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A B S T R A C T

Mpox, a zoonotic viral disease endemic to several African countries, has re-emerged as a significant public health 
concern, particularly in regions with limited healthcare resources. Current public health strategies in Africa fall 
short due to fragmented surveillance systems, delayed diagnostic capabilities, and inadequate resource distri
bution networks that cannot effectively respond to rapidly evolving outbreaks in remote and underserved areas. 
This narrative review explores the potential of Artificial Intelligence (AI) to enhance the management and control 
of Mpox in Africa. AI technologies, including machine learning and predictive analytics, can significantly 
improve early detection, surveillance, contact tracing, case management, public health communication, and 
resource allocation. AI-driven tools can analyze large datasets to identify outbreak patterns, automate contact 
tracing through mobile data, optimize treatment plans, and tailor public health messages to specific commu
nities. However, the successful implementation of AI faces challenges, including limited digital infrastructure, 
data quality issues, ethical concerns, and the need for capacity building. Furthermore, ongoing research is 
essential to refine AI algorithms and develop culturally sensitive applications. This review emphasizes the need 
for investment in infrastructure, training, and ethical frameworks to fully integrate AI into public health systems 
in Africa. By addressing these challenges, AI can play a pivotal role in mitigating the impact of Mpox and 
enhancing the resilience of healthcare systems against future infectious disease outbreaks. This represents a novel 
comprehensive synthesis of AI applications specifically for African Mpox control, providing a critical framework 
for evidence-based implementation strategies in resource-limited settings.

1. Introduction

Mpox is an infectious zoonotic disease caused by the Mpox virus, a 
member of the Orthopoxvirus genus, which also includes the variola 
virus, the causative agent of smallpox (World Health Organization, 
2024a). Formerly called "monkeypox", it was renamed in November 
2022 by the WHO to avoid stigma and negative impacts on trade, travel, 
tourism, and animal welfare (World Health Organization, 2022). It was 

first discovered in laboratory monkeys in 1958, with the first human 
case recorded in 1970 in the Democratic Republic of the Congo (then 
Zaire), and Mpox has become a public health concern in Central and 
West Africa (Dou et al., 2023; Harapan et al., 2022; Jezek et al., 1987). It 
is typically transmitted to humans through contact with the bodily 
fluids, skin lesions or respiratory secretions of infected animals (Bunge 
et al., 2022), with rodents suspected to be the primary reservoir (Ullah 
et al., 2023).
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Mpox shares clinical symptoms with smallpox, but it is generally 
milder, presenting with fever, rash, and lymphadenopathy (Yu et al., 
2024), with the possibility of complications such as secondary bacterial 
infections, respiratory distress, and encephalitis (Anil et al., 2024). 
While smallpox was eradicated globally in 1980, Mpox remains endemic 
in Africa, with periodic outbreaks historically confined to remote areas 
(Dou et al., 2023, Olawade et al., 2024). However, recent Mpox trends in 
Fig. 1 has shown infection in urban areas and international spread, 
including the United States and Europe, raising concerns about its global 
threat (World Health Organization, 2024a). The Figure indicates that 
the African and South-East Asia regions have significantly higher Mpox 
mortality rates than other regions.

Its primary transmission spread is through direct contact with 
infected animals or humans, contaminated materials, or respiratory 
droplets. The incubation period for Mpox ranges from 6 to 13 days but 
can extend from 5 to 21 days (Bunge et al., 2022). Clinically, Mpox is 
characterized by a prodromal phase of fever, malaise, headache, and 
muscle aches, followed by a rash that typically starts on the face and 
spreads to other body parts, progressing through various stages before 
crusting (Anil et al., 2024). Most cases resolve in 2–4 weeks, but severe 
illness is more common in children, pregnant women, and immuno
compromised individuals. The case fatality rate of Mpox varies across 
outbreaks, ranging from 1 % to 10 %, with the highest mortality 
observed in the Central African clade of the virus (Centers for Disease 
Control and Prevention, 2022).

Mpox resurgence has underscored several public health challenges, 
especially in Africa in where inadequate healthcare infrastructure and 
limited trained personnel hinder the effective detection, diagnosis, and 
treatment of the disease (Olawade et al., 2024; World Health Organi
zation, 2024a). Socioeconomic factors like poverty, bush meat con
sumption, and human-animal contact increase the risk of zoonotic 
transmission (Hayman et al., 2025). Limited access to smallpox vaccines 
and antiviral medications, logistical barriers in remote areas, and low 
public awareness further complicate the control effort taken to mitigate 
the Mpox spread (Alakunle et al., 2020; Watarkar et al., 2023). Sum
marily, Table 1 presents Mpox trends in selected African countries from 
1970 to 2021, as reported by WHO, (2024e), indicating that the disease 
is endemic in the central and western African regions.

In this challenging context, Artificial Intelligence (AI) presents a 
promising avenue for improving the management of Mpox outbreaks. AI 
encompasses a wide range of technologies, including machine learning, 
natural language processing, computer vision, and predictive analytics, 

all of which have potential applications in public health (Alowais et al., 
2023). While AI has been utilized in the surveillance, prediction, and 
control of other infectious diseases such as malaria, dengue, and 
COVID-19, its application to Mpox remains in the early stages (Patel 
et al., 2023). Nevertheless, AI offers significant potential for developing 
novel strategies to combat this disease. AI can enhance Mpox manage
ment in several key areas as highlighted in Fig. 2. First, AI-driven sur
veillance systems can improve the detection and monitoring of 
outbreaks by analyzing large datasets from diverse sources, such as 
electronic health records, social media, and environmental sensors 
(Setegn and Dejene, 2025; Thakur, 2024; Thakur et al., 2023). These 
systems can identify patterns and predict the spread of the virus, 
enabling public health authorities to respond more rapidly and effec
tively (Zhao et al., 2024). Second, AI can optimize resource allocation, 
ensuring that vaccines, antiviral drugs, and personal protective equip
ment are distributed to the areas where they are most needed (Persad 
et al., 2023). Third, AI can improve communication strategies by 
tailoring public health messages to different populations, combating 
misinformation, and promoting adherence to prevention measures 
(Edinger et al., 2023). Additionally, AI can contribute to developing new 
diagnostic tools and treatments for Mpox. Machine learning algorithms 
can identify biomarkers associated with severe disease, aiding in the 
early identification of high-risk patients (Al-Tashi et al., 2023). AI can 
also accelerate the discovery of new antiviral drugs and the development 
of more effective vaccines, providing critical tools to reduce the burden 
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Fig. 1. Mpox trends across the WHO regions from January 2022 to May 2025.

Table 1 
Trends of global Mpox cases reported in selected African countries from 1970 to 
2021.

Africa Years- 1970 to 
2021

Confirmed cases Number of 
deaths

Benin 1978 1 0
Cameroon 1979–2021 11 0
Central African 

Republic (CAR)
1984–2021 105 12

Congo 2003–2019 22 7
Cote d’Ivoire 1971–1981 2 0
Democratic Republic of 

the Congo (DRC)
1970–2011 > 18,515 (suspected 

and confirmed)
516

Gabon 1987 5 2
Liberia 1970 and 2017 6 0
Nigeria 1971–2021 228 9
Sierra Leone 1970–2021 5 1
South Sudan 2005 10 0
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of Mpox in Africa and beyond (Patel et al., 2023).
While AI holds global promise, its application in the African context, 

where Mpox is most endemic, requires tailored strategies (Abdelouahed 
et al., 2025). The effectiveness of AI-driven public health tools hinges on 
their cultural and infrastructural adaptability. Public trust and cultural 
beliefs about disease, health systems, and technology vary widely across 
African regions. To foster acceptance, AI-enabled interventions must be 
co-developed with local stakeholders, including community leaders and 
healthcare workers, to ensure culturally sensitive communication and 
ethical data use (Alaran et al., 2025). Moreover, challenges such as 
limited internet connectivity, inconsistent electricity supply, and vary
ing levels of digital literacy can impede the deployment of high-tech 
solutions (Yu et al., 2024). Therefore, AI systems designed for Mpox 
management in Africa should prioritize mobile accessibility, 
low-bandwidth functionality, and offline capabilities. Community 
engagement, capacity building, and investment in digital infrastructure 
are also critical to enhancing local ownership and long-term sustain
ability of AI-based interventions (Abdelouahed et al., 2025).

The rationale for this review lies in the urgent need to explore 
innovative solutions, such as AI, that can enhance the effectiveness of 
current public health strategies. The novelty of the review stems from its 
focus on the application of AI technologies, such as machine learning, 
predictive analytics, and natural language processing, in the specific 
context of Mpox management, a relatively underexplored area. The re
view’s objectives are to assess AI’s potential to improve disease sur
veillance, optimize resource allocation, enhance public health 
communication, and support the development of diagnostic and treat
ment tools for Mpox in Africa, ultimately contributing to more effective 
outbreak control and prevention efforts.

1.1. The AI-enhanced Mpox management strategy

The "Mpox strategy" referenced throughout this article represents a 
comprehensive, multi-dimensional approach that leverages artificial 
intelligence to transform traditional disease control paradigms for Mpox 
management in African contexts. This strategy encompasses five core 
components: (1) intelligent surveillance systems utilizing advanced 
biosensors and machine learning algorithms for early detection, (2) 

predictive modeling frameworks for outbreak forecasting and resource 
optimization, (3) automated contact tracing and case management 
systems, (4) culturally-adaptive communication platforms, and (5) AI- 
driven logistics and supply chain optimization. The strategy builds 
upon recent advances in intelligent material systems and biosensing 
technologies that have demonstrated remarkable potential for infectious 
disease management.

Recent developments in advanced functional materials have shown 
exceptional promise for Mpox detection and monitoring applications, 
particularly through the integration of smart materials with AI-driven 
diagnostic platforms that enable real-time pathogen identification and 
quantification (Asif et al., 2024: Chaudhary et al., 2025). These in
novations complement advances in intelligent biosensing systems that 
combine machine learning algorithms with novel material properties to 
achieve unprecedented sensitivity and specificity in viral detection 
(Chaudhary et al., 2025; Kumar and Singh, 2025). Furthermore, mini
aturized sensing platforms utilizing advanced nanomaterials have 
demonstrated the capability to provide point-of-care diagnostic solu
tions specifically tailored for resource-limited African settings, enabling 
rapid Mpox identification even in remote areas lacking traditional lab
oratory infrastructure (Thwala et al., 2023; Cavuto et al., 2025; Laksh
manan and Liu, 2025).

