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ARTICLE INFO ABSTRACT
Keywords: Checkpoint inhibitors have revolutionised cancer treatment, yet only 20-30 % of patients achieve durable re-
Checkpoint inhibitors sponses, highlighting the critical need for predictive models. This review focuses on PD-1/PD-L1 pathway in-

Predictive models
Machine learning
Biomarkers
Immunotherapy

hibitors as monotherapy, examining current prediction frameworks spanning biomarker-based approaches,
multi-omics integration, mathematical modelling, and artificial intelligence applications. Recent advances
include SCORPIO and LORIS machine learning systems demonstrating superior statistical performance compared
to traditional biomarkers, with area under curve values of 0.763. However, critical analysis reveals significant
limitations in external validation across diverse healthcare settings, with many promising models failing to
maintain performance outside their development institutions. Traditional pathological assessment by expert
pathologists, including standardised PD-L1 scoring and tumour-infiltrating lymphocyte quantification, continues
to form the foundation of clinical decision-making and provides essential validation for emerging Al approaches.
Despite extensive research, established biomarkers show limited predictive accuracy, with PD-L1 demonstrating
predictive value in only 28.9 % of FDA approvals. Multi-feature models incorporating genomic and clinical data
show improved accuracy but face substantial validation challenges. Integration of spatial biomarkers and digital
pathology has enhanced capabilities, achieving area under curve values of 0.84 in select studies. The most critical
challenge is the “validation gap”, many models show excellent single-institution performance but fail external
validation, limiting clinical translation. Current obstacles include inadequate standardisation, interpretability
concerns, and healthcare system integration difficulties. Future directions must prioritise rigorous multi-
institutional validation studies, development of clinically implementable frameworks, and addressing practical
deployment challenges to realise precision immunotherapy’s potential.

1. Introduction in previously intractable cancers including melanoma, non-small cell

lung cancer (NSCLC), renal cell carcinoma, and head and neck cancers

Checkpoint inhibitors targeting programmed death protein 1 (PD-1), (Flynn and Gerriets, 2019). However, the clinical reality reveals a sig-

programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte- nificant challenge: only 20-40 % of patients achieve durable responses

associated protein 4 (CTLA-4) have fundamentally transformed cancer to these therapies, with response rates varying considerably across

treatment paradigms across numerous malignancies. Since the first FDA different tumour types and patient populations (Yang and Hu, 2019;
approval in 2014, these agents have demonstrated remarkable efficacy Yarchoan et al., 2017).
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While combination approaches with chemotherapy, targeted ther-
apy, and dual checkpoint inhibition are increasingly important in clin-
ical practice, the prediction of response to these complex regimens
presents additional challenges beyond the scope of this review. The
focus on monotherapy reflects both the availability of more robust
predictive data and the foundational importance of understanding
single-agent mechanisms before advancing to combination prediction
models.

The limited response rate, combined with the substantial costs and
potential for severe immune-related adverse events (irAEs), has driven
intensive research into predictive models capable of identifying patients
most likely to benefit from checkpoint inhibitor therapy. The global
checkpoint inhibitors market, valued at USD 47.4 billion in 2023 and
projected to reach USD 189.1 billion by 2032, reflects both the thera-
peutic potential and economic significance of optimising patient selec-
tion (Faizullabhoy and Wani, 2024). This economic imperative
underscores the urgent need for reliable predictive tools that can guide
treatment decisions, minimise unnecessary toxicity, and maximise
therapeutic benefit.

Beyond traditional biomarkers and Al-driven prediction models,
emerging research has identified metabolic reprogramming and natural
bioactive compounds as potential factors influencing checkpoint inhib-
itor response. Tumour cells exhibit altered glucose metabolism, char-
acterised by increased expression of glucose transporters such as GLUT1
and GLUTS3, which facilitate enhanced glucose uptake to support rapid
proliferation (Gokalp 2022a). These metabolic alterations not only serve
as potential prognostic indicators but may also influence the tumour
microenvironment and immune cell function, thereby affecting immu-
notherapy efficacy. Furthermore, natural compounds derived from
traditional medicinal plants have demonstrated significant anticancer
properties through multiple mechanisms, including inhibition of key
metabolic enzymes, modulation of signalling pathways, and enhance-
ment of immune responses (Gokalp, 2020, 2021, 2022b). For instance,
thymoquinone from black cumin (Nigella sativa) has shown potent
antitumor activity and immunomodulatory effects across various cancer
types (Gokalp, 2025). Similarly, compounds such as cucurbitacins, fla-
vonoids, and organosulfur compounds from plants like marigold
(Tagetes species) and garlic (Allium sativum) have exhibited inhibitory
effects on cancer cell proliferation and metastasis (Gokalp, 2023). These
findings suggest that integration of metabolic biomarkers and natural
compound-based approaches into predictive models could provide a
more comprehensive understanding of factors influencing checkpoint
inhibitor response.

Current prediction approaches span multiple domains, from tradi-
tional biomarker-based strategies to sophisticated artificial intelligence
algorithms. These approaches can be categorised into two fundamental
components: the underlying biological features or biomarkers (such as
PD-L1 expression, tumour mutational burden, immune cell infiltration
patterns, and clinical parameters), and the analytical methods used to
integrate these features into predictive models (ranging from traditional
pathological assessment to advanced machine learning algorithms). The
landscape includes single biomarker assessments such as PD-L1
expression and tumour mutational burden (TMB), multi-feature
models integrating genomic and clinical data, mathematical simula-
tions of tumour-immune dynamics, and machine learning approaches
capable of processing complex, high-dimensional datasets. Despite this
diversity of approaches, no single method has achieved universal clin-
ical adoption, reflecting the complex interplay of factors that determine
treatment response.

Traditional pathological assessment by expert pathologists continues
to form the cornerstone of clinical decision-making, providing stand-
ardised, reproducible evaluation of key predictive features including
PD-L1 expression levels and tumour-infiltrating lymphocyte patterns.
This expertise serves as both the gold standard for biomarker validation
and the essential foundation upon which Al-based approaches are
developed and validated.
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Recent technological advances have significantly expanded predic-
tive capabilities. The development of comprehensive genomic profiling
platforms, spatial biomarker analysis, and digital pathology has pro-
vided unprecedented insights into the tumour microenvironment.
Simultaneously, artificial intelligence applications have matured from
experimental concepts to clinically validated tools, with models such as
SCORPIO and LORIS demonstrating superior predictive performance
compared to traditional biomarkers in real-world patient populations
(Yoo et al. 2025; Chang et al. 2024). However, critical evaluation reveals
significant limitations in the external validation and clinical imple-
mentation of these promising approaches, with many models showing
reduced performance when applied outside their original development
cohorts.

