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Abstract

Face recognition technology utilizes unique facial features to analyze and compare indi-
viduals for identification and verification purposes. This technology is crucial for several
reasons, such as improving security and authentication, effectively verifying identities,
providing personalized user experiences, and automating various operations, including
attendance monitoring, access management, and law enforcement activities. In this paper,
comprehensive evaluations are conducted using different face detection and modality
segmentation methods, feature extraction methods, and classifiers to improve system
performance. As for face detection, four methods are proposed: OpenCV’s Haar Cas-
cade classifier, Dlib’s HOG + SVM frontal face detector, Dlib’s CNN face detector, and
Mediapipe’s face detector. Additionally, two types of feature extraction techniques are
proposed: hand-crafted features (traditional methods: global local features) and deep
learning features. Three global features were extracted, Scale-Invariant Feature Transform
(SIFT), Speeded Robust Features (SURF), and Global Image Structure (GIST). Likewise, the
following local feature methods are utilized: Local Binary Pattern (LBP), Weber local de-
scriptor (WLD), and Histogram of Oriented Gradients (HOG). On the other hand, the deep
learning-based features fall into two categories: convolutional neural networks (CNNs),
including VGG16, VGG19, and VGG-Face, and Siamese neural networks (SNNs), which
generate face embeddings. For classification, three methods are employed: Support Vector
Machine (SVM), a one-class SVM variant, and Multilayer Perceptron (MLP). The system
is evaluated on three datasets: in-house, Labelled Faces in the Wild (LFW), and the Pins
dataset (sourced from Pinterest) providing comprehensive benchmark comparisons for
facial recognition research. The best performance accuracy for the proposed ten-feature
extraction methods applied to the in-house database in the context of the facial recognition
task achieved 99.8% accuracy by using the VGG16 model combined with the SVM classifier.

Keywords: SIFT; SURF; GIST; LBP; WLD; HOG; CNN; VGG16; VGG19; VGG-face

1. Introduction
Intelligent Face Recognition (IFR) aims to transform identification processes by

harnessing advanced algorithms and machine learning techniques to analyze and compare
intricate facial features. This technology plays a critical role in various sectors, including se-
curity, authentication, and personalization. By accurately identifying individuals based on

Signals 2025, 6, 49 https://doi.org/10.3390/signals6030049

https://doi.org/10.3390/signals6030049
https://doi.org/10.3390/signals6030049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/signals
https://www.mdpi.com
https://orcid.org/0009-0000-2548-9648
https://orcid.org/0000-0001-6141-2605
https://orcid.org/0000-0001-5542-9144
https://orcid.org/0000-0002-0553-2538
https://doi.org/10.3390/signals6030049
https://www.mdpi.com/article/10.3390/signals6030049?type=check_update&version=2


Signals 2025, 6, 49 2 of 25

unique facial characteristics, IFR enhances user experiences, strengthens security measures,
and streamlines processes such as attendance tracking and access management. Moreover,
IFR is instrumental in law enforcement, where it aids in identifying suspects and locating
missing persons [1–3].

Facial recognition is a technology designed to identify and verify individuals based on
their facial features. It employs computer algorithms and machine learning techniques to
analyze and compare unique facial patterns, including the spacing between the eyes, nose,
and mouth, along with other facial characteristics.

Facial recognition systems are employed for a variety of applications, such as user
identification, customization, security, and surveillance, in various sectors. These systems
capture facial images, process them, and then compare them to historical facial datasets to
determine if there is a match which yields the person’s identification.

Different surveys of facial recognition are produced in [4–8]. Furthermore, new
research papers are presented as review papers [9–11].

The study in [12] examines the possibilities and restrictions of face recognition tech-
nology in person identification, particularly with certain demographics and certain traits.
As per this study, instances of ethical issues such as false identification and misrepre-
sentation can occur. The study examines the challenges of deploying facial recognition
technology, including achieving widespread adoption and verifying distinct identities.
The study grounds its framework in the recognition theories of Charles Taylor and Axel
Honneth. These types of false identification examines how facial recognition impacts
individuals’ self-perception.

Kamil et al. [13] propose a face recognition and facial mask detection-based online
attendance recording system. The primary aim of their work is to develop a reliable, web-
accessible attendance solution that eliminates the need for dedicated software installation.
The system simplifies attendance monitoring by storing records in a centralized online
database, accessible via any web-enabled device. The system utilizes individual face-image
samples to generate user profiles and establish biometric signatures through facial images.
The facial recognition training of the SVM model involves a stage where synthetic data are
employed to detect mask-covered facial images. The development of the server application
is executed using Python programming language, and image processing is carried out using
the Open-Source Computer Vision (OpenCV) module. The database and web interfaces
are established using PHP and MySQL. The integration of PHP and Python utilities cloud
processing and remote accessibility. Based on the findings and analyses, the results indicate
that a pre-trained model achieves high accuracy of approximately 81.8% in recognizing
faces and an accuracy of 80% in detecting mask-covered facial images.

