
RaY
Research at the University of York St John

For more information please contact RaY at
ray@yorksj.ac.uk

Oisakede, Emmanuel O., Akinro, Oluwatosin, Bello, Oluwakemi 
Jumoke, Analikwu, Claret Chinenyenwa, Egbon, Eghosasere and 
Olawade, David ORCID logoORCID: https://orcid.org/0000-0003-
0188-9836 (2025) Predictive models for immune checkpoint 
inhibitor response in cancer: A review of current approaches and 
future directions. Critical Reviews in Oncology/Hematology, 216. p. 
104980.   

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/13226/

The version presented here may differ from the published version or version of record. If 

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.1016/j.critrevonc.2025.104980

Research at York St John (RaY) is an institutional repository. It supports the principles of 

open access by making the research outputs of the University available in digital form. 

Copyright of the items stored in RaY reside with the authors and/or other copyright 

owners. Users may access full text items free of charge, and may download a copy for 

private study or non-commercial research. For further reuse terms, see licence terms 

governing individual outputs.  Institutional Repositories Policy Statement

https://www.yorksj.ac.uk/policies-and-documents/library/statement/
mailto:ray@yorksj.ac.uk


Predictive models for immune checkpoint inhibitor response in cancer: A 
review of current approaches and future directions

Emmanuel O. Oisakede a,b, Oluwatosin Akinro c, Oluwakemi Jumoke Bello d,  
Claret Chinenyenwa Analikwu e, Eghosasere Egbon e, David B. Olawade f,g,h,*

a Department of Clinical Oncology, Leeds Teaching Hospitals Trust, Leeds, UK
b Department of Health Research, University of Leeds, Leeds, UK
c Coronary Care Unit, Kettering General Hospital NHS Foundation Trust, Kettering, UK
d The Clinical Research Centre, The London Clinic, 20 Devonshire Place, London W1G 6BW, United Kingdom
e Department of Microbiology, University Hospital Southampton NHS foundation Trust, Hampshire SO16 6YD, United Kingdom
f Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK
g Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham, Kent ME7 5NY, UK
h Department of Public Health, York St John University, London E14 2BA, UK

A R T I C L E  I N F O

Keywords:
Checkpoint inhibitors
Predictive models
Machine learning
Biomarkers
Immunotherapy

A B S T R A C T

Checkpoint inhibitors have revolutionised cancer treatment, yet only 20–30 % of patients achieve durable re
sponses, highlighting the critical need for predictive models. This review focuses on PD-1/PD-L1 pathway in
hibitors as monotherapy, examining current prediction frameworks spanning biomarker-based approaches, 
multi-omics integration, mathematical modelling, and artificial intelligence applications. Recent advances 
include SCORPIO and LORIS machine learning systems demonstrating superior statistical performance compared 
to traditional biomarkers, with area under curve values of 0.763. However, critical analysis reveals significant 
limitations in external validation across diverse healthcare settings, with many promising models failing to 
maintain performance outside their development institutions. Traditional pathological assessment by expert 
pathologists, including standardised PD-L1 scoring and tumour-infiltrating lymphocyte quantification, continues 
to form the foundation of clinical decision-making and provides essential validation for emerging AI approaches. 
Despite extensive research, established biomarkers show limited predictive accuracy, with PD-L1 demonstrating 
predictive value in only 28.9 % of FDA approvals. Multi-feature models incorporating genomic and clinical data 
show improved accuracy but face substantial validation challenges. Integration of spatial biomarkers and digital 
pathology has enhanced capabilities, achieving area under curve values of 0.84 in select studies. The most critical 
challenge is the “validation gap”, many models show excellent single-institution performance but fail external 
validation, limiting clinical translation. Current obstacles include inadequate standardisation, interpretability 
concerns, and healthcare system integration difficulties. Future directions must prioritise rigorous multi- 
institutional validation studies, development of clinically implementable frameworks, and addressing practical 
deployment challenges to realise precision immunotherapy’s potential.

1. Introduction

Checkpoint inhibitors targeting programmed death protein 1 (PD-1), 
programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte- 
associated protein 4 (CTLA-4) have fundamentally transformed cancer 
treatment paradigms across numerous malignancies. Since the first FDA 
approval in 2014, these agents have demonstrated remarkable efficacy 

in previously intractable cancers including melanoma, non-small cell 
lung cancer (NSCLC), renal cell carcinoma, and head and neck cancers 
(Flynn and Gerriets, 2019). However, the clinical reality reveals a sig
nificant challenge: only 20–40 % of patients achieve durable responses 
to these therapies, with response rates varying considerably across 
different tumour types and patient populations (Yang and Hu, 2019; 
Yarchoan et al., 2017).
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While combination approaches with chemotherapy, targeted ther
apy, and dual checkpoint inhibition are increasingly important in clin
ical practice, the prediction of response to these complex regimens 
presents additional challenges beyond the scope of this review. The 
focus on monotherapy reflects both the availability of more robust 
predictive data and the foundational importance of understanding 
single-agent mechanisms before advancing to combination prediction 
models.

The limited response rate, combined with the substantial costs and 
potential for severe immune-related adverse events (irAEs), has driven 
intensive research into predictive models capable of identifying patients 
most likely to benefit from checkpoint inhibitor therapy. The global 
checkpoint inhibitors market, valued at USD 47.4 billion in 2023 and 
projected to reach USD 189.1 billion by 2032, reflects both the thera
peutic potential and economic significance of optimising patient selec
tion (Faizullabhoy and Wani, 2024). This economic imperative 
underscores the urgent need for reliable predictive tools that can guide 
treatment decisions, minimise unnecessary toxicity, and maximise 
therapeutic benefit.

Beyond traditional biomarkers and AI-driven prediction models, 
emerging research has identified metabolic reprogramming and natural 
bioactive compounds as potential factors influencing checkpoint inhib
itor response. Tumour cells exhibit altered glucose metabolism, char
acterised by increased expression of glucose transporters such as GLUT1 
and GLUT3, which facilitate enhanced glucose uptake to support rapid 
proliferation (Gökalp 2022a). These metabolic alterations not only serve 
as potential prognostic indicators but may also influence the tumour 
microenvironment and immune cell function, thereby affecting immu
notherapy efficacy. Furthermore, natural compounds derived from 
traditional medicinal plants have demonstrated significant anticancer 
properties through multiple mechanisms, including inhibition of key 
metabolic enzymes, modulation of signalling pathways, and enhance
ment of immune responses (Gökalp, 2020, 2021, 2022b). For instance, 
thymoquinone from black cumin (Nigella sativa) has shown potent 
antitumor activity and immunomodulatory effects across various cancer 
types (Gökalp, 2025). Similarly, compounds such as cucurbitacins, fla
vonoids, and organosulfur compounds from plants like marigold 
(Tagetes species) and garlic (Allium sativum) have exhibited inhibitory 
effects on cancer cell proliferation and metastasis (Gökalp, 2023). These 
findings suggest that integration of metabolic biomarkers and natural 
compound-based approaches into predictive models could provide a 
more comprehensive understanding of factors influencing checkpoint 
inhibitor response.

