes the most
confident prediction, which can be beneficial in clinical decision-making where high-certainty
classifications are preferred.

Majority Voting: Majority voting assigns the final label for each pixel based on the most frequently
predicted class among all models, and is given by Equation (17):

A

Yiote = mode (171,172, . ,YN> (17)

where, }A/VO ‘o denotes the ensemble prediction obtained through majority voting among N model
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outputs (}A/l’ %7 RN ?N) for a given fetal ultrasound image. This method selects the class label

predicted by the majority of models, reducing the influence of outlier predictions and improving overall
classification reliability in medical imaging.

Confidence-based: The confidence-based ensemble dynamically weights model predictions based on
softmax-normalized confidence scores s;, giving more influence to more reliable models, and is given by

Equation (18):

N N
N . o5
Yoont = ¢Y; where ¢ = — (18)
; Zj:l e’

where, }Afconf is the confidence-weighted ensemble prediction for a given fetal ultrasound image, ¢;

represents the normalized confidence score of the ith model, and Y7 is the corresponding prediction. The
confidence score c;is computed using a softmax function applied to the raw confidence values s;, ensuring
that all ¢; sum to 1. This method assigns greater influence to models with higher prediction confidence,

potentially improving diagnostic accuracy in fetal image classification and segmentation.

The mathematical formulations underlying loss functions and evaluation metrics used across the models
are detailed in Equations (1)-(18). These equations define the models that learn from data, and
performance is quantitatively assessed throughout the training and validation phases [36,37,40-43].

Experimental setup

The segmentation experiments were conducted on a local workstation equipped with an Intel [CPU model]
processor, 16 GB RAM, and an NVIDIA GeForce RTX 2050 GPU, operating on Windows 11 with CUDA
version 12.8 and NVIDIA driver version 571.96. Classification experiments were performed on Google
Colab utilizing an NVIDIA A100 GPU with 40 GB VRAM. Model development and execution were carried
out using Anaconda Navigator as the integrated environment, with interactive computing facilitated
through Jupyter Notebook (version 7.0.8). All algorithms were implemented in Python, employing libraries
such as TensorFlow, Keras, scikit-learn, pandas, NumPy, and matplotlib.

Ablation study

To systematically assess the effect of ensemble complexity and fusion strategies on segmentation and
classification performance, we conducted an extensive ablation study across three datasets. For
segmentation, the ensemble size is varied from three to seven models, employing five fusion techniques:
averaging, weighted averaging, maximum selection, voting, and confidence-based fusion. For
classification, we evaluated the influence of data augmentation, model architectures (CNN, DenseNet121,
ConvNext-Base, MobileNetV2), and ensemble strategies using seven evaluation methods. These included
five individual fusion approaches, their ensemble combination, and a multi-input fusion method [31-
34,46-49]. This analysis offers key insights into the trade-offs between model diversity, ensemble size, and
performance, facilitating optimal configuration for clinical deployment.

Segmentation Performance Analysis

The comprehensive ablation study on the FL parameter dataset demonstrates progressive performance
improvements with increasing ensemble complexity, where the three-model ensemble (U-Net+MFP-
UNet+Attention U-Net) establishes a strong baseline with Dice coefficient of 91.40%, MIoU of 84.96%, and
an accuracy of 98.85%. The systematic addition of models shows consistent enhancement, with the 4-
model ensemble (adding DeepLabV3+) achieving a Dice coefficient of 91.57% and MIoU of 85.75%, while
the 5-model ensemble (incorporating MobileNet-U-Net and ResNet-U-Net) maintains similar
performance at 91.53% Dice coefficient and 85.18% MIoU. The six-model ensemble demonstrates
marginal improvements with Dice coefficient of 91.66% and MIoU of 85.40%, ultimately culminating in
the seven-model ensemble achieving optimal performance with Dice coefficient of 92.84%, MIoU of
86.71%, and maintaining high accuracy of 98.92%. Across all ensemble configurations, the averaging and
weighted averaging strategies consistently outperform the maximum selection approach, while
confidence-based and voting strategies demonstrate competitive performance, indicating robust
ensemble behavior across different fusion methodologies, as detailed in Table 4.
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Ensemble Segmentation Method
U-Net+MFP-UNet+Attention U-Net
Average

Weighted

Max

Vote

Confidence

Dice Coefficient

91.40

91.40

90.43

91.33

91.42

U-Net+DeepLabV3pluse+DenseNet-U-Net+MFP-UNet

Average
Weighted
Max
Vote

Confidence

91.57

91.57

90.16

91.70

91.57

MioU

84.96

84.96

85.29

84.84

85.00

85.75

85.75

82.84

85.46

85.75

U-Net+MFP-UNet+Attention U-Net+MobileNet-U-Net+ResNet-U-Net

Average
Weighted
Max
Vote

Confidence

91.53

91.53

90.37

91.48

91.53

85.18

85.19

81.53

85.10

85.19

Accuracy

98.85
98.85
98.66
98.84

98.85

98.92
98.92
98.60
98.90

98.92

98.87
98.87
98.35
98.86

98.87

Precision

93.13

93.14

88.63

92.95

93.25

93.08

93.08

87.30

94.05

93.08

93.63

93.63

84.87

93.48

93.63

U-Net+DeepLabV3pluse+DenseNet-U-Net+MFP-UNet+Attention U-Net+ResNet-U-Net

Average
Weighted
Max
Vote

Confidence

91.66

82.66

89.54

91.51

91.67

85.40

85.40

81.16

85.14

85.42

98.89

98.89

98.30

98.87

98.89

93.58

93.58

84.11

94.21

93.65

Recall

91.84

91.83

94.59

91.88

91.77

92.79

92.79

95.53

91.51

92.79

91.61

91.61

95.45

91.66

91.61

91.91

91.91

95.91

91.01

91.86

U-Net+DeepLabV3pluse+DenseNet-U-Net+MFP-UNet+Attention U-Net+MobileNet-U-Net+ResNet-U-Net

Average
Weighted
Max

Vote

Confidence

92.84

92.84

89.43

92.80

92.84

86.71

86.71

80.99

86.63

86.71

98.92

98.92

98.28

98.91

98.92

93.66

93.66

83.78

93.51

93.73

92.17

92.17

96.01

92.23

92.10

Specificity

99.44
99.45
99.00
99.43

99.46

99.43
99.43
98.86
99.52

99.43

99.49
99.49
98.59
99.48

99.49

99.48
99.48
98.50
99.54

99.49

99.49
99.49
98.46
99.47

99.49

F1-Score

91.40

91.40

90.43

91.33

91.42

91.57

91.57

90.16

91.70

91.57

91.53

91.53

90.37

91.48

91.53

91.66

82.66

89.54

91.51

91.67

92.84

92.84

89.43

92.80

92.84

TABLE 4: Ensemble segmentation performance on the femur length parameter dataset with

varying model combinations and fusion strategies

MloU, Mean Intersection over Union

The HC parameter dataset exhibits superior performance characteristics compared to the FL parameter
dataset, with the three-model ensemble achieving substantially higher baseline metrics, including Dice
coefficient of 96.41%, an MIoU of 93.08%, and an accuracy of 98.07%. The progressive ensemble expansion

demonstrates consistent improvements, with the four-model ensemble reaching a Dice coefficient of
96.65% and MIoU of 93.53%, while the five-model ensemble maintains competitive performance at

