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A B S T R A C T

Background: Parkinson’s Disease (PD) is a chronic, progressive neurological disorder with significant clinical and 
economic impacts globally. Early and accurate prediction remains challenging with traditional diagnostic 
methods due to subjectivity, delayed diagnosis, and variability. Machine Learning (ML) approaches offer po
tential solutions, yet their clinical adoption is hindered by limited interpretability. This study aimed to develop 
an interpretable ML model for early and accurate PD prediction using comprehensive multimodal datasets and 
Explainable Artificial Intelligence (XAI) techniques.
Methods: The study applied five ML algorithms: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Logistic Regression (LR), Random Forest (RF), XGBoost, and a stacked ensemble method to a publicly available 
dataset (n = 2105) from Kaggle. Data encompassed demographic, medical history, lifestyle, clinical symptoms, 
cognitive, and functional assessments with specific inclusion/exclusion criteria applied. Preprocessing involved 
normalization, Synthetic Minority Oversampling Technique (SMOTE), and Sequential Backward Elimination 
(SBE) for feature selection. Model performance was evaluated via accuracy, precision, recall, F1-score, and Area 
Under Curve (AUC). The best-performing model (RF with feature selection) was interpreted using SHAP and 
LIME methods.
Results: Random Forest combined with Backward Elimination Feature Selection achieved the highest predictive 
accuracy (93 %), precision (93 %), recall (93 %), F1-score (93 %), and AUC (0.97). SHAP and LIME analyses 
indicated UPDRS scores, cognitive impairment, functional assessment, and motor symptoms as primary pre
dictors, enhancing clinical interpretability.
Conclusion: The study demonstrated the effectiveness of an interpretable RF model for accurate PD prediction. 
Integration of ML and XAI significantly improves clinical decision-making, diagnosis timing, and personalized 
patient care.

1. Introduction

Parkinson’s Disease (PD) is a chronic and progressive neurodegen
erative disorder affecting millions globally, characterized by motor 
symptoms such as tremors, rigidity, bradykinesia (slowness of move
ment), and postural instability, alongside non-motor symptoms 
including cognitive impairment, mood disorders, and sleep disturbances 

[1]. This condition significantly impairs quality of life and places sub
stantial burdens on healthcare systems and caregivers [2]. Early and 
accurate prediction of PD is critical for effective management and timely 
intervention, yet current diagnostic practices face significant challenges.

Despite advances in neurological assessment, current PD diagnostic 
methods remain suboptimal, with diagnostic accuracy as low as 70–80 
%, particularly in early stages [3]. Traditional diagnosis relies on clinical 
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evaluations, patient history, and neurological examinations by special
ists [4]. These methods are subjective, time-consuming, and dependent 
on clinician expertise, resulting in variability and risk of misdiagnosis 
[3]. Moreover, diagnoses often occur after significant symptom onset, 
limiting opportunities for early intervention [4]. These shortcomings 
have driven interest in machine learning (ML) as an objective, scalable 
diagnostic tool [5]. ML excels at analysing complex datasets, identifying 
patterns and biomarkers overlooked by traditional methods [6]. By 
integrating multimodal data, such as demographic details, medical 
histories, lifestyle factors, clinical assessments, cognitive tests, and 
symptomatology, ML offers a comprehensive approach to predict PD 
and track its progression [6]. This data-driven strategy supports earlier 
detection and personalised treatment plans.

However, many ML studies for PD prediction rely on single-modality 
datasets, limiting their scope [7]. For example, Grover et al. used voice 
recordings to predict PD accurately but excluded medical history and 
cognitive data [7]. Similarly, Pereira et al. leveraged gait analysis 
effectively but omitted lifestyle and demographic factors [8]. Afonso 
et al. employed wearable sensors to monitor motor symptoms, yet their 
small sample size and limited data diversity reduced generalizability 
[9]. These studies highlight ML’s potential but underscore the need for 
broader, more inclusive datasets. Another limitation of ML models is 
their "black-box" nature, which obscures interpretability and hinders 
clinical adoption where transparency is essential [10]. Explainable AI 
(XAI) techniques, such as SHAP (SHapley Additive exPlanations) and 
LIME (Local Interpretable Model-agnostic Explanations), address this by 
clarifying how predictions are made [11,12]. These methods reveal the 
features driving outcomes, fostering trust and enhancing clinical 
decision-making [10].