This integrated strategy recognizes that effective Mpox control in 
Africa requires not merely technological solutions, but culturally- 
sensitive, locally-adapted AI applications that work synergistically 
with existing health systems. The strategy emphasizes human-AI 
collaboration, ensuring that technological interventions enhance 
rather than replace human expertise and community knowledge 
systems.

2. Methodology

This narrative review was conducted following an adapted approach 
based on PRISMA guidelines for systematic reviews and meta-analyses, 
modified for the narrative review format to enhance methodological 
transparency and reproducibility.

2.1. Literature search

This comprehensive narrative review was conducted between June 
and August 2024, with the literature search covering publications from 
database inception through August 31, 2024. The search was system
atically conducted across four major academic databases, including 
PubMed, Google Scholar, Scopus, and Web of Science. Additional grey 
literature sources were consulted, including reports from the World 
Health Organization (WHO), Africa Centres for Disease Control and 
Prevention (Africa CDC), and relevant governmental health agencies.

The search strategy employed a four-tier approach combining: (1) 
core terms related to Mpox and monkeypox, (2) artificial intelligence 
and related technologies, (3) African context and public health appli
cations, and (4) granular AI applications and digital health in
terventions. Specific search strings included: 

Primary search string: ("Mpox" OR "monkeypox" OR "MPXV") AND 
("artificial intelligence" OR "machine learning" OR "AI" OR "deep 
learning" OR "neural networks" OR "predictive analytics" OR "natural 
language processing") AND ("Africa" OR "surveillance" OR "public 
health" OR "outbreak response")*

Secondary search string: ("infectious disease" OR "zoonotic disease" 
OR "viral outbreak*") AND ("AI" OR "artificial intelligence" OR 
"machine learning" OR "predictive model*") AND ("Africa*" OR 
"resource-limited setting*" OR "low-income countr*")**

Tertiary search string: ("digital health" OR "health technology" OR 
"mHealth") AND ("disease surveillance" OR "contact tracing" OR 

Fig. 2. Potential applications of AI in the management of the Mpox outbreaks.
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"resource allocation") AND ("Africa" OR "sub-Saharan Africa" OR 
specific African country names)*

Quaternary search string: ("AI-driven diagnostics" OR "automated 
disease detection" OR "predictive analytics for outbreak response" OR 
"digital health interventions in Africa" OR "computer vision for dis
ease detection" OR "automated contact tracing" OR "AI-powered 
surveillance systems" OR "machine learning algorithms for epidemic 
prediction" OR "digital biomarkers" OR "telemedicine applications" 
OR "health informatics in resource-limited settings") AND ("mpox" 
OR "monkeypox" OR "infectious disease surveillance" OR "public 
health emergency") AND ("Africa" OR "developing country" OR 
"resource-limited" OR "low-resource setting*")**

Boolean operators (AND, OR, NOT) were strategically used to refine 
the search results and ensure comprehensive coverage of the literature. 
Wildcard symbols (*) were employed to capture variations in termi
nology. Reference lists of included studies were manually reviewed for 
additional relevant publications (snowball sampling), and citation 
tracking was performed using Google Scholar to identify more recent 
publications citing key articles.

The PRISMA framework was specifically adapted for this narrative 
review through several key modifications to accommodate the breadth 
and heterogeneity of AI applications in Mpox control. Unlike systematic 
reviews requiring strict inclusion criteria for homogeneous study types, 
our adapted approach incorporated a multi-tier screening process that 
allowed for the inclusion of diverse evidence types including peer- 
reviewed articles, technical reports, case studies, and policy docu
ments. For the narrative synthesis, studies were continuously re- 
evaluated for relevance as emerging themes developed. Additionally, 
the data extraction process was expanded beyond traditional systematic 
review parameters to capture implementation contexts, technological 
specifications, and cultural adaptation requirements specific to African 
health systems. This adaptation ensured methodological transparency 
while maintaining the flexibility necessary for synthesizing complex 
socio-technical interventions across varied implementation 
environments.

2.2. Study selection and screening process

The selection process involved a two-stage screening of titles, ab
stracts, and subsequent full-text articles against predefined criteria. 
Duplicates were removed using reference management software, and 
the reasons for excluding studies at the full-text stage were documented.

2.3. Inclusion and exclusion criteria

To ensure the relevance and quality of the studies included in this 
review, comprehensive and specific inclusion and exclusion criteria 
were applied. Studies were included if they met all of the following 
criteria: (1) focused on the application of AI or related digital technol
ogies in the context of infectious disease management with particular 
emphasis on surveillance, prediction, or response systems; (2) discussed 
AI technologies in the context of disease surveillance, predictive 
modelling, resource allocation, public health communication, diag
nostic support, or treatment strategies; (3) were peer-reviewed articles, 
conference proceedings, technical reports, or official reports published 
in English between 2018 and August 2024; and (4) provided insights 
into challenges and opportunities specific to Africa, or presented find
ings with clear applicability to African health systems, particularly in 
managing Mpox or similar zoonotic diseases. Additionally, studies were 
included if they addressed AI implementation in resource-limited set
tings with clear relevance to African contexts.

Studies were excluded if they were (1) unrelated to AI or infectious 
diseases, (2) solely focused on non-African contexts without demon
strable relevance to African health systems, (3) opinion pieces without 
empirical data or substantial analytical content, or (4) published in 

languages other than English, (5) published before 2018 unless they 
represented seminal work in the field, (6) focused exclusively on non- 
communicable diseases without infectious disease relevance, or (7) 
studies with insufficient methodological detail to assess reliability and 
validity.

2.4. Quality assessment

A comprehensive quality assessment framework was developed 
specifically for this review, adapting established appraisal tools to 
accommodate the heterogeneous nature of AI-driven Mpox research. 
The framework integrated elements from the Mixed Methods Appraisal 
Tool (MMAT), the Critical Appraisal Skills Programme (CASP) check
lists, and technology assessment frameworks to evaluate studies across 
multiple dimensions. The assessment criteria included: (1) methodo
logical rigor (study design appropriateness, data collection methods, 
analytical approach), (2) technological validity (algorithm performance 
metrics, validation procedures, generalizability), (3) implementation 
feasibility (resource requirements, infrastructure dependencies, scal
ability), (4) cultural appropriateness (community engagement, local 
adaptation, ethical considerations), (5) reporting transparency (clear 
methodology description, limitation acknowledgment, replicability), 
and (6) African context relevance (applicability to resource-limited 
settings, consideration of local health systems). Each criterion was 
scored on a 3-point scale (high, moderate, low), with studies requiring a 
minimum aggregate score for inclusion. This tailored framework 
enabled systematic evaluation of diverse evidence types while main
taining scientific rigor appropriate to the emerging field of AI in African 
health systems.

To minimize biases, the review prioritized empirical studies with 
African data, included grey literature from reputable health organiza
tions, and critically evaluated claims of AI effectiveness against reported 
implementation challenges. Where conflicting evidence existed, both 
perspectives were presented with explicit discussion of potential bias 
sources.

2.5. Data extraction and analysis

Data from the selected studies were extracted using a standardised 
data extraction form designed specifically for this review. The extraction 
process involved the systematic collection of the following information: 

• Study characteristics (author, year, country/region, study design)
• AI technology type and specific applications
• Target disease(s) and public health domain
• Implementation context (urban/rural, resource level)
• Outcomes and effectiveness measures
• Challenges and barriers identified
• Opportunities and recommendations
• Ethical considerations discussed
• Relevance to African health systems

The extracted data were organized using a structured matrix to 
facilitate systematic comparison and analysis across studies. Key themes 
and patterns were identified through iterative review of the extracted 
data.

A qualitative thematic synthesis approach was employed, involving 
the following analytical steps: 

1. Familiarization with the data through repeated reading of extracted 
information

2. Initial coding of data to identify key concepts and themes
3. Development of a thematic framework organizing codes into over

arching themes
4. Mapping of themes to the research objectives
5. Interpretation and synthesis of findings within and across themes
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6. Critical assessment of gaps and contradictions in the literature

A qualitative synthesis was then performed to collate and analyze the 
findings, with particular emphasis on understanding how AI can be 
effectively integrated into public health strategies for managing Mpox in 
Africa. The analysis also included comprehensive examination of the 
ethical considerations and potential barriers to AI adoption in resource- 
limited settings. Special attention was paid to identifying context- 
specific factors that could influence AI implementation success in Afri
can health systems.

The synthesis process involved triangulation of findings across 
different study types and contexts to enhance the robustness of con
clusions. Narrative synthesis techniques were employed to integrate 
quantitative and qualitative findings, with careful attention to the 
strength and consistency of evidence across different domains of AI 
application in Mpox management.

3. The current state of Mpox in Africa

In July 2024, Mpox outbreaks were reported in several Central, East, 
and West African countries, marking the first-ever confirmed cases in 
Burundi, Kenya, Rwanda, and Uganda. Burundi identified 142 cases 
from multiple districts, with children under five being the most affected. 
Kenya confirmed its first case, linked to travel from Uganda, while 
Rwanda reported four cases, with the majority involving recent travel to 
the Democratic Republic of the Congo. Uganda’s first two cases were 
detected in border areas. In West Africa, Côte d’Ivoire confirmed seven 
cases in three health districts, with no epidemiological links between the 
initial cases (World Health Organization, 2024c). On August 14 2024, 
following the recent outbreaks, the WHO Director-General declared that 
the surge in Mpox cases in the Democratic Republic of the Congo and the 
increasing spread across various African nations constitutes a Public 
Health Emergency of International Concern (PHEIC), the most severe 
alert level under the International Health Regulations (2005).

The outbreak has been characterised by a higher-than-usual trans
mission rate, prompting urgent calls for enhanced surveillance, contact 
tracing, and public health interventions. The WHO has emphasised the 
need for vaccination campaigns targeting high-risk populations and 
healthcare workers to mitigate the outbreak’s impact (World Health 
Organization, 2024c). In response to the emergency, international 
health organisations and national governments are collaborating to 
allocate resources and implement effective strategies. Public awareness 
campaigns are being launched to educate communities about the 
symptoms, transmission, and prevention of Mpox. The situation remains 
dynamic, with health officials urging vigilance and prompt reporting of 
suspected cases to contain the outbreak and protect public health across 
the continent (World Health Organization, 2024c). Of note, the WHO 
recently recommended the integration of AI technologies into public 
health strategies to enhance outbreak response efforts. Key recommen
dations include enhanced surveillance, predictive modelling, diagnostic 
support, public awareness and education, as well as resource allocation. 
These recommendations underline the importance of leveraging AI to 
curb the outbreak and spread of infectious diseases such as Mpox in 
Africa (World Health Organization, 2024d).