96.38% Dice coefficient and 93.02% Mean IoU. The six-model ensemble shows slight enhancement with

2025 Gornale et al. Cureus J Comput Sci 2 : es44389-025-09506-x. DOI https://doi.org/10.7759/s44389-025-09506-x

20 of 39



Cureus Journal of Computer Science

Dice coefficient of 96.43% and MIoU of 93.12%, ultimately achieving peak performance with the seven-
model ensemble at a Dice coefficient of 97.81%, an MIoU of 94.27%, and an accuracy of 98.11%. The
dataset demonstrates excellent precision scores exceeding 95% across all ensemble configurations, with
particularly notable specificity values exceeding 98.5%, indicating superior true negative identification
capabilities. The ensemble strategy analysis reveals consistent behaviour with averaging approaches
outperforming maximum selection, while confidence-based strategies demonstrate the highest precision
values, suggesting effective uncertainty quantification for this dataset, as detailed in Table 5.
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Ensemble Segmentation Method
U-Net+MFP-UNet+Attention U-Net
Average

Weighted

Max

Vote

Confidence

Dice Coefficient

96.41

96.41

96.18

96.39

96.41

U-Net+DeepLabV3pluse + DenseNetU-Net+MFP-UNet

Average
Weighted
Max
Vote

Confidence

U-Net+MFP-UNet+Attention U-Net+ MobileNet-U-Net +ResNet-U-Net

Average
Weighted
Max
Vote

Confidence

96.65

96.65

96.27

96.56

96.66

96.38

96.38

95.55

96.37

96.36

MioU

93.08

93.08

92.65

93.04

93.08

93.53

93.53

92.84

93.36

93.54

93.02

93.02

91.51

93.01

92.28

Accuracy

98.07
98.07
97.92
98.06

98.07

98.15
98.15
97.92
98.11

98.16

98.06
98.06
97.57
98.06

98.05

Precision

95.94

95.93

94.66

95.90

95.94

96.48

96.48

94.56

96.82

96.50

96.19

96.19

93.17

96.15

96.20

U-Net+DeepLabV3pluse+ DenseNet-U-Net+ MFP-UNet+ Attention U-Net+ResNet-U-Net

Average
Weighted
Max
Vote

Confidence

U-Net+DeepLabV3pluse+ DenseNet-U-Net+ MFP-UNet+ Attention U-Net+MobileNet-U-Net+ ResNet-U-Net

Average
Weighted
Max

Vote

Confidence

96.43

96.43

95.50

96.37

96.42

97.81

97.81

96.45

97.79

97.80

93.12

93.12

91.42

93.10

93.10

94.27

94.27

91.34

93.24

94.26

98.09

98.09

97.54

98.08

98.08

98.11

98.11

97.49

98.10

98.11

96.23

96.23

92.89

96.27

96.27

97.32

97.32

92.66

96.29

97.32

Recall

96.91

96.91

97.76

96.89

96.90

96.48

96.48

98.06

96.31

96.84

96.58

96.58

98.09

96.61

96.54

96.61

96.61

98.29

96.58

96.58

96.72

96.73

98.46

96.72

96.70

Specificity

98.46
98.46
97.94
98.45

98.46

98.84
98.84
97.84
98.77

98.64

98.56
98.56
97.35
98.55

98.57

98.59
98.59
97.22
98.60

98.60

98.60
98.60
97.09
98.59

98.60

F1-Score

96.41

96.41

96.18

96.39

96.41

96.65

96.65

96.27

96.56

96.66

96.38

96.38

95.55

96.37

96.36

96.43

96.43

95.50

96.37

96.42

97.81

97.81

96.45

97.79

97.80

TABLE 5: Ensemble segmentation performance on the HC parameter dataset with varying model
combinations and fusion strategies.

MloU, Mean Intersection over Union

The HC18 public dataset demonstrates the highest overall performance across all evaluation metrics, with

the three-model ensemble establishing an exceptionally strong baseline of 97.82% Dice coefficient,

95.73% MIoU, and 98.71% accuracy. The ensemble expansion maintains consistently high performance,
with the four-model ensemble achieving 97.91% Dice coefficient and 95.91% MIoU, while the five-model

ensemble demonstrates 97.78% Dice coefficient and 95.66% MIoU. The six-model ensemble shows
competitive performance at 97.80% Dice coefficient and 97.70% MIoU, ultimately reaching peak

2025 Gornale et al. Cureus J Comput Sci 2 : es44389-025-09506-x. DOI https://doi.org/10.7759/s44389-025-09506-x

22 of 39



Cureus Journal of Computer Science

performance with the seven-model ensemble at 98.74% Dice coefficient, 95.79% MIoU, and 98.73%
accuracy. This dataset exhibits outstanding specificity scores exceeding 99% across all ensemble
configurations, demonstrating exceptional true negative identification capabilities crucial for clinical
applications. The precision and recall metrics consistently exceed 97% and 96% respectively, indicating
balanced sensitivity and specificity trade-offs. The ensemble strategy analysis reveals that averaging and
confidence-based approaches achieve nearly identical performance, suggesting well-calibrated
uncertainty estimates, while the maximum strategy shows the most significant performance degradation
compared to other datasets, emphasizing the importance of appropriate ensemble fusion strategies for
high-performing baseline models, as detailed in Table 6.
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Ensemble Segmentation Method
U-Net+MFP-UNet+Attention U-Net
Average