Current prediction approaches span multiple domains, from tradi
tional biomarker-based strategies to sophisticated artificial intelligence 
algorithms. These approaches can be categorised into two fundamental 
components: the underlying biological features or biomarkers (such as 
PD-L1 expression, tumour mutational burden, immune cell infiltration 
patterns, and clinical parameters), and the analytical methods used to 
integrate these features into predictive models (ranging from traditional 
pathological assessment to advanced machine learning algorithms). The 
landscape includes single biomarker assessments such as PD-L1 
expression and tumour mutational burden (TMB), multi-feature 
models integrating genomic and clinical data, mathematical simula
tions of tumour-immune dynamics, and machine learning approaches 
capable of processing complex, high-dimensional datasets. Despite this 
diversity of approaches, no single method has achieved universal clin
ical adoption, reflecting the complex interplay of factors that determine 
treatment response.

Traditional pathological assessment by expert pathologists continues 
to form the cornerstone of clinical decision-making, providing stand
ardised, reproducible evaluation of key predictive features including 
PD-L1 expression levels and tumour-infiltrating lymphocyte patterns. 
This expertise serves as both the gold standard for biomarker validation 
and the essential foundation upon which AI-based approaches are 
developed and validated.

Recent technological advances have significantly expanded predic
tive capabilities. The development of comprehensive genomic profiling 
platforms, spatial biomarker analysis, and digital pathology has pro
vided unprecedented insights into the tumour microenvironment. 
Simultaneously, artificial intelligence applications have matured from 
experimental concepts to clinically validated tools, with models such as 
SCORPIO and LORIS demonstrating superior predictive performance 
compared to traditional biomarkers in real-world patient populations 
(Yoo et al. 2025; Chang et al. 2024). However, critical evaluation reveals 
significant limitations in the external validation and clinical imple
mentation of these promising approaches, with many models showing 
reduced performance when applied outside their original development 
cohorts.

The rationale for this review stems from the fragmented nature of the 
current predictive landscape, where multiple approaches exist in isola
tion without systematic comparison or integration. Whilst previous re
views have focused on individual biomarker categories or specific 
methodological approaches, no study has comprehensively synthesised 
the entire spectrum of prediction models spanning traditional bio
markers, advanced artificial intelligence algorithms, mathematical 
simulations, and integrated multi-modal frameworks. The novelty of 
this review lies in its unprecedented scope, and providing the first sys
tematic comparison of predictive performance across different meth
odological approaches using standardised metrics. Additionally, this 
review provides critical analysis of validation deficits and implementa
tion challenges that have limited the translation of promising research 
findings into clinical practice.

The primary aim is to provide clinicians and researchers with a 
unified assessment of all available predictive tools for checkpoint in
hibitor response, enabling evidence-based selection of optimal predic
tion strategies. The specific objectives include: systematically evaluating 
the predictive performance of biomarker-based, machine learning, 
mathematical, and integrated approaches; identifying the strengths, 
limitations, and clinical readiness of each methodology; comparing 
validation status and real-world applicability across different model 
types; critically analysing the challenges of external validation and 
clinical implementation that have hindered widespread adoption; and 
providing evidence-based recommendations for future research di
rections and clinical implementation strategies that will advance the 
field towards reliable, clinically-actionable precision immunotherapy 
tools.

2. Methods

2.1. Search strategy and data sources

A comprehensive literature search was conducted using multiple 
electronic databases including PubMed/MEDLINE, Embase, Web of 
Science, and Cochrane Library to identify relevant studies published 
between January 2018 and May 2024. The search strategy employed a 
combination of Medical Subject Headings (MeSH) terms and free-text 
keywords related to checkpoint inhibitors, predictive models, bio
markers, machine learning, and artificial intelligence. Key search terms 
included: "checkpoint inhibitor*", "PD-1", "PD-L1", "CTLA-4", "prediction 
model*", "biomarker*", "machine learning", "artificial intelligence", 
"immunotherapy response", and "cancer treatment".

Additional sources were systematically reviewed including confer
ence abstracts from major oncology meetings (ASCO, ESMO, AACR), 
regulatory agency databases (FDA, EMA), and clinical trial registries 
(ClinicalTrials.gov, EudraCT). Reference lists of identified systematic 
reviews and meta-analyses were manually screened to ensure compre
hensive coverage of the literature.

2.2. Study selection and inclusion criteria

Studies were included if they met the following criteria: original 
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research articles or systematic reviews examining predictive models for 
checkpoint inhibitor response in human cancer patients; studies 
reporting quantitative performance metrics (accuracy, sensitivity, 
specificity, area under the curve); publications in English language; and 
availability of full-text articles. Both retrospective and prospective 
studies were included, encompassing clinical trials, observational cohort 
studies, and real-world evidence analyses.

Exclusion criteria comprised: preclinical studies using animal models 
or cell lines only; case reports or case series with fewer than 20 patients; 
studies focusing solely on safety or pharmacokinetic outcomes without 
efficacy prediction; duplicate publications or conference abstracts 
without subsequent peer-reviewed publication; and studies lacking 
sufficient methodological detail for quality assessment.

2.3. Data extraction and quality assessment

Data extraction was performed systematically using a standardised 
form capturing study characteristics (design, population, sample size, 
follow-up duration), intervention details (checkpoint inhibitor type, 
treatment regimen, combination therapies), predictive model specifi
cations (algorithm type, input variables, training methodology), and 
outcome measures (response rates, survival endpoints, performance 
metrics). Particular attention was paid to validation methodology, dis
tinguishing between internal validation, external validation on inde
pendent datasets, and real-world clinical implementation. Quality 
assessment was conducted using appropriate tools including the Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS-2) for diagnostic 
studies and the Newcastle-Ottawa Scale for observational studies.

Model performance was evaluated using standard metrics including 
area under the receiver operating characteristic curve (AUC-ROC), 
sensitivity, specificity, positive and negative predictive values, and 
overall accuracy. Where available, external validation results and clin
ical implementation data were extracted to assess real-world applica
bility. Critical evaluation focused on the distinction between 
development cohort performance and external validation results, as this 
represents a key limitation in current predictive model research.

2.4. Data synthesis and analysis

Given the heterogeneity of study designs, cancer types, and predic
tive approaches, a narrative synthesis was employed rather than formal 
meta-analysis. Studies were grouped by prediction methodology 
(biomarker-based, machine learning, mathematical modelling, and in
tegrated approaches) and cancer type where appropriate. Performance 
metrics were compared across different approaches, with particular 
attention to validation status and clinical readiness. Special emphasis 
was placed on critically evaluating the robustness of validation studies 
and identifying limitations in current evidence that may impact clinical 
implementation.

The review followed PRISMA guidelines for systematic reviews 
where applicable, though the comprehensive nature of the review 
encompassed multiple study types and methodologies beyond those 
typically included in systematic reviews of diagnostic test accuracy.

3. Current biomarker landscape

3.1. Traditional single biomarkers

The development of predictive biomarkers for checkpoint inhibitor 
therapy has evolved significantly since the initial focus on PD-L1 
expression. Traditional pathological assessment by expert pathologists 
forms the foundation of biomarker evaluation, providing standardised, 
reproducible scoring systems that have been extensively validated 
across multiple cancer types and clinical settings. A comprehensive 
analysis of 45 FDA drug approvals from 2011 to 2019 revealed that PD- 
L1 expression was predictive in only 28.9 % of cases, with the biomarker 

proving either non-predictive (53.3 %) or not tested (17.8 %) in the 
majority of approvals (Davis and Patel, 2019). This limited predictive 
accuracy stems from several factors including intratumoral heteroge
neity, variable assay methodologies, and diverse scoring systems across 
different tumour types. The expertise of pathologists in standardising 
these assessments and providing quality control remains essential for 
ensuring reproducible clinical decision-making.