The rationale for this study is rooted in addressing the critical limi
tations associated with traditional diagnostic methods for Parkinson’s 
Disease, including subjectivity, diagnostic delays, and variability, which 
significantly limit early intervention opportunities and effective disease 
management. The novelty of this research lies in adopting a multimodal 
machine learning approach that integrates comprehensive datasets, 
encompassing demographic information, medical histories, lifestyle 
factors, clinical assessments, cognitive tests, and symptom profiles, of
fering a more holistic, accurate, and interpretable predictive model 
compared to previous single-modality studies.

The central research question guiding this investigation is: Can ma
chine learning algorithms combined with explainable AI techniques 
develop a clinically interpretable and accurate predictive model for 
early Parkinson’s Disease detection using multimodal patient data? Our 
primary hypothesis posits that machine learning models, particularly 
ensemble methods like Random Forest, when combined with compre
hensive multimodal datasets and explainable AI techniques (SHAP and 
LIME), can achieve superior predictive accuracy (>90 %) compared to 
traditional diagnostic methods whilst maintaining clinical interpret
ability for early PD prediction. We propose several secondary hypothe
ses to support our investigation. We hypothesise that multimodal 
datasets incorporating demographic, clinical, cognitive, and functional 
assessments will yield better predictive performance than single- 
modality approaches. Additionally, we expect that UPDRS scores and 
cognitive assessments will emerge as primary predictive features in 
explainable AI analysis. Furthermore, we anticipate that ensemble 
methods will outperform traditional ML algorithms for PD prediction.

The primary objective of this study is to develop an accurate, inter
pretable, and clinically relevant machine learning model capable of 
predicting PD at an early stage using diverse data sources. The specific 
objectives of this study encompass several key areas of investigation. 
This study aims to collect and integrate multimodal data for PD pre
diction to establish a comprehensive dataset foundation. Our research 
evaluates and compares predictive performances of different machine 
learning algorithms to identify the most effective approach for PD 
classification. The investigation applies explainable AI (XAI) techniques 
such as, SHAP and LIME to enhance transparency and interpretability of 

the selected models, ensuring clinical applicability. Finally, we validated 
the model using appropriate statistical and clinical methods to demon
strate its effectiveness and practical clinical applicability in real-world 
healthcare settings.

2. Methodology

The methodology of this study targets the development of a 
comprehensive and systematic framework for predicting Parkinson’s 
Disease (PD) using machine learning (ML) approaches, integrated with 
Explainable AI (XAI) techniques for interpretability. The methodology is 
structured into five significant phases: data acquisition, preprocessing, 
prediction, evaluation, and explanation, each carefully designed to 
ensure robustness, precision, and transparency throughout the predic
tive modelling process as shown in Fig. 1 below.

2.1. Data acquisition and sample characteristics

2.1.1. Dataset selection rationale
The data for this study was sourced from Kaggle, a prominent plat

form for sharing datasets for data science and ML projects. The Kaggle 
dataset was chosen over the Parkinson’s Progression Markers Initiative 
(PPMI) database for several practical and methodological reasons: 

a. Comprehensive Multimodal Coverage: The Kaggle dataset provides 
integrated multimodal data including demographic, clinical, cogni
tive, lifestyle, and functional assessments in a preprocessed format, 
facilitating direct ML implementation.

b. Balanced Representation: Unlike PPMI which focuses primarily on 
early-stage PD patients, the Kaggle dataset includes both PD and 
control participants across various disease stages.

c. Accessibility: Open access availability enables reproducibility and 
comparison with other studies.

d. Feature Completeness: The dataset contains standardised clinical 
assessments (UPDRS, MoCA) essential for interpretable AI analysis.

