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ARTICLE INFO ABSTRACT
Keywords: Background: Clinical trials face unprecedented challenges including recruitment delays affecting 80% of studies,
Artificial intelligence escalating costs exceeding $200 billion annually in pharmaceutical R&D, success rates below 12%, and data
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quality issues affecting 50% of datasets. Artificial intelligence (AI) offers transformative solutions to address
these systemic inefficiencies across the clinical trial lifecycle.

Objective: To evaluate the current state, future potential, and implementation challenges of Al technologies in
clinical trials, providing evidence-based guidance for responsible Al integration while maintaining patient safety
and scientific integrity.

Method: Comprehensive narrative review following established guidelines for literature synthesis. Systematic
search of PubMed, Embase, IEEE Xplore, and Google Scholar databases from January 2015 to December 2024.
Data extraction and narrative synthesis organized thematically according to clinical trial lifecycle stages.
Results: Analysis of relevant studies demonstrated substantial Al benefits: patient recruitment tools improved
enrollment rates by 65%, predictive analytics models achieved 85% accuracy in forecasting trial outcomes, and
Al integration accelerated trial timelines by 30-50% while reducing costs by up to 40%. Digital biomarkers
enabled continuous monitoring with 90% sensitivity for adverse event detection. However, significant imple-
mentation barriers emerged, including data interoperability challenges, regulatory uncertainty, algorithmic bias
concerns, and limited stakeholder trust.

Conclusion: Al represents a transformative force in clinical research with proven capabilities to enhance effi-
ciency, reduce costs, and improve patient outcomes. Realizing this potential requires addressing technical
infrastructure limitations, developing explainable Al systems, establishing comprehensive regulatory frame-
works, and fostering collaborative efforts between technology developers, clinical researchers, and regulatory
agencies to ensure responsible implementation.

1. Introduction over 400,000 studies registered on ClinicalTrials.gov as of 2024, rep-
resenting a five-fold increase since 2005 [1]. This expansion reflects the

Clinical trials represent the cornerstone of evidence-based medicine, increasing complexity of modern medical research, driven by advances
serving as the definitive pathway for evaluating the safety and efficacy in genomics, personalised medicine, and novel therapeutic modalities
of medical interventions before they are introduced to patients. The including cell and gene therapies, immunotherapies, and precision
global clinical trials landscape has witnessed exponential growth, with oncology approaches. However, despite this remarkable growth, the
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traditional clinical trial paradigm faces unprecedented challenges that
threaten its sustainability and efficiency. The pharmaceutical industry
invests approximately $200 billion annually in research and develop-
ment, yet the success rate for new drug approvals remains below 12 %,
with average development costs reaching $2.6 billion per approved drug
[2].

The clinical trials enterprise faces a multifaceted crisis characterised
by escalating costs, prolonged timelines, and systemic inefficiencies that
fundamentally undermine its primary mission of delivering life-saving
treatments to patients. Contemporary Phase III trials require an
average investment of $19 million and consume 6-7 years from initia-
tion to completion [3]. The most critical challenge is patient recruit-
ment, with 80 % of trials experiencing significant delays due to
enrollment challenges, and 37 % of investigational sites failing to recruit
a single participant [4]. This recruitment failure extends trial timelines
by an average of 6-8 months, substantially increasing costs whilst
delaying patient access to potentially life-saving treatments. Addition-
ally, traditional data collection methods rely heavily on manual pro-
cesses, resulting in high error rates. Studies indicate that up to 50 % of
clinical trial data contain errors or inconsistencies, requiring extensive
cleaning processes that further delay study completion [5]. The regu-
latory landscape has become increasingly complex, with mounting
documentation requirements contributing significantly to trial costs,
whilst traditional recruitment approaches often result in homogeneous
study populations that inadequately represent real-world patient di-
versity, undermining result generalisability [6].

The convergence of technological and scientific developments cre-
ates unprecedented opportunities to address these challenges through
artificial intelligence (AI) integration. The proliferation of electronic
health records (EHRs), now covering over 95 % of hospitals, has
generated vast repositories of clinical data, providing previously inac-
cessible raw material for Al-powered insights and predictions [7].
Simultaneously, breakthroughs in machine learning, particularly deep
learning and natural language processing, have demonstrated remark-
able capabilities in pattern recognition, predictive modelling, and
automated decision-making, enabling algorithms to process complex
datasets and identify subtle patterns impossible for human analysts to
detect [8,9]. The democratisation of computational infrastructure
through cloud computing has reduced costs by over 90 % whilst
enabling real-time analysis of large-scale datasets [10]. Furthermore,
the development of federated learning approaches enhances data pri-
vacy while leveraging multi-institutional data for AI training [11].
Finally, regulatory agencies worldwide are increasingly recognising AI's
potential to enhance clinical trial quality and efficiency, with the FDA’s
Digital Health Innovation Plan and EMA’s guidance on computerised
systems demonstrating growing acceptance of Al-powered trial tools
[12-14].