The rationale for this review stems from the fragmented nature of the
current predictive landscape, where multiple approaches exist in isola-
tion without systematic comparison or integration. Whilst previous re-
views have focused on individual biomarker categories or specific
methodological approaches, no study has comprehensively synthesised
the entire spectrum of prediction models spanning traditional bio-
markers, advanced artificial intelligence algorithms, mathematical
simulations, and integrated multi-modal frameworks. The novelty of
this review lies in its unprecedented scope, and providing the first sys-
tematic comparison of predictive performance across different meth-
odological approaches using standardised metrics. Additionally, this
review provides critical analysis of validation deficits and implementa-
tion challenges that have limited the translation of promising research
findings into clinical practice.

The primary aim is to provide clinicians and researchers with a
unified assessment of all available predictive tools for checkpoint in-
hibitor response, enabling evidence-based selection of optimal predic-
tion strategies. The specific objectives include: systematically evaluating
the predictive performance of biomarker-based, machine learning,
mathematical, and integrated approaches; identifying the strengths,
limitations, and clinical readiness of each methodology; comparing
validation status and real-world applicability across different model
types; critically analysing the challenges of external validation and
clinical implementation that have hindered widespread adoption; and
providing evidence-based recommendations for future research di-
rections and clinical implementation strategies that will advance the
field towards reliable, clinically-actionable precision immunotherapy
tools.

2. Methods
2.1. Search strategy and data sources

A comprehensive literature search was conducted using multiple
electronic databases including PubMed/MEDLINE, Embase, Web of
Science, and Cochrane Library to identify relevant studies published
between January 2018 and May 2024. The search strategy employed a
combination of Medical Subject Headings (MeSH) terms and free-text
keywords related to checkpoint inhibitors, predictive models, bio-
markers, machine learning, and artificial intelligence. Key search terms
included: "checkpoint inhibitor*", "PD-1", "PD-L1", "CTLA-4", "prediction
model*", "biomarker*", "machine learning", "artificial intelligence",
"immunotherapy response", and "cancer treatment".

Additional sources were systematically reviewed including confer-
ence abstracts from major oncology meetings (ASCO, ESMO, AACR),
regulatory agency databases (FDA, EMA), and clinical trial registries
(ClinicalTrials.gov, EudraCT). Reference lists of identified systematic
reviews and meta-analyses were manually screened to ensure compre-
hensive coverage of the literature.

2.2. Study selection and inclusion criteria

Studies were included if they met the following criteria: original
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research articles or systematic reviews examining predictive models for
checkpoint inhibitor response in human cancer patients; studies
reporting quantitative performance metrics (accuracy, sensitivity,
specificity, area under the curve); publications in English language; and
availability of full-text articles. Both retrospective and prospective
studies were included, encompassing clinical trials, observational cohort
studies, and real-world evidence analyses.

Exclusion criteria comprised: preclinical studies using animal models
or cell lines only; case reports or case series with fewer than 20 patients;
studies focusing solely on safety or pharmacokinetic outcomes without
efficacy prediction; duplicate publications or conference abstracts
without subsequent peer-reviewed publication; and studies lacking
sufficient methodological detail for quality assessment.

2.3. Data extraction and quality assessment

Data extraction was performed systematically using a standardised
form capturing study characteristics (design, population, sample size,
follow-up duration), intervention details (checkpoint inhibitor type,
treatment regimen, combination therapies), predictive model specifi-
cations (algorithm type, input variables, training methodology), and
outcome measures (response rates, survival endpoints, performance
metrics). Particular attention was paid to validation methodology, dis-
tinguishing between internal validation, external validation on inde-
pendent datasets, and real-world clinical implementation. Quality
assessment was conducted using appropriate tools including the Quality
Assessment of Diagnostic Accuracy Studies (QUADAS-2) for diagnostic
studies and the Newcastle-Ottawa Scale for observational studies.

Model performance was evaluated using standard metrics including
area under the receiver operating characteristic curve (AUC-ROC),
sensitivity, specificity, positive and negative predictive values, and
overall accuracy. Where available, external validation results and clin-
ical implementation data were extracted to assess real-world applica-
bility. Critical evaluation focused on the distinction between
development cohort performance and external validation results, as this
represents a key limitation in current predictive model research.

2.4. Data synthesis and analysis

Given the heterogeneity of study designs, cancer types, and predic-
tive approaches, a narrative synthesis was employed rather than formal
meta-analysis. Studies were grouped by prediction methodology
(biomarker-based, machine learning, mathematical modelling, and in-
tegrated approaches) and cancer type where appropriate. Performance
metrics were compared across different approaches, with particular
attention to validation status and clinical readiness. Special emphasis
was placed on critically evaluating the robustness of validation studies
and identifying limitations in current evidence that may impact clinical
implementation.

The review followed PRISMA guidelines for systematic reviews
where applicable, though the comprehensive nature of the review
encompassed multiple study types and methodologies beyond those
typically included in systematic reviews of diagnostic test accuracy.

3. Current biomarker landscape
3.1. Traditional single biomarkers

The development of predictive biomarkers for checkpoint inhibitor
therapy has evolved significantly since the initial focus on PD-L1
expression. Traditional pathological assessment by expert pathologists
forms the foundation of biomarker evaluation, providing standardised,
reproducible scoring systems that have been extensively validated
across multiple cancer types and clinical settings. A comprehensive
analysis of 45 FDA drug approvals from 2011 to 2019 revealed that PD-
L1 expression was predictive in only 28.9 % of cases, with the biomarker
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proving either non-predictive (53.3 %) or not tested (17.8 %) in the
majority of approvals (Davis and Patel, 2019). This limited predictive
accuracy stems from several factors including intratumoral heteroge-
neity, variable assay methodologies, and diverse scoring systems across
different tumour types. The expertise of pathologists in standardising
these assessments and providing quality control remains essential for
ensuring reproducible clinical decision-making.

Tumour mutational burden, a measure of the number of mutations in
a tumour’s DNA has emerged as a complementary biomarker, with FDA
approval for pembrolizumab in patients with unresectable or metastatic
solid tumours harbouring high TMB (>10 mutations per megabase)
following disease progression (Marcus et al. 2021). Studies across mul-
tiple cancer types have demonstrated positive correlations between TMB
and response rates, with meta-analyses showing significant associations
between high mutation burden and improved clinical outcomes (Fan
et al. 2020; Willis et al. 2019). However, notable exceptions exist,
particularly in renal cell carcinoma and Merkel cell carcinoma, where
responses exceed what TMB alone would predict, highlighting the
multifactorial nature of treatment response (Knepper et al. 2019; Lab-
riola et al. 2020).

