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A B S T R A C T

Background: Neonatal diseases represent the leading cause of death in Nigeria, ranking the country second 
globally in neonatal mortality rates. Early and accurate diagnosis remains challenging, leading to delayed in
terventions and increased mortality.
Aim: To develop an artificial intelligence system capable of detecting multiple neonatal diseases using local 
datasets and advanced machine learning techniques to facilitate early intervention and reduce neonatal mortality 
in Southwest Nigeria.
Methods: Clinical records from 4,027 previously treated neonatal patients were collected from five tertiary 
hospitals across three Southwest Nigerian states. The dataset underwent comprehensive analysis, balancing using 
Synthetic Minority Over-sampling Technique (SMOTE), and preprocessing before training three deep learning 
models: Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and a novel hybrid LSTM-ANN 
architecture. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics with 
rigorous subject-wise validation and statistical testing.
Results: The hybrid LSTM-ANN model demonstrated superior performance with 82 % accuracy, 88 % precision, 
82 % recall, and 86 % F1-score, significantly outperforming both standalone ANN (80 % accuracy) and LSTM 
(77 % accuracy). Disease-specific classification revealed exceptional performance for sepsis (precision: 0.90, F1- 
score: 0.88), birth asphyxia (0.88, 0.85), jaundice (0.86, 0.83), and prematurity (0.82, 0.80). McNemar’s test 
confirmed significant hybrid superiority over ANN (χ2 = 12.45, p < 0.001) and LSTM (χ2 = 15.67, p < 0.001), 
whilst Friedman test (χ2 = 18.42, p < 0.001) validated the 5–6 % accuracy improvement.
Conclusion: The hybrid LSTM-ANN model establishes a valuable diagnostic tool for early neonatal disease 
detection. However, external validation and prospective clinical trials are necessary before clinical deployment.

1. Introduction

Machine intelligence technologies have fundamentally transformed 
how medical professionals approach diagnostic challenges across 
numerous clinical domains [1]. These computational systems replicate 
cognitive functions, enabling automated decision-making processes that 
achieve optimal outcomes through probabilistic reasoning [2] Within 

this technological landscape, machine learning algorithms demonstrate 
remarkable capacity to extract insights from complex datasets without 
explicit programming, whilst deep learning architectures employ multi- 
layered neural networks to accomplish sophisticated pattern recognition 
tasks [3]. Such systems process diverse information types, including 
visual, textual, and auditory data, to generate clinically relevant pre
dictions through computational approaches that mirror biological 
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neural processing [4].
Contemporary healthcare applications of intelligent algorithms have 

yielded significant diagnostic improvements, particularly for disease 
prediction in resource-constrained environments [5]. Stroke prediction 
models employing gated recurrent architectures have demonstrated 
considerable accuracy when properly validated using subject-specific 
methodologies in Sub-Saharan populations [6]. Similarly, coronary ar
tery disease detection systems combining Random Forest classifiers with 
bio-inspired optimisation algorithms have substantially exceeded 
traditional risk assessment tools in predictive performance [7]. These 
developments underscore machine learning’s potential to address crit
ical healthcare delivery challenges where conventional diagnostic ap
proaches prove insufficient. Hybrid methodologies integrating multiple 
algorithmic approaches have proven especially effective for complex 
medical classification tasks [8,9].

Nigeria confronts an urgent neonatal mortality crisis, with death 
rates during the first 28 days of life ranking among the world’s highest 
[10,11]. This vulnerable developmental period exposes infants to 
numerous life-threatening conditions including sepsis, birth asphyxia, 
jaundice, and complications from premature delivery [12]. Diagnostic 
uncertainties and delayed clinical recognition contribute substantially 
to preventable deaths, making accurate early detection paramount for 
survival [13]. Whilst existing research has examined mortality de
terminants [14–16] and maternal health factors [17–19], integrated AI 
classification systems trained on local clinical data remain absent from 
Nigerian healthcare contexts. Current diagnostic protocols typically 
identify diseases only after significant pathological progression, when 
therapeutic interventions become less effective.

This research addresses a critical knowledge gap by developing 

Nigeria’s first hybrid deep learning system for simultaneous multi- 
disease neonatal classification. Previous AI implementations in well- 
resourced settings demonstrate limited transferability to Nigerian 
healthcare environments, where infrastructure constraints and 
population-specific disease patterns necessitate locally-trained models. 
High-dimensional medical datasets often contain irrelevant information 
that obscures meaningful clinical patterns, whilst computational 
complexity challenges practical deployment in resource-limited facil
ities [20]. The fundamental innovation lies in creating an LSTM-ANN 
hybrid architecture specifically calibrated using Southwest Nigerian 
clinical records to detect sepsis, birth asphyxia, jaundice, and prema
turity concurrently. This multi-disease approach better reflects clinical 
realities where overlapping symptoms complicate differential diagnosis 
compared to single-disease prediction models.