Recent years have witnessed growing enthusiasm for facial recognition technology [14],
with deep convolutional neural networks (CNNs) demonstrating significant advancements
in this field. However, these deep learning models require substantial computational time
and large amounts of labeled training data. The research in [14] investigates how transfer
learning approaches can optimize both the performance and efficiency of CNN-based
facial recognition systems. Specifically, the study evaluates how combining feature extrac-
tion with fine-tuning of pre-trained models enables effective knowledge transfer between
diverse domains. An enhanced version of the FaceNet model utilizes a MobileNetV2
backbone integrated with a Single Shot MultiBox Detector (SSD) component [15]. The im-
provements focus on adopting depth-wise separable convolutions to reduce the model’s
size and computational requirements while achieving high accuracy and processing speed.
The research addresses the challenge of identifying individuals as they move in and out of
specified zones, operating within the limitations of modern mobile devices, which include
restricted memory capacity and on-device storage constraints. Notably, the proposed
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approach in [15] demonstrates practical success, achieving over a 95% accuracy on a small
dataset of original facial images. Additionally, the resulting frame rate of 25 FPS (Frames
Per Second) proves particularly advantageous compared to other neural network-based
facial recognition methods.

In the study [16], a novel technique is developed by combining Linear Discriminant
Analysis (LDA) with a one-dimensional deep convolutional neural network (1D-DCNN)
classifier, forming an innovative face recognition approach. The key contribution involves
generating a one-dimensional facial feature set using LDA, derived from the original
image dataset. This set is then used to train the 1D-DCNN classifier, improving facial
recognition performance. Evaluations are conducted using the MCUT dataset, which
contains 3755 images spanning 276 classes. The implementation achieves outstanding
results, attaining 100% accuracy, precision, recall, and F-measure.

In this paper, to optimize system performance, comprehensive evaluations are con-
ducted using multiple face recognition techniques and modalities, including segmentation,
feature extraction methods, and classifiers. Four face detection approaches are proposed:
Mediapipe’s face detector, Dlib’s CNN face detector, Dlib’s HOG + SVM frontal face detec-
tor, and OpenCV’s Haar Cascade classifier. Additionally, two distinct feature extraction
strategies are introduced: hand-crafted features (traditional methods), categorized into
global and local features, and deep learning features (features learned through training
algorithms). For global features, three techniques are employed: SIFT, SURF, and GIST.

For local features, three methods are used: WLD, HOG, and LBP. The deep learning
features are further subdivided into Siamese neural networks (SNNs), also referred to as
face embeddings, and convolutional neural networks (CNNs). Three additional classifiers
are proposed: SVM, SVM one-vs-all, and Multilayer Perceptron (MLP). The system is eval-
uated on three datasets: in-house, LFW, and the Pins dataset. These extensive assessments
establish a benchmark for researchers addressing facial recognition challenges. The key
contributions of this paper are summarized as follows:

• Experiment 1: Comprehensive evaluations are conducted on ten feature extraction
methods. These methods include SIFT, SURF, and GIST as global features. On the other
hand, the other three methods are utilized for local features: LBP, WLD, and HOG.
The deep learning (CNN) features are classified into VGG16, VGG19, VGG-face,
and SNN, also known as face embeddings. Two classifiers, MLP and SVM, are used
for both whole faces and face modalities in the in-house database.

• Experiment 2: The best result feature extraction method (VGG16), as determined in
Experiment 1, is employed to evaluate exclusively whole faces on the LFW and Pins
databases, utilizing both MLP and One-vs-All SVM classifiers for assessment.

The paper is structured as follows: The suggested approach is presented in Section 2,
the datasets are described in Section 3, the results and discussion appear in Section 4,
and the conclusions are presented in Section 5.

2. Proposed Method
The main framework of the proposed method is illustrated in Figure 1. As shown in

Figure 1, the proposed system structure is divided into the sections: pre-processing and
histogram equalization, face detection and modalities segmentation, further processing on
the detected face, feature extraction methods, and classification methods.
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Figure 1. The structure of the facial recognition system.

2.1. Preprocessing and Histogram Equalization

Contrast-enhancing techniques like Contrast-Limited Adaptive Histogram Equal-
ization (CLAHE) [17] are used during preprocessing by using the following equation:

h(v) = round(
CDF(v)− min(CDF)
(W ∗ H)− min(CDF)

) ∗ (L − 2)) + 1 (1)

where L is the number of gray levels in the image, W is the width of the image, H is the
height of the image, and CDF is the Cumulative Distribution Function. Histogram equal-
ization is a method intended to expand an image’s histogram and hence boost contrast.
It is frequently used in image processing and is essential for improving the aesthetic appeal
of photographs. This equalization yields to the discovery of embedded information and
enhances overall image clarity by spreading the pixel values. A proposed technique [18]
employed histogram equalization to extract the visual impact of photos used by photogra-
phers, graphic designers, and academics through contrast enhancement.

2.2. Face Detection and Modalities Segmentation

Facial detection within captured images is performed through multiple methodologies,
each selected based on specific precision and speed requirements. As mentioned previously,
these techniques include OpenCV’s Haar Cascade classifier, Dlib’s HOG + SVM frontal
face detector, Dlib’s CNN face detector, and Mediapipe’s face detector. Each approach
presents unique advantages and computational trade-offs for detecting accuracy and
processing efficiency.
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OpenCV Haar Cascade classifier is implemented as an object detection technique. This
technique scans the entire image with a small window by utilizing a series of straightfor-
ward classifiers. In this scenario, the object of interest is the face. The cascade classifier
searches for facial characteristics that could potentially be presented in it. The next step
is searching for the next feature conditioned by detecting the first feature. The procedure
continues until either all cascade classifiers find the designated characteristics or none of
them do. As a final result, the detected area under the ROI is confirmed to be the face.