3.1. Epidemiology and transmission

Mpox, caused by the Mpox virus (MPXV), is an infectious disease 
with two recognized clades: Clade I (previously Congo Basin clade) and 
Clade II (previously West African clade). Clade I is further divided into 
subclades Ia and the recently identified Ib, which emerged in South 
Kivu, DRC, and spreads mainly through sexual contact (World Health 
Organization, 2024c). MPXV transmission occurs via close contact with 
infected lesions, body fluids, respiratory particles, or contaminated 
materials, and through contact with animals or bushmeat. Symptoms 
typically appear within a week, lasting two to four weeks, and include 

fever, muscle aches, sore throat, rash, and swollen lymph nodes, with 
severe cases posing higher risks for children, pregnant women, and 
immunocompromised individuals (Anil et al., 2024). The epidemiology 
of the disease in endemic regions is complex and influenced by 
ecological, environmental, and socio-economic factors (Ogunleye et al., 
2024).

The mortality rate of Mpox varies depending on the clade of the virus 
and the healthcare resources available. The Central African (Congo 
Basin) clade is associated with a higher mortality rate, ranging from 1 % 
to 10 %, compared to the West African clade, which has a lower mor
tality rate (Bosworth et al., 2022). The variation in mortality also reflects 
differences in healthcare access and the presence of co-morbidities. In 
regions with limited healthcare infrastructure, mortality rates are higher 
due to delayed diagnosis, lack of appropriate medical care, and the 
presence of other endemic diseases that can complicate the clinical 
course of Mpox. Table 2 shows the recent trends of Mpox in Africa as 
documented by WHO epidemiological data.

3.2. Challenges in managing Mpox

Managing Mpox in Africa presents several significant challenges, 
many of which are rooted in the continent’s socio-economic and 
healthcare landscape (Shehryar et al., 2023). One of the most pressing 
issues is the limited diagnostic capacity in many endemic regions. Lab
oratory confirmation of Mpox is essential for accurate diagnosis and 
effective outbreak management (Silva et al., 2023). However, in many 
parts of Africa, access to diagnostic facilities is limited. Most countries 
lack the necessary infrastructure, and where laboratories do exist, they 
are often concentrated in urban areas, far from the rural communities 
where outbreaks typically occur. This results in delayed diagnosis and 
underreporting of cases, hampering timely public health responses. In 
addition to diagnostic challenges, the surveillance systems in many Af
rican countries are insufficient to effectively monitor and respond to 
Mpox outbreaks (Giovanetti et al., 2023). The absence of robust sur
veillance networks means that many cases go unreported, and outbreaks 
can spread unchecked before they are detected. Surveillance is further 
complicated by the remoteness of many affected areas, where health 
services are sparse, and healthcare workers are often overburdened and 
under-resourced. In some regions, the true burden of Mpox is likely 
underestimated due to the lack of comprehensive data (Bragazzi et al., 
2022).

Vaccine shortages present another significant hurdle in managing 
Mpox. Although the smallpox vaccine, which offers some protection 
against Mpox, is available, its supply is limited, and distribution is un
even across the continent. The logistical challenges of delivering vac
cines to remote and underserved areas are substantial, exacerbated by 
inadequate infrastructure and the high cost of maintaining cold chains 

Table 2 
Trends of Mpox in Africa between 2022 and 18 August 2024.

Country Total 
cases

Total 
deaths

Cases in 
2024

Deaths in 
2024

Clades 
detected

DRC 4480 21 3235 19 Ia and Ib
Nigeria 901 9 40 0 II
Burundi 153 0 153 0 Ib
Ghana 127 4 0 0 II
CAR 92 2 45 1 Ia
Cameroon 50 5 5 2 Ia and II
Congo 45 2 19 0 Ia
South Africa 29 3 24 3 II
Cote d’Ivoire 28 1 28 1 II
Liberia 23 0 5 0 II
Rwanda 4 0 4 0 Ib
Benin 3 0 0 0 II
Uganda 3 0 3 0 Ib
Kenya 1 0 1 0 Ib
Mozambique 1 1 0 0 II
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necessary for vaccine storage and transport (Tovani-Palone, Doshi, and 
Pedersini, 2023). Moreover, there is often a lack of public awareness and 
education about the benefits of vaccination, which, combined with 
mistrust in healthcare authorities, can lead to low vaccine uptake even 
where vaccines are available (Du et al., 2025).

Public health responses to Mpox outbreaks are frequently hampered 
by logistical difficulties. Many of the regions where Mpox is endemic are 
characterized by rugged terrain, poor transportation networks, and 
isolated communities, making it challenging to deliver medical supplies 
and provide timely healthcare services (Tovani-Palone, Doshi, and 
Pedersini, 2023). The logistical challenges are compounded by political 
instability and conflict in some areas, which can disrupt healthcare 
delivery and make it difficult for health workers to access affected 
populations. Mistrust of healthcare authorities and public health in
terventions is another significant barrier to managing Mpox in Africa 
(Biesty et al., 2024). This mistrust is often rooted in historical and 
socio-cultural contexts, where previous public health interventions have 
been viewed with suspicion or have failed to address the needs and 
concerns of local populations. In some cases, misinformation and rumors 
about the disease and its treatment can spread rapidly, leading to 
resistance against vaccination campaigns and other public health mea
sures. Building trust between healthcare providers and communities is 
essential for the success of any public health initiative, but this requires 
sustained effort and culturally sensitive approaches (Lansing et al., 
2023).

4. AI in disease surveillance

AI has the potential to revolutionize disease surveillance by 
enhancing the speed, accuracy, and effectiveness of detecting and 
monitoring infectious disease outbreaks (World Health Organization, 
2024d). In the context of Mpox, a disease that has seen periodic out
breaks in Africa, AI offers tools that can significantly improve early 
detection and response efforts. By leveraging large datasets and 
advanced algorithms, AI can analyze complex patterns that are often 

beyond the capacity of traditional surveillance methods. This capability 
is particularly crucial in resource-limited settings where timely and ac
curate detection of outbreaks can make the difference between 
containment and widespread transmission. AI’s application in disease 
surveillance includes early detection and monitoring of outbreaks 
through data analysis and predictive modeling to forecast the spread of 
the disease (Munir et al., 2024). These capabilities can inform public 
health strategies, optimize resource allocation, and ultimately help in 
controlling and preventing the spread of Mpox. For example, in response 
to a Mpox outbreak in November 2017, Nigeria implemented the 
mobile-based Surveillance Outbreak Response Management and Anal
ysis System (SORMAS) across 30 districts. SORMAS is a digital system 
for comprehensive disease surveillance. The system was adapted and 
launched within two weeks, leading to faster reporting, more complete 
data, and enhanced response capabilities (Silenou et al., 2020: CDC, 
2019).

This approach is aligned with broader regional initiatives. For 
instance, the Africa CDC’s Strategic Plan for Digital Transformation 
(2023–2027) emphasizes the use of AI and big data in strengthening 
real-time outbreak surveillance and response systems across member 
states (Africa, 2023). Similarly, the WHO Africa Region’s 2023 digital 
health report outlines successful pilot programs using mobile-based AI 
tools to monitor disease symptoms and trends in Uganda, Nigeria, and 
Ghana (WHO Regional Office for Africa, 2023). These efforts demon
strate growing institutional commitment to integrating AI technologies 
into national and regional surveillance strategies. Table 3 below docu
ments the relevance of these AI systems in enhancing Mpox surveillance 
and response in Africa.

However, the scalability of AI in Africa faces significant constraints, 
including limited infrastructure, server capacity, energy system and 
connectivity required to meet demands for Mpox surveillance 
(Ade-Ibijola and Okonkwo, 2023; Alaran et al., 2025; Mienye, Sun and 
Ileberi, 2024). Foremost, server capacity is a mainstay in the deploy
ment of AI systems as it requires hyper-converged infrastructure (HCI) to 
manage computational workloads efficiently (Alaran et al., 2025). 

Table 3 
Comparative analysis of traditional Mpox methods to AI-based modalities.

Feature Traditional methods 
(Laboratory and clinician 
reporting)

Rule-based AI systems Machine learning based AI system NLP-based AI systems

Speed Slow (Testing and 
confirmation is achieved 
within 72 h)

Moderate to Fast (relies heavily on 
rule provided in real-time data 
alerts) (Zhang et al., 2022a,b)

Fast (Capable of analysing real-time 
datasets to detect or predict spread) (
Zhang et al., 2022b)

Fast (Capable of scraping and analysing 
vast amount of unstructured text in real- 
time) (Al-Garadi, Yang, and Sarker, 
2022)

Scale and resource 
use

Low scalability but high 
resource intensity (Requires 
significant human expertise 
and laboratory capacity)

Moderate (Automates rules to 
handle volume but requires 
expertise for rule creation and 
maintenance)

High scalability (Efficiently handles 
large datasets but training is resource 
intensive) (Ncube et al., 2024)

High scalability (Efficiently handles 
large datasets but training is resource 
intensive) (Ncube et al., 2024)

Accuracy and 
reliability

High specificity (Gold 
standard in clinical diagnosis)

Moderate (High precision limited 
to predefined rules, prone to false 
negative in new presentations/ 
terms) (Pal et al., 2025; Patel, Surti 
and Adnan, 2023)

Variable (Accuracy depends on the 
quality and quantity provided in 
training, requires validation because of 
vulnerability to false positive/negatives 
(Pal et al., 2025; Patel, Surti and 
Adnan, 2023)

Moderate to Low (High false positive 
rates with poor performance at case 
identification) (Pal et al., 2025; Patel, 
Surti and Adnan, 2023)

Data requirements Depends only on laboratory 
findings and structured 
clinical reports to confirm 
case data

Requires coded data in defined 
formats (Abdelouahed et al., 2025; 
Pal et al., 2025)

Requires vast amounts of relevant, 
labelled data for training (Pal et al., 
2025)

Depends on unstructured texts, news 
publications, clinical notes and scientific 
literature

Implementation 
costs and 
complexity

Well-established protocols 
with high operational cost

Moderate setup cost with low 
runtime costs (Rules are easy to 
define but maintenance costs 
increase with complex systems) (
Ncube et al., 2024)

High setup cost with moderate runtime 
costs (significant expertise and 
resources needed for data engineering, 
model development, validation and 
operations) (Ncube et al., 2024)

High setup cost with high runtime costs 
(Expertise needed in NLP, linguistics, 
domain knowledge and data 
management) (Ncube et al., 2024)

Suitability Definitive diagnosis 
Case confirmation 
Detailed epidemiological 
investigation and regulatory 
reporting

Adequate for triggering alerts from 
known case definitions in 
structured EMR/EHR systems (
Abdelouahed et al., 2025; Patel, 
Surti and Adnan, 2023)

Predicting outbreak trajectory, 
identifying high-risk population and 
optimising resource allocation (
Abdelouahed et al., 2025; Patel, Surti 
and Adnan, 2023)

Syndromic surveillance 
Early outbreak signal detection, 
monitoring public perception and 
misinformation, and tracking global 
spread in news and/or social media 
channels (Abdelouahed et al., 2025)
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However, Africa faces challenges in establishing robust data centre due 
to inconsistent power grids, limited fiber optic connectivity, and un
derdeveloped cloud ecosystems (Ade-Ibijola and Okonkwo, 2023). 
Cloud platforms can offer scalable solutions to this challenge, but its 
effectiveness depends on reliable local networking infrastructure, which 
are sparse in the affected central and West African countries (Haefner 
et al., 2023; Mienye, Sun and Ileberi, 2024). Achieving high scalability 
also demands low-latency, high-bandwidth networks which is another 
significant issue due to the uneven internet penetration and bandwidth 
limitations on the continent (Alaran et al., 2025).