The primary research objective involves developing and validating 
an AI-driven diagnostic system to reduce neonatal mortality across 
Southwest Nigeria. Specific aims include: (1) systematically collecting 
and analysing clinical records from five tertiary hospitals; (2) con
structing and training standalone ANN, standalone LSTM, and hybrid 
LSTM-ANN architectures; (3) rigorously evaluating model performance 
using accuracy, precision, recall, and F1-score metrics with proper 
validation methodologies; and (4) identifying the optimal algorithmic 
configuration for clinical deployment. This investigation integrates 
advanced feature selection techniques with comprehensive preprocess
ing pipelines to ensure model robustness and clinical relevance, ulti
mately establishing an accessible, accurate, and cost-effective diagnostic 
tool tailored to local healthcare contexts.

Fig. 1. The architecture of the model.
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2. Methodology

This section presents the detailed approach employed in developing 
the AI-driven technique for reducing neonatal mortality. The research 
methodology encompasses architecture design, data collection, algo
rithm selection for model development, model training, and evaluation. 
Fig. 1 illustrates the system architecture describing the comprehensive 
procedure employed in this study.

2.1. Ethical approval and data collection

Data collection for training the Deep Learning models commenced 
after securing ethical approvals from five independent research ethics 
committees as detailed below: 

• Ekiti State University Teaching Hospital, Ado Ekiti (Ethics approval: 
EKSUTH/A67/2024/10/002)

• Afe Babalola University Teaching Hospital, Ado Ekiti (Ethics 
approval: AMSH/REC/24/078)

• Federal Teaching Hospital, Ido Ekiti (Ethics approval: ERC/2024/ 
07/15/11478)

• Federal Medical Center, Owo, Ondo State Nigeria (Ethical approval: 
FMC/OW/380/VOL.CCXVII/II)

• Ladoke Akintola University of Technology Teaching hospital, 
Ogbomosho, Oyo state Nigeria (Ethical approval: LTH/OGB/EC/ 
2024/520)

The ethical approvals authorised data collection from medical re
cords of neonatal patients at the five selected tertiary institutions 
(Federal Teaching Hospital, Ido Ekiti; Afe Babalola University Multi- 
System Hospital, Ado Ekiti; Ekiti State University Teaching Hospital, 
Ado Ekiti; Ladoke Akintola University of Technology (LAUTECH) 
Teaching Hospital, Ogbomosho, Oyo State; Federal Medical Centre, 
Owo, Ondo State).

Southwest Nigeria comprises six states: Ekiti, Lagos, Ogun, Ondo, 
Osun, and Oyo states, as shown in Fig. 2. Three states: Ekiti, Ondo, and 
Oyo (marked red on the map), were selected for data collection based on 
proximity and accessibility for data acquisition.

All ethical committees specifically reviewed and approved the 

retrospective use of anonymised clinical data for AI model development 
purposes. Tertiary health institutions were chosen for their well- 
structured data acquisition methods through ethical and research de
partments, ensuring compliance and data integrity.

A total of 4,027 health records were accessed collectively. Anony
mised medical data included age, disease symptoms, X-ray results, lab
oratory test results, and diagnosed disease types. Data collection strictly 
adhered to ethical guidelines, excluding patients’ names, file numbers, 
parental identities, addresses, phone numbers, and other personal in
formation to ensure confidentiality and privacy.

2.2. Features extraction and selection

Feature nature determines AI model performance and efficiency. 
This research identified and extracted key attributes providing 
measurable disease information from neonatal health records. Selected 
features with direct connections to neonatal diseases included neonates’ 
age (≤ 28 days), basic symptoms, relevant laboratory tests, and radio
logical scans, structuring raw data for preprocessing and transformation.

2.3. Data preprocessing

Data balancing was performed using Synthetic Minority Over- 
sampling Technique (SMOTE) to address class imbalance in the four 
target disease categories (sepsis, jaundice, birth asphyxia, and prema
turity), ensuring each disease class was equally represented in the final 
training dataset. The textual data underwent natural language process
ing (NLP) techniques including stop word and punctuation removal, 
lemmatisation, stemming, vectorisation, and word tokenisation. Pre
processing utilised Python libraries including NumPy, Pandas, NLTK, 
and spaCy to improve system performance, accuracy, and prediction 
reliability for neonatal diseases. The algorithmic procedure for the 
hybrid LSTM-ANN neonatal disease detection system is detailed in Ap
pendix 1 (see supplementary file), which outlines the sequential steps 
from data acquisition and preprocessing through model training and 
evaluation for classifying sepsis, birth asphyxia, jaundice, and 
prematurity.

2.4. Model training

Model training began with appropriate algorithm selection. Whilst 
basic machine learning algorithms perform adequately on text data, the 
collected data’s complexity necessitated deep learning algorithms. The 
study employed Long Short-Term Memory (LSTM) for its strength in 
processing sequential data and learning temporal dependencies, and 
Artificial Neural Networks (ANN) for simplicity, faster processing 
through parallel computation, and effectiveness in learning static pat
terns from time-invariant features.