2.1.2. Inclusion and exclusion criteria
Inclusion Criteria: 

• Complete demographic information (age, gender, ethnicity)
• Available clinical assessments including UPDRS and MoCA scores
• Documented medical history including family history of PD
• Lifestyle factors (diet, exercise, smoking status)
• Complete motor and non-motor symptom profiles
• Participants aged 18–85 years
• Exclusion Criteria:
• Incomplete demographic or clinical data (>20 % missing values)
• Participants with other neurodegenerative disorders (Alzheimer’s, 

multiple sclerosis)
• Insufficient symptom documentation
• Secondary parkinsonism due to medications or other causes
• Participants with severe cognitive impairment preventing reliable 

assessment

Final Sample: After applying inclusion/exclusion criteria, 2105 re
cords were retained for analysis, comprising 1052 PD patients and 1053 
healthy controls.

2.2. Data acquisition

The data for this study was sourced from Kaggle, a prominent plat
form known for sharing and retrieving datasets for data science and ML 
projects. This publicly available dataset, optimised specifically for PD 
prediction, consists of 2105 records featuring comprehensive details, 
including demographic factors (age, gender, ethnicity), medical his
tories (family history of PD, comorbidities, medication use), lifestyle 
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parameters (diet, exercise, smoking status), clinical measurements 
(motor and non-motor symptoms), cognitive and functional assessments 
(MoCA and UPDRS scores), and symptoms reported by both clinicians 
and patients. The dataset is compiled from multiple sources, such as 
clinical trials, wearable sensors, patient surveys, and clinician evalua
tions, providing a holistic representation of PD factors. Data anonym
isation and open-access licensing were implemented to maintain patient 
confidentiality and facilitate broad research usage.

2.3. Data preprocessing

The dataset underwent extensive preprocessing to ensure suitability 
for ML modelling. Variables including age, BMI, alcohol consumption, 
clinical parameters (e.g., Diastolic BP, Cholesterol levels), and cognitive 
assessments (e.g., UPDRS, MoCA scores) were normalised using Min- 
Max scaling to achieve uniformity within a 0–1 range. To address 
class imbalance, the Synthetic Minority Oversampling Technique 
(SMOTE) was employed, generating synthetic data points for the mi
nority class, thus balancing the dataset and mitigating bias. Addition
ally, Sequential Backward Elimination (SBE) was used for feature 
selection, systematically removing less significant features until the 
optimal subset was identified. These preprocessing steps enhanced the 
dataset’s balance, cleanliness, and readiness for accurate and efficient 
ML modelling.

2.4. Machine learning algorithms for PD prediction

Five ML algorithms were employed in this study: Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), 
Random Forest (RF), and XGBoost, supplemented by a stacked ensemble 
to leverage their combined predictive strengths. SVM was selected for its 
capacity to manage high-dimensional data and complex relationships 

using kernel functions. KNN was chosen for its simplicity and effec
tiveness in capturing local data patterns without assuming specific dis
tributions. LR provided interpretability and baseline performance in 
binary classification tasks with primarily linear relationships. RF was 
adopted due to its ensemble nature, enhancing predictive accuracy and 
reducing overfitting, while simultaneously providing intrinsic feature 
importance measures. XGBoost, known for its gradient-boosting mech
anism, was included for its robustness with imbalanced datasets and 
exceptional predictive power. A stacked ensemble integrated these 
models, capitalising on individual strengths to deliver superior overall 
performance through reduced bias and variance.

2.5. Explainable artificial intelligence (XAI) with SHAP and LIME

Explainable AI methods, specifically SHAP (SHapley Additive ex
Planations) and LIME (Local Interpretable Model-agnostic Explana
tions), were utilised to enhance interpretability of predictions, 
particularly from the Random Forest (RF) model, identified as the most 
accurate predictor among the tested algorithms. SHAP, employing a 
game-theoretic approach, quantified each feature’s contribution glob
ally, enabling clinicians to identify crucial predictive factors and gain 
deeper insights into PD mechanisms. Conversely, LIME provided local 
interpretability by approximating predictions for individual instances, 
offering clinicians detailed explanations for specific patient predictions. 
This combination provided comprehensive transparency, building clin
ical trust and facilitating model adoption in practical healthcare 
settings.