This comprehensive review encompasses Al applications across all
phases of clinical development, from Phase I safety studies through
Phase IV post-market surveillance, covering diverse therapeutic areas
whilst extending beyond traditional pharmaceutical trials to include
medical device studies, digital therapeutics, and innovative trial designs
such as master protocols and decentralised trials [15-17]. The signifi-
cance extends beyond academic interest, offering practical value for
clinical research organisations to inform Al investment decisions, reg-
ulatory agencies to develop oversight frameworks, technology de-
velopers to identify market opportunities, and patient advocacy groups
to understand Al-powered trial benefits and risks [14,18,19]. This re-
view addresses critical gaps in existing literature that typically focus on
narrow Al applications or specific therapeutic areas, failing to provide
comprehensive coverage of Al's transformative potential across the
entire clinical trial lifecycle [20,21]. Unlike previous reviews examining
isolated applications, this analysis adopts a holistic approach, examining
Al integration across all trial phases whilst synthesising empirical evi-
dence from over 127 studies to provide quantitative assessments of Al
performance [22,23].
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Given the critical challenges facing clinical trials, recruitment crises
delaying 80 % of studies, data quality issues affecting 50 % of datasets,
regulatory complexity consuming 30 % of budgets, and limited diversity
undermining generalisability [24-26] and unprecedented technological
opportunities presented by Al advances achieving human-level perfor-
mance in medical tasks [8,14], this comprehensive review addresses the
urgent need to evaluate AI's transformative potential across the clinical
trial lifecycle. The primary aim is to evaluate the current state, future
potential, and implementation challenges of artificial intelligence
technologies in clinical trials, providing evidence-based guidance
through systematic assessment of Al applications documenting current
capabilities and performance metrics; evidence synthesis identifying
proven benefits and knowledge gaps; implementation framework
development addressing technical, regulatory, and ethical consider-
ations; and barrier identification with proposed mitigation strategies.
Secondary objectives encompass regulatory and ethical analysis exam-
ining algorithmic bias and transparency requirements [27]; stakeholder
perspective integration from clinical investigators, regulatory agencies,
technology developers, and patient advocates; future research prioriti-
sation including federated learning, explainable Al, and adaptive trial
optimisation; and technology roadmap development for emerging ap-
plications including quantum computing and blockchain technologies.
This review makes novel contributions through: (1) the first compre-
hensive benchmarking of Al algorithm performance across clinical trial
applications, (2) development of a risk-stratified framework for Al
implementation, and (3) systematic analysis of data complexity chal-
lenges specific to medical Al applications. By providing comprehensive,
evidence-based guidance on responsible Al integration, this work sup-
ports clinical research evolution towards a more sustainable, efficient,
patient-centric paradigm that can accelerate life-saving treatment de-
livery whilst maintaining the highest standards of safety and ethical
conduct.

It is crucial to clarify that the AI technologies discussed in this review
are primarily task-specific Al tools rather than the large language models
(LLMs) that most people associate with “AI” today. These include highly
specialised hybrid machine learning and rules-based engines designed
for specific clinical applications, such as natural language processing
tools for clinical documentation that map clinical entities onto concepts
from standardised medical vocabularies like UMLS, accompanied by
clinical intent analysis. This differs fundamentally from how LLMs
process clinical information, while LLMs excel at entity recognition, they
perform poorly on clinical intent determination that requires deep
domain expertise and structured medical knowledge.

2. Methods

This narrative review was conducted following established guide-
lines for comprehensive literature synthesis [28]. We performed a sys-
tematic search of multiple databases including PubMed, Embase, IEEE
Xplore, and Google Scholar, covering the period from January 2015 to
December 2024. The search strategy employed a combination of Medi-
cal Subject Headings (MeSH) terms and free-text keywords including
“artificial intelligence,” “machine learning,” “clinical trials,” “patient
recruitment,” “digital biomarkers,” “predictive analytics,” “natural
language processing,” and related terms.

Inclusion criteria encompassed peer-reviewed articles, conference
proceedings, and grey literature reporting on Al applications in clinical
trials, including feasibility studies, implementation reports, and theo-
retical frameworks. We excluded non-English publications, case reports
with fewer than 10 participants, and studies focusing solely on pre-
clinical AI applications without clinical trial relevance.

Two independent reviewers screened titles and abstracts, with full-
text review conducted for potentially relevant studies. Data extraction
captured study characteristics, AI methodologies employed, clinical trial
phases, outcome measures, and reported benefits or limitations. Quality
assessment was performed using the Newecastle-Ottawa Scale for
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observational studies and the Cochrane Risk of Bias tool for randomised
trials.

Given the rapidly evolving nature of Al technology and the hetero-
geneity of study designs, we adopted a narrative synthesis approach,
organising findings thematically according to clinical trial lifecycle
stages. This methodology allowed for comprehensive coverage of
diverse Al applications whilst maintaining focus on practical imple-
mentation considerations.

3. Al in clinical trial design and feasibility
3.1. Protocol optimisation through historical data analysis

Al-driven protocol optimisation represents a fundamental shift from
intuition-based trial design to evidence-informed planning. Advanced
machine learning (ML) algorithms analyse vast repositories of historical
trial data, identifying patterns that inform optimal study parameters
[29,30]. Natural language processing (NLP) tools systematically extract
insights from thousands of prior study protocols, regulatory sub-
missions, and published literature to propose evidence-based inclusion/
exclusion criteria [31-33]. These Al-driven approaches demonstrate
significant advantages over traditional statistical methods: whilst con-
ventional feasibility assessment relies on limited historical data and
clinical intuition, machine learning algorithms can process thousands of
variables simultaneously, achieving 80 % accuracy in protocol optimi-
sation compared to 65 % accuracy with traditional regression-based
approaches [34]. Fig. 1 illustrates a schematic overview of Al applica-
tions in protocol optimisation and site selection for clinical trial design.

Deep learning models can predict protocol feasibility by analysing
multiple variables simultaneously, including target population charac-
teristics, geographic distribution, seasonal variations, and competitive
landscape factors. These predictive models achieve accuracy rates
exceeding 80 % in forecasting enrollment success, significantly out-
performing traditional feasibility assessments [35-37].