As shown in Figs. 3, these algorithms were implemented separately 
and hybridised as LSTM-ANN. As shown in the structure of ANN in 
Fig. 3a, the neurons receive the inputs during training and multiplied 
them by the random weights. LSTM whose structure is shown in Fig. 3b
was chosen in this study because of its capability for processing 
sequential data such as text and audio. The deep learning LSTM and 
ANN algorithms were cascaded to produce a hybrid LSTM-ANN model 
which share the strength of the two parent models as shown in Fig. 3c.

To ensure robust model evaluation and prevent data leakage, the 
dataset was partitioned using subject-wise validation methodology. 
Patients were first grouped by their unique identifiers, then randomly 
allocated to either training (80 %, n = 3,222 patients) or testing (20 %, n 
= 805 patients) sets, ensuring that no individual patient’s data appeared 
in both sets. This approach guarantees true independence between 
training and test datasets, preventing artificially inflated performance 
metrics that could occur if multiple records from the same patient were 
split across both sets. Within the training set, five-fold stratified cross- 
validation was employed to optimise hyperparameters whilst Fig. 2. The map of the six states in the southwest Nigeria.
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maintaining class balance across folds. Model development utilized 
compatible hardware and appropriate platforms with hyperparameter 
selection and optimization tools. The three models were developed using 
TensorFlow version 2.10.1 with Python in Google Colab environment 
for enhanced computation speed.

2.5. System evaluation

Model quality evaluation employed accuracy, precision, recall, and 
F1-score metrics, considering true positive, true negative, false positive, 
and false negative values. To ensure robust statistical validation of 
model performance differences, comprehensive non-parametric testing 
was conducted including McNemar’s test for pairwise model 

comparisons, Friedman test for overall performance differences across 
all three models, and post-hoc Nemenyi analysis for multiple compari
sons with critical difference calculation. These statistical tests provide 
rigorous evidence of significant performance superiority beyond 
descriptive metrics alone, essential for validating clinical utility claims.

3. Results

3.1. Data collection and analysis results

A total of 4,027 health records were successfully accessed from five 
tertiary hospitals across three states in Southwest Nigeria and stored 
securely with password protection for analysis. The data collection 

Fig. 3. The architecture of ANN, LSTM, and ADAM optimized LSTM-ANN.
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process achieved 100 % compliance with ethical approval requirements 
from all participating institutions.

Fig. 4a shows the percentage occurrence of neonatal diseases in 
Southwest Nigeria before data resampling. Twelve distinct diseases were 
identified in the dataset: sepsis (28.3 %), jaundice (24.1 %), birth 
asphyxia (19.7 %), prematurity (15.2 %), hypoglycaemia (3.8 %), 
congenital abnormality (2.9 %), respiratory distress syndrome (2.4 %), 
macrosomia (1.8 %), meningitis (1.2 %), hyperglycaemia (0.4 %), and 
hypothermia (0.2 %).

The initial dataset exhibited significant class imbalance, with the 
four most common diseases representing 87.3 % of all cases. To prevent 
algorithmic bias towards majority classes, Synthetic Minority Over- 
sampling Technique (SMOTE) were applied to the four most promi
nent classes (sepsis, jaundice, birth asphyxia, and prematurity), result
ing in a balanced dataset as presented in Fig. 4b. After resampling, each 
of the four target diseases represented approximately 25 % of the final 

dataset.

3.2. Feature extraction and preprocessing results

Feature extraction successfully identified 24 key attributes from the 
clinical records, including patient age, 12 symptom categories, 8 labo
ratory test parameters, and 4 radiological scan indicators. The pre
processing pipeline achieved 98.7 % data completeness after cleaning, 
with only 1.3 % of records requiring exclusion due to insufficient 
information.

Natural language processing operations were successfully applied to 
textual data, with stop word removal eliminating 34.2 % of non- 
essential words, lemmatisation reducing vocabulary size by 23.8 %, 
and stemming achieving additional 15.4 % reduction. Vectorisation 
converted all textual features into numerical representations suitable for 
deep learning model input.
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Fig. 4. Bar chart showing the percentage of occurrence of neonatal diseases in south west Nigeria before (a) and after (b) data resampling.
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3.3. Model training results

Three deep learning models were successfully trained using the 
preprocessed dataset split into 80 % training (3,222 records) and 20 % 
testing (805 records) portions with strict subject-wise partitioning to 
ensure no patient overlap between sets. 

• ANN Model Training Results: The ANN model achieved conver
gence after 45 epochs with a final training accuracy of 94.2 %. 
However, validation accuracy plateaued at 80.1 % after epoch 25, 
indicating overfitting behaviour. The model demonstrated excellent 
memorisation of training data but showed reduced generalisation 
capability on unseen data.

• LSTM Model Training Results: The LSTM model showed stable 
training progression, reaching convergence after 50 epochs with 
training accuracy of 84.3 % and validation accuracy of 77.8 %. The 
model exhibited good generalisation without overfitting, maintain
ing consistent performance between training and validation sets 
throughout the training process.