2.6. Performance evaluation

The Hold-out evaluation method was employed, partitioning the 
dataset into a 70–30 training-testing split while ensuring class 

Fig. 1. Research workflow for prediction of PD with XAI.
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proportions were stratified for balanced representation. Model perfor
mance was quantitatively evaluated using standard metrics, including 
accuracy, precision, recall, and F1-score, ensuring thorough and reliable 
assessment of the predictive models developed in this study.

3. Results

This section presents the results obtained by applying various ma
chine learning algorithms: Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Logistic Regression (LR), Random Forest (RF), 
XGBoost, and Stacked Ensemble, to predict Parkinson’s Disease (PD). 
These algorithms were evaluated using metrics including accuracy, 
precision, recall, F1-score, and the Area Under the Curve (AUC). Among 
these models, Random Forest (RF) combined with Backward Elimina
tion Feature Selection (BEFS) outperformed all others, achieving the 
highest accuracy and overall predictive performance. To enhance the 
interpretability of the RF model’s predictions, Explainable AI (XAI) 
techniques, SHAP (SHapley Additive exPlanations) and LIME (Local 
Interpretable Model-agnostic Explanations), were utilized. The results 
are described in detail, with interpretations through SHAP and LIME 
clearly outlined to emphasize clinical implications.

3.1. Experimental results of machine learning models

Table 1 summarizes the performance metrics of all evaluated models. 
The Random Forest (RF) model achieved the highest accuracy of 93 %, 
with precision, recall, and F1-score also each at 93 %, and an AUC of 
0.97. The Stacked Ensemble and XGBoost models performed similarly, 
each attaining an accuracy of 92 % and an AUC of 0.96. SVM and Lo
gistic Regression demonstrated moderate performances, achieving ac
curacies of 84 % and 83 %, respectively. KNN had the lowest accuracy at 
79 %. RF’s superior performance is largely due to its ensemble structure, 
combining multiple decision trees to minimize overfitting and enhance 
generalization. Its inherent ability to rank feature importance comple
ments feature selection techniques, further boosting performance. 
Conversely, KNN’s weaker performance is likely due to limitations 
associated with handling high-dimensional datasets and sensitivity to 
noise.

3.2. Interpretation of ML predictions for Parkinson’s disease

Two prominent XAI techniques, SHAP and LIME, were employed to 
interpret the predictions of the best-performing RF model, enhancing 
transparency and clinical usability.

3.2.1. SHAP interpretation of random forest predictions
SHAP analysis provided a global understanding of how each feature 

influenced the RF model’s predictions. The SHAP waterfall plot (Fig. 2) 
highlighted the importance of cognitive impairment (MoCA), functional 
assessments, and hypertension as key predictors for PD. Notably, 
traditional motor symptoms such as tremor, rigidity, bradykinesia, and 
postural instability showed lower contributions in this analysis. 

Additionally, SHAP summary plots (Figs. 3 and 4) identified UPDRS 
scores and functional assessments as the most influential features across 
the dataset, aligning closely with clinical knowledge about PD severity 
indicators. Features such as BMI, diet quality, physical activity, and 
comorbid conditions had comparatively lower impact, suggesting these 
lifestyle-related factors were secondary in prediction.

3.2.2. LIME interpretation of random forest predictions
LIME provided detailed, instance-level explanations for model pre

dictions, clarifying the decision-making process for individual cases. 
Fig. 5a presents the LIME interpretation for an instance correctly pre
dicted as a PD patient, with a prediction confidence of 93 %. Here, 
UPDRS, tremor, functional assessments, and rigidity were critical in 
influencing the positive prediction. Conversely, higher diet quality and 
physical activity slightly reduced PD probability, highlighting their 
minor protective influence. Fig. 5b demonstrates the interpretation for 
an instance correctly classified as a non-PD patient, where low UPDRS 
scores and absence of significant tremor or rigidity strongly contributed 
to a negative prediction.

3.2.3. Comparison of SHAP and LIME interpretations
Both SHAP and LIME provided complementary insights into the 

model’s decision-making. SHAP offered a broad, dataset-wide 

Table 1 
Performance comparison of machine learning algorithms in predicting Parkin
son’s Disease (PD).