Training and deploying AI models require massive electricity. In 
Africa, where energy access is currently limited, efforts to scale AI 
models pose a dangerous risk of depriving other demands for electricity 
(Pasipamire and Muroyiwa, 2024). AI inference consumes 80–90 % of 
total energy with data centre exceeding regulatory benchmarks required 
to comply with efficiency measures which are currently poorly defined 
in the African continent (Alaran et al., 2025). Hence, a reliance on diesel 
generators in regions with unstable grids increases operational cost and 
carbon footprints, limiting the sustainability of AI growth on the 
continent (Mienye, Sun and Ileberi, 2024).

The economic and political commitment to AI deployment is 
important in scalability of AI models (Ade-Ibijola and Okonkwo, 2023; 
Alaran et al., 2025). Cloud solutions can reduce upfront costs but 
recurring expenses for storage and compute power can make up a sig
nificant part of the economic commitment. Security and maintenance 
such as server upgrades also require scarce skilled labor. Hence, to 
achieve scalable AI in Africa, investments must prioritize grid modern
ization, renewable energy integration, and access to cross-border cloud 
infrastructure (Pasipamire and Muroyiwa, 2024).

4.1. Early detection and monitoring

AI plays a critical role in the early detection and monitoring of Mpox 
outbreaks, which is essential for initiating timely public health in
terventions. Traditional surveillance methods, often reliant on manual 
reporting and data collection, can be slow and prone to inaccuracies, 
especially in regions with limited healthcare infrastructure. In contrast, 
AI-driven tools can process vast amounts of data from diverse sources in 
real-time, providing early warnings of potential outbreaks (Anjaria 
et al., 2023). Machine learning algorithms, a subset of AI, can analyze 
data from various sources, including electronic health records (EHRs), 
social media, news reports, and even environmental sensors, to identify 
early signs of an outbreak (Setegn & Dejene, 2025; A. Thakur, 2024; 
Thakur et al., 2023). For example, EHRs can be analyzed to detect un
usual patterns of symptoms that may indicate the emergence of Mpox 
cases. Similarly, AI can be used to sift through large volumes of social 
media posts to detect discussions related to symptoms or the occurrence 
of disease in specific regions (Zhao et al., 2024). Natural Language 
Processing (NLP), a branch of Artificial Intelligence that enables ma
chines to understand and interpret human language, is particularly 
useful in this context, as it can automatically process and interpret text 
data, identifying keywords and phrases that may signal an emerging 
outbreak (Al-Garadi, Yang, and Sarker, 2022). For instance, an increase 
in social media posts mentioning symptoms like fever, rash, or lymph
adenopathy, particularly in endemic regions, could prompt further 
investigation by public health authorities. Moreover, AI systems can 
integrate data from news reports, which often cover disease outbreaks 
before official reports are published. By cross-referencing information 
from multiple sources, AI can provide a comprehensive overview of the 
situation, identifying potential hotspots and enabling a quicker response 
(Anjaria et al., 2023). This ability to analyze and synthesize data from 
various platforms in real-time can significantly enhance the monitoring 
of Mpox, particularly in regions where traditional surveillance systems 
are weak or non-existent.

In addition to AI-enabled data analysis and outbreak detection, 
emerging biosensing technologies offer complementary diagnostic 

capabilities that can greatly enhance Mpox surveillance, particularly in 
field settings where laboratory access is limited. Advanced platforms 
such as CRISPR/Cas12a-powered surface plasmon resonance (SPR) 
sensors have demonstrated ultra-sensitive and highly specific detection 
capabilities for viral pathogens, as seen in recent diagnostics for SARS- 
CoV-2 variants (Wang et al., 2022). These platforms can deliver 
real-time, label-free detection with high sensitivity, down to femtomolar 
concentrations, providing valuable point-of-care diagnostic solutions. 
Similarly, antimonene-based SPR sensors and polarization-sensitive 
photodetectors built on two-dimensional (2D) nanomaterials have 
shown promise in the ultrasensitive detection of microRNAs and viral 
nucleic acids (Zhou et al., 2019; Liu et al., 2021). These technologies 
offer faster turnaround times and lower detection limits compared to 
traditional RT-PCR or ELISA-based diagnostics. For instance, biosensors 
capable of detecting biomarkers with femtomolar-level sensitivity 
(Zhang et al., 2022b) could be instrumental in diagnosing Mpox during 
the early symptomatic phase or in subclinical cases.

4.2. Predictive modeling

Beyond early detection, AI-driven predictive models are powerful 
tools for forecasting the spread of Mpox (Patel et al., 2023). Predictive 
modeling uses historical data to identify patterns and trends in disease 
transmission, allowing public health authorities to anticipate where and 
how future outbreaks might occur. These models can incorporate a wide 
range of variables, including population density, animal reservoir dis
tribution, climate conditions, and human mobility patterns, to generate 
detailed predictions about the potential spread of the virus (Zhao et al., 
2024). One of the key strengths of AI in predictive modeling is its ability 
to handle complex and non-linear relationships between variables 
(Liang et al., 2022). For instance, AI models can analyze how changes in 
climate conditions, such as temperature and humidity, might affect the 
habitats of animal reservoirs and consequently influence the likelihood 
of zoonotic transmission. Similarly, AI can incorporate human mobility 
data to predict how the movement of people between regions might 
facilitate the spread of the virus (Zhao et al., 2024). This is particularly 
relevant in the African context, where cross-border movements and 
migration patterns can significantly impact the spread of infectious 
diseases like Mpox.

By predicting where outbreaks are likely to occur next, AI-driven 
models can guide public health interventions more effectively (Munir 
et al., 2024). For example, if a model predicts a high likelihood of an 
outbreak in a specific region, public health authorities can preemptively 
deploy resources such as vaccines, medical supplies, and healthcare 
personnel to that area. This proactive approach can help contain out
breaks before they escalate, reducing both the spread of the virus and the 
burden on healthcare systems. Additionally, predictive models can assist 
in optimizing resource allocation during an outbreak (Wang et al., 
2024). By identifying areas at highest risk, these models can help ensure 
that limited resources are directed where they are most needed, 
improving the efficiency of the public health response. This is especially 
important in resource-constrained settings, where the strategic use of 
available resources can have a significant impact on the outcome of an 
outbreak.

5. AI in contact tracing and case management

AI has the potential to significantly improve contact tracing and case 
management for Mpox, which are critical components in controlling the 
spread of the virus and ensuring effective treatment (Uzun Ozsahin 
et al., 2023). Traditional methods of contact tracing and case manage
ment are often resource-intensive and time-consuming, particularly in 
regions with limited healthcare infrastructure. AI can streamline these 
processes by leveraging advanced algorithms and data analysis tech
niques, leading to more efficient and accurate identification of potential 
cases and optimization of treatment strategies (Alowais et al., 2023). 
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This section explores the role of AI in automating contact tracing and 
enhancing case management, ultimately contributing to more effective 
public health interventions.

5.1. Automated contact tracing

Contact tracing is a cornerstone of infectious disease control, crucial 
for identifying individuals who have been exposed to a virus and pre
venting further transmission (Uzun Ozsahin et al., 2023). However, 
traditional contact tracing methods rely heavily on manual processes, 
including interviews with patients to identify their recent contacts and 
the subsequent follow-up with those contacts. This approach can be 
slow, labor-intensive, and prone to human error, especially during 
large-scale outbreaks where the number of cases can overwhelm public 
health resources. AI offers a transformative solution to these challenges 
by automating contact tracing through the use of mobile phone data and 
location-tracking algorithms (Chowdhury et al., 2024). Mobile phones, 
which are widely used even in many remote regions of Africa, generate a 
wealth of location data that can be harnessed to trace the movements of 
individuals and identify potential contacts. AI algorithms can analyze 
this data to determine where and when individuals may have come into 
close contact with an infected person, often with greater speed and ac
curacy than manual methods (El-Bouzaidi and Abdoun, 2023).

For example, when a confirmed case of Mpox is identified, AI systems 
can rapidly analyze the individual’s mobile phone data to reconstruct 
their movements and identify other mobile phones that were in prox
imity during the likely period of infectiousness. These algorithms can 
consider various factors, such as the duration and frequency of contact, 
to prioritize contacts who are at higher risk of having contracted the 
virus (Chowdhury et al., 2024). This automated process significantly 
reduces the time required to identify and notify contacts, enabling 
quicker implementation of quarantine measures and reducing the po
tential for further transmission (El-Bouzaidi and Abdoun, 2023). In 
addition to improving the speed and efficiency of contact tracing, 
AI-driven approaches also enhance privacy protection. By using 
advanced encryption and anonymization techniques, AI systems can 
ensure that individuals’ data is protected, addressing concerns about 
privacy and data security that are often associated with digital contact 
tracing (Zhou, Huang, and Gao, 2024). This is particularly important in 
building public trust and encouraging widespread adoption of contact 
tracing technologies, which is essential for their effectiveness.