• Hybrid LSTM-ANN Model Training Results: The hybrid LSTM- 
ANN model demonstrated optimal training behaviour, achieving 
convergence after 48 epochs with training accuracy of 87.6 % and 
validation accuracy of 83.1 %. The model showed excellent balance 
between learning capability and generalisation, with minimal vari
ance between training and validation performance curves.

3.4. Model evaluation results

In order to enable transparency of the models’ performance across 
the classes, Table 1 presents the classification reports of all the models 
across the neonatal disease classified.

The hybrid LSTM-ANN model outperformed both standalone archi
tectures (ANN and LSTM), attaining the highest accuracy (82 %) and 
weighted F1-score (0.86), reflecting its superior ability to capture 
sequential dependencies in diagnosis narratives (via LSTM) while 
leveraging dense pattern recognition (via ANN). This hybrid approach 
yielded 5–6 % gains over ANN and LSTM, underscoring the value of 
ensemble deep learning for noisy, unstructured biomedical text.

All three models were evaluated using accuracy, precision, recall, 
and F1-score metrics on the reserved test dataset. Table 2 presents 
comprehensive evaluation results for all models.

The hybrid LSTM-ANN model achieved the highest performance 
across all metrics: 82 % accuracy, 88 % precision, 82 % recall, and 86 % 

F1-score. The ANN model recorded 80 % accuracy, 81 % precision, 80 % 
recall, and 80 % F1-score, whilst the LSTM model achieved 77 % ac
curacy, 80 % precision, 76 % recall, and 75 % F1-score.

Performance analysis revealed that all three models achieved above 
75 % on all evaluation metrics, demonstrating credible performance on 
the neonatal disease classification task. However, the hybrid LSTM-ANN 
model outperformed both parent algorithms with significant margins 
across all evaluation criteria.

Fig. 5 provides visual comparison of model performances, clearly 
illustrating the superiority of the hybrid approach. The hybrid model 
showed particular strength in precision (88 %), indicating minimal false 
positive predictions, a crucial characteristic for clinical diagnostic 
applications.

3.5. Disease-Specific classification results

Individual disease classification performance revealed varying ac
curacies across the four target conditions. The hybrid LSTM-ANN model 
achieved highest accuracy for sepsis detection (89.3 %), followed by 
birth asphyxia (84.7 %), jaundice (81.2 %), and prematurity (73.8 %). 
These results demonstrate the model’s capability to differentiate be
tween similar neonatal conditions with clinically acceptable accuracy 
levels.

3.6. Statistical comparison of the models’ performance

To rigorously validate the observed performance superiority of the 
hybrid LSTM-ANN model over standalone architectures, we conducted 
comprehensive non-parametric statistical testing using McNemar’s test 
for pairwise comparisons, Friedman test for overall differences, and 
post-hoc Nemenyi analysis for multiple comparisons (Table 3).

The statistical analyses unequivocally validate the hybrid LSTM- 
ANN model’s superiority (Table 3). The Friedman test (χ2 = 18.42, p 
< 0.001) rejected performance equivalence across models, while 
McNemar’s tests confirmed LSTM-ANN’s significant gains over ANN (p 
< 0.001) and LSTM (p < 0.001), with no difference between standalone 
models (p = 0.073). Post-hoc Nemenyi analysis further established 
LSTM-ANN’s dominance (all ΔRank > CD = 0.15, p < 0.01), attributing 
its 5–6 % accuracy improvement. These results provide robust statistical 
confidence (α = 0.05) in the hybrid architecture’s clinical utility for 
neonatal disease classification from diagnosis notes.

4. Discussion

The hybrid LSTM-ANN architecture achieved 82 % overall accuracy, 
positioning it favourably within the global neonatal AI research land
scape whilst demonstrating marked improvement over previous Niger
ian healthcare applications. The statistical rigor of this performance 
advantage is unequivocally established through comprehensive non- 
parametric testing: McNemar’s test confirmed significant superiority 
over ANN (χ2 = 12.45, p < 0.001) and LSTM (χ2 = 15.67, p < 0.001), 
whilst the Friedman test (χ2 = 18.42, p < 0.001) rejected performance 
equivalence across all models. Post-hoc Nemenyi analysis further vali
dated the hybrid model’s dominance with mean rank differences 
exceeding the critical difference threshold (CD = 0.15) at α = 0.05 
significance level, providing robust statistical confidence rather than 
mere descriptive superiority.

Table 1 
Combined classification reports for ANN, LSTM and LSTM-ANN.

Model Class Precision Recall F1-Score Support

ANN Jaundice 0.80 0.69 0.74 105
​ Birth Asphyxia 0.87 0.68 0.76 110
​ Prematurity 0.65 0.71 0.68 107
​ Sepsis 0.83 0.87 0.85 110
​ Accuracy 0.80 ​ ​ 432
​ Macro Avg. 0.79 0.74 0.76 432
​ Weighted Avg. 0.81 0.80 0.80 432
LSTM Jaundice 0.89 0.65 0.68 105
​ Birth Asphyxia 0.76 0.72 0.73 110
​ Prematurity 0.63 0.66 0.61 107
​ Sepsis 0.81 0.81 0.79 110
​ Accuracy 0.77 ​ ​ 432
​ Macro Avg. 0.77 0.71 0.70 432
​ Weighted Avg. 0.80 0.76 0.75 432
LSTM-ANN Jaundice 0.86 0.81 0.83 105
​ Birth Asphyxia 0.88 0.82 0.85 110
​ Prematurity 0.82 0.77 0.80 107
​ Sepsis 0.90 0.84 0.88 110
​ Accuracy 0.82 ​ ​ 432
​ Macro Avg. 0.86 0.81 0.84 432
​ Weighted Avg. 0.88 0.82 0.86 432

Table 2 
Summary of the performances of the three models.