As for the experimental setup, the Python and C++ programming languages were used
as these languages are supported by the machine learning and computer vision. The Dlib
library, which includes the HOG + SVM frontal face detectors is an additional advantage.
It includes an SVM and Histogram of Oriented Gradients (HOG) detector that produces
better accuracy compared the Haar Cascade classifier in detecting frontal-view face images
(those facing the camera straight without tilting) [19,20].

This approach utilizes the feature extraction technique HOG to extract pertinent
characteristics. The main concept is computing the histogram of gradients of a picture.
The SVM is also an important part of this approach.

Using this technique, a window slides over the whole picture and HOG features are
extracted as the SVM model is then used to identify whether the region contains faces.
The detection of faces of varied sizes is facilitated by repeating this technique over many
picture pyramids, which represent varying scales for the same image.

Dlib implements an alternative face detection system utilizing convolutional neural
networks (CNNs), which operates fundamentally differently from its HOG-based counter-
part. CNNs are neural networks capable of extracting features from images without the
need for hand-crafted feature selection. The main leverage of the CNN face detector over
standard methods is the capability of detecting both tilted and non-frontal faces. However,
it comes with expensive power consumption such as using GPU acceleration to achieve
real-time performance. This is the result of a higher demand of computational resources
compared to the standard or baseline techniques [19,21].

Mediapipe, a computer vision library developed by Google, offers a suite of appli-
cations, including a face detection module that employs a distinctive approach distinct
from traditional sliding-window methods. This module utilizes an enhanced version of
the Single-Shot Multi-Box Detector (SSD), a convolutional neural network (CNN)-based
technique, which replaces conventional detection frameworks. The SSD architecture is
optimized for efficiency and accuracy, leveraging modern deep learning advancements.

The SSD-based method demonstrates significant advantages, particularly in compu-
tational efficiency. It achieves rapid execution on mobile GPUs, delivering high precision
while substantially outperforming sliding-window approaches in processing speed reach-
ing frame rates of up to 1000 FPS. These attributes make it particularly suitable for real-time
facial recognition on resource-constrained devices. However, a notable limitation is its
reliance on close-proximity facial capture to ensure detection accuracy, which may restrict
its applicability in scenarios requiring broader field-of-view coverage.

Following face localization, the identification process proceeds with facial modality
segmentation, which isolates specific regions such as the eyebrows, eyes, lips, and nose.
These modalities can be analyzed individually or in combination to facilitate subject iden-
tification. A key advantage of single-modality analysis lies in its potential to accelerate
inference speeds, as models trained on isolated features require less computational over-
head than whole-face recognition. In this study, modality segmentation is achieved through
the application of the following two foundational techniques, balancing precision and
efficiency [22,23]: one, the Landmark Detector for Dlib, and two, the Face Mesh Detector
from Mediapipe.
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2.3. Further Preprocessing

Additional preprocessing is implemented to improve facial recognition performance
after facial identification and facial landmarks. Mainly these preprocessing steps are face
normalization and alignment.

Face alignment includes adjusting slanted faces using facial landmarks. Face alignment
increased the reliability and accuracy of face recognition, according to empirical data.
On the other hand, normalization involved changing the image’s pixel values from their
original range of 0 to 255 to a range between zero and one. This specific step has been seen
to lead to shorter training periods and a minor improvement in training accuracy.

2.4. Feature Extraction Methods

In this study, as shown in Figure 1, hand-crafted features (conventional techniques) are
divided into two primary categories—global and local. These features are compared against
deep learning features. The features, as explained earlier, are SIFT, SURF, and GIST as the
global features, and the local features are WLD, the HOG, and LBP. These contrast with mod-
ern deep learning approaches where feature representation emerges automatically through
architectures like face embeddings (SNNs) and convolutional neural networks (CNNs).

Following facial localization, the feature extraction process transforms raw image data
into compact, discriminative representations. This critical transformation enables effective
pattern recognition by subsequent classification algorithms. The current framework im-
plements both traditional and deep learning-based feature extraction methods, with each
category containing distinct sub-methods as depicted in Figure 1.

Hand-made features are the foundational kind of feature extraction method. These
carefully designed algorithms selectively capture discriminating patterns while suppressing
irrelevant image data. The methodology classifies these features into global features, which
analyze complete facial images, and local features, which examine specific facial regions.
Empirical evidence demonstrates that combining both feature types enhances recognition
accuracy [24,25], as they provide complementary visual information at different scales.

This study belongs in the global category. The three global category algorithms are
Global Image Structure (GIST), Scale-Invariant Feature Transform (SIFT), and Speeded
Up Robust Features (SURF). One of the most significant feature extraction techniques
in computer vision is SIFT [26]. It is a scale-, rotation-, illumination-, and viewpoint-
invariant feature extraction technique. This technique’s feature extraction process is
rather time-consuming.

The following steps are implemented to calculate SIFT features: The scale space is
established using Gaussian convolution. Then, the scale space’s Gaussian difference is
calculated. Through the difference in Gaussian calculations, key points are discovered
while weak key points are rejected. Utilizing the slopes in the immediate vicinity, a ref-
erence orientation is given to each significant site to determine the descriptions for every
important point.

SURF and SIFT exhibit comparable performance in many respects, including invari-
ance to rotation, scale, lighting, and perspective changes. However, SURF demonstrates
significantly faster processing speeds compared to SIFT [27]. This efficiency advantage
arises from SURF’s use of integral images and box filters. Instead of repeatedly down-
scaling the image and applying Gaussian filters as SIFT does SURF efficiently constructs its
scale space by adjusting the box filter size. As a result, SURF achieves processing speeds
roughly three times faster than SIFT without sacrificing accuracy.