Weighted

Max

Vote

Confidence

Dice Coefficient

97.82

97.82

97.57

97.79

97.82

U-Net+DeepLabV3pluse+DenseNet-U-Net+MFP-UNet

Average
Weighted
Max
Vote

Confidence

97.91

97.91

97.41

97.82

97.91

MioU

95.73

95.73

95.27

95.68

95.74

95.91

95.91

94.97

95.74

95.91

U-Net+MFP-UNet+Attention U-Net+MobileNet-U-Net+ResNet-U-Net

Average
Weighted
Max
Vote

Confidence

97.78

97.78

96.35

97.76

97.77

95.66

95.66

93.01

95.62

95.54

Accuracy

98.71
98.71
98.55
98.69

98.71

98.76
98.76
98.44
98.72

98.76

98.69
98.69
97.83
98.68

98.68

Precision

97.92

97.92

96.59

97.88

97.93

98.06

98.06

95.97

98.41

98.05

97.91

97.91

93.92

97.87

97.90

U-Net+DeepLabV3pluse+DenseNet-U-Net+MFP-UNet+Attention U-Net+ResNet-U-Net

Average
Weighted
Max
Vote

Confidence

97.80

97.80

96.22

97.79

97.76

97.70

97.70

92.77

95.69

95.63

98.70

98.70

97.75

98.69

98.68

97.88

97.88

93.56

97.87

98.14

Recall

97.73

97.73

98.59

97.70

97.72

97.77

97.77

98.92

97.25

97.78

97.66

97.66

98.96

97.66

97.65

97.73

97.73

99.10

97.72

97.40

U-Net+DeepLabV3pluse+DenseNet-U-Net+MFP-UNet+Attention U-Net+MobileNet-U-Net+ResNet-U-Net

Average
Weighted
Max

Vote

Confidence

98.74

98.75

96.07

97.83

98.74

95.79

95.79

92.51

95.75

95.78

98.73

98.73

97.68

98.71

98.72

97.88

97.88

93.19

97.86

97.87

97.82

97.82

99.21

97.80

97.82

Specificity

99.09
99.09
98.50
99.08

99.10

99.15
99.15
98.20
99.31

99.15

99.09
99.09
97.33
99.07

99.09

99.08
99.08
97.15
99.07

99.19

99.09
99.09
97.02
99.08

99.09

F1-Score

97.82

97.82

97.57

97.79

97.82

97.91

97.91

97.41

97.82

97.91

97.78

97.78

96.35

97.76

97.77

97.80

97.80

96.22

97.79

97.76

98.74

98.75

96.07

97.83

98.74

TABLE 6: Ensemble segmentation performance on the HC18 public dataset with varying model
combinations and fusion strategies

MloU, Mean Intersection over Union

Classification Performance Analysis

This work conducted a comprehensive ablation study examining the impact of data augmentation, model
architectures, and ensemble methods on classification accuracy across three datasets. Four architectures
(CNN, DenseNet121, ConvNext-Base, MobileNetV2) are evaluated with and without data augmentation

using seven evaluation approaches: five individual methods (Max, Average, Confidence, Vote, Weighted),
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their Ensemble combination, and a multi-input fusion approach.

Table 7 presents the results, which demonstrate that data augmentation significantly improves
performance for most architectures, with DenseNet121 showing the most substantial gains on the HC
Parameter dataset (from 84.96% to 90.04% maximum accuracy) and the FL Parameter dataset (from
85.40% to 88.60%). The multi-input approach consistently achieved the highest accuracy across all
configurations, with DenseNet121 + augmentation + multi-input reaching peak performance of 92.50% on
the HC Parameter dataset, 90.60% on the FL Parameter dataset, and 83.68% on the HC18 dataset. The
Ensemble method also demonstrated strong performance, typically outperforming individual methods but
falling short of multi-input results. While CNN architectures showed variable responses to augmentation
(86.68% to 84.96% on HC Parameter and 81.85% to 86.95% on FL Parameter), advanced architectures like
ConvNext-Base maintained consistent performance improvements with augmentation (88.23% to 90.15%
on HC Parameter and 86.23% to 87.71% on FL Parameter). The ablation study confirms that the
combination of DenseNet121 architecture, data augmentation, and multi-input approach provides
optimal accuracy performance, validating our architectural choices and demonstrating the effectiveness of
our proposed methodology.
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Model Max Average Confidence Vote Weighted Ensemble Multi-Input

Results for Custom Dataset HC Parameter

CNN (without augmentation) 86.68 86.56 85.98 86.79 86.44 85.63 84.63
CNN (with augmentation) 8496 85.66 84.96 86.01  85.31 86.36 88.46
DenseNet121 (without augmentation) 84.96 86.36 89.16 87.41 88.81 87.41 91.95
DenseNet121 (with augmentation) 90.04 90.95 91.37 90.53 90.53 90.15 92.50
ConvNext-Base (without augmentation) 88.23 87.41 88.18 87.31 86.23 82.20 88.89
ConvNext-Base (with augmentation) 90.15 90.74 90.80 91.09 90.88 86.40 91.32
MobileNetV2 (without augmentation) 83.57 88.81 87.76 86.36  88.33 88.46 89.12
MobileNetV2 (with augmentation) 90.01  90.12 91.23 91.22  90.12 87.71 90.14

Results for Custom Dataset FL Parameter

CNN (without augmentation) 81.85 79.71 83.27 79.71  81.49 80.07 85.05
CNN (with augmentation) 86.95 87.07 86.83 86.62 86.83 85.76 87.40
DenseNet121 (without augmentation) 8540 81.85 83.98 83.62 82.56 83.98 87.18
DenseNet121 (with augmentation) 88.60 88.39 88.96 88.03  88.11 85.26 90.60
ConvNext-Base (without augmentation) 86.23 86.89 86.81 86.18 87.23 84.32 87.89
ConvNext-Base (with augmentation) 87.71  87.09 88.13 87.88  88.01 85.01 89.30
MobileNetV2 (without augmentation) 81.85 82.21 78.65 8292 79.72 84.34 86.23
MobileNetV2 (with augmentation) 89.17  89.25 89.60 89.74 89.28 85.83 88.19

Results for HC18 Dataset

CNN (without augmentation) 74.00 7250 72.50 7450 73.00 71.00 73.50
CNN (with augmentation) 75.33 73.83 74.66 7450 74.50 74.66 75.33
DenseNet121 (without augmentation) 73.00 72.00 70.50 73.00 69.00 73.00 79.00
DenseNet121 (with augmentation) 81.28 79.78 79.98 78.98 79.28 75.57 83.68
ConvNext-Base (without augmentation) 76.31 77.28 80.19 78.23 78.01 72.31 79.33
ConvNext-Base (with augmentation) 80.01 80.18 81.91 79.14 78.18 74.53 81.14
MobileNetV2 (without augmentation) 80.93 81.21 81.31 79.28 79.18 75.13 81.93
MobileNetV2 (with augmentation) 75.32  76.13 80.11 77.38 78.31 73.33 79.88

TABLE 7: Accuracy (%) performance comparison of five individual methods, their ensemble, and
the multi-input fusion strategy across model architectures on the HC—custom dataset, FL—custom
dataset, and HC-HC18 dataset.

FL, Femur Length; HC, Head Circumference

Experimental results

This section presents the experimental results corresponding to the three fundamental components of the
proposed framework: noise removal, segmentation, and classification. A comprehensive evaluation is
conducted in the subsequent paragraphs, highlighting the performance of the denoising methodology, the
effectiveness of the segmentation algorithm, and the classification accuracy achieved on the processed
fetal biometry image datasets.