Microsatellite instability (MSI) status represents another established
biomarker, particularly valuable in colorectal cancer where MSI-high
tumours demonstrate markedly improved responses to checkpoint in-
hibitors. MSI indicates whether a tumour’s DNA is unstable enough to
result in mutations during replication (Vilar and Gruber, 2010). This
leads to a biological rationale on the increased neoantigen load in
MSI-high tumours, resulting in enhanced immune recognition and
response. Clinical studies have consistently demonstrated superior out-
comes in MSI-high compared to microsatellite stable tumours across
various cancer types (Van Velzen et al., 2020; Pietrantonio et al. 2021).
The mechanisms through which PD-L1, TMB, and MSI function as pre-
dictive biomarkers for immune checkpoint blockade are illustrated in
Fig. 1.

The exploration of metabolic biomarkers represents an expanding
frontier in cancer prognostication and treatment response prediction.
Glucose transporters, particularly GLUT1 and GLUT3, have emerged as
significant prognostic indicators across multiple cancer types. These
transporters facilitate the enhanced glucose uptake characteristic of the
Warburg effect, whereby cancer cells preferentially utilise glycolysis
even in the presence of oxygen (Gokalp 2022a). Overexpression of
GLUT1 and GLUTS3 correlates with aggressive tumour phenotypes, poor
prognosis, and resistance to conventional therapies in various malig-
nancies including lung, breast, and gastrointestinal cancers.

GLUT1, encoded by the SLC2A1 gene, is ubiquitously expressed but
shows marked upregulation in hypoxic tumour regions, driven by
hypoxia-inducible factor-la (HIF-1a) signalling. Clinical studies have

PD-L1, TMB, and MSI as Predictive Biomarkers in
Checkpoint Inhibitor Therapy
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Fig. 1. Schematic illustration of the mechanisms by which PD-L1 expression,
tumor mutational burden (TMB), and microsatellite instability (MSI) predict the
efficacy of immune checkpoint inhibitors (ICIs).
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demonstrated that elevated GLUT1 expression associates with reduced
overall survival and increased metastatic potential (Gokalp 2022a).
GLUT3, predominantly expressed in neurons under physiological con-
ditions, becomes aberrantly expressed in several cancer types, particu-
larly brain tumours and lung cancers. Its high-affinity glucose transport
capacity makes it especially relevant in nutrient-deprived tumour
microenvironments.

The prognostic value of glucose transporter expression extends
beyond direct metabolic effects. Enhanced glycolytic metabolism in
tumours can create an immunosuppressive microenvironment through
lactate accumulation and acidification, potentially limiting T-cell
effector function and thereby influencing checkpoint inhibitor response.
Furthermore, competition for glucose between tumour cells and infil-
trating immune cells may contribute to T-cell exhaustion, a key mech-
anism of immunotherapy resistance. Therapeutic strategies targeting
glucose metabolism, including GLUT inhibitors, are under investigation
as potential combination approaches with checkpoint inhibitors. The
integration of metabolic biomarkers such as GLUT1 and GLUT3
expression into predictive models could enhance patient stratification
by identifying those with metabolically active tumours that may require
combined metabolic and immune-targeted interventions.

3.2. Emerging biomarker strategies

Recent developments in spatial biomarker analysis have provided
new insights into the tumour microenvironment’s role in treatment
response. A comprehensive review of spatial biomarkers identified
several promising approaches, including digital spatial profiling and
multiplex immunofluorescence techniques that examine the spatial re-
lationships between immune cells and cancer cells (Rossi and Radisky,
2024; Sheng et al. 2023). These technologies enable assessment of im-
mune cell infiltration patterns, which correlate more closely with
treatment response than bulk biomarker measurements.

The integration of artificial intelligence with traditional biomarker
assessment has enhanced predictive accuracy. Studies utilizing Al-
powered PD-L1 assessment have demonstrated improved interobserver
concordance and enhanced predictive value compared to traditional
pathologist scoring (Kim et al. 2024; Lee et al. 2024). These systems can
process large datasets rapidly whilst maintaining consistency across
different samples and institutions.

Circulating biomarkers, including circulating tumour DNA (ctDNA)
and blood-based TMB assessment, offer the advantage of non-invasive
monitoring and the ability to capture tumour heterogeneity more
comprehensively than single tissue samples. Blood-based biomarkers
extend beyond ctDNA to include metabolic markers such as circulating
glucose levels and expression of glucose transporters on circulating
tumour cells, which may provide real-time insights into tumour meta-
bolic activity and treatment response (Gokalp 2022a). Studies have
shown correlations between blood-based biomarkers and tissue-based
assessments, though standardisation remains a challenge for wide-
spread clinical implementation (Friedman and Postow, 2016; Raez et al.
2018). Additionally, metabolomic profiling of patient plasma samples
has revealed distinct metabolic signatures associated with checkpoint
inhibitor response, including alterations in glucose, amino acid, and
lipid metabolism, suggesting potential for integrative biomarker panels
combining genomic, immunological, and metabolic parameters. Table 1
summarises the current landscape of established and emerging bio-
markers, their methodologies, regulatory status, and clinical
applications.

4. Machine learning and artificial intelligence approaches
4.1. Clinical implementation of AI models

The integration of artificial intelligence into checkpoint inhibitor
prediction has advanced from experimental concepts to clinically
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validated tools. However, critical evaluation reveals that whilst these
models show statistical superiority over individual biomarkers, their
clinical implementation faces significant challenges related to external
validation and real-world performance. The SCORPIO machine learning
system represents a significant milestone, utilising routine blood tests
and clinical characteristics from 9745 patients across 21 cancer types to
predict treatment response (Yoo et al. 2025). Trained on data from
Memorial Sloan Kettering Cancer Center, SCORPIO achieved median
area under the curve values of 0.763 and 0.759 for predicting overall
survival at multiple time points, substantially outperforming traditional
TMB assessment. Whilst these results are promising, the model’s per-
formance was primarily demonstrated within the Memorial Sloan Ket-
tering system, and broader external validation across diverse healthcare
settings with different patient populations and clinical practices remains
limited.

The LORIS (Logistic Regression-Based Immunotherapy-Response
Score) model has demonstrated comparable success using six readily
available clinical and genomic features: patient age, cancer type, treat-
ment history, blood albumin levels, neutrophil-to-lymphocyte ratio, and
TMB (Chang et al. 2024). This model’s strength lies in its reliance on
routinely collected clinical data, making it immediately applicable in
most healthcare settings without requiring sophisticated genomic
testing infrastructure. However, similar to SCORPIO, comprehensive
validation across different healthcare systems and patient populations is
still needed to establish generalisability and clinical utility.