Tumour mutational burden, a measure of the number of mutations in 
a tumour’s DNA has emerged as a complementary biomarker, with FDA 
approval for pembrolizumab in patients with unresectable or metastatic 
solid tumours harbouring high TMB (≥10 mutations per megabase) 
following disease progression (Marcus et al. 2021). Studies across mul
tiple cancer types have demonstrated positive correlations between TMB 
and response rates, with meta-analyses showing significant associations 
between high mutation burden and improved clinical outcomes (Fan 
et al. 2020; Willis et al. 2019). However, notable exceptions exist, 
particularly in renal cell carcinoma and Merkel cell carcinoma, where 
responses exceed what TMB alone would predict, highlighting the 
multifactorial nature of treatment response (Knepper et al. 2019; Lab
riola et al. 2020).

Microsatellite instability (MSI) status represents another established 
biomarker, particularly valuable in colorectal cancer where MSI-high 
tumours demonstrate markedly improved responses to checkpoint in
hibitors. MSI indicates whether a tumour’s DNA is unstable enough to 
result in mutations during replication (Vilar and Gruber, 2010). This 
leads to a biological rationale on the increased neoantigen load in 
MSI-high tumours, resulting in enhanced immune recognition and 
response. Clinical studies have consistently demonstrated superior out
comes in MSI-high compared to microsatellite stable tumours across 
various cancer types (Van Velzen et al., 2020; Pietrantonio et al. 2021). 
The mechanisms through which PD-L1, TMB, and MSI function as pre
dictive biomarkers for immune checkpoint blockade are illustrated in 
Fig. 1.

The exploration of metabolic biomarkers represents an expanding 
frontier in cancer prognostication and treatment response prediction. 
Glucose transporters, particularly GLUT1 and GLUT3, have emerged as 
significant prognostic indicators across multiple cancer types. These 
transporters facilitate the enhanced glucose uptake characteristic of the 
Warburg effect, whereby cancer cells preferentially utilise glycolysis 
even in the presence of oxygen (Gökalp 2022a). Overexpression of 
GLUT1 and GLUT3 correlates with aggressive tumour phenotypes, poor 
prognosis, and resistance to conventional therapies in various malig
nancies including lung, breast, and gastrointestinal cancers.

GLUT1, encoded by the SLC2A1 gene, is ubiquitously expressed but 
shows marked upregulation in hypoxic tumour regions, driven by 
hypoxia-inducible factor-1α (HIF-1α) signalling. Clinical studies have 

Fig. 1. Schematic illustration of the mechanisms by which PD-L1 expression, 
tumor mutational burden (TMB), and microsatellite instability (MSI) predict the 
efficacy of immune checkpoint inhibitors (ICIs).
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demonstrated that elevated GLUT1 expression associates with reduced 
overall survival and increased metastatic potential (Gökalp 2022a). 
GLUT3, predominantly expressed in neurons under physiological con
ditions, becomes aberrantly expressed in several cancer types, particu
larly brain tumours and lung cancers. Its high-affinity glucose transport 
capacity makes it especially relevant in nutrient-deprived tumour 
microenvironments.

The prognostic value of glucose transporter expression extends 
beyond direct metabolic effects. Enhanced glycolytic metabolism in 
tumours can create an immunosuppressive microenvironment through 
lactate accumulation and acidification, potentially limiting T-cell 
effector function and thereby influencing checkpoint inhibitor response. 
Furthermore, competition for glucose between tumour cells and infil
trating immune cells may contribute to T-cell exhaustion, a key mech
anism of immunotherapy resistance. Therapeutic strategies targeting 
glucose metabolism, including GLUT inhibitors, are under investigation 
as potential combination approaches with checkpoint inhibitors. The 
integration of metabolic biomarkers such as GLUT1 and GLUT3 
expression into predictive models could enhance patient stratification 
by identifying those with metabolically active tumours that may require 
combined metabolic and immune-targeted interventions.

3.2. Emerging biomarker strategies

Recent developments in spatial biomarker analysis have provided 
new insights into the tumour microenvironment’s role in treatment 
response. A comprehensive review of spatial biomarkers identified 
several promising approaches, including digital spatial profiling and 
multiplex immunofluorescence techniques that examine the spatial re
lationships between immune cells and cancer cells (Rossi and Radisky, 
2024; Sheng et al. 2023). These technologies enable assessment of im
mune cell infiltration patterns, which correlate more closely with 
treatment response than bulk biomarker measurements.

The integration of artificial intelligence with traditional biomarker 
assessment has enhanced predictive accuracy. Studies utilizing AI- 
powered PD-L1 assessment have demonstrated improved interobserver 
concordance and enhanced predictive value compared to traditional 
pathologist scoring (Kim et al. 2024; Lee et al. 2024). These systems can 
process large datasets rapidly whilst maintaining consistency across 
different samples and institutions.

Circulating biomarkers, including circulating tumour DNA (ctDNA) 
and blood-based TMB assessment, offer the advantage of non-invasive 
monitoring and the ability to capture tumour heterogeneity more 
comprehensively than single tissue samples. Blood-based biomarkers 
extend beyond ctDNA to include metabolic markers such as circulating 
glucose levels and expression of glucose transporters on circulating 
tumour cells, which may provide real-time insights into tumour meta
bolic activity and treatment response (Gökalp 2022a). Studies have 
shown correlations between blood-based biomarkers and tissue-based 
assessments, though standardisation remains a challenge for wide
spread clinical implementation (Friedman and Postow, 2016; Raez et al. 
2018). Additionally, metabolomic profiling of patient plasma samples 
has revealed distinct metabolic signatures associated with checkpoint 
inhibitor response, including alterations in glucose, amino acid, and 
lipid metabolism, suggesting potential for integrative biomarker panels 
combining genomic, immunological, and metabolic parameters. Table 1
summarises the current landscape of established and emerging bio
markers, their methodologies, regulatory status, and clinical 
applications.

4. Machine learning and artificial intelligence approaches

4.1. Clinical implementation of AI models

The integration of artificial intelligence into checkpoint inhibitor 
prediction has advanced from experimental concepts to clinically 

validated tools. However, critical evaluation reveals that whilst these 
models show statistical superiority over individual biomarkers, their 
clinical implementation faces significant challenges related to external 
validation and real-world performance. The SCORPIO machine learning 
system represents a significant milestone, utilising routine blood tests 
and clinical characteristics from 9745 patients across 21 cancer types to 
predict treatment response (Yoo et al. 2025). Trained on data from 
Memorial Sloan Kettering Cancer Center, SCORPIO achieved median 
area under the curve values of 0.763 and 0.759 for predicting overall 
survival at multiple time points, substantially outperforming traditional 
TMB assessment. Whilst these results are promising, the model’s per
formance was primarily demonstrated within the Memorial Sloan Ket
tering system, and broader external validation across diverse healthcare 
settings with different patient populations and clinical practices remains 
limited.