5.2. AI-enhanced case management

Effective case management is crucial for improving outcomes in 
Mpox patients, particularly given the potential for severe complications 
in certain populations (Anil et al., 2024). AI can play a pivotal role in 
enhancing case management by providing healthcare providers with 
tools to predict disease progression and optimize treatment plans. Ma
chine learning models, which are a key component of AI, can analyze 
large datasets of patient information to identify patterns and correla
tions that may not be immediately apparent through traditional analysis 
(Alowais et al., 2023). These models can be trained on data from past 
Mpox cases, including clinical symptoms, laboratory results, de
mographic information, and treatment outcomes, to develop predictive 
algorithms that assess the risk of severe disease. For example, AI models 
can identify specific combinations of symptoms or biomarkers that are 
associated with a higher likelihood of complications such as pneumonia 
or encephalitis, enabling healthcare providers to prioritize high-risk 
patients for more intensive monitoring and care (Stokes et al., 2022).

In addition to risk stratification, AI can assist in optimizing treatment 
plans by integrating evidence-based guidelines with real-time patient 
data. AI-powered decision support systems can provide clinicians with 
tailored recommendations for treatment based on the latest research and 
the individual characteristics of each patient (Elhaddad and Hamam, 
2024). For instance, these systems can suggest the most appropriate 

antiviral therapies, dosage adjustments, or supportive care measures 
based on the patient’s age, underlying health conditions, and the 
severity of the disease. This personalized approach to treatment can 
improve patient outcomes by ensuring that care is both timely and 
appropriate for the specific needs of each patient. Moreover, AI can 
facilitate better resource management within healthcare settings by 
predicting the course of the outbreak and the demand for medical re
sources. By analyzing trends in case numbers and disease severity, AI 
systems can forecast the need for hospital beds, intensive care units, and 
medical supplies, helping healthcare facilities prepare for and respond 
to surges in demand (Wu et al., 2023). This proactive approach is 
particularly valuable in resource-limited settings, where the availability 
of medical resources may be constrained.

6. AI in public health communication

Effective public health communication is a vital component in 
managing infectious disease outbreaks, such as Mpox (Biesty et al., 
2024). The success of public health initiatives often hinges on the ability 
to convey accurate, timely, and culturally appropriate information to 
diverse populations. In the context of Mpox, where misinformation can 
spread rapidly and hinder public health efforts, AI offers powerful tools 
to enhance communication strategies. AI can help tailor public health 
messages to different audiences, ensuring that they are both effective 
and culturally relevant. Additionally, AI plays a crucial role in identi
fying and counteracting misinformation, which is essential for main
taining public trust and encouraging adherence to health guidelines 
(Edinger et al., 2023). This section discusses how AI can be leveraged in 
public health communication, focusing on personalized communication 
strategies and combating misinformation.

6.1. Personalized communication strategies

Public health communication must be carefully crafted to resonate 
with different segments of the population, taking into account factors 
such as cultural norms, language, literacy levels, and access to infor
mation. One-size-fits-all messages are often less effective, particularly in 
the diverse socio-cultural landscapes of African countries where Mpox is 
endemic. AI can significantly enhance the personalization of public 
health communication by analyzing demographic data and tailoring 
messages to the specific needs and preferences of different communities 
(Jungwirth and Haluza, 2023). AI algorithms can process vast amounts 
of demographic data, including age, gender, education level, income, 
language, and geographical location, to identify the most effective 
communication channels and content for each target audience (Haleem 
et al., 2022). For example, in a rural community with limited internet 
access, AI might suggest using radio broadcasts or community meetings 
as the primary means of disseminating information. In contrast, in urban 
areas with higher internet penetration, social media platforms might be 
more effective.

Moreover, AI can analyze social media activity, survey responses, 
and other data sources to assess how different communities respond to 
various types of messages. By examining factors such as the language, 
tone, and emotional appeal of successful messages, AI can help public 
health authorities craft communications that are more likely to be un
derstood, accepted, and acted upon (Nkabane-Nkholongo et al., 2023). 
For instance, in a community that places a high value on familial ties and 
collective well-being, messages that emphasize protecting family 
members from Mpox might resonate more strongly than those that focus 
on individual health. Additionally, AI can be used to translate and adapt 
health messages into multiple languages and dialects, ensuring that 
non-dominant language speakers are not excluded from critical infor
mation (Barwise et al., 2024). This capability is particularly important in 
multilingual regions where a significant portion of the population may 
not speak the national language fluently.

Several African case studies demonstrate the value of culturally 
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adapted AI chatbots in public health communication. In Lesotho, the 
“Nthabi” conversational agent, adapted from a U.S.-based model, was 
modified with local language (Sesotho idioms), culturally relevant non- 
verbal behaviors, and input from community leaders and youth women. 
Users reported the chatbot as trustworthy, relatable, and useful for 
reproductive health education (Nkabane-Nkholongo et al., 2023). In 
Senegal, the Saytù Hemophilie AI chatbot developed for people with 
haemophilia, available in French and Wolof, was co-designed with pa
tients and clinicians. It scored highly on usability and cultural relevance 
and significantly improved health knowledge among users in 
Wolof-speaking communities (Babington-Ashaye et al., 2023). By 
ensuring that health messages are accessible and culturally appropriate, 
AI can increase the likelihood that these messages will be heeded, ulti
mately contributing to more effective disease prevention and control.

6.2. Combating misinformation

Misinformation poses a significant threat to public health, particu
larly during infectious disease outbreaks when uncertainty and fear can 
lead to the rapid spread of false information. In the case of Mpox, 
misinformation can take many forms, from incorrect beliefs about the 
causes and symptoms of the disease to dangerous myths about preven
tion and treatment. Such misinformation can undermine public health 
efforts by leading people to ignore official guidance, delay seeking 
medical care, or engage in harmful behaviors (Edinger et al., 2023). AI 
offers powerful tools to combat misinformation by detecting false or 
misleading information as it emerges and enabling a rapid response. 
Using natural language processing (NLP) and machine learning tech
niques, AI can monitor social media platforms, news websites, blogs, and 
other online sources in real-time to identify content that contains 
misinformation (Santos, 2023). For example, AI algorithms can be 
trained to recognize specific keywords, phrases, and patterns commonly 
associated with false claims about Mpox. Once detected, this content can 
be flagged for review by public health authorities or automatically 
countered with accurate information.

AI can also analyze the spread of misinformation to understand how 
it propagates through different networks and communities. By mapping 
out the pathways through which false information spreads, AI can help 
public health officials target their counter-messaging efforts more 
effectively (Edinger et al., 2023). For instance, if misinformation is 
found to be spreading rapidly within a particular social media group or 
community, targeted interventions can be deployed to that group, such 
as posting corrected information, engaging trusted community leaders 
to refute the false claims, or adjusting public health messaging to 
address specific misconceptions.

On-ground implementations in African countries highlight the role of 
AI chatbots in countering misinformation. For instance, the Nigeria 
Centre for Disease Control (NCDC) and UNICEF launched an SMS and 
WhatsApp chatbot in Nigeria during COVID-19, providing vetted in
formation in local formats and reducing misinformation spread through 
community outreach (NCDC, 2020). Chatbots embedded in platforms 
such as RapidPro reached millions, often in multiple African languages, 
helping public health communications remain accurate and culturally 
resonant (UNICEF, 2021). Furthermore, AI can be used to evaluate the 
effectiveness of different counter-messaging strategies. By analyzing 
engagement metrics, such as shares, likes, and comments, AI can 
determine which types of corrective information are most effective at 
reducing the spread of misinformation. This continuous feedback loop 
allows public health authorities to refine their communication strategies 
in real-time, improving their ability to counteract misinformation and 
maintain public trust (Edinger et al., 2023).

7. AI in resource allocation and logistics

Efficient resource allocation and logistics are critical in managing 
outbreaks of infectious diseases like Mpox, particularly in resource- 

limited settings where supplies such as vaccines, antiviral drugs, and 
personal protective equipment (PPE) are often scarce (Persad et al., 
2023). A offers powerful tools to optimize these processes, ensuring that 
resources are distributed efficiently and that supply chains operate 
smoothly (Wu et al., 2023). By leveraging machine learning algorithms 
and predictive analytics, AI can analyze complex data sets to determine 
the most effective strategies for resource distribution and supply chain 
management. This section explores how AI can be applied to optimize 
resource allocation and improve supply chain management, ultimately 
enhancing the response to Mpox outbreaks.

7.1. Optimizing resource distribution

In the face of an outbreak, the timely and equitable distribution of 
resources such as vaccines, antiviral drugs, and PPE is essential to con
trolling the spread of the disease and protecting vulnerable populations 
(Persad et al., 2023). However, in many parts of Africa, where Mpox is 
endemic, the challenge of distributing limited resources is exacerbated 
by factors such as inadequate healthcare infrastructure, vast geograph
ical distances, and logistical constraints (Manirambona et al., 2022). AI 
can play a crucial role in addressing these challenges by optimizing 
resource distribution through advanced data analysis and 
decision-making algorithms.

Machine learning algorithms can analyze a wide range of factors to 
determine the most efficient allocation of resources. These factors 
include disease prevalence, population density, healthcare infrastruc
ture, transportation networks, and socio-economic conditions smoothly 
(Wu, et al., 2023). For example, AI models can process data on the 
current spread of Mpox to identify hotspots where the demand for 
vaccines or antiviral drugs is likely to be highest. By integrating this 
information with data on healthcare facility capacities and trans
portation routes, AI can recommend the most efficient distribution 
strategies, ensuring that resources are directed to areas where they will 
have the greatest impact.

Furthermore, AI can help balance the distribution of resources be
tween urban and rural areas, addressing the often-significant disparities 
in healthcare access (d’Elia et al., 2022). In many regions, rural com
munities are at a higher risk of being underserved due to their remote 
locations and the logistical challenges involved in reaching them. 
AI-driven resource allocation models can prioritize these areas, taking 
into account factors such as the time required to deliver supplies, the 
availability of healthcare personnel, and the local population’s vulner
ability to the disease (Wahl et al., 2018). By doing so, AI can help ensure 
that even the most remote and underserved communities receive the 
resources they need to combat Mpox effectively.

In addition to optimizing the distribution of physical resources, AI 
can also assist in allocating human resources, such as healthcare 
workers, to areas where they are most needed (Li et al., 2023). During an 
outbreak, the demand for healthcare personnel can quickly outstrip 
supply, particularly in regions with limited healthcare infrastructure. AI 
can analyze data on the availability of healthcare workers, the severity 
of the outbreak, and the local healthcare system’s capacity to determine 
the optimal deployment of personnel. This ensures that critical areas 
receive the support they need, reducing the strain on local healthcare 
systems and improving patient outcomes.