Experiments on Noise Removal
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Dataset

HC

FL

HC18

The performance of the proposed denoising autoencoder is quantitatively evaluated using two widely
recognized image quality metrics: PSNR and average SSIM. These metrics assess the effectiveness of the
denoising process in preserving image details and structural information. The evaluation is conducted on
two types of datasets: (a) the publicly available HC18 dataset and (b) a custom dataset consisting of
ultrasound images for HC and FL parameters. As summarized in Table 8, the proposed model achieves
consistently high PSNR and average SSIM values across all datasets, with the HC18 dataset demonstrating
the best performance (PSNR = 39.43 dB, average SSIM = 0.9791). These results validate the robustness of
the denoising method in improving image quality while maintaining structural consistency, which is
crucial for subsequent segmentation and classification tasks.

PSNR (dB) SSIM

35.67 0.9619
36.43 0.9622
39.43 0.9791

TABLE 8: Quantitative evaluation of denoising performance using PSNR and SSIM

FL, Femur Length; HC, Head Circumference; PSNR, Peak Signal-to-Noise Ratio; SSIM, Structural Similarity Index Measure

Segmentation Method
U-Net

DeeplabV3+
DenseNet-U-Net
MFP-UNet
U-Net-Attention
MobileNet-U-Net

ResNet-U-Net

The high PSNR and SSIM values indicate that the denoising autoencoder preserves structural information
effectively while minimizing noise, making it well-suited for enhancing fetal medical imaging data.

Experiments on Segmentation

This Study evaluates the effectiveness of various deep learning-based segmentation architectures, using a
comprehensive set of performance metrics, including Dice Coefficient, Mean Intersection over Union,
Precision, Recall, and F1-Score. The models are evaluated on three datasets: (a) the created dataset with
HC parameter, (b) the created dataset with FL parameter, and (c) the HC18 public dataset. The results are
presented in Tables 9, 10, and 11, respectively.

As shown in Table 9, the DenseNet-U-Net architecture achieved the highest performance with a Dice
Coefficient of 96.99% and MIoU of 93.50%, indicating superior segmentation accuracy and overlap with
the ground truth masks. While other models such as U-Net, DeeplabV3+, and MFP-UNet also performed
well with Dice scores above 96%, the DenseNet-based approach consistently outperformed them in both
precision and IoU. The MobileNet-U-Net exhibited relatively lower performance, which may be attributed
to its lightweight nature, leading to reduced representation capacity.

Dice Coefficient MIiOU Precision Recall F1-Score
96.17 92.65 95.29 97.10 96.17
96.09 92.51 95.27 96.95 96.09
96.99 93.50 96.84 96.38 96.99
96.09 92.50 95.84 96.38 96.09
96.05 92.42 95.76 96.37 96.05
94.18 89.08 94.51 93.93 94.18
95.98 92.31 96.42 95.58 95.98

TABLE 9: Segmentation performance metrics for the custom dataset head circumference

parameter

MloU, Mean Intersection over Union

Table 10 reports the segmentation metrics for the FL parameter. Again, the DenseNet-U-Net model
demonstrated the best overall performance with a Dice Coefficient of 92.40% and MIoU of 85.55%.
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DeeplabV3+ and ResNet-U-Net also yielded competitive results with F1-scores above 91%. The
performance of all models on the FL dataset is slightly lower compared to the HC dataset, potentially due
to greater anatomical variability or lower contrast in FL images. The MobileNet-U-Net showed the lowest
performance across all metrics, suggesting its limitations in capturing finer structural details in the FL

images.
Segmentation Method Dice Coefficient MIOU Precision Recall F1-Score
U-Net 91.64 84.64 93.72 89.80 91.64
DeeplabV3+ 92.11 85.43 92.35 92.00 92.11
DenseNet-U-Net 92.40 85.55 92.26 92.70 92.40
MFP-UNet 91.33 84.10 89.81 93.01 91.33
U-Net-Attention 91.62 84.65 92.91 90.53 91.62
MobileNet-U-Net 87.13 77.42 90.01 84.80 87.13
ResNet-U-Net 91.81 84.95 92.88 90.93 91.82

TABLE 10: Segmentation performance metrics for the custom dataset femur length parameter

MloU, Mean Intersection over Union

In Table /1, segmentation performance on the HC18 dataset is presented. All models achieved high
accuracy, with DenseNet-U-Net and DeeplabV3+ leading the performance. DenseNet-U-Net achieved a
Dice Coefficient of 97.76%, Precision of 97.22%, and the highest Recall of 98.39%, highlighting its
robustness and consistency in segmenting fetal head structures. DeeplabV3+ also performed competitively
with a Dice of 97.52% and a high IoU. Compared to the created datasets, all models performed slightly
better on HC18, possibly due to higher image quality and standardized annotations.

Segmentation Method Dice Coefficient MIOU Precision Recall F1-Score
U-Net 96.95 94.14 97.02 96.93 96.95
DeeplabV3+ 97.52 95.18 98.04 97.03 97.52
DenseNet-U-Net 97.76 94.80 97.22 98.39 97.76
MFP-UNet 97.08 94.38 97.10 97.13 97.08
U-Net-Attention 97.02 94.28 96.75 97.35 97.02
MobileNet-U-Net 94.62 90.01 94.44 94.98 94.62
ResNet-U-Net 96.95 94.14 97.02 96.93 96.95

TABLE 11: Segmentation performance metrics for the HC18 dataset

MloU, Mean Intersection over Union

To further enhance segmentation accuracy and robustness, multiple ensemble strategies are employed,
including Average, Weighted, Max, Vote, and Confidence-based fusion. These methods combined
predictions from multiple individual models to generate a final segmentation output. The evaluation is
conducted on three datasets: (i) the created dataset with HC parameter, (ii) the created dataset with FL
parameter, and (iii) the HC18 public dataset. The performance is assessed using seven evaluation metrics:
Dice Coefficient, MIoU, Accuracy, Precision, Recall, Specificity, and F1-Score. The results are summarized
in Table 12.

For the HC parameter, the Average, Weighted, and Confidence-based ensemble strategies achieved the
best performance with a Dice Coefficient of 97.81%, MIoU of 94.27%, and Accuracy of 98.11%. These
methods showed consistent precision (97.32%) and high specificity (98.60%), indicating excellent
discrimination between foreground and background. The Max-based ensemble, while achieving a high
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Recall (98.46%), showed slightly lower precision (92.66%), leading to a comparatively reduced Dice score
of 96.45%.