The LORIS (Logistic Regression-Based Immunotherapy-Response 
Score) model has demonstrated comparable success using six readily 
available clinical and genomic features: patient age, cancer type, treat
ment history, blood albumin levels, neutrophil-to-lymphocyte ratio, and 
TMB (Chang et al. 2024). This model’s strength lies in its reliance on 
routinely collected clinical data, making it immediately applicable in 
most healthcare settings without requiring sophisticated genomic 
testing infrastructure. However, similar to SCORPIO, comprehensive 
validation across different healthcare systems and patient populations is 
still needed to establish generalisability and clinical utility.

4.2. Advanced AI methodologies

Deep learning approaches have shown particular promise in pro
cessing complex, high-dimensional datasets. Convolutional neural net
works have been successfully applied to histopathological image 
analysis, enabling automated assessment of tumour-infiltrating lym
phocytes and spatial immune cell distributions (Millward et al. 2025; 
Choi et al. 2023). These AI-based approaches build upon decades of 
traditional pathological expertise in recognising immune infiltration 
patterns, requiring extensive validation by expert pathologists to ensure 
clinical accuracy and reproducibility. These systems can identify subtle 
patterns in tissue architecture that may not be apparent to human ob
servers, potentially uncovering novel predictive features. However, the 
interpretability of these patterns and their biological relevance requires 
ongoing validation through traditional pathological assessment.

Multi-modal AI approaches that integrate diverse data types have 
demonstrated superior performance compared to single-modality 
models. Studies combining genomic data, imaging features, and clin
ical variables have achieved area under the curve values exceeding 0.8 
in several cancer types (Li et al. 2025; Goyal et al. 2024). The challenge 
lies in standardising data collection and processing across different in
stitutions to ensure model generalisability, a critical limitation that has 
hindered the clinical implementation of many promising AI approaches.

Natural language processing techniques have been applied to elec
tronic health records to extract relevant clinical information that might 
influence treatment response (Clay et al. 2025). These approaches can 
identify patterns in clinical notes, laboratory results, and treatment 
histories that correlate with outcomes, providing additional predictive 
features for machine learning models. However, the variability in clin
ical documentation practices across institutions presents significant 
challenges for model generalisability.

4.3. Interpretability and clinical adoption

A critical challenge in AI implementation is the interpretability of 
complex algorithms. Healthcare providers require understanding of how 
models reach their predictions to make informed treatment decisions. 
Explainable AI techniques, including SHAP (Shapley Additive Explana
tions) values and attention mechanisms, are being developed to provide 
insights into model decision-making processes (Sadeghi et al. 2024; 
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Table 1 
Current biomarkers and their clinical applications.

Biomarker Methodology FDA Approval 
Status

Cancer Types Predictive Value Limitations Standardisation Issues

PD-L1 Expression (
Davis and Patel, 
2019)

Immunohistochemistry with 
expert pathologist scoring

Approved for 
multiple indications

NSCLC, bladder, 
gastric, cervical, 
TNBC

Limited predictive accuracy (28.9 % of approvals show predictive value) Intratumoral 
heterogeneity, assay 
variability, different 
scoring systems

Multiple companion 
diagnostics with varying 
cut-offs across tumour 
types

Tumour Mutational 
Burden (Stenzinger 
et al., 2019)

NGS panels Approved for solid 
tumours

Pan-cancer with 
≥ 10 mutations/ 
Mb threshold

Statistically significant but clinically modest correlation with response Cost, long turnaround 
time, tissue 
requirements

Ongoing efforts to 
standardise assay 
platforms, bioinformatics 
pipelines, and reporting 
methods

Microsatellite 
Instability (Li et al., 
2020; Marques et al., 
2022)

PCR/NGS Approved entity- 
agnostically for 
MSI-H/dMMR solid 
tumours

Pan-cancer MSI-H/ 
dMMR tumours 
(not limited to 
specific 
populations)

High predictive value in MSI-H tumours (>80 % response rates in some 
studies)

Low prevalence in most 
solid tumours (2–4 % 
overall)

Well-established 
methodologies with good 
inter-laboratory 
concordance

Blood-based TMB (
Sivapalan et al., 
2023; Boukovala 
et al., 2024)

Liquid biopsy NGS Investigational Multiple Emerging correlative evidence with tissue TMB Concordance with 
tissue TMB varies 
(60–80 %), lower 
sensitivity for low 
mutation burden

Significant standardisation 
needs: pre-analytical 
variables, platform 
differences, cut-off 
determination

Circulating Tumour 
DNA (Dang and 
Park, 2022; 
Guigal-Stephan 
et al., 2025)

NGS liquid biopsy Investigational Multiple Promising early data for monitoring treatment response Technical challenges in 
detection sensitivity, 
tumour fraction 
variability

No standardisation issues 
listed as methodology still 
in development phase

Immune Cell 
Infiltration (Barua 
et al., 2018; Page 
et al., 2023)

Traditional pathologist 
assessment and spatial 
analysis platforms

Research use Multiple Strong association with response (TILs show consistent prognostic value) Requires specialised 
platforms for 
quantitative analysis 
beyond routine 
pathology

Working groups 
developing standardised 
scoring systems for routine 
implementation
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Mathew et al. 2025). The development of interpretable AI systems is 
essential for clinical adoption, as physicians need to understand the 
biological and clinical rationale underlying predictions to maintain 
confidence in AI-assisted decision-making.

The development of user-friendly interfaces and clinical decision 
support systems is essential for widespread adoption. Successful imple
mentations require integration with existing healthcare information 
systems and workflows, ensuring that AI tools enhance rather than 
complicate clinical decision-making processes. Current evidence sug
gests that whilst AI models show statistical promise, the practical chal
lenges of clinical implementation, including system integration, user 
training, real-world applicability benefits and ongoing model mainte
nance, represent significant barriers to widespread adoption (Macheka 
et al. 2024).

Table 2 provides a comprehensive overview of current artificial in
telligence applications in checkpoint inhibitor prediction, detailing their 
methodologies, performance metrics, and implementation status, with 
clarified definitions of validation stages and technical approaches.

The integration of artificial intelligence into checkpoint inhibitor 
prediction has advanced from experimental concepts to clinically vali
dated tools, as illustrated in Fig. 2. This includes clinical models such as 
SCORPIO and LORIS, as well as advanced deep learning and multi- 
modal approaches, each addressing unique challenges in prediction, 
interpretability, and clinical integration (Fig. 2).

5. Mathematical and mechanistic models

5.1. Systems biology approaches

Mathematical models provide unique insights into the dynamic in
teractions between tumours and the immune system, offering mecha
nistic understanding that complements empirical prediction models. 
These approaches represent a distinct analytical methodology that fo
cuses on underlying biological mechanisms rather than pattern recog
nition from large datasets. A translational mathematical model has been 
developed that captures checkpoint inhibitor efficacy through three key 
parameters: tumour growth rate, immune infiltration, and 
immunotherapy-mediated amplification of anti-tumour response 
(Butner et al. 2021). This model demonstrated 81.4 % accuracy in 
classifying treatment response using only tumour volume measurements 
within two months of treatment initiation across multiple solid tumour 

types. However, this validation was conducted retrospectively on a 
relatively small cohort (189 patients), and prospective validation across 
diverse clinical settings is needed to establish clinical utility.