4.2. Advanced Al methodologies

Deep learning approaches have shown particular promise in pro-
cessing complex, high-dimensional datasets. Convolutional neural net-
works have been successfully applied to histopathological image
analysis, enabling automated assessment of tumour-infiltrating lym-
phocytes and spatial immune cell distributions (Millward et al. 2025;
Choi et al. 2023). These Al-based approaches build upon decades of
traditional pathological expertise in recognising immune infiltration
patterns, requiring extensive validation by expert pathologists to ensure
clinical accuracy and reproducibility. These systems can identify subtle
patterns in tissue architecture that may not be apparent to human ob-
servers, potentially uncovering novel predictive features. However, the
interpretability of these patterns and their biological relevance requires
ongoing validation through traditional pathological assessment.

Multi-modal Al approaches that integrate diverse data types have
demonstrated superior performance compared to single-modality
models. Studies combining genomic data, imaging features, and clin-
ical variables have achieved area under the curve values exceeding 0.8
in several cancer types (Li et al. 2025; Goyal et al. 2024). The challenge
lies in standardising data collection and processing across different in-
stitutions to ensure model generalisability, a critical limitation that has
hindered the clinical implementation of many promising Al approaches.

Natural language processing techniques have been applied to elec-
tronic health records to extract relevant clinical information that might
influence treatment response (Clay et al. 2025). These approaches can
identify patterns in clinical notes, laboratory results, and treatment
histories that correlate with outcomes, providing additional predictive
features for machine learning models. However, the variability in clin-
ical documentation practices across institutions presents significant
challenges for model generalisability.

4.3. Interpretability and clinical adoption

A critical challenge in AI implementation is the interpretability of
complex algorithms. Healthcare providers require understanding of how
models reach their predictions to make informed treatment decisions.
Explainable Al techniques, including SHAP (Shapley Additive Explana-
tions) values and attention mechanisms, are being developed to provide
insights into model decision-making processes (Sadeghi et al. 2024;



Table 1
Current biomarkers and their clinical applications.
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Biomarker

Methodology FDA Approval Cancer Types Predictive Value Limitations Standardisation Issues
Status
PD-L1 Expression ( Immunohistochemistry with ~ Approved for NSCLC, bladder, Limited predictive accuracy (28.9 % of approvals show predictive value) Intratumoral Multiple companion

Davis and Patel,
2019)

Tumour Mutational

Burden (Stenzinger
et al., 2019)

Microsatellite

Instability (Li et al.,
2020; Marques et al.,

2022)

Blood-based TMB (
Sivapalan et al.,
2023; Boukovala
et al., 2024)

Circulating Tumour
DNA (Dang and
Park, 2022;
Guigal-Stephan
et al., 2025)

Immune Cell
Infiltration (Barua
et al., 2018; Page
et al., 2023)

expert pathologist scoring

NGS panels

PCR/NGS

Liquid biopsy NGS

NGS liquid biopsy

Traditional pathologist
assessment and spatial

analysis platforms

multiple indications

Approved for solid
tumours

Approved entity-
agnostically for
MSI-H/dMMR solid
tumours

Investigational

Investigational

Research use

gastric, cervical,
TNBC

Pan-cancer with
> 10 mutations/
Mb threshold

Pan-cancer MSI-H/
dMMR tumours
(not limited to
specific
populations)
Multiple

Multiple

Multiple

Statistically significant but clinically modest correlation with response

High predictive value in MSI-H tumours (>80 % response rates in some

studies)

Emerging correlative evidence with tissue TMB

Promising early data for monitoring treatment response

Strong association with response (TILs show consistent prognostic value)

heterogeneity, assay
variability, different
scoring systems

Cost, long turnaround
time, tissue
requirements

Low prevalence in most
solid tumours (2-4 %
overall)

Concordance with
tissue TMB varies
(60-80 %), lower
sensitivity for low
mutation burden
Technical challenges in
detection sensitivity,
tumour fraction
variability

Requires specialised
platforms for
quantitative analysis
beyond routine
pathology

diagnostics with varying
cut-offs across tumour
types

Ongoing efforts to
standardise assay
platforms, bioinformatics
pipelines, and reporting
methods
Well-established
methodologies with good
inter-laboratory
concordance

Significant standardisation
needs: pre-analytical
variables, platform
differences, cut-off
determination

No standardisation issues
listed as methodology still
in development phase

Working groups
developing standardised
scoring systems for routine
implementation
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Mathew et al. 2025). The development of interpretable Al systems is
essential for clinical adoption, as physicians need to understand the
biological and clinical rationale underlying predictions to maintain
confidence in Al-assisted decision-making.

The development of user-friendly interfaces and clinical decision
support systems is essential for widespread adoption. Successful imple-
mentations require integration with existing healthcare information
systems and workflows, ensuring that AI tools enhance rather than
complicate clinical decision-making processes. Current evidence sug-
gests that whilst Al models show statistical promise, the practical chal-
lenges of clinical implementation, including system integration, user
training, real-world applicability benefits and ongoing model mainte-
nance, represent significant barriers to widespread adoption (Macheka
et al. 2024).

Table 2 provides a comprehensive overview of current artificial in-
telligence applications in checkpoint inhibitor prediction, detailing their
methodologies, performance metrics, and implementation status, with
clarified definitions of validation stages and technical approaches.

The integration of artificial intelligence into checkpoint inhibitor
prediction has advanced from experimental concepts to clinically vali-
dated tools, as illustrated in Fig. 2. This includes clinical models such as
SCORPIO and LORIS, as well as advanced deep learning and multi-
modal approaches, each addressing unique challenges in prediction,
interpretability, and clinical integration (Fig. 2).

5. Mathematical and mechanistic models
5.1. Systems biology approaches

Mathematical models provide unique insights into the dynamic in-
teractions between tumours and the immune system, offering mecha-
nistic understanding that complements empirical prediction models.
These approaches represent a distinct analytical methodology that fo-
cuses on underlying biological mechanisms rather than pattern recog-
nition from large datasets. A translational mathematical model has been
developed that captures checkpoint inhibitor efficacy through three key
parameters: tumour growth rate, immune infiltration, and
immunotherapy-mediated amplification of anti-tumour response
(Butner et al. 2021). This model demonstrated 81.4 % accuracy in
classifying treatment response using only tumour volume measurements
within two months of treatment initiation across multiple solid tumour
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types. However, this validation was conducted retrospectively on a
relatively small cohort (189 patients), and prospective validation across
diverse clinical settings is needed to establish clinical utility.

The mathematical framework enables simulation of various treat-
ment scenarios and can guide optimal dosing strategies and combination
therapies. These models can incorporate pharmacokinetic parameters,
immune cell dynamics, and tumour heterogeneity to provide personal-
ised treatment predictions. The mechanistic basis of these models makes
them particularly valuable for understanding treatment resistance
mechanisms and identifying potential combination targets, though their
clinical implementation requires validation of the underlying biological
assumptions across different patient populations.