However, the complexity of medical data presents significant chal-
lenges for AI algorithms. Clinical datasets often contain high-
dimensional, heterogeneous data types including structured laboratory
values, unstructured clinical notes, imaging data, and genomic
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information. This complexity can lead to spurious correlations, for
instance, AI models have been observed to inadvertently learn irrelevant
features such as hospital-specific documentation patterns rather than
clinically meaningful variables [38]. A notable example is Google’s
retinal imaging system that achieved high accuracy in predicting patient
gender from retinal photographs (despite male and female retinas being
anatomically identical), highlighting the risk of algorithms identifying
clinically irrelevant but statistically significant patterns [39,40].

Furthermore, Al systems enable dynamic protocol optimisation,
continuously refining study parameters based on accumulating real-
world evidence [41,42]. This adaptive approach supports the develop-
ment of more efficient master protocols, including platform and basket
trials that can accommodate multiple interventions or patient pop-
ulations within a single study framework [43,44].

3.2. Site selection and feasibility assessment

Machine learning algorithms revolutionise site selection by inte-
grating multiple data sources to predict investigator performance and
recruitment potential. These models analyse demographic data, disease
prevalence, healthcare infrastructure, investigator experience, and his-
torical site performance metrics to rank potential study sites [45].

Advanced geospatial analysis tools incorporate socioeconomic fac-
tors, transportation accessibility, and competing trial activity to opti-
mise site selection strategies. By predicting enrollment rates at the site
level, AI tools enable more accurate timeline forecasting and resource
allocation, reducing the risk of study delays and cost overruns.

Table 1 demonstrates substantial improvements achieved through Al
applications in trial design, with particularly strong performance in
protocol optimisation and competitive intelligence gathering. However,
it’s important to note that while these AI tools show superior perfor-
mance to traditional approaches, they require careful validation and
ongoing monitoring to ensure clinical relevance.

AI-DRIVEN AI-ENHANCED
PROTOCOL OPTIMISATION SITE SELECTION

s i B e S G S 3 e R e e \
i 7 N : I e N
: Inputs I Data sources :
: « Historical trial data « Investigator metrics I
| « Prior protocols - » Demographics :
: « Regulatory submissions « Healthcare :
I « Literature infrastructure |
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: \S \L > | : \- Ceospatialdata ) |
| | | I
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I ML/NLP/deep : : ML/geospatal :
: learning analytics I [ analysis I

|

: . Su_ggz_asted eligibility : I » Ranked site candidates :
! criteria ! : « Enroliment rate I
: « Predicted feasibility : I forecasts :
| * Adaptive protocol design ! : » Optimized resource I
I\ = - : 1 \__ allocation ]

Fig. 1. Schematic overview of artificial intelligence integration in clinical trial protocol optimisation and site selection. Al technologies (machine learning,
deep learning, and natural language processing) leverage historical trial data and site metrics to inform evidence-based protocol design, predict feasibility, and
optimize site selection. This approach enables dynamic, data-driven decision-making that streamlines trial planning, enhances enrollment forecasting, and reduces

operational risks.



D.B. Olawade et al.

Table 1
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Al Applications in Trial Design and Site Selection — Performance Comparison with Traditional Methods.

Application AI Technology Traditional Method AI Performance Key Benefits
Performance
Protocol Optimisation NLP + ML 65 % prediction accuracy 80 % prediction accuracy Reduced design time, improved
[8,46,47] feasibility
Site Selection [48-50] Predictive 45 % enrollment forecast 75 % enrollment forecast accuracy Better enrollment forecasting
Analytics accuracy

Feasibility Assessment [51-53]

Competitive Intelligence
[54-56]

Population Modelling [8,49,57]

Machine Learning
Data Mining

8-12 weeks planning time
60 % trial coverage

Deep Learning 55 % recruitment accuracy

4-6 weeks planning time
90 % coverage of relevant trials

Risk mitigation, resource optimisation
Market landscape analysis

75 % accuracy in recruitment
forecasting

Patient availability prediction

4. Al-driven patient recruitment and screening
4.1. Predictive matching and participant identification.

Patient recruitment represents the most critical bottleneck in clinical
trial conduct, with Al offering transformative solutions through auto-
mated participant identification and matching systems. Advanced nat-
ural language processing (NLP) algorithms scan electronic health
records (EHRs), clinical notes, and laboratory results to identify poten-
tially eligible participants with unprecedented efficiency and accuracy
[58,59].

IBM Watson for Clinical Trial Matching serves as a concrete example
of AI implementation challenges and benefits. While the system
demonstrated 78 % accuracy in patient-trial matching and reduced
screening time by 78 %, real-world deployment revealed significant
implementation barriers [60]. The cost of integrating Watson with
hospital electronic medical record (EMR) systems ranged from $250,000
to $500,000 per instance, making it economically unsustainable even for
high-cost oncology trials. Each Epic EMR implementation proved
unique, requiring extensive customisation for local clinical terminology,
LOINC codes, laboratory result units, and radiology reporting styles
[61].

Machine learning models can also predict a patient’s likelihood of
enrollment success by analysing historical patterns, demographic fac-
tors, and clinical characteristics [36,62]. This predictive capability en-
ables targeted recruitment strategies, focusing resources on participants
most likely to enroll and complete study participation, ultimately
reducing delays and costs associated with trial execution [37,63].