The mathematical framework enables simulation of various treat
ment scenarios and can guide optimal dosing strategies and combination 
therapies. These models can incorporate pharmacokinetic parameters, 
immune cell dynamics, and tumour heterogeneity to provide personal
ised treatment predictions. The mechanistic basis of these models makes 
them particularly valuable for understanding treatment resistance 
mechanisms and identifying potential combination targets, though their 
clinical implementation requires validation of the underlying biological 
assumptions across different patient populations.

5.2. Computational immune monitoring

Advanced computational approaches have been developed to 
monitor immune system dynamics during treatment. These models 
integrate multiple data streams including immune cell populations, 
cytokine levels, and tumour markers to provide real-time assessment of 
treatment response (Qin et al. 2024). Such approaches can identify early 
indicators of treatment failure or immune-related adverse events, 
enabling proactive treatment modifications, though the complexity of 
these models presents challenges for routine clinical implementation.

The integration of mathematical models with clinical data has 
enabled the development of predictive frameworks that account for in
dividual patient characteristics and tumour biology. These personalised 
models can simulate treatment outcomes under different scenarios, 
supporting clinical decision-making in complex cases where traditional 
biomarkers provide ambiguous results. However, the clinical validation 
of these mechanistic approaches remains limited compared to empirical 
biomarker-based models.

6. Integrated multi-modal approaches

6.1. Comprehensive biomarker frameworks

The recognition that single biomarkers have limited predictive ac
curacy has driven development of integrated approaches that combine 
multiple predictive modalities. It is crucial to distinguish between the 
underlying biological features (biomarkers such as PD-L1, TMB, immune 
infiltration patterns, and metabolic markers) and the computational 

Table 2 
Artificial Intelligence Applications in Checkpoint Inhibitor Prediction.

AI Approach Input Data 
Types

Technical 
Method

Clinical Application Performance Metrics Implementation Status External 
Validation

Deep Learning for 
Histopathology (
Shamai et al., 2022)

H&E slides, 
IHC images

Convolutional 
neural networks

Automated TIL 
quantification, 
computer-assisted PD- 
L1 scoring

AUC 0.91–0.93 Proof-of-concept validation: 
demonstrated technical 
feasibility with promising 
performance in controlled 
research settings

Limited to original 
development 
institutions

Multi-modal 
Integration (Goyal 
et al., 2024; Li et al., 
2025)

Genomics, 
imaging, 
clinical

Ensemble 
methods

Comprehensive 
treatment selection 
incorporating multiple 
data types

AUC > 0.85 Proof-of-concept validation: 
shows technical feasibility but 
requires extensive multi- 
institutional validation

External validation 
limited; most 
studies single- 
institution

Natural Language 
Processing (Clay 
et al., 2025)

Electronic 
health 
records

Transformer 
models

Automated clinical 
feature extraction from 
unstructured data

Accuracy 75–85 % Early development: preliminary 
algorithms under development 
and testing

Not yet undertaken

Radiomics Analysis (
Jiang et al., 2020)

CT, PET scans Various machine 
learning 
algorithms

Non-invasive imaging- 
based response 
prediction

AUC 0.75–0.91 Research applications: applied in 
research settings with promising 
initial results

Limited cross- 
institutional 
validation

SCORPIO (Yoo et al., 
2025)

Clinical & 
laboratory 
blood test

Machine learning 
ensemble

Routine clinical 
prediction using readily 
available data

AUC > 0.75 Clinical validation: demonstrated 
in large clinical cohort with 
robust methodology

Single-institution 
validation at 
Memorial Sloan 
Kettering

Explainable AI (
Sadeghi et al., 2024; 
Mathew et al., 2025)

Multiple data 
types

SHAP, attention 
mechanisms

Interpretable clinical 
decision support 
providing rationale for 
predictions

Interpretability metrics 
rather than predictive 
accuracy

Active research: ongoing 
development of interpretability 
methods

Methodology 
development phase
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methods used to integrate these features into predictive models. Recent 
studies have demonstrated that combining PD-L1 expression with TMB 
and immune cell infiltration markers can achieve area under the curve 
values exceeding 0.85 in certain cancer types (So et al. 2023; Yamaguchi 
et al. 2024). A performance comparison is detailed in Table 3, though 
direct comparisons are challenging due to differences in study 

populations, methodologies, and validation approaches. These 
multi-dimensional approaches provide more comprehensive assessment 
of the tumour immune microenvironment.

Beyond traditional genomic and immunological biomarkers, 
emerging multi-modal frameworks increasingly incorporate metabolic 
parameters. The integration of glucose transporter expression (GLUT1 

Fig. 2. Artificial intelligence approaches for predicting response to checkpoint inhibitor therapy. On the left, clinical AI models such as SCORPIO utilize routine 
blood and clinical data from over 9000 patients across 21 cancer types (AUC ≈ 0.76), while LORIS relies on six clinical and genomic features for prediction, making it 
readily applicable in clinical settings. On the right, advanced AI techniques include convolutional neural networks (CNN) for histopathological image analysis, spatial 
immune profiling, multi-modal models that integrate diverse data types, and natural language processing (NLP) applied to electronic health records.

Table 3 
Performance comparison of major predictive models for checkpoint inhibitor response (Revised).

Model/ 
Approach

Dataset 
Size

Cancer 
Types

Primary 
Endpoint

AUC/Accuracy Key Features Validation 
Status

External 
Validation

Study 
Population

SCORPIO (Yoo 
et al., 2025)

9745 
patients

21 
cancer 
types

Overall 
survival

0.76 (median AUC) Complete blood count, 
comprehensive 
metabolic panel, age, 
cancer type

Multi- 
institution 
development 
and internal 
validation

Limited to 
Memorial 
Sloan 
Kettering 
Cancer 
Center 
system

Predominantly 
US population, 
single 
healthcare 
system

LORIS (Chang 
et al., 2024)

Multiple 
cohorts 
(>3000 
patients)

Pan- 
cancer

Treatment 
response

81.4 % accuracy Age, cancer type, prior 
therapy, albumin, 
neutrophil-to- 
lymphocyte ratio, TMB

External 
validation 
across 
multiple 
published 
cohorts

Validated 
across 
different 
study 
populations 
and 
institutions

International 
cohorts from 
multiple 
published 
studies

Spatial 
Biomarker 
Model (Song 
et al., 2023)

18 
patients

NSCLC Treatment 
response

0.84 18-protein spatial 
signature analysis in 
tumour 
microenvironment

Proof-of- 
concept study

No external 
validation

Single- 
institution, 
small pilot 
study

PD-L1 
Expression (
Huang and 
Teng, 2020)

Meta- 
analysis 
of 
> 10,000 
patients

Multiple Treatment 
response

0.65–0.78 (varies by cancer type) Immunohistochemistry 
with standardised 
pathologist scoring

Regulatory 
approval with 
extensive 
validation

Validated 
across 
multiple 
international 
clinical trials

Global multi- 
institutional 
clinical trial 
populations

TMB 
Assessment 
(Litchfield 
et al., 2021)

Multiple 
cohorts

Pan- 
cancer

Treatment 
response

0.60–0.68 Whole exome or 
targeted panel 
sequencing

Regulatory 
approval 
based on 
clinical trial 
data

Validated 
across 
multiple 
clinical trials 
and real- 
world studies

Diverse 
international 
populations

Mathematical 
Model (
Butner et al., 
2021)

189 
patients

Multiple 
solid 
tumours

Clinical 
response

81.4 % accuracy Tumour volume 
kinetics from serial 
imaging

Retrospective 
single- 
institution 
validation

No 
prospective 
or external 
validation

Single- 
institution 
retrospective 
cohort
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and GLUT3) with PD-L1 status and TMB has shown promise in refining 
patient stratification. For instance, tumours exhibiting high glycolytic 
activity (indicated by elevated GLUT1/GLUT3 expression) combined 
with low PD-L1 expression may represent a distinct subgroup requiring 
alternative therapeutic strategies or combination approaches targeting 
both immune checkpoints and metabolic pathways (Gökalp 2022a).