S/ 
N

Algorithm Avg. 
accuracy

Avg. 
precision

Avg. 
recall

Avg. f1- 
score

AUC

1 KNN 0.79 0.79 0.79 0.79 0.84
2 SVM 0.84 0.84 0.84 0.84 0.90
3 LR 0.83 0.83 0.83 0.83 0.90
4 XGBoost 0.92 0.92 0.92 0.92 0.96
5 Stacked 

ensemble
0.92 0.92 0.92 0.92 0.96

6 BEFS+
AACOAhp+RF

0.93 0.93 0.93 0.93 0.97

Fig. 2. SHAP’s waterfall plot for Interpretation of PD.

Fig. 3. SHAP Summary on the training and testing set for interpretation of 
prediction of PD.
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interpretation, emphasizing the global importance of UPDRS scores and 
functional assessment. In contrast, LIME delivered localized explana
tions, confirming the importance of specific motor and cognitive 
symptoms for individual predictions. The convergence of findings from 
SHAP and LIME underscores the model’s interpretability and clinical 
relevance, highlighting consistent utilization of clinically significant 
features. However, both analyses indicated limited roles for lifestyle 
factors, suggesting potential benefits from incorporating more detailed 
lifestyle or genetic data to enhance future predictive accuracy and 
clinical applicability.

4. Discussion

4.1. Performance comparison with existing studies

Our Random Forest model achieved 93 % accuracy, which positions 
it competitively within the existing literature whilst offering unique 
advantages. Several studies have reported varying performance levels 
that merit careful comparison when considering methodological dif
ferences and dataset characteristics [13].

Grover et al. achieved 94.2 % accuracy using speech features alone 
[7], while Pereira et al. reported 95.1 % accuracy with gait analysis [8]. 
However, direct comparison requires careful consideration of several 
key factors. First, dataset characteristics differ significantly - Grover 
et al. used a smaller, homogeneous sample (n = 195) focused solely on 
voice recordings, whilst our study employed a larger, multimodal 
dataset (n = 2105) providing more comprehensive patient representa
tion. Second, regarding feature scope, unlike single-modality ap
proaches achieving higher accuracy on specific features, our model 
integrates diverse data types (demographic, clinical, cognitive, life
style), potentially trading peak performance for clinical applicability 
and interpretability.

Recent studies using multimodal deep learning approaches have 
demonstrated the potential for enhanced early detection capabilities. 
Dentamaro et al. [14] achieved 96.6 % accuracy using DenseNet com
bined with an Excitation Network on PPMI data (n = 90), focusing 
specifically on prodromal stage detection using multimodal deep 
learning with 3D MRI scans and clinical data. Their explainable AI 
analysis using SHAP and LIME revealed that UPDRS scores, cognitive 
impairment measures, and functional assessments were primary 

predictors, which aligns with our findings regarding the importance of 
clinical assessment features. Their use of joint co-learning for multi
modal fusion enabled end-to-end training and learning of complemen
tary information from both imaging and clinical modalities, 
demonstrating superior performance compared to single-modality 
approaches.

Priyadharshini et al. [15] developed a comprehensive framework 
using T2-weighted 3D MRI datasets (n = 500) and achieved 96.8 % 
accuracy with Gradient Boosting combined with SMOTE for data 
balancing. Their study extracted 107 radiomics features from subcor
tical regions and used a systematic feature selection approach to identify 
the top 20 most significant features. The integration of multiple XAI 
techniques (SHAP, LIME, and SHAPASH) provided both global and local 
explanations, with UPDRS scores and cognitive assessments emerging as 
primary predictive features. This finding corroborates our results 
regarding the critical importance of clinical assessment scales in PD 
prediction.