4.2. Addressing recruitment disparities and enhancing diversity

Al systems hold significant potential to address longstanding dis-
parities in clinical trial participation, particularly in terms of racial,
ethnic, and socioeconomic representation. Algorithmic approaches can
identify and flag underrepresented populations using real-world data-
sets, enabling targeted outreach strategies [8,64]. Natural language
processing tools can analyse social determinants of health, trans-
portation barriers, and cultural factors that influence trial participation,
informing the development of more inclusive recruitment strategies
[65-67]. By identifying and addressing systemic barriers to participa-
tion, such as structural bias, digital access gaps, and linguistic mis-
matches, Al-driven approaches can enhance trial diversity whilst
maintaining scientific rigor [68-70].

4.3. Virtual screening and remote consent processes

Al-powered virtual screening platforms enable remote participant
evaluation, reducing geographical barriers to trial participation [71,72].
Computer vision algorithms can analyse medical images, whilst NLP
tools process patient-reported outcomes and digital health data to
conduct preliminary eligibility assessments [72,73]. Intelligent chatbots
and conversational Al systems facilitate remote consent processes,

providing personalised information delivery and addressing participant
questions in real-time [74,75]. These systems can adapt communication
style and content based on participant literacy levels, cultural back-
grounds, and individual preferences [76,77].

4.4. Risk-stratified framework for AI implementation in patient
recruitment

Different Al applications in patient recruitment carry varying levels
of risk and require tailored implementation strategies. Low-risk appli-
cations such as cohort size estimation carry relatively low financial
consequences when errors occur, making them ideal entry points for Al
implementation [78]. These applications can be effectively mitigated
through statistical validation and manual spot-checking, with oversight
provided by statisticians who review sample size calculations. The
relatively contained impact of errors in this category allows organisa-
tions to gain experience with Al systems whilst minimising potential
adverse outcomes [79].

Medium-risk applications encompass recruitment strategy optimi-
sation, where errors may result in time delays and recruitment failures
but do not directly impact patient safety. These applications benefit from
A/B testing methodologies that compare Al-recommended approaches
against traditional methods, providing empirical evidence of effective-
ness whilst limiting exposure to potential failures [78]. Clinical research
coordinators provide appropriate oversight for this category, ensuring
that recruitment strategies align with study objectives and regulatory
requirements.

High-risk applications involving patient eligibility determination
carry the most significant consequences, as errors may result in inap-
propriate inclusion or exclusion of patients from clinical trials. These
applications require the most stringent safeguards, including mandatory
physician review of AI recommendations and principal investigator
approval for all eligibility decisions [80]. This multi-layered oversight
ensures that clinical expertise remains central to patient safety decisions
whilst leveraging Al capabilities to enhance efficiency and consistency
in the screening process.

5. Al in data Capture, Monitoring, and analysis
5.1. Digital biomarkers and continuous monitoring

The integration of Al with wearable technologies and digital health
platforms enables continuous patient monitoring through digital bio-
markers, representing a paradigm shift from episodic clinical assess-
ments to real-time health surveillance. Deep learning algorithms analyse
multi-modal sensor data, including accelerometry, heart rate variability,
sleep patterns, and vocal biomarkers, to detect subtle changes in patient
status [81-83].

Compared to traditional monitoring approaches that rely on periodic
clinic visits and manual data collection, Al-powered continuous moni-
toring systems demonstrate superior sensitivity and specificity. Tradi-
tional monitoring typically achieves 70-75 % sensitivity for adverse
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event detection, whilst Al-based digital biomarker systems achieve 90 %
sensitivity with real-time alerts [84,85]. However, this improved per-
formance comes at the cost of increased false positive rates (15-20 % vs.
5-10 % for traditional methods), requiring careful threshold calibration
and clinical validation [86,87].

These Al-powered monitoring systems can identify early warning
signs of adverse events, disease progression, or treatment response,
enabling proactive clinical management and reducing the risk of serious
safety events. For example, models using smartwatch-derived data have
achieved 93 % accuracy and 96 % AUROC in mortality prediction
among cancer patients [88]. Machine learning models achieve sensi-
tivity rates exceeding 90 % in detecting clinically significant changes
across various therapeutic areas, such as predicting clinical deteriora-
tion in COVID-19 patients [89,90].

5.2. Risk-Based monitoring and quality assurance

Al transforms clinical trial monitoring from reactive, site-visit-based
approaches to proactive, data-driven quality assurance systems. Ma-
chine learning algorithms analyse data patterns across multiple sites to
identify anomalies, protocol deviations, and potential data integrity is-
sues in real-time [91-93]. Traditional monitoring approaches require
clinical research associates to physically visit sites and manually review
paper or electronic records, a process that typically identifies data issues
4-6 weeks after occurrence. In contrast, AI-powered monitoring systems
can detect anomalies within 24-48 h of data entry, enabling immediate
corrective action and preventing propagation of errors [94].

These systems can predict sites at risk of non-compliance, enabling
targeted interventions and resource allocation [92,95]. By automating
routine monitoring tasks, AI allows clinical research associates to focus
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patient datasets, with manual review and query resolution extending
timelines by 4-6 weeks. Al-powered systems reduce this to 12-16 h of
oversight time with automated processing completed within 24-48 h
[94].

These automated systems reduce data cleaning time by 60-80 %
whilst improving data quality and consistency across study sites
[99,100]. Advanced imputation algorithms, including deep learning,
generative adversarial networks, and recurrent neural networks, can
handle complex missing data patterns, maintain statistical power while
ensuring data integrity [100-102]. See Fig. 2 for a simplified schematic
of how AI supports clinical trial data capture, monitoring, and cleaning.
Table 2 demonstrates the substantial performance improvements ach-
ieved through Al-powered monitoring systems, with particularly strong
results in safety monitoring and data quality control applications
compared to traditional manual approaches.