For the FL parameter, the Average, Weighted, and Confidence-based ensembles again yielded identical and
superior results, with a Dice Coefficient of 92.84% and MIoU of 86.71%. These methods maintained high
Accuracy (98.92%), Specificity (99.49%), and well-balanced Precision (93.66-93.73%) and Recall (92.10-
92.17%). The Max strategy, while achieving the highest Recall (96.01%), demonstrated reduced overall
performance due to its lower precision (83.78%) and Dice score (89.43%).

On the HC18 dataset, the Weighted and Average ensemble methods delivered the best performance,
achieving a Dice Coefficient of 98.74-98.75%, an MIoU of 95.79%, and an Accuracy of 98.73%. These
methods also showed strong performance across all other metrics, including Precision (97.88%), Recall
(97.82%), and Specificity (99.09%), indicating a high degree of reliability. Although the Max ensemble
achieved a high Recall (99.21%), its lower Dice score (96.07%) and Precision (93.19%) suggest over-
segmentation tendencies.

Ensemble Segmentation Method Dice Coefficient MIOU  Accuracy Precision Recall  Specificity F1-Score

Results for Created Dataset HC Parameter

Average 97.81 94.27  98.11 97.32 96.72 98.60 97.81
Weighted 97.81 94.27  98.11 97.32 96.73 98.60 97.81
Max 96.45 91.34 97.49 92.66 98.46 97.09 96.45
Vote 97.79 93.24 98.10 96.29 96.72 98.59 97.79
Confidence 97.80 9426  98.11 97.32 96.70 98.60 97.80

Results for Created Dataset FL Parameter

Average 92.84 86.71  98.92 93.66 92.17 99.49 92.84
Weighted 92.84 86.71  98.92 93.66 92.17 99.49 92.84
Max 89.43 80.99 98.28 83.78 96.01 98.46 89.43
Vote 92.80 86.63  98.91 93.51 92.23 99.47 92.80
Confidence 92.84 86.71  98.92 93.73 92.10 99.49 92.84

Results for HC18 Dataset

Average 98.74 95.79  98.73 97.88 97.82 99.09 98.74
Weighted 98.75 95.79  98.73 97.88 97.82 99.09 98.75
Max 96.07 9251 97.68 93.19 99.21 97.02 96.07
Vote 97.83 95.75  98.71 97.86 97.80 99.08 97.83
Confidence 98.74 95.78  98.72 97.87 97.82 99.09 98.74

TABLE 12: Ensemble segmentation results for the custom dataset (HC and FL parameters) and the
publicly available HC18 dataset

FL, Femur Length; HC, Head Circumference; MloU, Mean Intersection over Union

Experiments on Classification

Table 13 shows the test accuracy (%) of the DenseNet121 model on three datasets: the custom

HC parameter dataset consists of 1,426 fetal ultrasound images, stratified by gestational age into three
trimesters: FT = 148 images, ST = 380 images, and TT = 898 images. The dataset is initially divided into
1,140 training images and 286 testing images, following an 80:20 split ratio. To improve model
generalization and reduce the risk of overfitting, five distinct data augmentation techniques are
employed. This process increased the total number of training samples to 7,130 images (i.e., each original
image augmented five times). After augmentation, the trimester-wise distribution is updated to 740 FT,
1,900 ST, and 4,490 TT images. The augmented dataset is then partitioned into 5,704 training images and
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1,426 testing images, preserving the original train-test distribution ratio.

In the case of the custom FL parameter dataset, a total of 1,404 fetal ultrasound images are collected and
stratified by gestational age into three trimesters: FT: 112 images, ST: 395 images, and TT: 897 images.
The dataset is initially divided following an 80:20 split, resulting in 1,123 training images and 281 testing
images. To enhance model generalization and reduce the potential for overfitting, five distinct data
augmentation techniques are applied, expanding the dataset to 7,020 images (i.e., each original image is
augmented fivefold). Post-augmentation, the trimester-wise image distribution increased to 560 FT, 1,975
ST, and 4,485 TT images. The augmented dataset is then partitioned into 5,616 training images and 1,404
testing images, maintaining the original train-test split ratio.

The HC18 benchmark dataset consists of 999 fetal ultrasound images, with class-wise labelling based on
estimated gestational age derived from HC measurements. Classification into trimesters is performed
using threshold values obtained from standard fetal growth charts, resulting in 165 FT, 693 ST, and 141 TT
images. An 80:20 train-test split is applied, yielding 799 training images and 200 testing images. To
improve model generalization and reduce overfitting, five distinct data augmentation techniques are
employed, resulting in an expanded dataset of 4,995 images (i.e., each original image augmented five
times). After augmentation, the trimester-wise distribution increased to 825 FT, 3,465 ST, and 705 TT
images. The augmented dataset is then partitioned into 3,996 training images and 999 testing images,
maintaining the original train-test split ratio.

The results are obtained using different inference strategies, including Max, Average, Confidence, Vote,
Weighted, ensemble, and the proposed Multi-Input method. The proposed Multi-Input method achieved
the highest accuracy, with 92.50% for the HC parameter and 90.60% for the FL parameter on the custom
dataset, and 83.68% on the HC18 dataset. These values are higher than those of all other methods. The
results show that the Multi-Input method combines complementary features effectively, improving the
accuracy and reliability of fetal biometric parameter estimation.

Custom Dataset

Model HC18 Dataset
HC Parameter FL Parameter
Average 90.04 88.60 81.28
Weighted 90.95 88.39 79.78
Max 91.37 88.96 79.98
Vote 90.53 88.11 78.98
Confidence 90.53 85.26 79.28
Ensemble 90.15 85.26 75.57
Proposed method Multi-Input 92.50 90.60 83.68

TABLE 13: Test accuracy (%) of DenseNet121 model on the custom HC, FL, and HC18 datasets

FL, Femur Length; HC, Head Circumference

The multi-input model demonstrated superior classification performance across all three datasets. Table
14 summarizes the class-wise evaluation metrics, including precision, recall, F1-score, and accuracy, for
the custom HC parameter dataset, the custom FL parameter dataset, and the HC18 benchmark dataset. For
the HC dataset, the model achieved high F1-scores of 96%, 86%, and 95% for the FT, ST, and TT,
respectively. Similarly, in the FL dataset, strong performance is observed with F1-scores of 91% for FT,
82% for ST, and 94% for TT. The HC18 dataset, despite being more challenging, showed reasonable
performance with F1-scores of 81%, 89%, and 64% for FT, ST, and TT classes, respectively. These results
highlight the robustness of the multi-input strategy.
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Class Precision Recall F1-Score Accuracy

Results for Custom Dataset HC Parameter

FT 95 96 96 95.95
ST 84 89 86 89.21
T 96 93 95 93.32

Results for Custom Dataset FL Parameter

FT 85 98 91 98.21
ST 89 76 82 76.15
TT 92 96 94 96.00

Results for HC18 Dataset

FT 74 88 81 88.48
ST 90 87 89 86.89
TT 65 62 64 62.41

TABLE 14: Class-wise performance metrics (%) of the multi-input DenseNet121 model on the
custom HC, FL, and HC18 datasets

FL, Femur Length; FT, First Trimester; HC, Head Circumference; ST, Second Trimester; TT, Third Trimester

Figure 11 (a), (b), and (c) illustrate the evaluation results of the proposed model on the custom HC dataset,
FL dataset, and HC18 benchmark dataset, respectively. Each subfigure presents three components: the
confusion matrix, the ROC-AUC curve, and the training history. These visualizations collectively provide
insights into the model’s classification performance, discriminative capability, and training stability
across the three datasets.