7.2. Improving supply chain management

Effective supply chain management is essential for ensuring that 
medical supplies, including vaccines, antiviral drugs, and PPE, are 
available when and where they are needed during an outbreak. How
ever, managing supply chains in the context of an infectious disease 
outbreak is fraught with challenges, including fluctuating demand, 
transportation delays, and potential bottlenecks in production or dis
tribution (Raj et al., 2022). AI-driven analytics can enhance supply chain 
management by predicting demand, identifying potential bottlenecks, 
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and optimizing procurement strategies, thereby ensuring that health
care providers have the necessary tools to manage Mpox cases effec
tively (Belhadi et al., 2021).

One of the key advantages of AI in supply chain management is its 
ability to forecast demand accurately. By analyzing data on disease 
trends, healthcare utilization, and previous outbreaks, AI models can 
predict the likely demand for medical supplies over time (Khosravi et al., 
2024). This allows public health authorities and healthcare providers to 
plan ahead, ensuring that they have sufficient stockpiles of essential 
supplies to meet anticipated needs. For instance, if AI models predict a 
surge in Mpox cases in a particular region, they can trigger orders for 
additional vaccines and PPE well in advance, preventing shortages that 
could otherwise hinder the response to the outbreak.

AI can also identify potential bottlenecks in the supply chain, such as 
delays in production, transportation, or distribution. By monitoring real- 
time data on supply chain operations, AI systems can detect early signs 
of disruptions and recommend corrective actions (Walter, 2023). For 
example, if a delay in the delivery of vaccines is detected, AI can suggest 
alternative transportation routes or suppliers to ensure that the vaccines 
reach their destination on time. This proactive approach helps to mini
mize the risk of supply chain disruptions, ensuring that critical supplies 
are available when needed.

Moreover, AI can optimize procurement strategies by analyzing 
factors such as cost, supplier reliability, and delivery times. During an 
outbreak, it is essential to balance the need for timely procurement with 
the constraints of budget and availability (Spieske et al., 2022). 
AI-driven procurement systems can evaluate different suppliers and 
delivery options to identify the most cost-effective and reliable sources 
for medical supplies (Khosravi et al., 2024). This not only helps to 
reduce costs but also ensures that healthcare providers receive 
high-quality supplies in a timely manner. In addition to optimizing the 
procurement and distribution of supplies, AI can also enhance inventory 
management within healthcare facilities. By monitoring usage patterns 
and predicting future needs, AI systems can help healthcare providers 
maintain optimal inventory levels, reducing the risk of both shortages 
and overstocking (Olayinka et al., 2024). This ensures that supplies are 
available when needed, while also minimizing waste and reducing costs. 
Table 4 below contains various AI technologies, their application and 
the expected outcomes in Mpox management in Africa. The public 
health stakeholders which are expected occupy prominent positions in 
the delivery of AI technologies are also included.

8. Challenges of using AI to manage and curb Mpox in Africa

While the application of AI holds significant promise in managing 
and reducing the spread of Mpox in Africa, there are several challenges 
that must be addressed to fully realize its potential. These challenges 
span across technical, infrastructural, ethical, and socio-economic di
mensions, and they highlight the complexities involved in deploying AI 
technologies effectively in diverse and resource-limited settings.

8.1. Limited digital infrastructure

One of the foremost challenges in implementing AI solutions in Af
rica is the limited digital infrastructure, particularly in rural and remote 
areas where Mpox is often endemic (Patel et al., 2023). Reliable internet 
connectivity, access to digital devices, and adequate power supply are 
essential for the functioning of AI-driven tools, yet these are not 
consistently available across the continent (Herath and Mittal, 2022). In 
many regions, the lack of robust digital infrastructure can severely 
hamper the deployment of AI technologies, from data collection and 
processing to the real-time application of AI models in the field. More
over, the digital divide between urban and rural areas further exacer
bates inequalities in healthcare delivery (Patel et al., 2023). While AI 
systems may be implemented more easily in urban centers with better 
infrastructure, rural communities, often the most vulnerable to out
breaks, may be left behind. Addressing these infrastructural gaps is 
critical to ensuring that AI-driven health interventions are inclusive and 
effective across all regions.

8.2. Data availability and quality

AI systems rely heavily on large datasets to train machine learning 
models, make predictions, and optimize resource allocation. However, 
in many parts of Africa, there is a lack of comprehensive, high-quality 
health data (Esan et al., 2025). Challenges such as underreporting of 
cases, inconsistent record-keeping, and limited access to electronic 
health records (EHRs) can significantly hinder the effectiveness of AI 
models (Tsai et al., 2020). The scarcity of accurate and up-to-date 
epidemiological data on Mpox, coupled with the variability in data 
quality across different regions, poses a major obstacle to the develop
ment and deployment of AI solutions (Zhang et al., 2024). Furthermore, 
there is often a lack of standardization in how health data is collected 
and reported across different countries and regions (Gong et al., 2022). 
This can make it difficult to aggregate and analyze data at a scale 
necessary for effective AI application. Without reliable data, AI models 

Table 4 
Overview of AI applications in Mpox management.

AI Technology Application Description Expected outcomes Public health 
stakeholders

Machine 
learning (ML)

Early detection, forecasting, disease 
classification and surveillance (Alnaji, 
2024; Munir et al., 2024; Patel et al., 
2023)

Analysing large datasets from health 
records, social media and neural networks 
can help detect early signs of outbreaks (Ou 
et al., 2024; Patel et al., 2023)

Improved speed and accuracy in the 
identification of Mpox outbreaks (Onyema 
et al., 2025; Chadaga et al., 2023)

Public health agencies, 
research and teaching 
hospitals

Natural 
Language 
Processing 
(NLP)

Monitoring and data analysis, chatbots 
and virtual assistants for education and 
awareness, risk information and 
reduction of misinformation (Patel 
et al., 2023)

The use of NLP to monitor social media for 
Mpox-related keywords and phrases. 
Interpreting unstructured text data from 
different channels including social media, 
news report, and official communications (
Chadaga et al., 2023)

Enhanced ability to produce fast detection 
and response to emerging Mpox cases and 
dispersal of misinformation in real-time (
Anoop & Sreelakshmi, 2023)

Social media 
companies, data 
scientists and 
epidemiologists

Predictive 
analytics

Predictive modelling, early detection in 
wildlife, sentiment analysis and public 
health resource optimisation (
Banuet-Martinez et al., 2023)

The analysis of historical data, climate 
patterns and population movements and 
other environmental and demographic 
changes to predict future outbreaks (
Banuet-Martinez et al., 2023)

Effective allocation of limited resources 
and availability of infrastructure at the 
expected outbreak locations showcasing 
improved preparedness (Banuet-Martinez 
et al., 2023)

Health ministries, 
NGOs

Computer 
vision

Diagnosis of Mpox (Soe et al., 2024) AI-based image analysis of skin lesions and 
other biomarkers to provide quick, accurate 
and reliable diagnosis of Mpox in mobile 
clinics (Soe et al., 2024)

Faster diagnosis and treatment of 
confirmed cases (Soe et al., 2024)

Mobile clinic, clinical 
laboratories and 
diagnostic centres
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may produce inaccurate or biased results, potentially leading to sub
optimal decision-making and resource allocation.

8.3. Ethical and privacy concerns

The use of AI in public health raises significant ethical and privacy 
concerns, particularly when it involves the collection and analysis of 
sensitive personal health data (Olawade et al., 2025a). In Africa, where 
there may be varying levels of awareness and regulation around data 
privacy, the implementation of AI-driven health initiatives could face 
resistance from communities concerned about how their data is used and 
protected. Issues such as data ownership, consent, and the potential for 
misuse of personal information must be carefully managed to build trust 
and ensure ethical compliance (Nienaber McKay et al., 2024). Moreover, 
there are significant concerns regarding algorithmic bias and the po
tential exacerbation of existing health disparities. If AI models are 
trained on datasets that underrepresent diverse populations affected by 
Mpox, they may produce biased results that favor urban, higher-income, 
or lighter-skinned individuals, undermining equity in detection and 
treatment (Singhal et al., 2024; Dankwa-Mullan, 2024). For example, 
predictive models derived from clinical data in the Global North may 
perform poorly in African settings, particularly for tropical diseases and 
populations with different genetics and physiology (Grancia, 2025). 
Also, intersectional ethical concerns arise when AI disadvantages in
dividuals who occupy multiple marginalised identities such as rural, 
low-literacy women or people living in informal settlements. These 
groups may have less internet access, fewer recorded health in
teractions, and thus generate less AI training data, leading to their sys
tematic underrepresentation in healthcare models (Bauer and Lizotte, 
2021). Ensuring that AI technologies are developed and applied in ways 
that are fair, transparent, and equitable is crucial to their success in 
public health contexts (Singhal et al., 2024).

8.4. Technical expertise and capacity building

The successful deployment of AI technologies in managing Mpox 
outbreaks requires a skilled workforce capable of developing, imple
menting, and maintaining these systems. However, there is a significant 
shortage of technical expertise in AI and data science across much of 
Africa (Ade-Ibijola and Okonkwo, 2023). This gap in human resources 
can limit the ability of health systems to effectively integrate AI tools 
into their operations, from disease surveillance to contact tracing and 
resource allocation. Capacity building is, therefore, a critical challenge. 
Governments, academic institutions, and international organizations 
must invest in education and training programs to develop the necessary 
expertise in AI and public health (Southworth et al., 2023). This includes 
not only training data scientists and AI specialists but also equipping 
healthcare workers with the skills to use AI tools effectively in their daily 
work. Without adequate investment in capacity building, the potential 
benefits of AI in managing Mpox may not be fully realized.

8.5. Financial and logistical constraints

Implementing AI solutions in the management of Mpox outbreaks 
also involves significant financial and logistical challenges. Developing, 
deploying, and maintaining AI systems can be costly, particularly in 
regions where healthcare budgets are already stretched thin. The initial 
investment required for AI infrastructure, software, and training can be 
prohibitive for many countries in Africa, limiting their ability to adopt 
these technologies on a wide scale (Arakpogun et al., 2021). However, to 
address these challenges, several funding mechanisms and support ini
tiatives have emerged to strengthen the digital health ecosystem across 
Africa.