6. Predictive modelling for trial outcomes
6.1. Dynamic risk prediction models

Al enables the development of sophisticated risk prediction models
that continuously evolve as trial data accumulates, providing real-time
insights into patient outcomes and study progression. These dynamic
models incorporate diverse data sources, including clinical assessments,
lab values, imaging data, and digital biomarkers, to predict individual
patient responses and trial-level outcomes [22,64,111]. Traditional

Table 2
Al Applications in Data Capture and Monitoring — Performance Benchmarking.

on high-risk areas requiring human intervention, improving overall trial rm‘itf"‘i“g lT)ra'f:“ﬁma] :I " ;‘“Pm"eme“t
quality whilst reducing monitoring costs by up to 30-40 % [1,96]. omamn eriormance eriormance actor
Digital Biomarkers 70 % adverse event 90 % 1.3x
. . [81,103,104] sensitivity sensitivity improvement
5.3. Automated data cleaning and standardisation Risk-Based 46 woeks 2448 h 40-60% faster
Monitoring detection time detection
Al-powered data cleaning tools address one of the most time- [105-108]
consuming aspects of clinical trial conduct, automatically identifying Data Quality Control ~ 60-80 h cleaning 12-16 h 4-5x reduction
and correcting data inconsistencies, missing values, and entry errors. (67,109,110 time
N 11 . 1 ith dardise f . Real-time Analytics Weekly trend Real-time Continuous
at.ura anguage processing a gorit ms st.an. ardise reet—text entries, [49,111,112] analysis analysis monitoring
whilst machine learning models predict missing data points based on Safety Monitoring 85 % specificity 95 % 1.9x
patient characteristics and study context [97,98]. Traditional data [8,112,113] specificity improvement
cleaning processes require 60-80 h of biostatistician time per 100
Al Applications in Clinical Trial Data Lifecycle
( N ( N\ (53 )
Digital Biomarkers Risk-Based Automated Data
& Continuos Monitoring Cleaning &
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» Smartwatches,
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Fig. 2. Al applications across the clinical trial data lifecycle. This schematic illustrates how artificial intelligence (AI) enhances data workflows in clinical trials.
From continuous monitoring via digital biomarkers to proactive risk-based site monitoring and automated data cleaning, Al streamlines clinical data processing.
These technologies reduce manual errors, detect early risks, and improve data quality and integrity, contributing to safer and more efficient trial execution.
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statistical approaches such as logistic regression and Cox proportional
hazards models typically consider 10-20 variables and achieve 70-75 %
accuracy in outcome prediction. In contrast, AI models can analyse
hundreds of thousands of variables simultaneously, achieving 85-90 %
accuracy, though this comes with increased risk of overfitting and
identification of spurious correlations [114].

Bayesian deep learning approaches allow for ongoing model refine-
ment and uncertainty quantification, enabling adaptive trial modifica-
tions in real time [115,116]. Such adaptive capabilities underpin
innovative designs, including response-adaptive randomisation and
early stopping rules guided by real-time futility or efficacy decisions
[117,118].

6.2. Personalised treatment strategies

Machine learning algorithms can identify patient subgroups most
likely to benefit from specific interventions, enabling the development
of personalized treatment strategies within clinical trials. These pre-
dictive models analyze multi-omics data, clinical characteristics, and
treatment histories to identify biomarkers and patient features associ-
ated with treatment response [72,111,119]. Al-driven patient stratifi-
cation enables more efficient trial designs, reducing sample size
requirements while maintaining statistical power [120,121]. These
methods are particularly valuable in oncology trials, where predictive
biomarkers can detect patients most likely to respond to targeted ther-
apies [122,123].

6.3. Adaptive trial design optimisation

Adaptive trial designs powered by Al raise important considerations
regarding Intention-to-Treat (ITT) analysis principles. When AI algo-
rithms modify enrollment criteria, randomisation ratios, or dose levels
during trial conduct, this creates challenges for traditional ITT analysis,
which assumes fixed protocol parameters [124]. Researchers must
carefully consider how dynamic protocol modifications affect the
comparability of data to historical controls and gold-standard studies
analysed under traditional ITT methodologies. This may require novel
statistical approaches that account for the adaptive nature of Al-driven
protocol modifications while maintaining scientific rigor [125].

Al systems support adaptive trial designs by continuously monitoring
accumulating trial data and recommending protocol modifications
based on predefined decision rules. Such systems can adjust random-
isation ratios, modify dose levels, or recommend early termination when
efficacy or safety thresholds are met [117,126]. Machine learning al-
gorithms can simulate thousands of potential trial scenarios, optimizing
adaptive design parameters to maximize trial success probability while
minimizing exposure to ineffective treatments [127]. These simulation-
based approaches, including Bayesian adaptive designs, enable more
efficient trial conduct, improved resource allocation, and enhanced
patient outcomes [128,129].

7. Algorithm quality and performance analysis
7.1. Comparative analysis of Al algorithms in clinical trials

Different Al algorithms demonstrate varying performance charac-
teristics across clinical trial applications, with the selection of appro-
priate algorithms depending on the specific use case, data
characteristics, and performance requirements. Deep learning models
excel in processing high-dimensional, unstructured data such as medical
images and clinical notes, but require large datasets containing more
than 10,000 samples and lack interpretability that is often crucial for
clinical decision-making [130]. In contrast, traditional machine learning
approaches including random forests and support vector machines
perform better with smaller datasets containing fewer than 1,000 sam-
ples and provide better interpretability that clinicians can understand
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and validate [131,132]. Performance comparisons reveal that deep
learning achieves 85-90 % accuracy on image analysis tasks compared
to 70-75 % for traditional machine learning, whilst traditional machine
learning achieves 80-85 % accuracy on structured clinical data
compared to 75-80 % for deep learning approaches [133,134].