5.2. Computational immune monitoring

Advanced computational approaches have been developed to
monitor immune system dynamics during treatment. These models
integrate multiple data streams including immune cell populations,
cytokine levels, and tumour markers to provide real-time assessment of
treatment response (Qin et al. 2024). Such approaches can identify early
indicators of treatment failure or immune-related adverse events,
enabling proactive treatment modifications, though the complexity of
these models presents challenges for routine clinical implementation.

The integration of mathematical models with clinical data has
enabled the development of predictive frameworks that account for in-
dividual patient characteristics and tumour biology. These personalised
models can simulate treatment outcomes under different scenarios,
supporting clinical decision-making in complex cases where traditional
biomarkers provide ambiguous results. However, the clinical validation
of these mechanistic approaches remains limited compared to empirical
biomarker-based models.

6. Integrated multi-modal approaches
6.1. Comprehensive biomarker frameworks

The recognition that single biomarkers have limited predictive ac-
curacy has driven development of integrated approaches that combine
multiple predictive modalities. It is crucial to distinguish between the
underlying biological features (biomarkers such as PD-L1, TMB, immune
infiltration patterns, and metabolic markers) and the computational

Table 2
Artificial Intelligence Applications in Checkpoint Inhibitor Prediction.
AI Approach Input Data Technical Clinical Application Performance Metrics Implementation Status External
Types Method Validation
Deep Learning for H&E slides, Convolutional Automated TIL AUC 0.91-0.93 Proof-of-concept validation: Limited to original
Histopathology ( IHC images neural networks quantification, demonstrated technical development
Shamai et al., 2022) computer-assisted PD- feasibility with promising institutions
L1 scoring performance in controlled
research settings
Multi-modal Genomics, Ensemble Comprehensive AUC > 0.85 Proof-of-concept validation: External validation
Integration (Goyal imaging, methods treatment selection shows technical feasibility but limited; most
et al., 2024; Li et al., clinical incorporating multiple requires extensive multi- studies single-
2025) data types institutional validation institution
Natural Language Electronic Transformer Automated clinical Accuracy 75-85 % Early development: preliminary Not yet undertaken
Processing (Clay health models feature extraction from algorithms under development
et al., 2025) records unstructured data and testing

Radiomics Analysis (

CT, PET scans

Various machine

Non-invasive imaging-

Jiang et al., 2020) learning based response
algorithms prediction
SCORPIO (Yoo et al., Clinical & Machine learning Routine clinical
2025) laboratory ensemble prediction using readily
blood test available data

Explainable AI (
Sadeghi et al., 2024;
Mathew et al., 2025)

Multiple data
types

SHAP, attention
mechanisms

Interpretable clinical
decision support
providing rationale for
predictions

AUC 0.75-0.91 Research applications: applied in ~ Limited cross-
research settings with promising institutional
initial results validation

AUC > 0.75 Clinical validation: demonstrated ~ Single-institution

validation at
Memorial Sloan
Kettering
Methodology
development phase

in large clinical cohort with
robust methodology

Interpretability metrics
rather than predictive
accuracy

Active research: ongoing
development of interpretability
methods
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Fig. 2. Artificial intelligence approaches for predicting response to checkpoint inhibitor therapy. On the left, clinical Al models such as SCORPIO utilize routine
blood and clinical data from over 9000 patients across 21 cancer types (AUC = 0.76), while LORIS relies on six clinical and genomic features for prediction, making it
readily applicable in clinical settings. On the right, advanced Al techniques include convolutional neural networks (CNN) for histopathological image analysis, spatial
immune profiling, multi-modal models that integrate diverse data types, and natural language processing (NLP) applied to electronic health records.

methods used to integrate these features into predictive models. Recent
studies have demonstrated that combining PD-L1 expression with TMB
and immune cell infiltration markers can achieve area under the curve
values exceeding 0.85 in certain cancer types (So et al. 2023; Yamaguchi
et al. 2024). A performance comparison is detailed in Table 3, though
direct comparisons are challenging due to differences in study

populations, methodologies, and validation approaches. These
multi-dimensional approaches provide more comprehensive assessment
of the tumour immune microenvironment.

Beyond traditional genomic and immunological biomarkers,
emerging multi-modal frameworks increasingly incorporate metabolic
parameters. The integration of glucose transporter expression (GLUT1

Table 3
Performance comparison of major predictive models for checkpoint inhibitor response (Revised).
Model/ Dataset Cancer Primary AUC/Accuracy Key Features Validation External Study
Approach Size Types Endpoint Status Validation Population
SCORPIO (Yoo 9745 21 Overall 0.76 (median AUC) Complete blood count, Multi- Limited to Predominantly
et al., 2025) patients cancer survival comprehensive institution Memorial US population,
types metabolic panel, age, development Sloan single
cancer type and internal Kettering healthcare
validation Cancer system
Center
system
LORIS (Chang Multiple Pan- Treatment 81.4 % accuracy Age, cancer type, prior External Validated International
et al., 2024) cohorts cancer response therapy, albumin, validation across cohorts from
(>3000 neutrophil-to- across different multiple
patients) lymphocyte ratio, TMB multiple study published
published populations studies
cohorts and
institutions
Spatial 18 NSCLC Treatment 0.84 18-protein spatial Proof-of- No external Single-
Biomarker patients response signature analysis in concept study validation institution,
Model (Song tumour small pilot
et al., 2023) microenvironment study
PD-L1 Meta- Multiple Treatment 0.65-0.78 (varies by cancer type) = Immunohistochemistry Regulatory Validated Global multi-
Expression ( analysis response with standardised approval with  across institutional
Huang and of pathologist scoring extensive multiple clinical trial
Teng, 2020) > 10,000 validation international populations
patients clinical trials
TMB Multiple Pan- Treatment 0.60-0.68 Whole exome or Regulatory Validated Diverse
Assessment cohorts cancer response targeted panel approval across international
(Litchfield sequencing based on multiple populations
et al., 2021) clinical trial clinical trials
data and real-
world studies
Mathematical 189 Multiple Clinical 81.4 % accuracy Tumour volume Retrospective No Single-
Model ( patients solid response kinetics from serial single- prospective institution
Butner et al., tumours imaging institution or external retrospective
2021) validation validation cohort
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and GLUT3) with PD-L1 status and TMB has shown promise in refining
patient stratification. For instance, tumours exhibiting high glycolytic
activity (indicated by elevated GLUT1/GLUT3 expression) combined
with low PD-L1 expression may represent a distinct subgroup requiring
alternative therapeutic strategies or combination approaches targeting
both immune checkpoints and metabolic pathways (Gokalp 2022a).