The GIST (Global Image Structure) descriptor provides a holistic representation of
an image. To compute it, the input image is processed using 32 Gabor filters across eight
orientations and four scales, generating 32 feature maps matching the original image



Signals 2025, 6, 49 7 of 25

dimensions. These maps are then divided into a 4 × 4 grid, and the average values of each
block are calculated. By concatenating the 16 blocks from every feature map, a compact
descriptor is formed, capturing the image’s gradient structure. This method proves effective
for tasks like face recognition [28].

Unlike SIFT and SURF, GIST demonstrates superior performance evidenced by the
experimental results. Its capability to encode global structural information makes it partic-
ularly suitable for applications requiring robust scene or facial representation.

In this study, the local feature extraction techniques include Local Binary Pattern
(LBP) [29], Weber Local Descriptor (WLD) [30], and Histogram of Oriented Gradients
(HOG) [31]. LBP is one of the most widely used techniques for sentiment analysis and
conventional face recognition. For applications like face identification, pedestrian detection,
and others, HOG is a well-liked descriptor. Weber is a straightforward and effective local de-
scriptor that is unaffected by variations in lighting, contrast, and geometrical configuration.

The Local Binary Pattern (LBP) operator extracts texture information by comparing
each pixel with its neighbors, encoding patterns that are computationally efficient and
lighting-invariant. However, its fixed 3 × 3 neighborhood limits its ability to capture
larger-scale textures, prompting the development of Circular LBP, which uses a flexible
radius and sampling points to analyze patterns at varying scales. LBP generates numerous
patterns, but only those with minimal binary transitions (0–1 or 1–0 changes) are considered
“uniform.” By building a histogram that groups uniform patterns separately from non-
uniform ones, the feature vector becomes more compact, improving both computational
efficiency and model generalization [29]. This approach balances local detail extraction
with broader texture analysis, making it valuable for tasks like facial recognition where
both speed and accuracy are critical.

Similar to the LBP operator, the Weber local descriptor is a local feature extraction
technique. It integrates the orientation of the gradients in the x and y axes with the local
differences between the center pixel and its immediate neighbors (differential excitation).
The final feature vector, which is utilized during training, is subsequently built using a
2D histogram that incorporates the differential excitation and the orientation. In terms
of inference time, the Weber descriptor is somewhat slower than the LBP operator, but it
produces better results for face recognition, as seen in the result section [30].

The Histogram of Oriented Gradients (HOG) represents a robust feature descriptor
originally developed for pedestrian detection, though its applications extend to various
computer vision tasks. This technique analyzes an image by computing both horizontal
and vertical gradients, from which it derives gradient magnitudes and orientations. These
measurements are aggregated into histograms across 8 × 8 pixel cells, with subsequent
normalization of grouped cell blocks (four cells each) using L2-norm standardization.
Comparative studies demonstrate that HOG not only matches but often surpasses the Weber
descriptor in accuracy while maintaining superior computational efficiency. Furthermore,
the descriptor exhibits strong invariance to illumination variations, making it particularly
suitable for real-world applications where lighting conditions may vary significantly [31].

Traditionally, characteristics chosen to be extracted from an image to represent it as
accurately and compactly as possible, and these features are called hand-crafted features.
The manual method of creating feature extraction algorithms may sacrifice performance.
Instead, algorithms are created to learn from desirable images and their matching desired
outputs to determine which attributes to search for. The CNN, a subset of neural networks
that employ the convolution process to extract information from images, is used to do this.

CNNs convolutionally combine many layers of filters with the input image to create
a distinct output image that is both smaller and enhances certain attributes. In general,
the CNN’s earliest layers are in charge of detecting minute features like edges and corners,
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whereas the last layers are in charge of identifying objects and forms. A backpropagation
algorithm version that is common in neural networks in general is used to determine
the values of the filters during the process known as training. Although they might
be slower, CNNs perform significantly better than the conventional approach of feature
extraction [14,32,33].

In this paper, many deep neural networks are experimented with for feature extraction,
with varying results. The following convolutional neural networks are used: VGG16,
VGG19, VGGFace, and face embeddings. In convolutional neural network model type
VGG16, the model was initially presented as part of the ILSVRC (ImageNet Large-Scale
Visual Recognition Challenge), an annual competition with the goal of categorizing images
into 1000 potential output classes and recognizing them. The VGG16 CNN is composed
of 16 layers, 13 of which are convolutional layers, and the final 3 are dense layers. All of
the VGG16 kernels (filters) have padding of one pixel and a stride of one, whereas the
pooling layers have padding of two pixels and a stride of two [34–36]. Figure 2 illustrates
the architecture of the VGG16 network.

Figure 2. The architecture of VGG16.

In a convolutional neural network model like VGG16, characteristics can be extracted
from photos and categorized into several categories, although it is primarily used to assign
images to one of 1000 categories. To accomplish this, the dense layers are removed, leaving
only the convolutional layers to extract characteristics from the pictures. Then, a neural
network or other machine learning model can be trained using those attributes to categorize
a separate collection of images.