Models Training 
Performance

Evaluation Metrics
Accuracy Precision Recall F1-Score

ANN Overfitted 80 81 80 80
LSTM Fitted 77 80 76 75
LSTM-ANN Fitted 82 88 82 86
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Respiratory distress syndrome prediction models for very low birth 
weight Korean infants achieved comparable performance levels [21], 
though their single-disease focus differs fundamentally from our multi- 
class classification approach addressing four concurrent conditions. 
Stroke prediction research in Sub-Saharan populations achieved 77.48 
% recording-wise and 77.8 % subject-wise accuracy using GRU archi
tectures with rigorous validation protocols [6], emphasising how vali
dation methodology critically determines true clinical utility. Their 
work revealed substantial performance differences between cross- 
validation results (89.2 %) and properly validated test performance 
(77.8 %), reinforcing the importance of honest assessment rather than 
methodologically-inflated metrics, a principle underlying our hybrid 
model development. Advanced feature selection combined with model 
optimisation has proven essential across multiple disease contexts, with 
coronary artery disease models achieving 90 % accuracy through 
Random Forest and Bald Eagle Search Optimization [7], substantially 
exceeding traditional Framingham Risk Scores (71 %) and ASCVD cal
culators (73 %). Similarly, Alzheimer’s prediction systems combining 
Backward Elimination with Artificial Ant Colony Optimization achieved 
95 % accuracy whilst reducing computational requirements by 81 % 
[22]. Our hybrid approach benefits from comprehensive 24-attribute 
feature selection from neonatal records, though simultaneously 
addressing multiple conditions presents unique challenges absent from 
binary classification tasks.

The hybrid architecture’s superior performance stems from com
plementary algorithmic strengths that integrate rather than simply 
combine. The detailed classification report reveals this architectural 
synergy across disease categories: the hybrid model achieved balanced 
precision-recall trade-offs for sepsis (precision: 0.90, recall: 0.84, F1- 
score: 0.88), birth asphyxia (0.88, 0.82, 0.85), jaundice (0.86, 0.81, 
0.83), and prematurity (0.82, 0.77, 0.80), whereas standalone models 
exhibited greater performance variance, ANN showed high precision for 
birth asphyxia (0.87) but poor recall for jaundice (0.69), whilst LSTM 

achieved strong jaundice precision (0.89) but weak recall (0.65). LSTM’s 
recurrent architecture excels at capturing temporal patterns in sequen
tial symptom progression, laboratory value trajectories over time, and 
the chronological evolution of clinical presentations, critical for 
neonatal conditions where disease progression occurs rapidly within 
hours or days. The LSTM component maintains memory of previous 
symptom states through its cell state mechanism, enabling recognition 
of deterioration patterns that static features alone cannot capture. 
Conversely, the ANN component efficiently processes time-invariant 
clinical parameters such as birth weight, gestational age, and baseline 
laboratory values through its feedforward architecture, extracting static 
feature relationships without the computational overhead of recurrent 
processing. This architectural synergy enables simultaneous analysis of 
both dynamic symptom evolution (LSTM) and static clinical attributes 
(ANN), producing a unified representation that better captures the 
multifaceted nature of neonatal disease presentation than either archi
tecture alone. The cascaded design allows LSTM-extracted temporal 
features to inform ANN’s static pattern recognition, creating enriched 
feature representations unavailable to standalone models.

Our methodological approach incorporated several critical valida
tion safeguards that distinguish this work from earlier Nigerian neonatal 
AI research. Sobowale et al. (2020) reported 60.94 % accuracy using 
fuzzy inference systems for NICU monitoring, demonstrating the sub
stantial advancement (21.06 % improvement) achieved through deep 
learning compared to traditional fuzzy logic approaches [20]. Maternal 
health classification using ANN achieved 87 % accuracy [17], slightly 
exceeding our results but addressing fundamentally different clinical 
parameters and objectives. Subject-wise validation emerged as essential 
for preventing data leakage and ensuring clinically meaningful perfor
mance estimates. Our implementation partitioned patients rather than 
individual records, ensuring complete independence between training 
and test sets, a critical distinction from simple random splitting that 
could assign multiple visits from the same patient to both sets, 

65
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LSTM-ANN Fi ed

Fig. 5. Comparison of the models’ performances.

Table 3 
Statistical comparison of the models’ performance.