& B |

FIGURE 11: Confusion matrix, AUC-ROC curve, and training history of
the DenseNet121 model on (a) the custom dataset HC parameter, (b) the
custom dataset FL parameter, and (c) the publicly available HC18
dataset

AUC-ROC, Area Under the Receiver Operating Characteristic Curve; HC, Head Circumference; FL, Femur Length

Cross-validation results

This study introduces a cross-validation-based deep learning framework for trimester-wise fetal
ultrasound image classification using DenseNet121 and its variants. A 5-fold stratified cross-validation
approach with class-balanced folds is employed to ensure robust performance assessment across different
data partitions. The experimental evaluation demonstrates stable and reliable classification performance
across all folds. Table /5 summarizes the accuracy results: the custom dataset with HC parameters
achieved consistently high performance, with accuracy values ranging from 88.57% to 91.65% and a mean
accuracy of 89.80% * 1.18%. When applying FL parameters, the model achieved moderate but consistent
accuracy, ranging from 85.75% to 87.89% with a mean accuracy of 86.75% * 0.92%. In contrast, the HC18
benchmark dataset yielded lower accuracy, between 76.58% and 79.58%, with a mean accuracy of 78.44% *
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Dataset

Custom Dataset HC Parameter

Custom Dataset FL Parameter

HC18 Dataset

1.16%.

These findings confirm that the custom dataset configurations, particularly with HC parameters,
outperform the standard HC18 dataset. The consistent performance across all folds highlights the
robustness and clinical applicability of the proposed methodology for automated fetal trimester
classification.

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean * SD

91.65 89.69 89.90 90.18 88.57 89.80 £1.18
86.18 85.75 86.11 87.89 87.82 86.75 £ 0.92
78.48 79.58 78.58 76.58 78.98 78.44 +1.16

TABLE 15: Classification accuracy (%) results using 5-fold cross-validation

HC, Head Circumference; FL, Femur Length

Comparative analysis

This comparative analysis examines recent studies employing various deep learning architectures for
medical image segmentation. Table /6 presents a comparative summary of recent approaches for
automatic segmentation of fetal HC using the HC18 Grand Challenge dataset. Chougule et al. [6] employed
SegNet, GCN, and HRNet, achieving a Dice Similarity Coefficient (DSC) of 96%. Halder et al. [7] utilized U-
Net and Attention U-Net models and reported a DSC of 97.17% and a Jaccard Coefficient of 94.51%.
Alzubaidi et al. [9] applied an ensemble transfer learning framework, attaining a high MIoU of 98.53%.
Ashkani Chenarlogh et al. [10] explored multiple U-Net variants, including MFP U-Net and dilated U-Net,
and achieved a DSC of 97.45% and Jaccard Coefficient of 95%. More recent work by Dubey et al. [12]
demonstrated the DR-ASPNet model, reporting a DSC of 98.86%, while Zeng et al. [17] proposed a DAG V-
Net architecture and achieved a DSC of 97.63%. Conventional U-Net approaches by Nagabotu

and Namburu [19], Fiorentino et al. [41], and Li et al. [31] yielded DSCs of 97.90%, 97.30%, and 97.26%
respectively, with corresponding MIoU scores ranging between 96.46% and 97.81%. Wang et al. [24]
applied a lightweight MobileNetV2-based model, obtaining a DSC of 96.28% and MIoU of 92.87%. In
comparison, the proposed ensemble-based approach achieves superior performance with a DSC of 98.74%
and an accuracy of 98.74% on the HC18 dataset, surpassing most existing methods. Furthermore, the
method is validated on a newly created clinical dataset, attaining a DSC and accuracy of 97.81% for HC
segmentation and 92.84% for FL segmentation. These results demonstrate the robustness and
generalizability of the proposed framework across different fetal biometric parameters and datasets.

2025 Gornale et al. Cureus J Comput Sci 2 : es44389-025-09506-x. DOI https://doi.org/10.7759/s44389-025-09506-x

32 0of 39


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus Journal of Computer Science

Authors Dataset Parameters Methodology Results

HC18 Grand Challenge
Chougule et al. [6] 9 HC SegNet, GCN, and HRNet DSC=96%

dataset

HC18 Grand Challenge DSC=97.17%, Jaccard
Halder et al. [7 HC UNet, Attention UNet

Y dataset ' C0=94.51%

HC18 Grand Challenge
Alzubaidi et al. [9] 9 HC Ensemble Transfer Learning MIloU=98.53%

dataset
Ashkani Chenarlogh et HC18 Grand Challenge He U-Net, MFP U-Net, dilated U-Net, HC18: DSC=97.45%, Jaccard
al. [10] dataset Attention U-Net. Co=95%

HC18 Grand Challenge

Dubey et al. [12] dataset

HC DR-ASPnet DSC=98.86%

HC18 Grand Challenge Deeply supervised attention-gated

Z tal. [17 HC DSC=97.639
eng etal. [17] dataset (DAG) V-Net u
Nagabot HC18 Grand Chall
o rand Lhalenge  pe U-Net DSC=97.90%, MioU=97.81%
and Namburu [19] dataset
HC18 Grand Chall
Fiorentino et al. [41] ran atenge HC U-Net DSC=97.30%
dataset
HC18 Grand Chall
Li et al. [39] dataset ran SREngs HC U-Net, SaPNeT DSC=97.26%, MloU=96.46%
HC18 Grand Challenge i PA=97.77%, DSC=96.28%,
Wang et al. [24] HC Mobilenet V2
dataset MloU=92.87%
HC18 Grand Challenge HC DSC=98.74%,
dataset Accuracy=98.74%
DSC=97.81%,
Proposed Work HC Ensemble approach
ropose r n © appr Accuracy=97.81%
Created Dataset
DSC=92.84Y
EL SC=92.84%,

Accuracy=92.84%

TABLE 16: Comparative performance of deep learning methods for fetal biometric segmentation

DSC, Dice Similarity Coefficient; FL, Femur Length; HC, Head Circumference; MloU, Mean Intersection over Union