A convolutional neural network model like VGG19, it includes 19 layers, comprising
1 softmax layer, 5 max-pooling levels, 3 fully connected layers, and 16 convolutional layers.
The network’s name is derived from summing up the layers with learning parameters
that change throughout training. These are the fully connected and convolutional layers,
totaling 19 layers with adjustable parameters. Like VGG16, VGG19 uses a kernel size
of 3 × 3 pixels with a stride of one and a padding of one pixel to maintain the spatial
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dimension of the input picture. Additionally, a 2 × 2 pixel max-pooling layer with a
stride of two is employed. VGG19 achieves high accuracy in the ILSVRC because it has
been trained on more than a million pictures and 138 million learning parameters [37,38].
Figure 3 illustrates the architecture of the VGG19 network.

A Siamese neural network is a distinct kind of neural network. Such a system uses two
neural networks that operate concurrently and share weights. The task of such a network
is to produce an output feature vector that groups photographs from the same person
together while isolating images from other individuals. The input to such a network is two
images, either of the same person or two distinct persons [39,40].

Figure 3. The architecture of VGG19.

2.5. Classification Methods

In this paper, three main classification methods are used: SVMs, MLP, and One vs. All
classifiers (using an SVM).

The Support Vector Machine (SVM) is a supervised machine learning algorithm used
for classification and regression tasks. Its primary objective is to find a hyperplane that best
separates data points into different classes while maximizing the margin between the two
classes. A brief overview of SVM is as follows [41]:

Hyperplane: In a two-dimensional space, a hyperplane is a line that separates data
into two classes. In higher dimensions, it becomes a plane or a hyperplane.

Margin: SVM aims to find the hyperplane with the maximum margin, which is the
distance between the hyperplane and the nearest data points from each class. Maximizing
the margin helps improve the model’s generalization and reduces overfitting.

Support Vectors: These are the data points that are closest to the hyperplane and play
a crucial role in defining the margin. SVM is named after these support vectors because
they support the decision boundary.

Kernel Trick: SVM can handle non-linearly separable data by mapping it into a higher-
dimensional space using a kernel function (e.g., polynomial, radial basis function) without
explicitly calculating the new feature vectors. This allows SVM to find a linear hyperplane
in the transformed space.

C parameter: SVM has a regularization parameter, often denoted as C, which con-
trols the trade-off between maximizing the margin and minimizing classification errors.
A smaller C encourages a wider margin but may allow some misclassification, while a
larger C minimizes errors but may result in a narrower margin.
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Classification: In classification tasks, SVM assigns new data points to one of the two
classes based on which side of the hyperplane they fall.

SVM has gained popularity due to its ability to handle high-dimensional data, work
well with small to medium-sized datasets, and provide strong generalization performance.
It is commonly used in various fields, including image classification, text classification,
and bioinformatics.

A Multilayer Perceptron (MLP) classifier is a type of artificial neural networks used in
machine learning for supervised classification tasks. It is a feedforward neural network
with multiple layers of interconnected neurons (also known as nodes or units). Here is a
brief description of an MLP classifier [42]:

Input Layer: The input layer of the MLP receives the features or attributes of the data.
Each neuron in this layer represents a feature, and the number of neurons is equal to the
number of input features.

Hidden Layers: Between the input and output layers, there can be one or more
hidden layers. These layers contain neurons that process the input data through weighted
connections, apply activation functions, and pass the results to the subsequent layers.
The number of neurons and the number of hidden layers are hyperparameters that can be
tuned during model design.

Weights and Bias: Each connection between neurons has an associated weight, which
is adjusted during the training process to learn the underlying patterns in the data. Addi-
tionally, each neuron has a bias term that helps control the neuron’s activation threshold.

Activation Functions: Activation functions are applied to the weighted sum of inputs
at each neuron in the hidden layers. Common activation functions include the sigmoid,
hyperbolic tangent (tanh), and rectified linear unit (ReLU). Activation functions introduce
non-linearity into the model, allowing it to learn complex relationships in the data.

Output Layer: The output layer of the MLP produces the final classification results.
For binary classification tasks, there is typically one neuron with a sigmoid or softmax
activation function to produce a probability score or class probabilities. In multi-class
classification, there are as many neurons as there are classes, and softmax activation is often
used to assign probabilities to each class.

Training: MLP classifiers are trained using supervised learning with labeled training
data. Backpropagation is a common training algorithm that adjusts the weights and biases
iteratively to minimize a loss function, such as cross-entropy, and improve the model’s
ability to make accurate predictions.

Regularization: To prevent overfitting, regularization techniques like dropout, L1/L2
regularization, and early stopping can be applied to the MLP.

MLP classifiers are versatile and capable of learning complex decision boundaries,
making them suitable for a wide range of tasks, including image classification, natural
language processing, and various other pattern recognition tasks. However, their perfor-
mance and generalization depend on the choice of architecture, hyperparameters, and the
availability of sufficient training data.

One vs. All (OvA) Support Vector Machine classifiers remain a workhorse solution
for facial recognition systems, particularly when dealing with multiple individuals. The ap-
proach’s elegance lies in its simplicity—rather than wrestling with a single complex model, it
breaks down the recognition challenge into a series of straightforward binary classification
problems. Each SVM learns to distinguish one person’s face from all others, making the
system both computationally tractable and easier to maintain. However, as any practitioner
knows, the devil is in the details. The method’s real-world performance hinges critically
on having sufficiently diverse training data, selecting appropriate facial features, and care-
fully tuning those all-important SVM parameters. Recent work by Dalal et al. (2023) and
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Al-Dujaili (2023) [43,44] underscores how these implementation choices can make or break a
facial recognition system, especially when deploying in unconstrained environments where
lighting, pose, and expression vary widely. While not without its challenges, the OvA SVM
approach continues to offer a compelling combination of performance and practicality for
many biometric applications.