Furthermore, computational modelling approaches integrating 
metabolic flux analysis with immune cell infiltration patterns have 
revealed complex interactions between tumour metabolism and immune 
evasion mechanisms. These multi-dimensional models suggest that 
metabolic reprogramming not only supports tumour growth but actively 
shapes the immune microenvironment, creating zones of immune priv
ilege through nutrient depletion and accumulation of immunosuppres
sive metabolites.

Spatial biomarker strategies have shown particular promise, with 
studies demonstrating that stromal signature scores comprising 18 
protein targets achieved superior predictive power (AUC 0.84) 
compared to bulk PD-L1 expression (AUC 0.78) and TMB (AUC 0.53) 
alone (Song et al. 2023). The integration of spatial relationships between 
different cell types provides insights into the functional organisation of 
the tumour microenvironment that correlate with treatment response, 
building upon traditional pathological assessment of immune infiltra
tion patterns that have long been recognised as prognostically impor
tant. Recent advances in immunotherapy prediction leverage integrated 
multi-modal biomarker frameworks and dynamic monitoring strategies, 
as illustrated in Fig. 3. These approaches combine established and 
emerging biomarkers to improve predictive accuracy and enable early, 
adaptive assessment of treatment response (Fig. 3).

6.2. Dynamic monitoring strategies

The development of dynamic monitoring approaches extends beyond 
traditional imaging and blood-based biomarkers to include metabolic 
monitoring. Serial assessment of tumour glucose metabolism through 
imaging modalities such as 18F-FDG PET-CT, combined with measure
ment of circulating metabolites and expression of glucose transporters, 
enables real-time evaluation of metabolic response to checkpoint in
hibitor therapy. Changes in tumour glucose uptake patterns may predict 
treatment response earlier than radiographic changes, as metabolic 

alterations often precede morphological changes (Gökalp 2022a).
Integration of metabolic monitoring with immune biomarkers pro

vides a comprehensive view of treatment-induced changes. For example, 
successful checkpoint inhibitor therapy may be associated with 
decreased tumour glucose uptake (reflecting reduced metabolic activity) 
concurrent with increased infiltration of activated T-cells. Conversely, 
persistent high metabolic activity despite immune cell infiltration may 
indicate ongoing immune evasion and potential treatment failure. Such 
dynamic, multi-parameter monitoring strategies could enable early 
identification of non-responders and guide adaptive treatment 
modifications.

The development of dynamic monitoring approaches that track 
changes in biomarker expression during treatment has shown promise 
for early prediction of treatment response. Serial assessment of circu
lating biomarkers, including ctDNA and immune cell populations, can 
identify patients experiencing treatment benefit before radiographic 
response becomes apparent (Thompson et al. 2021). Liquid biopsy offers 
the advantage of capturing tumour heterogeneity more comprehen
sively than single tissue samples (Ma et al. 2023). Studies have 
demonstrated correlations between circulating biomarkers and treat
ment outcomes, though standardisation of collection and analysis 
methods remains a challenge for widespread clinical implementation. 
However, the clinical utility of dynamic monitoring approaches requires 
prospective validation to demonstrate that early biomarker changes 
translate into actionable clinical decisions that improve patient 
outcomes.

Table 3 presents a comprehensive comparison of major predictive 
models, highlighting their performance characteristics, validation sta
tus, and key features across different cancer types and patient pop
ulations, with enhanced detail on study characteristics and validation 
methodology.

7. Clinical validation and implementation challenges

7.1. Regulatory and validation requirements

The translation of predictive models from research settings to clinical 
practice faces significant regulatory and validation hurdles. External 
validation represents one of the most critical challenges in predictive 

Fig. 3. Integration of biomarker modalities for immunotherapy prediction. Multi-modal integration combines biomarkers such as PD-L1, TMB, and additional 
molecular and imaging features to improve predictive accuracy (AUC). Dynamic monitoring uses serial circulating biomarkers to track treatment response in real 
time, enabling earlier and more comprehensive assessment of immunotherapy outcomes.
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model development, with many promising approaches failing to main
tain performance when applied outside their original development set
tings. The FDA has established guidelines for the validation of 
biomarker-based diagnostic tests, requiring demonstration of analyt
ical validity, clinical validity, and clinical utility across diverse patient 
populations. Several approvals occurred after extensive validation from 
clinical trials. Currently, there are three FDA-approved predictive bio
markers namely PD-L1, MSI, and TMB routinely used for patient selec
tion for immune checkpoint inhibitor response in clinical practice 
(Wang et al. 2021). Notably, few predictive models beyond these 
established biomarkers have achieved the level of validation required 
for regulatory approval, limiting their clinical adoption.

External validation studies are essential for demonstrating model 
generalisability across different institutions and patient populations. A 
critical example is provided by a validation study of a melanoma pre
diction model: whilst the original single-institution study reported high 
accuracy, subsequent validation in a national cohort of advanced mel
anoma patients treated with anti-PD-1 monotherapy could not repro
duce the initial performance, highlighting fundamental generalisability 
concerns (van der Kooij et al., 2023). This pattern of reduced perfor
mance in external validation has been observed across multiple AI and 
machine learning approaches, representing a significant barrier to 
clinical implementation.

Many promising models have shown excellent performance in single- 
institution studies but have failed to maintain accuracy when applied to 
external datasets, highlighting the importance of robust validation 
frameworks. This phenomenon, known as the "validation gap," repre
sents one of the most significant challenges facing the field and explains 
why few predictive models have achieved widespread clinical adoption 
despite promising initial results.

7.2. Data standardisation and quality

The integration of diverse data types requires standardisation of 
collection methods, processing protocols, and quality control measures. 
Variations in sample collection, storage conditions, and analytical 
techniques can significantly impact model performance. The develop
ment of standard operating procedures and quality metrics is essential 
for ensuring reproducible results across different healthcare settings, yet 
many promising AI models have been developed without adequate 
attention to these standardisation requirements.

International collaborative efforts are addressing standardisation 
challenges through initiatives such as the Global Alliance for Genomics 
and Health (GA4GH) and the International Cancer Genome Consortium 
(ICGC). These organisations are developing frameworks for data 
sharing, standardisation, and quality control that will facilitate the 
development and validation of predictive models (Global Alliance for 
Genomics and Health, 2025). However, the implementation of these 
standards across diverse healthcare systems remains a significant 
challenge.

7.3. Healthcare system integration and clinical implementability

The successful implementation of predictive models requires inte
gration with existing healthcare information systems and clinical 
workflows, representing a major practical challenge that is often 
underestimated in research settings. Models must be accessible to cli
nicians at the point of care, with user-friendly interfaces that provide 
clear, actionable recommendations. The development of clinical deci
sion support systems that integrate predictive models with electronic 
health records is essential for widespread adoption. However, the 
practical challenges of system integration, including software compati
bility, data security requirements, and workflow disruption, have 
limited the clinical implementation of many technically successful 
models.