Table 17 presents a comparative evaluation of recent deep learning models applied to fetal biometric
classification tasks, including HC, FL, abdominal circumference, and multi-organ recognition. Gornale et
al. [12] employed a U-Net architecture on a custom dataset, achieving the highest classification accuracy
of 99.86%. Oghli et al. [40] proposed MFP-U-Net, obtaining 95.56% accuracy on both the HC18 and a
custom dataset. Al-Razgan et al. [22] reported 94% accuracy using an attention-gated CNN for multi-
organ classification. Sivasubramanian et al. [26] achieved 96.25% accuracy with EfficientNetV2B0
combined with a multilayer perceptron. Ghabri et al. [28] demonstrated high performance (99.97%) using
DenseNet169, while Hasan Aowlad Hossain [32] attained 97.68% using an ensemble model on the
FETAL_PLANES_DB. In comparison, the proposed trimester-based classification framework utilizing
DenseNet121 achieved 86.68% accuracy on the HC18 dataset and improved results on a custom dataset
(92.50% for HC and 90.60% for FL), indicating its potential for stage-wise fetal biometric analysis. Unlike
existing studies that focus on general biometric classification, our work uniquely addresses trimester-
based classification, highlighting its novelty and clinical relevance.
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Authors Dataset Parameters Methodology Results
Dubey et al. [12] Created Own Dataset HC, FL, AC  U-Net Accuracy=99.86%

i HC18 Grand Challenge dataset and
Oghli et al. [40] HC, FL, AC MFP-U-Net Accuracy=95.56%
Created Dataset

Al-Razgan et al. [22] Created Own Dataset Multi-Organ  AG-CNN Accuracy=94%
Sivasubramanian et al. [26] Created Own Dataset Multi-Organ  EfficientNetV2B0 + MLP Accuracy=96.25%
Ghabri et al. [28] Created Own Dataset Multi-Organ  DenseNet169 Accuracy=99.97
. Fetal

Hasan and Aowlad Hossain [32] FETAL_PLANES_DB Planes Ensemble Model Accuracy=97.68%

HC18 Grand Challenge dataset HC Accuracy=86.68%
Proposed Work (Trimester-based DenseNet121 (Multi-Input

HC Accuracy=92.50%

Classification) Classification)

Created Dataset
FL Accuracy=90.60%

TABLE 17: Comparative performance of deep learning methods for fetal biometric classification

AC, Abdominal Circumference; AG-CNN, Attention-Guided Convolutional Neural Network; FL, Femur Length; HC, Head Circumference; MFP-U-Net, Multi-
Feature Pyramid U-Net; MLP, Multilayer Perceptron

Statistical significance analysis using paired t-test

The study is to determine whether the observed classification outcomes are statistically significant;
paired t-tests are conducted on the experimental results. This test is particularly appropriate for
evaluating the differences between two related samples, such as predicted versus actual values [48]. The
paired t-test examines whether the mean difference between these paired observations is significantly
different from zero, thereby validating the performance of the classification model [49]. Table 18 presents
the results of the paired t-test applied to both the custom dataset comprising HC and FL parameters, and
the publicly available HC18 dataset. These results provide evidence supporting the statistical significance
of the classification outcomes achieved by the DenseNet121-based Multi-Input Classification model.

Hypothesis in a Paired t-Test

Null Hypothesis (Hp): The mean difference ({4 between the paired groups is zero, implying no significant

difference.
H() g = 0

Alternative Hypothesis (H7): The mean difference [4q is not zero, implying a significant difference.

Hy:pa#0

The statistic t is defined as:

~d
 sa/Vn

where, the differences between the paired observations are:

t (19)

d; = |Actual; — Predicted;| (20)

The mean difference is:

the standard deviation of the differences:

2025 Gornale et al. Cureus J Comput Sci 2 : es44389-025-09506-x. DOI https://doi.org/10.7759/s44389-025-09506-x 34 of 39


javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

Cureus Journal of Computer Science

Dataset

Custom Dataset HC
Parameter

Custom Dataset FL
Parameter

HC18 Dataset

Class

FT

ST

TT

FT

ST

T

FT

ST

TT

Sy =

LS a-d 2

i=1

n—1

The t-statistic compares the mean j of the differences to the variability in the Sy differences.

The degrees of freedom (df) for a paired t-test is:

where,

d;: absolute difference for sample i.

df =n—1

Actual;: ground-truth measurement (manual annotation).

Predicted;: automated model output.

J: mean of the absolute differences across all n samples.

sq: standard deviation of the absolute differences.

SE: standard error of the mean difference, defined as g, / \/ﬁ

t: test statistic used to determine whether the mean absolute difference is significantly different from

Zero.

df=n - 1: degrees of freedom for the t-distribution.

Actual  Predicted Difference
Where,
Value Value (dj)
148 142 6
n=3,df=2,d=35.67, Sq = 27.39, teaiculated = 225, table = 4.303
380 339 41 .
tealculated < ttable » Ho is accepted
898 838 60
112 110 2
n=3,df=2,d=44, Sq = 46.52, teaiculated = 1.64, tiable = 4.303,
395 301 94 X
tealculated < ttable » Ho is accepted
897 861 36
165 146 19
n=3,df=2 d=5434, Sq=36.01, teaculated = 2.67, tiable = 4.303,
693 602 91 .
tcalculated < ttable: Ho is accepted
141 88 53

TABLE 18: Paired t-test results for actual and predicted values obtained by the multi-input
DenseNet121 model on the custom (HC, FL parameters) and HC18 datasets

FL, Femur Length; FT, First Trimester; HC, Head Circumference; ST, Second Trimester; TT, Third Trimester

Table 18 presents the results of the paired t-test performed at a 5% significance level (a = 0.05) using a
two-tailed test with 2 degrees of freedom [48]. The critical t-value from the standard t-distribution table

for this degree of freedom is tiyp)e = 4.303. The calculated t-values for the comparisons between actual and

predicted values are as follows: 2.25 for the HC parameter in the custom dataset, 1.64 for the FL parameter

in the custom dataset, and 2.61 for the HC18 dataset. In all three cases, the calculated t-values are less

than the critical value (4.303), meaning that the null hypothesis (Hp) is accepted. This indicates that there

is no statistically significant difference between the actual and predicted values in any of the datasets.

Therefore, the differences observed can be considered minor and are likely due to random variation rather
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than a consistent error or bias in the model’s predictions. These findings support the reliability of the
model in predicting fetal parameters across both custom and standard datasets.

In addition to the paired t-test (Table /8), we conducted an additional statistical analysis to enhance the
robustness of our findings. Specifically, the Wilcoxon signed-rank test was employed as a non-parametric
alternative [52].