A one vs. rest classifier is a machine learning technique that fits a binary classifier to
each class in the classification issue in an effort to create a multiclass classification method.
Each class is treated as being positive by the One vs. All classifier, while every other class
is treated as being negative. The result is a binary classifier that does a fantastic job of
differentiating one class from all other classes but fails miserably at doing so among differ-
ent classes. When the model is asked to provide a new classification after being trained,
it then aggregates all of the classifiers it built for each class, runs them all, and outputs
the classification produced by the classifier with the highest level of confidence [43,44].
While other categorization techniques might be used, the study’s suggested algorithms are
emphasized for their ability to successfully increase system performance, as seen in the
findings section [45–47]. Additionally, the CNN approach with various structures for facial
recognition in mobile environments is addressed by several researchers [48–50]. Further-
more, different applications make use of deep learning and other deep networks within
various machine learning, signal processing, and artificial intelligence systems [51–55].

3. Databases
The databases used in this study are the in-house database, the Labelled Faces in the

Wild (LFW) database, which is a collection of face images created for the investigation
of unrestricted face identification, and the Facial identification database gathered from
Pinterest (Pins).

3.1. In-House Database

A database of subjects from the Computer Engineering Department is captured inside.
The database consist of in-house database Types I and II. Type-I) The In-House Database
with 50 Subjects: Initially, this database contains 50 subjects and 5586 images taken via a
webcam without utilizing image augmentation to increase the image count per subject.
Subsequently, adjustments are made to augmentation techniques, resulting in a total of
29,086 images. These new techniques encompass horizontal flipping, Contrast-Limited
Adaptive Histogram Equalization (CLAHE), random modifications in brightness and
contrast, Gaussian blur, PCA, Gaussian noise, JPEG compression, median blur, and interpo-
lation. (Type-II) The In-House Database with 10 Individuals Recorded Using a High-Quality
Smartphone Camera: This database comprises 24,300 images captured using a high-quality
smartphone camera and includes data from 10 individuals.

3.2. Labelled Faces in the Wild (LFW) Database

The LFW database is a public database of 5749 subjects with 13,233 images. There is
an average of roughly two images per subject, and 1680 subjects have two or more images,
while the rest only have one image per subject. This makes it difficult to train a good model
that can recognize all of the 5749 subjects. Therefore, data augmentation is used to increase
the number of images per subject. The final number of images per subject after using data
augmentation is 45 images per subject, resulting in a total of 258,705 images. The database
is available online at the following link: https://www.kaggle.com/datasets/jessicali9530/
lfw-dataset (accessed on 23 March 2023).

https://www.kaggle.com/datasets/jessicali9530/lfw-dataset
https://www.kaggle.com/datasets/jessicali9530/lfw-dataset


Signals 2025, 6, 49 12 of 25

3.3. Pins Face Recognition Database

The Pins database is a freely accessible online database. The Facial Recognition Dataset
is collected from Pinterest. There are 105 subjects and 17,534 photos in all. It is unnecessary
to apply data augmentation to enhance the number of samples per subject because this
database includes a reasonably high number of photos per subject (around 167 images per
person). The database is available online at the following link: https://www.kaggle.com/
datasets/hereisburak/pins-face-recognition (accessed on 26 March 2023).

3.4. Training Process and Data Splitting

Three categories of data are created: validation, training, and testing. Specifically,
25% of the data are utilized for testing, 67.5% are used for training, and 7.5% are used for
validation. To verify that the split is equitable for all facial recognition techniques, a random
seed is used.

The details of the settings of training for each database are as follows:
In-house database (50 subjects): The images are resized to be of size 100 × 100 pixels.

The OvR settings used here are the same as those for the LFW and Pins databases. The MLP
used has three hidden layers (192-256-128), and the network is trained for 100 epochs with
a batch size of 32.

LFW database: The images are resized to be of size 100 × 100 pixels, and an OvR
classifier with an SVM as an estimator is utilized. To obtain the best outcome feasible,
the SVM employs the radial basis kernel with an unlimited number of iterations.

Pins database: The images are resized to be of size 160 × 160 pixels, and an OvR
classifier is used with an SVM as an estimator. The SVM also uses the radial basis kernel
with an unlimited number of iterations.

4. Experimental Results and Discussion
Two major experiments have been completed for this paper. Two classifiers, MLP and

SVM, are used in Experiment 1 to apply thorough evaluations of ten feature extraction
techniques (SIFT, SURF, GIST, LBP, WLD, HOG, VGG16, VGG19, VGG face, and face
embeddings) utilizing full faces and face modalities from the in-house database.

In Part (1) of Experiment 1, we exploited only 42 subjects obtained from an HD camera,
with a total of 1118 images and an average of roughly 27 images per subject. The final database
after data augmentation has 103,803 total images and an average of roughly 2471 images
per subject. Figures 4–7 show the best results obtained from the extracted features using the
VGG16 model of the in-house dataset. Figure 4 part (A) illustrates the Receiver Operating
Characteristic (ROC) curve of SVM classifier applied on the extracted feature of the whole
face, while Part (B) represents the confusion matrix (CM). Figure 5 shows the result of utilizing
MLP classifier applied on the extracted features of the whole face. Figure 6 shows the result
utilizing the SVM classifier applied on the extracted feature of the facial modality. Figure 7
shows the result of the MLP classifier utilized on the extracted feature of the facial modality.