Notably, the Africa Centers for Disease Control and Prevention (Af
rica CDC) has launched the AI4Health program, as part of its broader 
Digital Transformation Strategy. This initiative provides financial 

support, technical assistance, and innovation grants to help scale AI 
solutions in healthcare. The program also supports public-health infor
matics fellowships and innovation sandboxes that serve as collaborative 
environments for developing context-specific AI tools (Africa, 2023). 
Similarly, the HealthTech Hub Africa’s AI for Health Innovation Chal
lenge, backed by the Patrick J. McGovern Foundation, offers financial 
grants up to $150,000 as well as capacity-building and mentorship to 
early-stage health-tech startups that are leveraging AI to solve pressing 
health challenges across the continent (HealthTech Hub, 2023).

Despite these promising developments, logistical hurdles persist. 
Health systems in many parts of Africa remain fragmented and under- 
resourced, complicating the integration of AI without disrupting 
essential services. Effective implementation requires coordination 
among national governments, public health agencies, healthcare pro
viders, and international development partners. The Africa CDC’s fel
lowships and HealthTech Hub’s accelerator initiatives contribute not 
just funding, but also support for workforce development and system- 
wide integration - key components for ensuring that AI technologies 
are not only deployed but also embedded effectively within public 
health responses (Khorram-Manesh et al., 2024).

8.6. Resistance to technological adoption

Finally, there may be resistance to the adoption of AI technologies 
within healthcare systems and communities. Healthcare providers may 
be skeptical of relying on AI-driven tools, particularly if they are seen as 
replacing rather than augmenting human decision-making (Yelne et al., 
2023). Similarly, communities that are unfamiliar with AI technologies 
may be wary of their use in managing disease outbreaks, especially if 
they do not understand how these systems work or how their data will be 
used. Building trust and demonstrating the value of AI in improving 
health outcomes are essential to overcoming this resistance (O’Dell 
et al., 2022). Thus, to address skepticism among healthcare providers 
and communities, targeted training programs should be implemented to 
build confidence in using AI tools and clarify their role as 
decision-support systems rather than replacements for human expertise. 
Incorporating AI into hybrid workflows, where AI provides real-time 
insights while human professionals retain decision-making authority, 
can further ease concerns and promote adoption (Sokol et al., 2025). 
Engaging trusted local health workers as champions and piloting AI 
interventions in familiar clinical settings can demonstrate practical 
value and foster trust. Transparent communication and community ed
ucation campaigns can also help demystify AI, reinforcing its role as an 
enabler rather than a disruptor of care (Sokol et al., 2025).

8.7. Algorithmic fairness and bias mitigation framework

To ensure equitable AI implementation in Mpox management, a 
systematic methodological framework for auditing and ensuring algo
rithmic fairness is essential. This framework comprises four key phases: 
(1) Pre-deployment bias assessment involving comprehensive evalua
tion of training data representativeness across demographic groups, 
geographic regions, and socioeconomic strata, with particular attention 
to underrepresented populations in rural and remote areas; (2) Algo
rithm audit protocols implementing statistical parity, equalized odds, 
and calibration metrics to assess differential performance across sub
groups, utilizing techniques such as adversarial debiasing and fairness- 
aware machine learning; (3) Continuous monitoring systems employ
ing real-time bias detection algorithms that track performance dispar
ities during deployment, with automated alerts when fairness thresholds 
are breached; and (4) Iterative correction mechanisms incorporating 
feedback loops for model retraining, stakeholder engagement processes 
for fairness criteria definition, and community-based validation of AI 
outputs.

The framework specifically addresses African contexts by incorpo
rating intersectional analysis considering multiple identity dimensions 
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(rural/urban, gender, ethnicity, literacy level, economic status), estab
lishing culturally-appropriate fairness metrics developed in collabora
tion with local communities, and implementing participatory design 
processes that engage affected populations in defining equitable out
comes. Regular algorithmic audits should be conducted using stan
dardized fairness assessment tools adapted for resource-limited settings, 
with results transparently reported to stakeholders and communities. 
This systematic approach ensures that AI systems for Mpox management 
actively promote rather than perpetuate existing health inequities.

9. Future directions and recommendations

While AI technologies bring powerful capabilities to Mpox man
agement, it is essential to underscore that these tools are designed to 
support, not replace, human decision-making. In clinical and public 
health contexts, especially within low-resource African settings, the 
judgment of healthcare professionals remains central to interpreting AI 
outputs, adapting strategies to local realities, and ensuring ethical and 
culturally sensitive responses. AI functions best as a decision-support 
system, enhancing the speed and scope of analysis, but still depends 
on trained personnel to validate and act upon its recommendations 
(WHO, 2024e). This collaboration between humans and AI is particu
larly important in complex or high-stakes scenarios, such as triage, 
outbreak response coordination, and patient management, where 
contextual judgment and ethical considerations are indispensable (Sokol 
et al., 2025). Promoting human-AI synergy ensures that technological 
advances remain grounded in public health priorities and community 
trust.

As the application of AI in managing and reducing the spread of 
Mpox in Africa continues to evolve, it is crucial to consider the future 
directions and necessary steps to fully realize its potential. AI has 
demonstrated significant promise in enhancing various aspects of public 
health, from surveillance and contact tracing to resource allocation and 
communication. Also, targeted efforts must focus on precision 
enhancement through interdisciplinary collaboration and deployment 
of cost-effective technologies tailored to resource-limited settings. 
However, to maximize its impact on Mpox control, strategic efforts must 
be made to integrate AI into public health systems and advance research 
and development tailored to the specific challenges of managing this 
disease in Africa.

9.1. Defining AI’s role in Mpox response architecture

Throughout this review, AI is explicitly positioned as an augmenta
tive decision-support tool rather than an autonomous decision-maker in 
Mpox management systems. This human-AI collaborative approach 
recognizes that effective public health responses require the irreplace
able elements of human judgment, cultural sensitivity, ethical 
reasoning, and contextual understanding that AI systems cannot repli
cate. AI serves to enhance human capabilities by providing rapid data 
analysis, pattern recognition, predictive insights, and optimization rec
ommendations, while human experts retain ultimate responsibility for 
decision-making, strategy formulation, and ethical oversight.

In the Mpox response architecture, AI functions as an intelligent 
assistant that amplifies human capacity across surveillance (processing 
vast datasets to identify outbreak signals), contact tracing (automating 
data collection while requiring human verification), case management 
(providing risk stratification to support clinical judgment), communi
cation (generating culturally-appropriate content for human review and 
approval), and resource allocation (optimizing distribution plans for 
human implementation). This collaborative model is particularly crucial 
in African contexts where community trust, cultural understanding, and 
local knowledge systems are fundamental to successful public health 
interventions.

The augmentative approach ensures that AI implementation 
strengthens rather than undermines existing health system capacity, 

builds local expertise, and maintains community engagement essential 
for sustainable disease control. All AI recommendations require human 
validation, and systems must include override mechanisms enabling 
healthcare workers to modify or reject AI-generated suggestions based 
on local knowledge and professional judgment.

9.2. Integration of AI into public health systems

For AI to be truly effective in managing Mpox, it must be seamlessly 
integrated into existing public health systems. This integration requires 
a multifaceted approach that includes investment in infrastructure, 
training, and collaboration among key stakeholders (Patel et al., 2023). 
To support AI-driven initiatives, significant investments in digital 
infrastructure are needed, particularly in regions where such infra
structure is currently lacking. This includes improving internet con
nectivity, ensuring reliable power supply, and expanding access to 
digital devices in rural and underserved areas. By enhancing the digital 
backbone of healthcare systems, AI tools can be deployed more effec
tively, enabling real-time data collection, analysis, and response (Bajwa 
et al., 2021).

The successful deployment of AI technologies depends on the ability 
of healthcare workers to use these tools effectively. Training programs 
should be developed to equip healthcare professionals with the neces
sary skills to operate AI systems, interpret AI-generated data, and inte
grate AI insights into clinical and public health decision-making 
(Olawade et al., 2025b). This training should be ongoing and adapted to 
the evolving capabilities of AI technologies. The integration of AI into 
public health systems requires close collaboration between govern
ments, technology companies, and international organizations. Gov
ernments must play a leading role in creating policies and frameworks 
that support the ethical and equitable use of AI in healthcare (Mennella 
et al., 2024). Technology companies should work closely with public 
health authorities to develop AI solutions that are tailored to the specific 
needs and challenges of managing Mpox in Africa.

Importantly, AI integration must align with existing continental and 
national policy frameworks. The Africa CDC Digital Transformation 
Strategy (2023) outlines flagship initiatives such as digital surveillance 
systems, public health informatics fellowships, and scalable HealthTech 
platforms that directly support AI adoption for disease surveillance, 
contact tracing, and telehealth (Africa, 2023). Meanwhile, the Smart 
Africa Alliance’s establishment of the Africa Artificial Intelligence 
Council in April 2025 marks a coordinated effort to develop AI 
computing infrastructure, datasets, governance frameworks, and skills 
development across the continent (Smart Africa Alliance, 2025). These 
policy linkages demonstrate that AI-driven Mpox interventions have an 
established framework into which they can be integrated, accelerating 
their adoption and scale.

International organizations, such as the WHO, can facilitate knowl
edge sharing, provide technical assistance, and promote best practices in 
the use of AI for public health (World Health Organization, 2024b). By 
prioritizing these areas, AI can be more effectively integrated into public 
health systems, enhancing the capacity to manage and control Mpox 
outbreaks.

Furthermore, public health systems should enhance AI algorithm 
precision through interdisciplinary collaboration by establishing multi- 
stakeholder development teams combining epidemiologists, data sci
entists, clinicians, and community representatives to co-develop 
culturally-appropriate AI algorithms. Implement systematic collection 
of African-specific training data reflecting local disease presentations, 
demographic patterns, and environmental factors through university- 
healthcare facility partnerships. Develop validation frameworks 
testing algorithms across diverse African contexts and establish real- 
time feedback systems for continuous algorithm improvement based 
on frontline healthcare worker observations.