Furthermore, computational modelling approaches integrating
metabolic flux analysis with immune cell infiltration patterns have
revealed complex interactions between tumour metabolism and immune
evasion mechanisms. These multi-dimensional models suggest that
metabolic reprogramming not only supports tumour growth but actively
shapes the immune microenvironment, creating zones of immune priv-
ilege through nutrient depletion and accumulation of immunosuppres-
sive metabolites.

Spatial biomarker strategies have shown particular promise, with
studies demonstrating that stromal signature scores comprising 18
protein targets achieved superior predictive power (AUC 0.84)
compared to bulk PD-L1 expression (AUC 0.78) and TMB (AUC 0.53)
alone (Song et al. 2023). The integration of spatial relationships between
different cell types provides insights into the functional organisation of
the tumour microenvironment that correlate with treatment response,
building upon traditional pathological assessment of immune infiltra-
tion patterns that have long been recognised as prognostically impor-
tant. Recent advances in immunotherapy prediction leverage integrated
multi-modal biomarker frameworks and dynamic monitoring strategies,
as illustrated in Fig. 3. These approaches combine established and
emerging biomarkers to improve predictive accuracy and enable early,
adaptive assessment of treatment response (Fig. 3).

6.2. Dynamic monitoring strategies

The development of dynamic monitoring approaches extends beyond
traditional imaging and blood-based biomarkers to include metabolic
monitoring. Serial assessment of tumour glucose metabolism through
imaging modalities such as 18F-FDG PET-CT, combined with measure-
ment of circulating metabolites and expression of glucose transporters,
enables real-time evaluation of metabolic response to checkpoint in-
hibitor therapy. Changes in tumour glucose uptake patterns may predict
treatment response earlier than radiographic changes, as metabolic
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alterations often precede morphological changes (Gokalp 2022a).

Integration of metabolic monitoring with immune biomarkers pro-
vides a comprehensive view of treatment-induced changes. For example,
successful checkpoint inhibitor therapy may be associated with
decreased tumour glucose uptake (reflecting reduced metabolic activity)
concurrent with increased infiltration of activated T-cells. Conversely,
persistent high metabolic activity despite immune cell infiltration may
indicate ongoing immune evasion and potential treatment failure. Such
dynamic, multi-parameter monitoring strategies could enable early
identification of non-responders and guide adaptive treatment
modifications.

The development of dynamic monitoring approaches that track
changes in biomarker expression during treatment has shown promise
for early prediction of treatment response. Serial assessment of circu-
lating biomarkers, including ctDNA and immune cell populations, can
identify patients experiencing treatment benefit before radiographic
response becomes apparent (Thompson et al. 2021). Liquid biopsy offers
the advantage of capturing tumour heterogeneity more comprehen-
sively than single tissue samples (Ma et al. 2023). Studies have
demonstrated correlations between circulating biomarkers and treat-
ment outcomes, though standardisation of collection and analysis
methods remains a challenge for widespread clinical implementation.
However, the clinical utility of dynamic monitoring approaches requires
prospective validation to demonstrate that early biomarker changes
translate into actionable clinical decisions that improve patient
outcomes.

Table 3 presents a comprehensive comparison of major predictive
models, highlighting their performance characteristics, validation sta-
tus, and key features across different cancer types and patient pop-
ulations, with enhanced detail on study characteristics and validation
methodology.

7. Clinical validation and implementation challenges
7.1. Regulatory and validation requirements
The translation of predictive models from research settings to clinical

practice faces significant regulatory and validation hurdles. External
validation represents one of the most critical challenges in predictive

Integration of Biomarker Modalities for
Immunotherapy Prediction

Multi-Modal Integration
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multi-modal
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Fig. 3. Integration of biomarker modalities for immunotherapy prediction. Multi-modal integration combines biomarkers such as PD-L1, TMB, and additional
molecular and imaging features to improve predictive accuracy (AUC). Dynamic monitoring uses serial circulating biomarkers to track treatment response in real
time, enabling earlier and more comprehensive assessment of immunotherapy outcomes.



E.O. Oisakede et al.

model development, with many promising approaches failing to main-
tain performance when applied outside their original development set-
tings. The FDA has established guidelines for the validation of
biomarker-based diagnostic tests, requiring demonstration of analyt-
ical validity, clinical validity, and clinical utility across diverse patient
populations. Several approvals occurred after extensive validation from
clinical trials. Currently, there are three FDA-approved predictive bio-
markers namely PD-L1, MSI, and TMB routinely used for patient selec-
tion for immune checkpoint inhibitor response in clinical practice
(Wang et al. 2021). Notably, few predictive models beyond these
established biomarkers have achieved the level of validation required
for regulatory approval, limiting their clinical adoption.

External validation studies are essential for demonstrating model
generalisability across different institutions and patient populations. A
critical example is provided by a validation study of a melanoma pre-
diction model: whilst the original single-institution study reported high
accuracy, subsequent validation in a national cohort of advanced mel-
anoma patients treated with anti-PD-1 monotherapy could not repro-
duce the initial performance, highlighting fundamental generalisability
concerns (van der Kooij et al., 2023). This pattern of reduced perfor-
mance in external validation has been observed across multiple Al and
machine learning approaches, representing a significant barrier to
clinical implementation.

Many promising models have shown excellent performance in single-
institution studies but have failed to maintain accuracy when applied to
external datasets, highlighting the importance of robust validation
frameworks. This phenomenon, known as the "validation gap," repre-
sents one of the most significant challenges facing the field and explains
why few predictive models have achieved widespread clinical adoption
despite promising initial results.

7.2. Data standardisation and quality

The integration of diverse data types requires standardisation of
collection methods, processing protocols, and quality control measures.
Variations in sample collection, storage conditions, and analytical
techniques can significantly impact model performance. The develop-
ment of standard operating procedures and quality metrics is essential
for ensuring reproducible results across different healthcare settings, yet
many promising Al models have been developed without adequate
attention to these standardisation requirements.

International collaborative efforts are addressing standardisation
challenges through initiatives such as the Global Alliance for Genomics
and Health (GA4GH) and the International Cancer Genome Consortium
(ICGC). These organisations are developing frameworks for data
sharing, standardisation, and quality control that will facilitate the
development and validation of predictive models (Global Alliance for
Genomics and Health, 2025). However, the implementation of these
standards across diverse healthcare systems remains a significant
challenge.