Training and education programmes are necessary to ensure that 

healthcare providers understand how to interpret and apply predictive 
model results. The complexity of many models requires ongoing support 
and education to ensure appropriate clinical use. Additionally, the cost- 
effectiveness of implementing sophisticated predictive models, 
including the required infrastructure, personnel training, and ongoing 
maintenance, represents a significant consideration for healthcare sys
tems with limited resources.

The ease of clinical implementation varies significantly across 
different predictive approaches. Traditional biomarkers such as PD-L1 
and MSI leverage existing pathology infrastructure and expertise, 
facilitating their clinical adoption. In contrast, sophisticated AI models 
requiring specialised computational resources and expertise face greater 
implementation barriers, regardless of their technical performance.

8. Future directions and emerging technologies

8.1. Real-time adaptive modelling

The development of real-time adaptive models that continuously 
update predictions based on treatment response represents an exciting 
frontier in personalised medicine. These systems would integrate 
streaming data from various sources including wearable devices, regular 
blood tests, and imaging studies to provide dynamic predictions of 
treatment response and toxicity risk. However, the clinical validation 
and regulatory approval of such dynamic systems present unprece
dented challenges, as traditional clinical trial designs are not well-suited 
to evaluating continuously adaptive algorithms.

The integration of pharmacokinetic modelling with predictive algo
rithms could enable personalised dosing strategies that optimise efficacy 
whilst minimising toxicity. Such approaches could account for individ
ual patient characteristics, drug metabolism, and treatment response 
patterns to provide optimal treatment regimens. However, the clinical 
implementation of personalised dosing based on predictive models re
quires extensive safety validation and regulatory oversight.

8.2. Novel data sources and technologies

Emerging technologies including single-cell sequencing, spatial 
transcriptomics, and advanced imaging techniques are providing un
precedented insights into tumour biology and immune system dynamics. 
Metabolomic and lipidomic profiling technologies have advanced 
significantly, enabling comprehensive characterisation of tumour 
metabolic states and their relationship to immune checkpoint expression 
and response. High-resolution mass spectrometry-based metabolomics 
can simultaneously quantify hundreds of metabolites, providing 
detailed metabolic signatures that may predict checkpoint inhibitor 
response (Gökalp 2022a).

Spatial metabolomics, combining mass spectrometry imaging with 
immunohistochemistry, enables visualisation of metabolite distribu
tions within the tumour microenvironment and their spatial relationship 
to immune cell infiltrates. This technology has revealed metabolic 
zonation within tumours, with glucose-depleted regions showing 
reduced T-cell infiltration and function, highlighting the importance of 
metabolic-immune interactions in determining treatment response.

The integration of these technologies with predictive models has the 
potential to significantly enhance prediction accuracy and provide 
deeper mechanistic understanding, though the cost and complexity of 
these approaches may limit their widespread clinical implementation.

Wearable devices and mobile health technologies offer opportunities 
for continuous monitoring of patient status during treatment. Beyond 
physiological parameters, emerging biosensor technologies enable non- 
invasive monitoring of circulating metabolites and immune markers, 
providing real-time feedback on treatment-induced metabolic and 
immunological changes. These devices can track physiological param
eters, activity levels, and patient-reported outcomes that may correlate 
with treatment response and toxicity risk. However, the clinical 
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validation of digital biomarkers and their integration into treatment 
decision-making algorithms remains in early development stages.

8.3. Natural bioactive compounds and complementary therapeutic 
strategies

An emerging area of investigation involves the potential of natural 
bioactive compounds to enhance checkpoint inhibitor efficacy through 
complementary mechanisms. These compounds, derived from tradi
tional medicinal plants used across diverse cultures for centuries, have 
demonstrated multifaceted anticancer properties that may synergise 
with immunotherapy.

Thymoquinone, the principal bioactive compound in black cumin 
(Nigella sativa), has exhibited potent anticancer effects across multiple 
cancer types including lung, pancreatic, cervical, and breast cancers 
(Gökalp, 2020; Gökalp, 2021; Gökalp, 2025). Its mechanisms of action 
include inhibition of histone deacetylase 2 (HDAC2), a key epigenetic 
regulator overexpressed in many cancers, modulation of cell cycle pro
gression through effects on cyclin D1 and p53 expression, and induction 
of apoptosis through mitochondrial pathways. Significantly, thymoqui
none has also demonstrated immunomodulatory properties, including 
enhancement of natural killer cell activity and modulation of cytokine 
production, which could potentially complement checkpoint inhibitor 
mechanisms (Gökalp, 2025; Alhmied et al. 2021; Randhawa and 
Alghamdi, 2011).

Related compounds including thymol and carvacrol, monoterpenoid 
phenols found in various aromatic plants, have shown similar anticancer 
properties with distinct molecular targets. These compounds inhibit 
multiple cancer-associated enzymes including carbonic anhydrase iso
forms, acetylcholinesterase, and α-glycosidase, while also demon
strating direct cytotoxic effects on cancer cells (Gökalp, 2020; Gökalp, 
2021; Güzel et al. 2019). The inhibition of carbonic anhydrase, partic
ularly the CA IX and CA XII isoforms upregulated in hypoxic tumours, 
represents a particularly relevant mechanism, as these enzymes 
contribute to the acidic tumour microenvironment that impairs immune 
cell function.

Organosulfur compounds from garlic (Allium sativum), including 
diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide 
(DATS), have demonstrated significant anticancer effects through inhi
bition of cancer cell proliferation, induction of apoptosis, and suppres
sion of angiogenesis (Gökalp, 2020; Gökalp, 2021). These compounds 
modulate multiple signalling pathways relevant to cancer progression 
and immune evasion, including NF-κB, MAPK, and PI3K/AKT pathways. 
Their ability to reduce oxidative stress while selectively inducing 
apoptosis in cancer cells suggests potential for combination with 
immunotherapy to enhance antitumour immune responses.

Cucurbitacins, triterpenoid compounds found in plants of the 
Cucurbitaceae family and marigold (Tagetes species), have shown potent 
cytotoxic effects against various cancer cell lines, including cervical, 
ovarian, and lung cancers (Gökalp, 2021; Gökalp, 2023). Cucurbitacin I, 
in particular, inhibits the JAK2/STAT3 signalling pathway, which is 
frequently hyperactivated in cancers and contributes to immune evasion 
through upregulation of immunosuppressive factors. By inhibiting this 
pathway, cucurbitacins may potentially enhance the tumour microen
vironment’s permissiveness to immune-mediated killing. Additionally, 
α-terthienyl and quercetagetin from marigold have demonstrated 
inhibitory effects on nematode and insect receptors through molecular 
mechanisms that may extend to cancer cell signalling pathways (Gökalp, 
2023).

The integration of these natural compounds into checkpoint inhibi
tor strategies could occur through several approaches:

1. Metabolic modulation: Natural compounds targeting tumour 
metabolism (such as HDAC inhibitors like thymoquinone or carbonic 
anhydrase inhibitors like thymol and carvacrol) could reshape the 
tumour microenvironment to favour immune cell infiltration and func
tion, potentially enhancing checkpoint inhibitor response.