Natural language processing approaches also demonstrate distinct
performance profiles across clinical applications. Rule-based NLP sys-
tems achieve 90-95 % precision but only 60-70 % recall in clinical
entity extraction, making them highly accurate for the entities they
identify but prone to missing relevant information [135,136].
Transformer-based models such as BERT variants achieve 80-85 %
precision but 85-90 % recall, capturing more relevant information but
with greater risk of false positives [137]. Hybrid approaches that
combine rule-based and machine learning methods achieve 85-90 %
precision and 80-85 % recall, representing an optimal balance for
clinical applications where both accuracy and completeness are essen-
tial for patient safety and regulatory compliance [138].

7.2. Data complexity challenges in medical Al

Medical data presents unique complexity challenges that signifi-
cantly impact Al algorithm effectiveness across multiple dimensions.
High-dimensional heterogeneity represents a fundamental challenge, as
clinical datasets combine structured data such as laboratory values and
vital signs, semi-structured data including medical codes and stand-
ardised assessments, and unstructured data comprising physician notes
and imaging studies [139]. This heterogeneity requires sophisticated
feature engineering and multi-modal AI architectures capable of pro-
cessing disparate data types simultaneously, whilst traditional algo-
rithms struggle with missing data rates of 20-40 % that are common in
clinical settings. The integration of these diverse data sources often re-
quires extensive preprocessing and harmonisation efforts that can
consume 40-60 % of total project development time [140].

Temporal dependencies in medical data create additional complexity
that static algorithms frequently fail to capture effectively. Medical
conditions evolve over time with complex patterns of progression,
treatment response, and recovery that require sophisticated modelling
approaches to understand accurately. Recurrent neural networks and
transformer architectures demonstrate 15-20 % better performance
than static models for time-series medical data, as they can capture these
temporal relationships and predict future states based on historical
patterns. However, these advanced architectures require substantially
more computational resources and training data to achieve optimal
performance [141].

Domain-specific noise represents another significant challenge
unique to medical AI applications, stemming from documentation var-
iations between healthcare providers, measurement errors in clinical
devices, and coding inconsistencies across different healthcare systems.
Clinical data contains substantial noise that can confound Al algorithms
and lead to spurious correlations, requiring robust preprocessing pipe-
lines and validation methodologies to ensure reliable performance
[142]. The development of effective noise reduction and data stand-
ardisation approaches often requires deep clinical domain expertise and
can significantly extend development timelines, emphasising the
importance of close collaboration between AI developers and clinical
experts throughout the development process [143].

8. Regulatory and ethical considerations
8.1. Algorithmic bias and fairness

The deployment of Al in clinical trials raises critical concerns
regarding algorithmic bias and fairness, particularly given the risk that
Al systems may perpetuate or amplify existing healthcare disparities.
Models trained on non-representative datasets may systematically
exclude or disadvantage certain patient groups, compromising the
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generalisability of trial results [67,144,145]. Addressing algorithmic
bias requires comprehensive detection and mitigation strategies,
including the use of diverse training datasets, established fairness met-
rics, and ongoing monitoring of system performance across de-
mographic subgroups [27,146,147]. Moreover, emerging regulatory
frameworks are beginning to set clear expectations for bias assessment
and mitigation in Al-powered clinical trial systems, emphasising trans-
parency, auditability, and human oversight [148,149].

8.2. Transparency and Explainability

The “black box” nature of many Al algorithms poses significant
challenges for clinical interpretation and regulatory approval. Health-
care providers and regulators require clear explanations of Al decision-
making processes to evaluate the appropriateness and safety of Al-
driven recommendations [150-152]. Developing explainable Al (XAI)
systems for clinical trials requires balancing model performance with
interpretability, ensuring that AI recommendations can be understood
and validated by clinical experts [153,154]. This challenge is particu-
larly acute for deep learning models, which may achieve superior per-
formance but offer limited interpretability, driving ongoing research
into novel XAl techniques that enhance transparency without sacrificing
accuracy [155,156].

8.3. Data privacy and security

The use of Al in clinical trials necessitates robust data privacy and
security frameworks, particularly given the sensitive nature of health
information and the potential for data breaches. Al systems require ac-
cess to vast datasets, including electronic health records (EHRs),
genomic data, and real-world evidence, raising complex privacy con-
cerns [157-159]. Implementing privacy-preserving Al techniques,
including federated learning, differential privacy, and homomorphic
encryption, can enable AI development whilst protecting patient privacy
[160,161] These approaches allow Al models to be trained on distrib-
uted datasets without centralising sensitive information, thereby
reducing the risk of data leakage and enhancing compliance with reg-
ulations such as GDPR and HIPAA [162,163].

9. Barriers to implementation
9.1. Technical and infrastructure challenges

Despite significant advances in Al technology, several technical
barriers impede widespread adoption in clinical trials. Data interoper-
ability remains a critical challenge, with disparate systems and hetero-
geneous data formats hindering seamless Al integration and data sharing
across platforms [164,165]. Legacy clinical trial management systems
often lack the infrastructure necessary to support Al-powered tools,
requiring significant technological upgrades and standardized data
models [166,167]. The complexity of Al systems also creates challenges
for validation and regulatory approval, as traditional clinical trial par-
adigms are not well-suited to evaluating continuously learning or
adaptive algorithms [168]. Establishing appropriate validation frame-
works for AI requires close collaboration between technology de-
velopers, clinical researchers, and regulatory agencies to ensure safety,
efficacy, and transparency [41,169].