7.3. Healthcare system integration and clinical implementability

The successful implementation of predictive models requires inte-
gration with existing healthcare information systems and clinical
workflows, representing a major practical challenge that is often
underestimated in research settings. Models must be accessible to cli-
nicians at the point of care, with user-friendly interfaces that provide
clear, actionable recommendations. The development of clinical deci-
sion support systems that integrate predictive models with electronic
health records is essential for widespread adoption. However, the
practical challenges of system integration, including software compati-
bility, data security requirements, and workflow disruption, have
limited the clinical implementation of many technically successful
models.

Training and education programmes are necessary to ensure that
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healthcare providers understand how to interpret and apply predictive
model results. The complexity of many models requires ongoing support
and education to ensure appropriate clinical use. Additionally, the cost-
effectiveness of implementing sophisticated predictive models,
including the required infrastructure, personnel training, and ongoing
maintenance, represents a significant consideration for healthcare sys-
tems with limited resources.

The ease of clinical implementation varies significantly across
different predictive approaches. Traditional biomarkers such as PD-L1
and MSI leverage existing pathology infrastructure and expertise,
facilitating their clinical adoption. In contrast, sophisticated Al models
requiring specialised computational resources and expertise face greater
implementation barriers, regardless of their technical performance.

8. Future directions and emerging technologies
8.1. Real-time adaptive modelling

The development of real-time adaptive models that continuously
update predictions based on treatment response represents an exciting
frontier in personalised medicine. These systems would integrate
streaming data from various sources including wearable devices, regular
blood tests, and imaging studies to provide dynamic predictions of
treatment response and toxicity risk. However, the clinical validation
and regulatory approval of such dynamic systems present unprece-
dented challenges, as traditional clinical trial designs are not well-suited
to evaluating continuously adaptive algorithms.

The integration of pharmacokinetic modelling with predictive algo-
rithms could enable personalised dosing strategies that optimise efficacy
whilst minimising toxicity. Such approaches could account for individ-
ual patient characteristics, drug metabolism, and treatment response
patterns to provide optimal treatment regimens. However, the clinical
implementation of personalised dosing based on predictive models re-
quires extensive safety validation and regulatory oversight.

8.2. Novel data sources and technologies

Emerging technologies including single-cell sequencing, spatial
transcriptomics, and advanced imaging techniques are providing un-
precedented insights into tumour biology and immune system dynamics.
Metabolomic and lipidomic profiling technologies have advanced
significantly, enabling comprehensive characterisation of tumour
metabolic states and their relationship to immune checkpoint expression
and response. High-resolution mass spectrometry-based metabolomics
can simultaneously quantify hundreds of metabolites, providing
detailed metabolic signatures that may predict checkpoint inhibitor
response (Gokalp 2022a).

Spatial metabolomics, combining mass spectrometry imaging with
immunohistochemistry, enables visualisation of metabolite distribu-
tions within the tumour microenvironment and their spatial relationship
to immune cell infiltrates. This technology has revealed metabolic
zonation within tumours, with glucose-depleted regions showing
reduced T-cell infiltration and function, highlighting the importance of
metabolic-immune interactions in determining treatment response.

The integration of these technologies with predictive models has the
potential to significantly enhance prediction accuracy and provide
deeper mechanistic understanding, though the cost and complexity of
these approaches may limit their widespread clinical implementation.

Wearable devices and mobile health technologies offer opportunities
for continuous monitoring of patient status during treatment. Beyond
physiological parameters, emerging biosensor technologies enable non-
invasive monitoring of circulating metabolites and immune markers,
providing real-time feedback on treatment-induced metabolic and
immunological changes. These devices can track physiological param-
eters, activity levels, and patient-reported outcomes that may correlate
with treatment response and toxicity risk. However, the clinical
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validation of digital biomarkers and their integration into treatment
decision-making algorithms remains in early development stages.

8.3. Natural bioactive compounds and complementary therapeutic
strategies

An emerging area of investigation involves the potential of natural
bioactive compounds to enhance checkpoint inhibitor efficacy through
complementary mechanisms. These compounds, derived from tradi-
tional medicinal plants used across diverse cultures for centuries, have
demonstrated multifaceted anticancer properties that may synergise
with immunotherapy.

Thymoquinone, the principal bioactive compound in black cumin
(Nigella sativa), has exhibited potent anticancer effects across multiple
cancer types including lung, pancreatic, cervical, and breast cancers
(Gokalp, 2020; Gokalp, 2021; Gokalp, 2025). Its mechanisms of action
include inhibition of histone deacetylase 2 (HDAC2), a key epigenetic
regulator overexpressed in many cancers, modulation of cell cycle pro-
gression through effects on cyclin D1 and p53 expression, and induction
of apoptosis through mitochondrial pathways. Significantly, thymoqui-
none has also demonstrated immunomodulatory properties, including
enhancement of natural killer cell activity and modulation of cytokine
production, which could potentially complement checkpoint inhibitor
mechanisms (Gokalp, 2025; Alhmied et al. 2021; Randhawa and
Alghamdi, 2011).

Related compounds including thymol and carvacrol, monoterpenoid
phenols found in various aromatic plants, have shown similar anticancer
properties with distinct molecular targets. These compounds inhibit
multiple cancer-associated enzymes including carbonic anhydrase iso-
forms, acetylcholinesterase, and o-glycosidase, while also demon-
strating direct cytotoxic effects on cancer cells (Gokalp, 2020; Gokalp,
2021; Giizel et al. 2019). The inhibition of carbonic anhydrase, partic-
ularly the CA IX and CA XII isoforms upregulated in hypoxic tumours,
represents a particularly relevant mechanism, as these enzymes
contribute to the acidic tumour microenvironment that impairs immune
cell function.

Organosulfur compounds from garlic (Allium sativum), including
diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide
(DATS), have demonstrated significant anticancer effects through inhi-
bition of cancer cell proliferation, induction of apoptosis, and suppres-
sion of angiogenesis (Gokalp, 2020; Gokalp, 2021). These compounds
modulate multiple signalling pathways relevant to cancer progression
and immune evasion, including NF-xB, MAPK, and PI3K/AKT pathways.
Their ability to reduce oxidative stress while selectively inducing
apoptosis in cancer cells suggests potential for combination with
immunotherapy to enhance antitumour immune responses.

Cucurbitacins, triterpenoid compounds found in plants of the
Cucurbitaceae family and marigold (Tagetes species), have shown potent
cytotoxic effects against various cancer cell lines, including cervical,
ovarian, and lung cancers (Gokalp, 2021; Gokalp, 2023). Cucurbitacin I,
in particular, inhibits the JAK2/STAT3 signalling pathway, which is
frequently hyperactivated in cancers and contributes to immune evasion
through upregulation of immunosuppressive factors. By inhibiting this
pathway, cucurbitacins may potentially enhance the tumour microen-
vironment’s permissiveness to immune-mediated killing. Additionally,
a-terthienyl and quercetagetin from marigold have demonstrated
inhibitory effects on nematode and insect receptors through molecular
mechanisms that may extend to cancer cell signalling pathways (Gokalp,
2023).