Appendix A shows all figures from Figures A1–A4. These figures show the reported
result of two classifiers, namely SVM and MLP, which was applied on extracted feature
methods SIFT, SURF, GIST, LBP, WLD, HOG, VGG16, VGG19, and VGGFace. All these
extraction methods were obtained from the whole face and facial modalities using the
in-house dataset.

In Part (2) of Experiment 1, we employ 50 subjects from the in-house database, com-
prising a total of 5586 images, without employing any image augmentation techniques to
augment the number of images per subject. However, slight modifications have been made
to the image augmentation process to yield the following results. The revised total number
of samples now amounts to 29,086 images.

https://www.kaggle.com/datasets/hereisburak/pins-face-recognition
https://www.kaggle.com/datasets/hereisburak/pins-face-recognition
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Table 1 shows the results of accuracies for the ten feature extraction methods. Accord-
ing to Table 1, GIST features have a better descriptor in terms of performance accuracy
of face recognition compared to both SIFT and SURF. In addition, the HOG descriptor is
invariant to lighting changes due to the normalization process described earlier, and it is
faster than the Weber descriptor while being as accurate or even more accurate than both
the Weber and LBP descriptors. Furthermore, VGG16 gives a higher performance accuracy
compared with all other features, with 98.8% for the whole face for SVM.

Figure 4. The best result utilizing the SVM classifier applied on the extracted VGG16 feature of the
whole face using in-house database. Part (A) ROC curve; and Part (B) confusion matrix.

Figure 5. The best result Utilizing the MLP classifier applied on the extracted VGG16 feature of the
whole face using an in-house database. Part (A) ROC curve and part (B) The confusion matrix.
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Figure 6. The best result Utilizing the SVM classifier applied on the extracted VGG16 feature of the
facial modalities using in-house database. Part (A) ROC curve and part (B) confusion matrix.

Figure 7. The best result utilizing the MLP classifier applied on the extracted VGG16 feature of the
facial modalities using in-house database. Part (A) ROC curve and part (B) confusion matrix.

Table 1. The performance accuracy for the proposed ten feature extraction methods to the in-house
database based on facial recognition task using MLP and SVM classifiers.

Feature
Extractor

MLP on
Faces

MLP on
Modalities

SVM on
Faces

SVM on
Modalities

SIFT 70.5% 53.0% 34.8% 59.9%
SURF 79.5% 41.7% 41.1% 46.3%
GIST 99.4% 94.4% 92.6% 96.3%
LBP 88.1% 25.5% 68.1% 85.7%

WLD 97.7% 94.6% 97.7% 95.8%
HOG 98.4% 93.3% 99.5% 97.3%

VGG16 98.2% 94.0% 99.8% 96.4%
VGG19 96.4% 94.8% 99.7% 96.9%

VGGFace 93.0% 96.3% 99.7% 97.9%
Face embeddings 46.1% None 46.3% None
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In Experiment 2, we are utilizing the MLP and One vs. All SVM classifiers for the
LFW and Pins databases. We are also employing the optimal feature extraction technique
(VGG16) discovered in Experiment 1. In terms of Experiment 2, the system performance for
the proposed VGG feature is presented in Table 2 by using SVM One vs. All MLP classifiers
for both the Pins and LFW databases. According to Table 2, the LFW database achieves
higher system performance than the Pins database. We show all the statistical equations
related to Table 2 below.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where: True Positives (TP) are the number of correctly predicted positive instances. True
Negatives (TN) are the number of correctly predicted negative instances. False Positives
(FP) are the number of negative instances wrongly predicted as positive. False Negatives
(FN) are the number of positive instances wrongly predicted as negative.

Table 2. The system performance (F1 score, precision, recall, accuracy) for the proposed VGG16
feature extraction method on the Pins and LFW databases using MLP and SVM One vs. All classifiers.

Method F1 Score Precision Recall Accuracy Database

MLP 97.3% 97.4% 97.3% 97.4% Pins
SVM O vs. All 98.4% 98.5% 98.4% 98.4% Pins

MLP 99.5% 99.5% 99.6% 99.5% LFW
SVM O vs. All 99.7% 99.8% 99.7% 99.7% LFW

Table 3 explains the comparison of the proposed approach with other state-of-the-art
work. In addition, it is clear from Table 3 that our proposed system outperforms all other
previous works.

Table 3. Comparison of the proposed approach with other state-of-the-art work under the
same protocol.

References Database Model Used Accuracy %

[56] LFW DCMN 98.03%
FGLFW DCMN 91.00%

[57]
LFW

Tree-Based Deep
95.84%

FEI 98.65%
ORL 99.19%

[58]

Training: CASIAWebFace

DGM

Training: CASIA
LFW 99.27%

CFP-FF 99.26%
CFP-FP 86.97%
CPLF 93.09%

Trained on VGG Face Trained on VGG Face
LFW 99.62%

CFP-FF 99.63%
CFP-FP 92.45%
CPLF 96.37%
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Table 3. Cont.