9.2. Stakeholder trust and acceptance

Limited stakeholder trust represents a significant barrier to Al
adoption in clinical trials, with concerns about Al reliability, safety, and
decision-making transparency [170,171]. Healthcare providers may be
reluctant to rely on Al-driven recommendations, especially in critical
clinical situations where patient safety is paramount [168,172]. Build-
ing stakeholder trust requires transparent communication about Al
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capabilities and limitations, comprehensive training programs, and
evidence-based demonstrations of Al system performance [173,174].
Engaging clinical investigators in AI development and validation pro-
cesses fosters collaboration and helps build confidence in these tech-
nologies [175,176].

9.3. Regulatory uncertainty

The regulatory landscape for Al in clinical trials remains uncertain,
with evolving guidelines and standards creating challenges for tech-
nology developers and clinical researchers [41,177]. Regulatory
agencies, including the FDA, European Medicines Agency (EMA), and
other international bodies, are actively developing frameworks for Al
evaluation, but comprehensive and harmonised guidance remains
limited [13,178]. This regulatory uncertainty complicates Al system
development and deployment, with unclear requirements for validation,
documentation, and ongoing performance monitoring [174,179].
Establishing clear and globally aligned regulatory pathways for Al-
powered clinical trial tools is essential to foster innovation and ensure
widespread adoption [180]. Fig. 3 shows a systems-level view of inter-
connected barriers hindering Al integration in clinical trials.

10. Case studies and Real-World applications
10.1. Pfizer’s REMOTE trial Initiative

Pfizer’s REMOTE (Research on Electronic Monitoring of OAB
Treatment Experience) trial represents one of the first fully virtual
clinical trials, leveraging Al and digital technologies for comprehensive
remote data collection [181,182]. The study enrolled participants across
multiple sites and utilised AI-powered mobile applications with machine
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Fig. 3. Interconnected barriers to Al implementation in clinical trials. This
figure presents a systems-level schematic of the three major barriers technical
challenges, stakeholder trust deficits, and regulatory uncertainty that impede Al
adoption in clinical research. Each barrier originates from specific root causes
and propagates downstream consequences, ultimately limiting scalability,
slowing approvals, and reducing clinical uptake. Overcoming these obstacles
will require coordinated cross-sector efforts to build interoperable infrastruc-
ture, improve transparency and training, and establish harmonised valida-
tion frameworks.
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learning algorithms that analysed patient-reported outcomes in real-
time. Wearable sensors collected continuous activity data, while tele-
medicine platforms enabled remote consultations [183]. Specific Al
performance metrics included: 95 % accuracy in detecting treatment
adherence patterns, 87 % accuracy in predicting treatment response
within 4 weeks, and 92 % sensitivity in identifying potential adverse
events through patient-reported symptom patterns [184].

The trial demonstrated the feasibility of Al-driven virtual trials,
achieving 95 % patient retention rates whilst reducing trial costs by 40
% compared to traditional site-based studies. Al algorithms analysed
continuous sensor data to detect treatment responses and safety signals,
enabling proactive clinical management [185].

10.2. Novartis and IBM Watson collaboration

Novartis partnered with IBM Watson to develop Al-powered patient
matching and site selection tools for oncology trials, providing concrete
performance data: the system processed over 2.5 million patient records
across 15 major healthcare systems, identifying potentially eligible pa-
tients with 78 % accuracy compared to 45 % accuracy with traditional
manual screening methods [186]. The AI system reduced patient
screening time from an average of 8 h per patient to 30 min, representing
a 94 % reduction in screening time. However, the implementation
revealed significant challenges: integration costs ranged from $250,000
to $500,000 per healthcare system, and the system required 6-8 months
of customisation for each Epic EMR instance to accommodate local
terminology and coding practices [187,188].

The partnership demonstrated significant improvements in patient
recruitment efficiency, with 65 % faster enrollment and 50 % reduction
in screening failures [189]. Al-driven site selection algorithms improved
site performance prediction accuracy by 40 %, enabling more effective
resource allocation [190].

10.3. Verily’s Baseline platform

Verily’s Baseline Platform represents a comprehensive Al-powered
clinical research ecosystem, integrating data from over 50 healthcare
institutions and processing more than 10 terabytes of clinical data daily
[191]. The platform’s machine learning algorithms demonstrated: 82 %
accuracy in predicting trial enrollment success, 76 % accuracy in iden-
tifying patients likely to complete study participation, and 89 % accu-
racy in detecting early safety signals. Specific performance
improvements included: 30 % reduction in trial planning time (from 18
months to 12-13 months), 25 % reduction in overall study costs, and 35
% improvement in patient retention rates compared to traditional clin-
ical trials [192].

Early implementations of the Baseline Platform demonstrated 30 %
improvements in trial efficiency and a 25 % reduction in overall study
costs [193]. The platform’s Al-driven patient stratification capabilities
enabled more precise treatment effect estimates and improved trial
design optimisation [194].

11. Future Directions
11.1. Federated learning for Privacy-Preserving Al

Federated learning represents a promising approach for developing
Al models whilst preserving patient privacy and data security. This
methodology enables Al training on decentralised datasets across mul-
tiple institutions without sharing raw data, addressing privacy concerns
whilst maintaining model performance [11,162]. Federated learning
approaches can enable collaborative Al development across pharma-
ceutical companies, academic institutions, and healthcare systems,
accelerating Al advancement whilst protecting proprietary and sensitive
information [195]. These approaches are particularly valuable for rare
disease research, where patient data is distributed across multiple
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11.2. Explainable Al for clinical decision support

The development of explainable Al systems represents a critical
priority for clinical trial applications, enabling healthcare providers and
regulators to understand and validate Al-driven recommendations. Ad-
vances in interpretable machine learning, including attention mecha-
nisms and feature importance analysis, offer promising approaches for
enhancing Al transparency [151,196,197]. Future research should focus
on developing Al systems that balance performance with interpret-
ability, ensuring that complex models can provide meaningful expla-
nations for their decisions [152]. This capability is essential for
regulatory approval and clinical acceptance of Al-powered trial tools
[198].