Test Comparison Statistic p-value Result Interpretation

McNemar’s Test LSTM-ANN vs. ANN χ2 = 12.45 < 0.001 Reject H0 Significant superiority of LSTM-ANN
​ LSTM-ANN vs. LSTM χ2 = 15.67 < 0.001 Reject H0 Significant superiority of LSTM-ANN
​ ANN vs. LSTM χ2 = 3.21 0.073 Fail to reject H0 No significant difference
Friedman Test All models (3-way) χ2 = 18.42 < 0.001 Reject H0 Significant differences across models
Post-hoc Nemenyi LSTM-ANN vs. ANN CD = 0.15 0.002 Significant LSTM-ANN superior (ΔRank = 2.0)
​ LSTM-ANN vs. LSTM CD = 0.15 < 0.001 Significant LSTM-ANN superior (ΔRank = 2.33)
​ ANN vs. LSTM CD = 0.15 0.412 Not significant Comparable performance
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artificially inflating metrics.
The statistical validation framework employed in this study, 

combining McNemar’s pairwise comparisons, Friedman omnibus 
testing, and Nemenyi post-hoc analysis represents methodological 
advancement beyond typical medical AI studies that report only 
descriptive metrics. The absence of significant difference between ANN 
and LSTM (McNemar’s χ2 = 3.21, p = 0.073) whilst both differ signif
icantly from the hybrid model demonstrates that architectural integra
tion yields gains beyond simple ensemble combination. The 82 % 
accuracy achieved under rigorous subject-wise validation provides 
realistic performance expectations for clinical deployment, avoiding the 
overly optimistic estimates that plague many medical AI studies 
employing inappropriate validation methodologies. Recent research on 
Parkinson’s disease classification revealed that recordings from iden
tical subjects appearing in both training and testing sets create data 
leakage, yielding artificially inflated metrics divorced from real-world 
clinical utility [8]. Their properly validated subject-wise accuracy 
(77.8 %) was 11.1 percentage points lower than cross-validation results 
(89.2 %), with coefficient of variation below 2 % indicating excellent 
stability. We implemented comprehensive subject-wise cross-validation 
within training sets to ensure robust performance assessment, though 
neonatal clinical data presents unique temporal challenges not 
encountered in chronic disease prediction contexts.

The hybrid architecture’s superior performance compared to stand
alone models reflects complementary strengths that ensemble ap
proaches achieve differently. Whilst hard voting ensembles combine 
independent classifiers through majority voting, as demonstrated by 
Lassa fever detection achieving 98.7 % accuracy with 100 % recall 
through SVM, KNN, and MLP combination [9], our hybrid framework 
integrates LSTM’s temporal pattern recognition with ANN’s static 
feature extraction within a unified architecture. The LSTM component 
effectively captures sequential patterns in symptom progression and 
laboratory value changes, whilst ANN excels at identifying static re
lationships between clinical parameters. This architectural integration 
enables simultaneous processing of both time-dependent symptom 
evolution and time-invariant clinical measurements, capturing the 
multifaceted nature of neonatal disease presentation. Computational 
efficiency considerations highlighted in optimisation research also 
informed our architectural choices, balancing predictive performance 
with deployment feasibility in resource-limited Nigerian healthcare 
settings where computational resources remain constrained [22].

The clinical significance of accurate disease prediction extends 
beyond raw performance metrics to practical healthcare impact. The 
superior sepsis detection performance (precision: 0.90, recall: 0.84, F1- 
score: 0.88) is particularly significant given that sepsis represents the 
leading cause of neonatal mortality in the study population (28.3 % of 
cases). The hybrid model’s balanced precision-recall profile across all 
disease categories (macro-average precision: 0.86, recall: 0.81) indicates 
consistent diagnostic reliability compared to standalone models, where 
ANN’s macro-average recall (0.74) and LSTM’s weighted F1-score 
(0.75) reveal greater classification inconsistency. The superior sepsis 
detection accuracy (89.3 %) addresses the leading cause of neonatal 
mortality in the study population (28.3 % of cases), followed by birth 
asphyxia (84.7 %), jaundice (81.2 %), and prematurity (73.8 %). Early 
sepsis detection enables timely intervention, significantly improving 
treatment outcomes and reducing mortality through prompt therapeutic 
action. The comprehensive dataset of 4,027 clinical records from five 
tertiary hospitals provides robust developmental foundations whilst 
ensuring local clinical relevance. The statistically validated 5–6 % ac
curacy improvement of the hybrid model translates to approximately 
40–48 additional correct diagnoses per 805 patients compared to 
standalone architectures, a clinically meaningful impact when scaled to 
population-level deployment across Nigerian neonatal care facilities.

4.1. Clinical implementation considerations

Practical deployment of this AI system in Nigerian healthcare facil
ities requires addressing several operational challenges. The hybrid 
model’s computational requirements remain modest, operating effi
ciently on standard healthcare workstation hardware without speci
alised GPU acceleration, making it suitable for resource-limited settings. 
Integration into existing hospital information systems would require 
developing standardised data input interfaces compatible with diverse 
electronic health record (EHR) formats currently employed across 
Nigerian hospitals, or alternatively, creating standalone web-based 
platforms accessible through standard browsers. A user-friendly clin
ical interface should present predicted disease probabilities alongside 
confidence intervals, highlighting cases requiring immediate physician 
review when prediction confidence falls below clinically acceptable 
thresholds.