The integration of these natural compounds into checkpoint inhibi-
tor strategies could occur through several approaches:

1. Metabolic modulation: Natural compounds targeting tumour
metabolism (such as HDAC inhibitors like thymoquinone or carbonic
anhydrase inhibitors like thymol and carvacrol) could reshape the
tumour microenvironment to favour immune cell infiltration and func-
tion, potentially enhancing checkpoint inhibitor response.
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2. Immune enhancement: Compounds with immunomodulatory
properties could directly augment antitumour immune responses,
complementing the mechanism of checkpoint inhibitors. For instance,
thymoquinone’s effects on cytokine production and natural killer cell
activity may synergise with PD-1/PD-L1 blockade.

3. Epigenetic reprogramming: HDAC inhibitors from natural sources
could reverse epigenetic silencing of immune-related genes in both
tumour and immune cells, potentially overcoming intrinsic resistance
mechanisms to checkpoint inhibitors.

4. Multi-target effects: Many natural compounds simultaneously
affect multiple pathways relevant to cancer progression and immune
evasion, potentially addressing the multifactorial nature of checkpoint
inhibitor resistance more effectively than single-target synthetic
inhibitors.

However, clinical translation of these findings faces substantial
challenges. The pharmacokinetic properties of many natural compounds
limit their bioavailability and tissue distribution. Chemical modification
or nanoparticle-based delivery systems may be required to achieve
therapeutic concentrations at tumour sites. Additionally, potential drug-
drug interactions between natural compounds and checkpoint inhibitors
require careful investigation, as some natural compounds may affect the
metabolism or efficacy of immunotherapy agents through cytochrome
P450 enzyme modulation or other mechanisms.

Rigorous preclinical studies using appropriate animal models and
patient-derived xenografts are essential to establish proof-of-concept for
combination strategies. Subsequent clinical trials should employ adap-
tive designs to identify optimal dosing, timing, and patient populations
most likely to benefit. Biomarker-driven trial designs incorporating
metabolic, immunological, and pharmacological parameters could
accelerate identification of responsive patient subgroups and inform
personalised combination approaches.

8.4. Combination therapy prediction

The increasing use of combination immunotherapy regimens pre-
sents new challenges and opportunities for predictive modelling that
extend beyond the scope of this review focused on monotherapy ap-
proaches. Models must account for the complex interactions between
different therapeutic agents and their combined effects on the immune
system and tumour microenvironment. The development of predictive
models for novel immunotherapy combinations, including checkpoint
inhibitors with targeted therapies, chemotherapy, and radiation ther-
apy, will require sophisticated approaches that account for multifacto-
rial interactions and temporal dynamics. This represents a critical area
for future research as combination approaches become increasingly
standard in clinical practice.

Future research priorities should include: prospective validation
studies designed specifically to test model generalisability across diverse
healthcare settings; development of standardised protocols for model
validation and implementation; creation of interpretable Al systems that
provide clinically actionable insights with clear biological rationale; and
establishment of regulatory frameworks for evaluating and approving
dynamic, adaptive prediction systems.

9. Conclusions

The field of checkpoint inhibitor prediction has evolved rapidly from
simple biomarker assessments to sophisticated multi-modal approaches
incorporating artificial intelligence, metabolic parameters, and systems
biology. However, critical analysis reveals a significant gap between
promising research findings and clinical implementation, primarily due
to limited external validation and practical implementation challenges.
Whilst significant progress has been made, several challenges remain
before these tools can achieve widespread clinical adoption. The
development of robust validation frameworks, standardisation of data
collection and analysis methods, and integration with healthcare
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systems are essential for translating research advances into clinical
practice, yet these fundamental requirements have been inadequately
addressed in much of the current literature.

Traditional pathological assessment by expert pathologists continues
to provide the foundation for clinical decision-making and serves as the
essential validation standard for emerging Al-based approaches. The
integration of metabolic biomarkers, particularly glucose transporter
expression, into existing prediction frameworks represents a promising
avenue for enhancing patient stratification. Furthermore, the investi-
gation of natural bioactive compounds as complementary therapeutic
agents offers potential strategies to overcome checkpoint inhibitor
resistance and improve treatment outcomes through metabolic modu-
lation, immune enhancement, and multi-target effects. The expertise
and standardised protocols developed through decades of pathological
practice remain irreplaceable for ensuring accurate, reproducible
biomarker assessment.

The most promising approaches appear to be integrated multi-modal
frameworks that combine traditional biomarkers with artificial intelli-
gence algorithms, metabolic profiling, and dynamic monitoring strate-
gies. However, critical evaluation reveals that while these approaches
show statistical superiority in development cohorts, their clinical utility
advantage over established biomarkers requires further substantiation
through rigorous external validation studies. These approaches offer the
potential to significantly improve patient selection for checkpoint in-
hibitor therapy, optimise treatment regimens, and minimise adverse
events. However, the translation of this potential into clinical reality
requires addressing fundamental challenges of external validation,
standardisation, and practical implementation that have hindered the
field’s progress.

Future research priorities should encompass not only prospective
validation studies and interpretable Al systems but also investigation of
metabolic-immune interactions, development of combination strategies
incorporating natural bioactive compounds, and integration of meta-
bolic monitoring into dynamic response assessment protocols. The
convergence of traditional biomarkers, advanced computational ap-
proaches, metabolic profiling, and novel therapeutic strategies holds
promise for truly personalised immunotherapy, but realisation of this
potential requires addressing fundamental challenges of validation,
standardisation, and clinical implementation that have hindered prog-
ress in the field.

Future research should prioritise prospective validation studies
designed to test model generalisability across diverse healthcare settings
and patient populations, development of explainable AI systems that
provide clinically actionable insights with clear biological rationale, and
creation of adaptive models that continuously update predictions based
on treatment response while maintaining clinical interpretability. The
ultimate goal is the development of comprehensive decision support
systems that guide personalised immunotherapy selection and man-
agement, maximising therapeutic benefit whilst minimising harm.
Critical success factors include ensuring external validation across
diverse populations, maintaining clinical interpretability, and address-
ing practical implementation challenges including cost-effectiveness
and integration with existing healthcare workflows.

The successful implementation of these predictive tools will require
collaboration between researchers, clinicians, regulatory agencies, and
healthcare systems, with particular attention to addressing the valida-
tion deficits and implementation challenges that have limited the clin-
ical translation of promising research findings. Only through
coordinated efforts that prioritise rigorous validation and practical
implementability can the promise of precision immunotherapy be real-
ised, ensuring that the right patients receive the right treatments at the
right time.
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