References Database Model Used Accuracy %

[59] LFW IPA 86.10%
WIPA 86.00%

[60] LFW MM-DFR 99.02%

[61]

LFW

Marginal Loss

99.48%
YTF 95.98%

AgeDB 98.95%
CACD 95.75%

[62] LFW Light CNN 98.98%
[63] LFW CNN and deep metric learning 99.77%

[64]
LFW

ReST
99.03%

YTF 95.40%

[65]
LFW

FI-GAN
98.30%

CFP 94.20%

[66] LFW Hand-crafted and Deep learning. 87.77%
[67] LFW hybrid ConvNet-RBM model 92.52%

[68] LFW DeepID3 99.53%

[69] LFW Fair loss-Cos 99.53%
YTF 96.20%

[70] LFW CNN-RBM 93.80%

[71] LFW VGGNet 98.99%
YTF 97.30%

[72] LFW Deep coupled ResNet 99.00%
[73] LFW Deep face 97.35%
[74] LFW Deep ID 97.40%
[75] LFW Deep ID2 99.50%
[76] LFW VGGFace 98.90%
[77] LFW FaceNet 99.60%
[78] LFW AMS loss, Caffe 94.50%

[79] LFW CosFace 99.73%
YTF 97.60%

[80] NA faster R-CNN 99.30%
[81] NA FW-MPM-LSTM 99.58%
[82] ORL BIFR 98.50%
[83] face-aging FG-NET Deep CNN models 98.21%

[84]
1-Face dataset by robotics lab

VGG16-random Fourier hybrid model
97.46%

2-Head pose image dataset 97.63%
3-Georgia tech face dataset 97.55%

[85] ROSE-Youtu Face Liveness Detection
Database + In House Light-CNN Based on Modified VGG16 94.40%

[86] CASIA, FLW Light CNN 99.00%
Proposed House VGG16+SVM 99.80%
Proposed House VGG16+MLP 98.20%
Proposed LFW VGG16+SVM 99.70%
Proposed LFW VGG16+MLP 99.50%
Proposed Pins VGG16+SVM 98.40%
Proposed Pins VGG16+MLP 97.40%

5. Conclusions
Two significant experiments were conducted for this paper. In Experiment 1, two

classifiers, MLP and SVM, were employed to conduct comprehensive evaluations of ten
feature extraction techniques (SIFT, SURF, GIST, LBP, WLD, HOG, VGG16, VGG19, VGG
face, and face embeddings) using full faces and face modalities from the in-house database.
In Experiment 2, the MLP and One vs. All SVM classifiers were employed to evaluate
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the LFW and Pins databases, utilizing the optimal feature extraction technique (VGG16)
identified in Experiment 1. These comprehensive evaluations, which encompassed ten
feature extraction methods, served as a benchmark for other researchers interested in this
field. The main conclusions can be summarized as follows.

Firstly, in terms of the in-house database, the findings above did not include Dlib’s
face embedding results for facial modalities since the face embedding API required that
face detection be feasible on the input picture and facial modalities were images of sections
of the face rather than the complete face. Using a CNN for feature extraction and an SVM
as a classifier often yielded the best results. Additionally, using the full face rather than
just the face’s modality for feature extraction yielded considerably better results. The best
outcome was obtained when the full face was utilized as the input to the model and VGG16
was used as a feature extractor and an SVM as a classifier. As noted in the results section,
the best performance accuracy among the ten proposed feature extraction methods applied
to the in-house database for the facial recognition task was 99.8%, achieved by the VGG16
model combined with the SVM classifier.

Secondly, in terms of LFW and Pins databases, the highest accuracy achieved was
99.7% by evaluating the LFW database using the SVM One vs. All classifier, while the
performance accuracy was slightly less than 99.5% by using the MLP classifier for the same
database (LFW). However, the performance was lower when the system was evaluated by
the Pins database.
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Appendix A

(a) SIFT (b) SURF (c) GIST

(d) LBP (e) WLD (f) HOG

(g) VGG16 (h) VGG19 (i) VGGFace

Figure A1. Utilizing the SVM classifier applied on the extracted features of the whole face using an in-house database. (a) SIFT, (b) SURF, (c) GIST, (d) LBP, (e) WLD,
(f) HOG, (g) VGG16, (h) VGG19, (i) VGGFace. Each sub-figure is categorized into two parts: part (A) ROC curve and part (B) confusion matrix.
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(a) SIFT (b) SURF (c) GIST

(d) LBP (e) WLD (f) HOG

(g) VGG16 (h) VGG19 (i) VGGFace
Figure A2. Utilizing the MLP classifier applied on the extracted features of the whole face using an in-house database. (a) SIFT, (b) SURF, (c) GIST, (d) LBP, (e) WLD,
(f) HOG, (g) VGG16, (h) VGG19, (i) VGGFace. Each sub-figure is categorized into two parts: part (A) ROC curve and part (B) confusion matrix.
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(a) SIFT (b) SURF (c) GIST

(d) LBP (e) WLD (f) HOG

(g) VGG16 (h) VGG19 (i) VGGFace
Figure A3. Utilizing the SVM classifier applied on the extracted features of the facial modalities using an in-house database. (a) SIFT, (b) SURF, (c) GIST, (d) LBP,
(e) WLD, (f) HOG, (g) VGG16, (h) VGG19, (i) VGGFace. Each sub-figure is categorized into two parts: part (A) ROC curve and part (B) confusion matrix.
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(a) SIFT (b) SURF (c) GIST

(d) LBP (e) WLD (f) HOG

(g) VGG16 (h) VGG19 (i) VGGFace
Figure A4. Utilizing the MLP classifier applied on the extracted features of the facial modalities using an in-house database. (a) SIFT, (b) SURF, (c) GIST, (d) LBP,
(e) WLD, (f) HOG, (g) VGG16, (h) VGG19, (i) VGGFace. Each sub-figure is categorized into two parts: part (A) ROC curve and part (B) confusion matrix.
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