2. Immune enhancement: Compounds with immunomodulatory 
properties could directly augment antitumour immune responses, 
complementing the mechanism of checkpoint inhibitors. For instance, 
thymoquinone’s effects on cytokine production and natural killer cell 
activity may synergise with PD-1/PD-L1 blockade.

3. Epigenetic reprogramming: HDAC inhibitors from natural sources 
could reverse epigenetic silencing of immune-related genes in both 
tumour and immune cells, potentially overcoming intrinsic resistance 
mechanisms to checkpoint inhibitors.

4. Multi-target effects: Many natural compounds simultaneously 
affect multiple pathways relevant to cancer progression and immune 
evasion, potentially addressing the multifactorial nature of checkpoint 
inhibitor resistance more effectively than single-target synthetic 
inhibitors.

However, clinical translation of these findings faces substantial 
challenges. The pharmacokinetic properties of many natural compounds 
limit their bioavailability and tissue distribution. Chemical modification 
or nanoparticle-based delivery systems may be required to achieve 
therapeutic concentrations at tumour sites. Additionally, potential drug- 
drug interactions between natural compounds and checkpoint inhibitors 
require careful investigation, as some natural compounds may affect the 
metabolism or efficacy of immunotherapy agents through cytochrome 
P450 enzyme modulation or other mechanisms.

Rigorous preclinical studies using appropriate animal models and 
patient-derived xenografts are essential to establish proof-of-concept for 
combination strategies. Subsequent clinical trials should employ adap
tive designs to identify optimal dosing, timing, and patient populations 
most likely to benefit. Biomarker-driven trial designs incorporating 
metabolic, immunological, and pharmacological parameters could 
accelerate identification of responsive patient subgroups and inform 
personalised combination approaches.

8.4. Combination therapy prediction

The increasing use of combination immunotherapy regimens pre
sents new challenges and opportunities for predictive modelling that 
extend beyond the scope of this review focused on monotherapy ap
proaches. Models must account for the complex interactions between 
different therapeutic agents and their combined effects on the immune 
system and tumour microenvironment. The development of predictive 
models for novel immunotherapy combinations, including checkpoint 
inhibitors with targeted therapies, chemotherapy, and radiation ther
apy, will require sophisticated approaches that account for multifacto
rial interactions and temporal dynamics. This represents a critical area 
for future research as combination approaches become increasingly 
standard in clinical practice.

Future research priorities should include: prospective validation 
studies designed specifically to test model generalisability across diverse 
healthcare settings; development of standardised protocols for model 
validation and implementation; creation of interpretable AI systems that 
provide clinically actionable insights with clear biological rationale; and 
establishment of regulatory frameworks for evaluating and approving 
dynamic, adaptive prediction systems.

9. Conclusions

The field of checkpoint inhibitor prediction has evolved rapidly from 
simple biomarker assessments to sophisticated multi-modal approaches 
incorporating artificial intelligence, metabolic parameters, and systems 
biology. However, critical analysis reveals a significant gap between 
promising research findings and clinical implementation, primarily due 
to limited external validation and practical implementation challenges. 
Whilst significant progress has been made, several challenges remain 
before these tools can achieve widespread clinical adoption. The 
development of robust validation frameworks, standardisation of data 
collection and analysis methods, and integration with healthcare 
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systems are essential for translating research advances into clinical 
practice, yet these fundamental requirements have been inadequately 
addressed in much of the current literature.

Traditional pathological assessment by expert pathologists continues 
to provide the foundation for clinical decision-making and serves as the 
essential validation standard for emerging AI-based approaches. The 
integration of metabolic biomarkers, particularly glucose transporter 
expression, into existing prediction frameworks represents a promising 
avenue for enhancing patient stratification. Furthermore, the investi
gation of natural bioactive compounds as complementary therapeutic 
agents offers potential strategies to overcome checkpoint inhibitor 
resistance and improve treatment outcomes through metabolic modu
lation, immune enhancement, and multi-target effects. The expertise 
and standardised protocols developed through decades of pathological 
practice remain irreplaceable for ensuring accurate, reproducible 
biomarker assessment.

The most promising approaches appear to be integrated multi-modal 
frameworks that combine traditional biomarkers with artificial intelli
gence algorithms, metabolic profiling, and dynamic monitoring strate
gies. However, critical evaluation reveals that while these approaches 
show statistical superiority in development cohorts, their clinical utility 
advantage over established biomarkers requires further substantiation 
through rigorous external validation studies. These approaches offer the 
potential to significantly improve patient selection for checkpoint in
hibitor therapy, optimise treatment regimens, and minimise adverse 
events. However, the translation of this potential into clinical reality 
requires addressing fundamental challenges of external validation, 
standardisation, and practical implementation that have hindered the 
field’s progress.

Future research priorities should encompass not only prospective 
validation studies and interpretable AI systems but also investigation of 
metabolic-immune interactions, development of combination strategies 
incorporating natural bioactive compounds, and integration of meta
bolic monitoring into dynamic response assessment protocols. The 
convergence of traditional biomarkers, advanced computational ap
proaches, metabolic profiling, and novel therapeutic strategies holds 
promise for truly personalised immunotherapy, but realisation of this 
potential requires addressing fundamental challenges of validation, 
standardisation, and clinical implementation that have hindered prog
ress in the field.

Future research should prioritise prospective validation studies 
designed to test model generalisability across diverse healthcare settings 
and patient populations, development of explainable AI systems that 
provide clinically actionable insights with clear biological rationale, and 
creation of adaptive models that continuously update predictions based 
on treatment response while maintaining clinical interpretability. The 
ultimate goal is the development of comprehensive decision support 
systems that guide personalised immunotherapy selection and man
agement, maximising therapeutic benefit whilst minimising harm. 
Critical success factors include ensuring external validation across 
diverse populations, maintaining clinical interpretability, and address
ing practical implementation challenges including cost-effectiveness 
and integration with existing healthcare workflows.

The successful implementation of these predictive tools will require 
collaboration between researchers, clinicians, regulatory agencies, and 
healthcare systems, with particular attention to addressing the valida
tion deficits and implementation challenges that have limited the clin
ical translation of promising research findings. Only through 
coordinated efforts that prioritise rigorous validation and practical 
implementability can the promise of precision immunotherapy be real
ised, ensuring that the right patients receive the right treatments at the 
right time.
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Gökalp, F., 2025. An investigation into the usage of black cumin derivatives against 
cancer and COVID-19 as the nature Medicine. J. Biomol. Struct. Dyn. 43 (9), 
4362–4369. https://doi.org/10.1080/07391102.2024.2302942.

Goyal, M., Marotti, J.D., Workman, A.A., Tooker, G.M., Ramin, S.K., Kuhn, E.P., 
Chamberlin, M.D., diFlorio-Alexander, R.M., Hassanpour, S., 2024. A multi-model 
approach integrating whole-slide imaging and clinicopathologic features to predict 
breast cancer recurrence risk. NPJ Breast Cancer 10 (1), 93. https://doi.org/ 
10.1038/s41523-024-00700-z.

Guigal-Stephan, N., Lockhart, B., Moser, T., Heitzer, E., 2025. A perspective review on 
the systematic implementation of ctDNA in phase I clinical trial drug development. 
J. Exp. Clin. Cancer Res. 44 (1), 79. https://doi.org/10.1186/s13046-025-03328-4.
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