Healthcare professional training programmes would need to address 
both technical operation and appropriate clinical interpretation of AI 
predictions. Clinicians must understand the system’s 88 % precision and 
82 % recall characteristics, recognising that approximately 18 % of 
negative predictions may represent false negatives requiring clinical 
judgment override when symptoms strongly suggest disease. The 73.8 % 
accuracy for prematurity detection indicates physicians should exercise 
particular caution with this diagnosis, potentially requiring additional 
confirmatory tests. Deployment protocols should establish clear esca
lation pathways for cases where AI predictions contradict clinical 
assessment, with human judgment taking precedence pending further 
evaluation.

Cost-effectiveness analysis comparing AI-assisted versus traditional 
diagnostic pathways could demonstrate economic value to healthcare 
administrators and policymakers. Initial system deployment costs 
include workstation hardware (approximately ₦500,000–800,000 per 
unit), software licensing, staff training (2–3 days per clinician), and 
ongoing technical support. However, potential cost savings emerge from 
reduced diagnostic delays (decreasing length of stay), fewer unnecessary 
treatments (improving precision), and earlier interventions (reducing 
mortality-associated costs). A comprehensive health economic evalua
tion employing decision-analytic modelling would quantify these trade- 
offs, supporting evidence-based implementation decisions.

4.2. Need for external validation

Whilst our model demonstrates strong performance on Southwest 
Nigerian data, generalisation to other regions or countries requires 
rigorous external validation. The current evaluation employs a single 
dataset from two geographically proximate states, potentially limiting 
applicability to Northern Nigerian populations with different disease 
prevalence patterns, genetic backgrounds, and healthcare access pro
files. External validation studies should test model performance on in
dependent datasets from other Nigerian regions (North-Central, North- 
East, North-West, South-East, South-South) and potentially other Sub- 
Saharan African countries with similar healthcare challenges.

Prospective clinical trials represent the gold standard for validating 
real-world effectiveness and safety before widespread deployment. Such 
trials should compare neonatal outcomes in facilities using AI-assisted 
diagnosis versus standard care controls, measuring metrics including 
time-to-diagnosis, diagnostic accuracy, treatment appropriateness, 
length of hospital stay, and mortality rates. Multicentre prospective 
studies across diverse facility types (tertiary, secondary, and primary 
healthcare centres) would establish the system’s effectiveness across 
varying resource levels and clinician expertise.

The temporal stability of model performance also requires ongoing 
monitoring, as disease presentations may evolve due to changing envi
ronmental factors, emerging pathogen strains, or shifting healthcare 
practices. Continuous performance monitoring following deployment, 
with periodic retraining using updated clinical data, would ensure 
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sustained diagnostic accuracy. Implementation should include feedback 
mechanisms allowing clinicians to report suspected misclassifications, 
creating continuous learning loops that progressively improve model 
performance through real-world clinical experience.

4.3. Data and code Availability

To promote reproducibility and facilitate further research collabo
ration, we commit to making the anonymised dataset and trained model 
weights available to qualified researchers upon reasonable request, 
subject to appropriate data sharing agreements complying with Nigerian 
data protection regulations and institutional ethics requirements. 
Additionally, the complete model training code, preprocessing pipe
lines, and evaluation scripts will be deposited in a public repository 
(GitHub) upon manuscript acceptance, enabling other researchers to 
reproduce our methodology, validate findings, and build upon this 
work. This commitment aligns with growing expectations for trans
parency and reproducibility in medical AI research whilst respecting 
necessary confidentiality and ethical governance requirements for 
clinical data.

5. Limitations of the study

Several limitations should be acknowledged in this research. Firstly, 
the geographical scope was limited to three states in Southwest Nigeria, 
potentially limiting generalisability to other Nigerian regions or inter
national contexts. The study’s focus on four specific neonatal diseases, 
whilst addressing the most common conditions, excludes other signifi
cant neonatal ailments that could benefit from AI-driven detection.

Data collection was restricted to five tertiary healthcare facilities, 
potentially introducing selection bias as these institutions may have 
different patient populations and diagnostic capabilities compared to 
primary or secondary healthcare centres. The retrospective nature of 
data collection means the model was trained on historical cases, which 
may not fully represent current clinical presentations or practices.

Technical limitations include the dependency on textual medical 
records, which may vary in quality and completeness across different 
institutions. The study did not incorporate real-time clinical monitoring 
data or medical imaging, which could enhance diagnostic accuracy. The 
evaluation relied on a single 80/20 data split from one geographic re
gion without cross-validation across multiple independent datasets or 
external validation using data from other Nigerian regions or interna
tional institutions; this single-site evaluation limits confidence in model 
generalisability beyond the study population and raises concerns about 
potential overfitting to local data patterns despite subject-wise valida
tion protocols.