Zhang et al. [16] conducted a systematic comparison of eight ma
chine learning algorithms using PPMI data (n = 747) and achieved 
optimal performance with penalized logistic regression (AUC=0.94) and 
XGBoost (AUC=0.92). Their study demonstrated that models incorpo
rating demographic variables, clinical assessments, and polygenic risk 
scores (PRS) achieved the best prediction performance without 
requiring invasive biomarkers. Their SHAP analysis consistently iden
tified olfactory function (UPSIT) and polygenic risk scores as the most 
important predictors across different ML methods, emphasising the 
value of non-invasive assessment tools.

The generalisability versus specificity trade-off represents a crucial 
consideration when evaluating these performance differences. Studies 
reporting >95 % accuracy often focus on specific patient populations or 
controlled settings, whilst our multimodal approach prioritises real- 
world clinical applicability across diverse patient presentations. The 
interpretability trade-off is equally important - higher-performing deep 
learning models often sacrifice interpretability, whereas our 93 % ac
curacy comes with comprehensive XAI analysis, crucial for clinical 
adoption.

Furthermore, the modest performance difference (1–2 %) compared 
to some studies is offset by significant advantages in clinical interpret
ability, broader applicability, and comprehensive feature integration. 
The convergence of findings across these studies regarding the impor
tance of UPDRS scores, cognitive assessments, and olfactory function 
validates the clinical relevance of these features for early PD detection. 
The consistent success of ensemble methods (Random Forest, XGBoost, 
Gradient Boosting) across multiple studies suggests their superior suit
ability for PD prediction compared to traditional algorithms.

These comparative findings indicate that our approach provides a 
more suitable framework for practical healthcare implementation, 
balancing accuracy with interpretability and clinical applicability. The 
integration of explainable AI techniques across all compared studies 
demonstrates the critical importance of model transparency in medical 
applications, enabling clinicians to understand and trust AI-driven 
diagnostic decisions.

4.2. Clinical significance and feature interpretation

The current study investigated the efficacy of multiple machine 
learning algorithms for predicting Parkinson’s Disease. The Montreal 
Cognitive Assessment (MoCA) emerged as a significant predictor, 
consistent with evidence that cognitive impairment is a prevalent early 
non-motor symptom in PD, often detectable before motor deficits 
become pronounced [17]. This aligns with longitudinal studies showing 
cognitive decline as a marker of disease onset and progression [18].

SHAP analysis identified UPDRS and functional assessment scores as 
the most influential predictors, resonating with clinical consensus on 
UPDRS as a gold-standard measure of PD severity and progression [19]. 
The integration of Explainable AI techniques addressed the "black-box" 

Fig. 4. SHAP’s Summary of the Random Forest for Prediction of PD.
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challenge that often hampers clinical adoption [10]. UPDRS’s domi
nance likely reflects its comprehensive evaluation of both motor and 
non-motor symptoms, offering a holistic view of patient status [1].

4.3. Algorithm performance analysis

Comparatively, KNN yielded the weakest results, likely due to the 
curse of dimensionality, where distance-based metrics become less 
meaningful as feature count increases [20]. LR exhibited moderate 
performance, possibly reflecting its reliance on linear relationships be
tween predictors and outcomes [21]. SVM showed intermediate results, 
which could be due to difficulties in selecting optimal kernels and tuning 
hyperparameters [22]. RF’s success can be attributed to its ensemble 
structure, which aggregates predictions from multiple decision trees, 
reducing overfitting and enhancing robustness against noisy or 

incomplete data [23]. These findings suggest that ensemble methods, 
particularly RF with feature selection, are better suited for PD prediction 
than traditional algorithms [24].

4.4. Clinical implementation and future directions

From a clinical perspective, the RF model’s high performance and 
interpretability offer substantial utility. The model’s emphasis on non- 
motor symptoms, including cognitive dysfunction and comorbidities 
like hypertension, supports recent literature recognising these features 
as critical in early PD diagnosis [25].

Future research should prioritise several key areas to enhance the 
clinical applicability and accuracy of PD prediction models. Integrating 
genetic markers such as GBA and SNCA variants would help capture 
hereditary risk factors that significantly influence PD development [26]. 