D.B. Olawade et al.                                                                                                                                                                                                                             Journal of Virological Methods 339 (2026) 115270 

12 



9.3. Research and development

Ongoing research and development (R&D) are critical to advancing 
the use of AI in the management of Mpox. To address the unique chal
lenges posed by the disease in Africa, R&D efforts should focus on 
refining AI algorithms, developing new applications, and ensuring that 
AI-driven solutions are culturally and contextually appropriate 
(Chadaga et al., 2023). Existing AI algorithms must be continuously 
refined to improve their accuracy and effectiveness in predicting, 
detecting, and managing Mpox outbreaks. This includes the develop
ment of more sophisticated predictive models that can account for the 
complex epidemiological and environmental factors influencing the 
spread of the virus in different regions. Additionally, efforts should be 
made to enhance the accuracy of AI-driven diagnostic tools, particularly 
in resource-limited settings where access to laboratory facilities may be 
restricted (Oduoye et al., 2024).Beyond refining existing tools, there is a 
need for the development of new AI applications that address specific 
gaps in the current public health response to Mpox (Patel et al., 2023). 
This could include AI systems designed to support the rapid develop
ment and distribution of vaccines, tools for real-time monitoring of 
vaccine efficacy, and AI-driven platforms that facilitate community 
engagement and participation in public health initiatives. The devel
opment of AI applications that can operate effectively in low-resource 
environments, where digital infrastructure and data availability may 
be limited, is also a priority (Osonuga et al., 2025).

Additionally, the deployment of low-cost AI technologies in 
resource-limited areas such as, offline-capable mobile applications 
functioning without internet connectivity on low-end smartphones, 
SMS-based AI surveillance systems utilizing basic mobile phones for case 
reporting and contact tracing, and solar-powered diagnostic devices for 
remote health facilities. Establish community-based digital health hubs 
with shared tablet computers and portable connectivity serving multiple 
villages to reduce per-capita costs while enabling access to AI-powered 
health tools.

AI-driven public health communication must be tailored to the cul
tural and social contexts of the populations it aims to serve. Research 
should focus on developing AI tools that can analyze and adapt to the 
cultural nuances of different communities, ensuring that health mes
sages are not only accurate but also resonate with the intended audi
ence. This includes understanding language preferences, social norms, 
and trust dynamics within communities. By developing culturally sen
sitive communication strategies, AI can play a key role in improving 
public understanding of Mpox, reducing stigma, and promoting pre
ventive behaviors. AI technologies continue to evolve, it is essential that 
ethical considerations remain at the forefront of R&D efforts. Research 
should explore ways to ensure that AI systems are used in ways that 
protect individual privacy, prevent bias, and promote equity. This in
cludes the development of ethical guidelines and frameworks that can 
guide the responsible use of AI in public health. Table 5 below gives an 
overview of the current challenges facing AI implementation in the 
management and control of Mpox in Africa. Detailed information on the 
challenges, potential solution and involves stakeholders are highlighted.

Lastly, there should be concrete implementation models and sus
tainable tiered deployment starting with 3–5 pilot districts per country 
before scaling, establish public-private partnerships with defined re
sponsibilities for funding and technical support, and create 6-month 
local technician training programs covering AI system maintenance 
and troubleshooting. Develop graduated financing models transitioning 
from international donor support (Years 1–2) to government budgets 
(Years 3–5) to local revenue generation (Years 5 +). Create regional 
knowledge sharing platforms through Africa CDC frameworks and 
establish standardized performance monitoring with quarterly review 
processes for continuous improvement.

These specific strategies enable African countries to move beyond 
aspirational AI adoption toward practical, sustainable integration that 
meaningfully enhances Mpox management while building local capacity Ta
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and ensuring long-term viability.

10. Conclusion

Artificial Intelligence (AI) offers substantial promise in managing 
and mitigating the spread of Mpox in Africa, a region that faces unique 
challenges in controlling this zoonotic disease. Through its ability to 
enhance disease surveillance, automate and refine contact tracing, 
optimize case management, tailor public health communication, and 
improve resource allocation and logistics, AI has the potential to achieve 
measurable improvements in Mpox management outcomes. Evidence 
from similar AI applications in infectious disease control suggests 
achievable targets including: 40–60 % reduction in outbreak detection 
time, 25–35 % improvement in diagnostic accuracy rates, 30–50 % 
decrease in contact tracing duration, 20–30 % reduction in resource 
allocation inefficiencies, and 15–25 % improvement in treatment 
response times. These technologies can transform how public health 
responses are conducted, enabling more timely, accurate, and effective 
interventions that are crucial in preventing widespread outbreaks.

However, the successful deployment of AI in this context requires 
more than just technological advancements. It demands careful atten
tion to ethical considerations, particularly in protecting data privacy and 
ensuring that AI applications do not exacerbate existing health in
equities. Additionally, substantial investments in digital and healthcare 
infrastructure are necessary to support the widespread adoption of AI 
tools, particularly in underserved and remote areas where they could 
have the greatest impact. Equitable access to these technologies must be 
a priority to ensure that all populations benefit from AI-driven public 
health initiatives.

Immediate actionable next steps for advancing AI implementation in 
African Mpox management include: (1) launching multicenter valida
tion studies across 5–10 African countries within 12 months to establish 
baseline performance metrics and cultural adaptation requirements; (2) 
developing policy advocacy roadmaps for AI integration into national 
health strategies through partnerships with Africa CDC and WHO 
Regional Office for Africa; (3) establishing standardized evaluation 
frameworks with specific key performance indicators for AI system 
assessment; (4) creating pilot implementation programs in 15–20 dis
tricts across different African regions to demonstrate feasibility and cost- 
effectiveness; and (5) building sustainable financing mechanisms 
through international development partnerships and domestic health 
budget allocations. These concrete steps, supported by ongoing research 
and development, will be essential for building resilient healthcare 
systems capable of responding swiftly and effectively to future public 
health threats. By embracing AI with a focus on equity, ethics, and 
collaboration, Africa can enhance its capacity to protect public health 
and prevent the devastating impacts of infectious diseases.

10.1. Limitations

This narrative review has several important limitations that must be 
acknowledged when interpreting the findings. First, the included studies 
exhibited several inherent biases that may affect the validity of con
clusions. Publication bias was evident, with a predominance of studies 
reporting positive AI outcomes while negative or inconclusive results 
were underrepresented in the literature. Geographic bias was substan
tial, as most AI implementation studies originated from high-income 
countries with limited direct applicability to African health systems, 
and the few African studies were concentrated in urban settings with 
better infrastructure. Additionally, temporal bias affected the review, as 
the rapid evolution of AI technologies rendered older studies less rele
vant, while newer technologies lacked sufficient real-world validation 
data.

Second, significant data scarcity constraints limited the compre
hensiveness of this review. The paucity of empirical studies specifically 
addressing AI applications for Mpox management in African contexts 

necessitated extrapolation from related infectious disease AI imple
mentations. Most included studies lacked long-term follow-up data on AI 
system sustainability and performance degradation over time. Further
more, the absence of standardized metrics across studies made direct 
comparison of AI effectiveness challenging, and limited reporting of 
implementation costs and resource requirements hindered economic 
evaluation.

Third, substantial generalizability constraints affect the applicability 
of findings across diverse African contexts. The heterogeneity of 
healthcare infrastructure, digital literacy levels, and technological ca
pacity across African countries limits the universal applicability of 
proposed AI solutions. Cultural and linguistic diversity across the 
continent may affect the performance of AI systems trained on data from 
specific populations. Additionally, the dynamic nature of Mpox epide
miology and the emergence of new viral clades may require continuous 
adaptation of AI algorithms, potentially limiting the longevity of current 
recommendations.

Finally, as a narrative review, this study is subject to methodological 
limitations including potential subjective bias in study selection and 
interpretation despite systematic screening procedures. The lack of 
meta-analytical techniques prevented quantitative synthesis of out
comes, and the absence of formal risk of bias assessment tools specif
ically designed for diverse study types may have affected quality 
evaluation. These limitations underscore the need for more rigorous 
systematic reviews and primary research studies specifically focused on 
AI implementation for Mpox management in African settings.

10.2. Data availability and reproducibility statement

As a narrative review, this study does not generate primary datasets 
or algorithms. However, all methodological materials including com
plete search strategies, inclusion/exclusion criteria, data extraction 
templates, quality assessment frameworks, and screening decisions are 
available upon reasonable request to the corresponding author.

This review emphasizes the critical importance of open-source 
practices in AI for health applications in African settings. Future AI 
implementations for Mpox management should prioritize open-source 
algorithm development, transparent dataset sharing through public re
positories (appropriately anonymized), and reproducible research 
practices with detailed methodological documentation. Proprietary AI 
solutions create implementation barriers in resource-limited settings 
due to cost constraints and technological dependencies.

Open science approaches enhance both scientific reproducibility and 
equitable access to AI-driven public health tools, enabling local adap
tation and sustainable implementation across diverse African contexts. 
This review adheres to transparent reporting practices and encourages 
all AI implementation studies to adopt open science principles to 
maximize global health equity impact.
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Glossary of terms

AI (Artificial Intelligence): The simulation of human intelligence processes by machines, 
especially computer systems.

NLP (Natural Language Processing): A subfield of AI that focuses on enabling machines to 
understand, interpret, and respond to human language.

CNN (Convolutional Neural Network): A type of deep learning algorithm primarily used for 
image recognition and classification tasks.

ML (Machine Learning): A subset of AI involving algorithms that improve automatically 
through experience.

EHR (Electronic Health Record): A digital version of a patient’s paper chart that contains 
medical history, diagnoses, medications, and treatment plans.

NGO (Non-Governmental Organization): A non-profit group that operates independently of 
any government, typically aiming to address social or political issues.

IDSR (Integrated Disease Surveillance and Response): A strategy used by public health sys
tems, especially in Africa, to detect and respond to disease threats.

SORMAS (Surveillance Outbreak Response Management and Analysis System): A digital sys
tem for comprehensive disease surveillance

CRISPR/Cas12a (Clustered Regularly Interspaced Short Palindromic Repeats / CRISPR- 
associated protein 12a): A gene-editing tool derived from bacterial immune systems, used 

for precise detection or modification of DNA sequences; in diagnostics, it enables 
highly specific viral pathogen identification.

SPR (Surface Plasmon Resonance): Optical sensors that detect molecular interactions on a 
metal surface by measuring changes in light reflection, enabling label-free, real-time 
detection of biomolecules.

SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2): The virus responsible for 
COVID-19, notable for its global impact and the development of advanced diagnostic 
technologies to detect its variants.

RT-PCR (Reverse Transcription Polymerase Chain Reaction): A laboratory technique that 
converts viral RNA into DNA and amplifies it, commonly used to detect RNA viruses.

ELISA (Enzyme-Linked Immunosorbent Assay): A biochemical technique that uses antibodies 
and enzymes to detect the presence of antigens or antibodies in a sample.
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