Dataset & Parameter Class Paired t-test (t, p) Wilcoxon (W, p)
Custom HC Parameter FT,ST,TT t=2.25,p>0.05 W=0.0,p=0.25
Custom FL Parameter FT,ST,TT t=1.64,p>0.05 W=0.0,p=0.25
HC18 Dataset FT, ST, TT t=2.61, p>0.05 W=2.0,p=0.75

TABLE 19: Comparison of paired t-test and Wilcoxon signed-rank test results for actual and
predicted values across trimesters (FT, ST, and TT)

FL, Femur Length; FT, First Trimester; HC, Head Circumference; ST, Second Trimester; TT, Third Trimester

Table 19 presents the results of statistical tests applied to compare the custom parameters (HC, FL) and
the HC18 dataset across trimesters (FT, ST, TT). Both the paired t-test and the Wilcoxon signed-rank test
were conducted to assess consistency between actual and predicted class distributions. The paired t-test
results (HC: t = 2.25, p > 0.05; FL: t = 1.64, p > 0.05; HC18: t = 2.61, p > 0.05) indicate that no statistically
significant differences were observed. Similarly, the Wilcoxon signed-rank test (HC: W = 0.0, p = 0.25; FL:
W =0.0,p=0.25; HC18: W = 2.0, p = 0.75) confirmed the absence of significant variation across the
datasets. Although an important point is that using paired t-tests on class counts may not be statistically
optimal compared to performance-based metrics, our analysis aimed to provide an additional supportive
check for distribution-level consistency. The non-parametric Wilcoxon test was included to strengthen
the reliability of the results, particularly given the small sample sizes. Importantly, the primary validation
of our models is based on performance metrics, including the Dice coefficient, IoU, pixel accuracy,
precision, recall, and F1-score, which provide clinically relevant insights into segmentation accuracy.
Thus, while the statistical comparison of counts is supplementary, the core findings and conclusions of
the study rely on robust performance-based evaluations.

Discussion

This study presents a comprehensive evaluation of deep learning methods for fetal biometric
segmentation and trimester-wise classification, benchmarked against recent state-of-the-art approaches.
For HC segmentation on the HC18 dataset, earlier studies have reported DSC scores ranging from 96% to
98.86% using architectures such as SegNet, U-Net variants, ensemble learning frameworks, and DR-
ASPNet [12]. The proposed ensemble-based segmentation framework achieved a DSC and accuracy of
98.74%, surpassing most existing methods [9]. Furthermore, the approach demonstrated strong
generalizability on a newly created dataset, achieving a DSC of 97.81% for HC segmentation and an
accuracy of 92.84% for FL segmentation. In fetal biometric classification, prior works have achieved
accuracies of up to 99.97% with models such as XceptionNet, MFP-U-Net, EfficientNet, and DenseNet [28].
The proposed trimester-based classification framework, built on DenseNet121, achieved 86.68% accuracy
on the HC18 dataset and higher results on the custom dataset (92.50% for HC and 90.60% for FL). Notably,
the classification framework integrates segmentation-driven inputs, where five complementary
segmentation strategies, maximum probability, averaging, confidence-based, voting, and weighted fusion,
are applied to produce multiple representations of each ultrasound image [46-48]. Each strategy
emphasizes different anatomical cues, allowing the classification models to capture both fine-grained
morphological structures and broader contextual patterns. This multi-representation approach enhances
feature diversity and contributes to improved prediction reliability. The complete classification pipeline,
illustrated in Figure 9, outlines the stages of individual model training, multi-input feature fusion, and
final prediction. Five-fold stratified cross-validation confirmed the stability of the proposed approach,
with mean accuracies of 89.80% for HC and 86.75% for FL on the custom dataset, and 78.44% on the HC18
dataset. Paired t-test analysis at a 5% significance level revealed no statistically significant differences
between actual and predicted values, indicating that performance variations are due to random factors
rather than systematic bias. Overall, the results demonstrate the effectiveness of the proposed
segmentation. The classification pipeline is accurate, robust, and clinically applicable across diverse
datasets and fetal biometric parameters.

Limitations
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This study has certain limitations. While the custom dataset is sizable, it is single-centered, and
longitudinal images from the same fetus across trimesters were not available, limiting the ability to
perform longitudinal analysis and reducing generalizability across diverse populations. Future work will
therefore focus on validating the framework on larger, multi-center datasets with broader demographic
and acquisition variability. Moreover, although the proposed framework demonstrated strong technical
performance, the evaluation primarily relied on accuracy metrics rather than direct validation against
real-world diagnostic outcomes. Collaborative clinical studies with obstetricians and sonographers will be
essential to assess its clinical impact and integration into routine practice. Finally, the ensemble and
multi-input pipeline, though effective in enhancing segmentation accuracy and robustness, introduces
additional computational complexity compared to single-model approaches, which may hinder real-time
or edge deployment. To address this, future efforts will investigate optimization strategies such as model
compression, knowledge distillation, quantization, and pruning to improve inference efficiency without
compromising accuracy.

Conclusions

This study presents a comprehensive multi-stage computational pipeline for enhancing ultrasound fetal
image quality and interpretability. The proposed framework successfully addresses key challenges in
prenatal imaging through three integrated components: (1) denoising autoencoders for speckle noise
reduction and artifact mitigation, (2) an ensemble segmentation approach combining seven state-of-the-
art deep learning architectures, and (3) trimester-specific biometric classification for fetal HC and

FL measurements. The ensemble segmentation strategy, incorporating U-Net, DeepLabV3+, DenseNet-U-
Net, MFP-UNet, Attention U-Net, MobileNet-U-Net, and ResNet-U-Net architectures, demonstrates
superior performance by leveraging complementary model strengths, including advanced encoder-
decoder structures, multi-scale feature extraction capabilities, efficient feature reuse mechanisms,
sophisticated attention mechanisms, and optimized computational efficiency. The integration of
trimester-specific classification enables more precise, developmentally aware biometric assessments,
contributing to improved fetal growth monitoring and anomaly detection. Experimental results
demonstrate significant improvements in image quality metrics and segmentation accuracy compared to
individual model approaches, validating the effectiveness of the proposed ensemble methodology. The
framework shows particular promise for enhancing diagnostic confidence in challenging imaging
scenarios commonly encountered in clinical practice. The proposed framework represents a significant
advancement toward automated, reliable prenatal ultrasound analysis, which has the potential to
significantly improve clinical workflow efficiency and diagnostic accuracy in obstetric care.

Future research directions include (1) real-time system deployment for live ultrasound examination
support, (2) dataset expansion to encompass diverse demographic populations and varying imaging
conditions to enhance model generalizability, and (3) rigorous clinical validation through collaborative
studies with healthcare professionals and clinical trustworthiness.
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