Fig. 5. (a) LIME for instances predicted to have Parkinson’s disease, (b) LIME for instances predicted not to have Parkinson’s disease.
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Incorporating longitudinal data would improve progression modelling 
capabilities, allowing for better understanding of disease trajectory over 
time [27]. Expanding non-motor features including sleep patterns and 
autonomic dysfunction would provide a more comprehensive assess
ment framework aligned with current clinical understanding [25]. 
Finally, deploying the model in clinical trials would enable assessment 
of its impact on diagnostic accuracy and patient care outcomes in 
real-world settings [28].

The clinical translation pathway for implementing this predictive 
framework involves a systematic four-phase approach. Phase 1 focuses 
on integration with electronic health records for automated risk 
assessment, enabling seamless incorporation into existing clinical 
workflows. Phase 2 involves the development of clinician decision 
support tools that incorporate SHAP and LIME explanations, providing 
transparent and interpretable guidance for healthcare providers. Phase 3 
encompasses implementation in specialist neurology clinics for early 
detection screening, allowing for targeted application in high-risk pop
ulations. Phase 4 involves validation across diverse healthcare settings 
and populations, ensuring the model’s robustness and generalisability 
across different clinical environments and patient demographics.

5. Study limitations

Despite promising results, several limitations must be acknowledged:

5.1. Dataset limitations

Firstly, the data utilised was obtained from a publicly available 
source (Kaggle), potentially limiting the study due to constraints in 
dataset size, diversity, and feature completeness. The dataset lacks 
several critical elements: 

a. Longitudinal Data: The cross-sectional design limits our ability to 
track disease progression over time, which is crucial for under
standing PD trajectory and validating long-term model performance. 
Unlike PPMI which provides longitudinal follow-up, our dataset 
represents a single time-point assessment.

b. Genetic Biomarkers: The absence of genetic markers (LRRK2, GBA, 
SNCA mutations) limits prediction accuracy, as genetic predisposi
tion significantly influences PD risk and progression. Modern preci
sion medicine approaches increasingly rely on genetic profiling for 
personalised risk assessment.

c. Neuroimaging Data: The lack of MRI, DaTscan, or other neuro
imaging biomarkers represents a significant limitation, as these 
provide objective measures of neurodegeneration and are increas
ingly used in clinical practice for PD diagnosis.

d. Environmental Factors: Limited data on environmental exposures 
(pesticides, heavy metals, head trauma) that contribute to PD risk 
may impact model comprehensiveness.

5.2. Methodological limitations

Secondly, whilst the Random Forest model exhibited superior pre
dictive performance, the model’s reliance on backward elimination 
feature selection (BEFS) may have inadvertently excluded relevant 
predictive features due to automated selection criteria, potentially 
affecting comprehensiveness and interpretability.

Thirdly, the reliance on synthetic oversampling techniques (SMOTE) 
to address class imbalance may introduce artificial patterns or biases, 
potentially impacting model generalisability to real-world clinical sce
narios where natural class distributions differ.

5.3. Interpretability limitations

Additionally, although SHAP and LIME methodologies substantially 
enhanced interpretability, these methods provide post-hoc 

interpretations that are inherently limited by their approximation 
mechanisms. Complete transparency in understanding underlying 
decision-making processes may remain partially constrained.

5.4. External validation

Finally, the absence of external validation datasets limits the ability 
to fully assess robustness and real-world applicability. Further valida
tion using independent datasets from diverse clinical settings would be 
beneficial to confirm the model’s predictive accuracy and clinical utility.

5.5. Generalisability concerns

The dataset’s demographic composition may not represent global PD 
populations, potentially limiting generalisability across different eth
nicities, healthcare systems, and socioeconomic backgrounds. The 
study’s focus on English-speaking populations may not translate to other 
linguistic and cultural contexts.

Addressing these limitations in future research would enhance model 
accuracy, interpretability, and applicability to clinical practice.

6. Conclusion and recommendations

This study aimed to develop and evaluate predictive models for 
Parkinson’s Disease using machine learning techniques, enhanced by 
Explainable Artificial Intelligence methods for improved interpret
ability. The primary hypothesis that machine learning models, particu
larly ensemble methods like Random Forest, could achieve superior 
predictive accuracy (>90 %) whilst maintaining clinical interpretability 
was confirmed, with our RF model achieving 93 % accuracy combined 
with comprehensive XAI analysis.