11.3. Fully decentralised Al-Enabled trials

The future of clinical trials may involve fully decentralised, Al-driven
studies with minimal physical contact between participants and in-
vestigators. These virtual trials would leverage Al-powered remote
monitoring, digital biomarkers, and telemedicine platforms to conduct
comprehensive clinical evaluations [199,200]. Al algorithms would
continuously monitor participant safety and efficacy outcomes, auto-
matically adjusting trial parameters and triggering clinical interventions
as needed [201,202]. This approach could dramatically improve trial
accessibility whilst reducing costs and timeline requirements [203,204].

12. Limitations of the review

While this comprehensive review provides extensive coverage of Al
applications in clinical trials, several limitations should be acknowl-
edged. First, the rapidly evolving nature of Al technology means that
some developments may not be fully captured in published literature,
particularly regarding proprietary industry applications and emerging
technologies [41,168]. The heterogeneity of AI methodologies and
clinical trial designs makes direct comparison across studies chal-
lenging, limiting our ability to provide definitive quantitative assess-
ments of Al impact [49,205]. Many reported benefits are based on pilot
studies or theoretical models rather than large-scale randomized
controlled trials, raising questions about generalizability and real-world
performance [107,206].

Publication bias may favour positive results, potentially over-
estimating AI benefits whilst underreporting challenges and failures
[207]. The predominance of studies from well-resourced institutions
and developed countries may limit the applicability of findings to
diverse global settings with varying technological infrastructure [208].
Regulatory landscapes and ethical frameworks continue to evolve,
making it difficult to provide definitive guidance on compliance re-
quirements and best practices [209,210]. The long-term safety and ef-
ficacy of Al-powered clinical trial tools remain uncertain, requiring
ongoing monitoring and evaluation [41,211].

Finally, the technical complexity of AI systems may limit the acces-
sibility of this review to readers without specialised knowledge in ma-
chine learning and data science, potentially hindering broader adoption
and understanding of these technologies [150,212].

13. Conclusion

Artificial Intelligence represents a transformative force in clinical
trials, offering unprecedented opportunities to address longstanding
challenges in trial design, patient recruitment, data monitoring, and
outcome prediction. The evidence reviewed demonstrates substantial
potential for Al to accelerate trial timelines, reduce costs, and enhance
the quality and efficiency of clinical research. Key findings indicate that
Al-powered patient recruitment tools can improve enrollment rates by
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up to 65 %, whilst predictive analytics models achieve 85 % accuracy in
forecasting trial outcomes. Digital biomarkers and continuous moni-
toring systems enable real-time safety surveillance and adaptive trial
management, potentially reducing adverse events and improving pa-
tient outcomes.

This comprehensive review makes several novel contributions to the
field: First, we provide the most extensive benchmarking of Al algorithm
performance across clinical trial applications to date, demonstrating
clear superiority over traditional methods while highlighting imple-
mentation challenges such as cost (£250,000-£500,000 per system),
customisation complexity, and the risk of spurious correlations. Second,
we introduce a novel risk-stratified framework for Al implementation
that categorises applications by potential impact and required oversight
levels, providing practical guidance for clinical research organisations.
Third, we systematically analyse the unique data complexity challenges
in medical Al applications, including high-dimensional heterogeneity,
temporal dependencies, and domain-specific noise that can significantly
impact algorithm effectiveness.

However, realising the full potential of Al in clinical trials requires
addressing significant implementation barriers, including technical
challenges, regulatory uncertainty, and stakeholder trust issues. Our
analysis reveals that while AI systems demonstrate superior perfor-
mance in controlled settings, real-world implementation faces substan-
tial obstacles including interoperability challenges, infrastructure
requirements, and the need for extensive customisation that can make
deployment costs prohibitive. The development of explainable AI sys-
tems, privacy-preserving methodologies, and comprehensive validation
frameworks will be essential for widespread adoption.

The evidence strongly supports a measured approach to Al integra-
tion that prioritises high-value, low-risk applications initially, with
gradual expansion to more complex use cases as technology matures and
stakeholder confidence builds. Our risk-stratified implementation
framework provides a roadmap for this phased approach, ensuring pa-
tient safety while maximising the benefits of Al technology.

Future research priorities should focus on developing robust vali-
dation methodologies for Al systems, establishing clear regulatory
frameworks, and addressing algorithmic bias and fairness concerns.
Collaborative efforts between technology developers, clinical re-
searchers, regulatory agencies, and patient advocacy groups will be
crucial for ensuring responsible Al implementation. The integration of
Al into clinical trials represents not merely a technological advancement
but a fundamental shift towards more efficient, patient-centric, and
scientifically rigorous clinical research. By carefully navigating the
challenges and opportunities presented by Al technology, the clinical
research community can harness these tools to accelerate medical
innovation whilst maintaining the highest standards of patient safety
and scientific integrity. As we advance into an era of Al-enabled clinical
research, the potential for transformative impact on global health out-
comes becomes increasingly apparent. The careful, responsible inte-
gration of Al technologies into clinical trials, guided by evidence-based
frameworks and robust validation methodologies, will be essential for
realising this potential whilst preserving the fundamental principles of
ethical clinical research and patient protection.
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