Key findings supporting our hypotheses include: Multimodal datasets 
incorporating demographic, clinical, cognitive, and functional assess
ments yielded superior performance compared to reported single- 
modality approaches in terms of clinical applicability; UPDRS scores 
and cognitive assessments (MoCA) emerged as primary predictive fea
tures, confirming their clinical significance; Ensemble methods (RF, 
XGBoost, Stacked Ensemble) consistently outperformed traditional ML 
algorithms.

Among the evaluated algorithms, KNN, SVM, LR, XGBoost, Stacked 
Ensemble, and Random Forest, the Random Forest model combined with 
Backward Elimination Feature Selection demonstrated the highest pre
dictive accuracy and robustness. The utilisation of SHAP and LIME 
provided essential insights into model decision-making processes, 
highlighting the importance of clinically relevant features such as 
UPDRS scores, cognitive impairment, and functional assessments.

6.1. Clinical implications

The study’s findings have several important clinical implications: 

a. Early Detection Potential: The 93 % accuracy achieved suggests the 
model could serve as a valuable screening tool for early PD detection, 
potentially identifying at-risk patients before significant symptom 
onset.

b. Clinical Decision Support: The interpretable nature of the RF model, 
enhanced by SHAP and LIME explanations, makes it suitable for 
integration into clinical workflows, providing clinicians with trans
parent, evidence-based diagnostic support.

c. Personalised Care: The model’s ability to identify individual risk 
factors for specific patients enables personalised treatment planning 
and targeted interventions.

d. Resource Optimisation: Automated preliminary screening could help 
prioritise patients for specialist evaluation, optimising healthcare 
resource allocation.
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6.2. Recommendations for future research

Based on the findings and limitations identified, several recom
mendations are suggested for future research and practice: 

a. Data Enhancement: Incorporate longitudinal datasets to track dis
ease progression and validate long-term predictive accuracy; Include 
comprehensive genetic markers (LRRK2, GBA, SNCA variants) to 
capture hereditary risk factors; Integrate neuroimaging biomarkers 
(MRI, DaTscan) for objective neurodegeneration assessment; Expand 
environmental and lifestyle data collection for comprehensive risk 
profiling.

b. Methodological Improvements: Conduct external validation using 
independent datasets from varied clinical settings to enhance 
robustness and generalisability; Explore alternative feature selection 
methods to complement BEFS and potentially capture additional 
relevant features; Investigate ensemble methods combining tradi
tional ML with deep learning approaches; Develop real-time learning 
algorithms that can adapt to new patient data.

c. Clinical Translation: Phase I: Pilot testing in specialist neurology 
clinics to assess clinical workflow integration; Phase II: Multi-centre 
validation trials across diverse healthcare settings; Phase III: Health 
economic evaluation to assess cost-effectiveness and clinical impact; 
Phase IV: Long-term implementation studies with healthcare pro
vider training programmes.

d. Technology Development: Create user-friendly clinical interfaces 
displaying SHAP/LIME explanations for clinician interpretation; 
Develop mobile applications for point-of-care screening in primary 
healthcare settings; Establish continuous model updating mecha
nisms based on new clinical data; Implement robust data security 
and privacy protection measures for clinical deployment.

6.3. Broader impact and future directions

This research contributes to the growing field of explainable AI in 
healthcare, demonstrating that high-performance machine learning 
models can maintain clinical interpretability. The successful integration 
of multimodal data with XAI techniques provides a template for similar 
applications in other neurodegenerative diseases.

The study’s emphasis on clinical interpretability addresses a critical 
barrier to AI adoption in healthcare, potentially accelerating the trans
lation of machine learning advances into routine clinical practice. 
Future work should focus on expanding this approach to other neuro
logical conditions and developing comprehensive diagnostic support 
systems.

Ultimately, this research represents a step towards precision medi
cine in neurology, where data-driven approaches complement clinical 
expertise to improve patient outcomes through earlier detection, per
sonalised treatment strategies, and more efficient healthcare delivery.
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