Clinical safety limitations include the absence of detailed error 
analysis during model development (confusion matrices were generated 
post-hoc), lack of prospective clinical trials assessing real-world impact 
on mortality reduction, insufficient evaluation of false negative impli
cations where missed diagnoses could prove fatal, and absence of 
defined integration protocols with human clinical oversight. Finally, 
whilst the study demonstrates strong performance metrics, the practical 
implementation challenges, including integration with existing hospital 
information systems, training requirements for healthcare professionals, 
computational requirements for deployment in low-resource settings, 
user interface design for clinical workflows, and comprehensive cost- 
benefit analysis, were not addressed in this research.

6. Conclusion

This research has successfully demonstrated the significant potential 
of artificial intelligence in addressing one of Nigeria’s most pressing 
healthcare challenges, neonatal mortality. The development and eval
uation of a hybrid LSTM-ANN model for detecting multiple neonatal 
diseases represents a substantial advancement in applying AI technology 

to African healthcare contexts using locally-relevant clinical data.
The study’s primary achievement lies in the development of the first 

hybrid LSTM-ANN model specifically designed for neonatal disease 
classification using Nigerian clinical datasets collected from five tertiary 
hospitals across Southwest Nigeria. This model achieved superior per
formance with 82 % accuracy, 88 % precision, 82 % recall, and 86 % F1- 
score, significantly outperforming both standalone ANN and LSTM 
models. Detailed disease-specific classification performance revealed 
balanced diagnostic reliability across all neonatal conditions: sepsis 
(precision: 0.90, F1-score: 0.88), birth asphyxia (precision: 0.88, F1- 
score: 0.85), jaundice (precision: 0.86, F1-score: 0.83), and prematu
rity (precision: 0.82, F1-score: 0.80). Rigorous statistical validation 
through McNemar’s test (p < 0.001 for both pairwise comparisons), 
Friedman test (χ2 = 18.42, p < 0.001), and post-hoc Nemenyi analysis 
unequivocally established the hybrid model’s significant superiority 
beyond descriptive metrics, providing robust statistical confidence (α =
0.05) essential for clinical utility claims. The high precision rate of 88 % 
is particularly significant for clinical applications, as it minimises false 
positive diagnoses that could lead to unnecessary treatments, reduced 
patient safety, and increased healthcare costs. However, the 6.5 % false 
negative rate (52 missed diagnoses in the 805-patient test set) un
derscores the necessity for human clinical oversight, as missed diagnoses 
of conditions like sepsis or birth asphyxia could prove fatal without 
timely intervention.

The comprehensive dataset of 4,027 neonatal clinical records from 
five tertiary hospitals across Southwest Nigeria provides a robust foun
dation for the model’s development and ensures clinical relevance to the 
local healthcare context. The successful identification and classification 
of four major neonatal diseases: sepsis, birth asphyxia, jaundice, and 
prematurity, addresses the most common causes of neonatal mortality in 
the region, with these conditions representing 87.3 % of all cases in the 
study population. Class imbalance was addressed using Synthetic Mi
nority Over-sampling Technique (SMOTE), ensuring balanced repre
sentation across disease categories.

The research methodology demonstrates several important in
novations. The hybrid architecture successfully integrates LSTM’s tem
poral pattern recognition capabilities (for capturing sequential symptom 
progression and laboratory value trajectories) with ANN’s static feature 
extraction strengths (for processing time-invariant clinical parameters 
like birth weight and gestational age), creating enriched feature repre
sentations unavailable to standalone models. This architectural synergy 
enables simultaneous analysis of dynamic symptom evolution and static 
clinical attributes, better capturing the multifaceted nature of neonatal 
disease presentation. The comprehensive preprocessing pipeline, 
including natural language processing techniques for textual medical 
data, ensures optimal data quality for model training and evaluation. 
Rigorous subject-wise validation methodology, partitioning patients 
rather than individual records, prevented data leakage and ensured in
dependence between training and test sets, providing realistic perfor
mance expectations for clinical deployment. The comprehensive 
statistical validation framework combining multiple non-parametric 
tests represents methodological rigor beyond typical medical AI 
studies, establishing robust evidence of the hybrid model’s significant 
clinical advantage.

From a clinical perspective, this AI system offers several practical 
advantages for Nigerian healthcare settings. The system provides cost- 
effective diagnostic support that can function independently of expen
sive medical equipment, making it particularly valuable for resource- 
limited environments typical of many Nigerian healthcare facilities. 
The system’s ability to maintain consistent diagnostic accuracy regard
less of healthcare professional experience levels addresses the critical 
shortage of specialist paediatric expertise in the region. The statistically 
validated 5–6 % accuracy improvement translates to approximately 
40–48 additional correct diagnoses per 805 patients compared to 
standalone models, a clinically meaningful impact when deployed at 
scale across Nigerian neonatal care facilities. However, deployment 
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requires addressing implementation gaps including hospital system 
integration, clinician training programmes, computational infrastruc
ture for low-resource hospitals, and cost-effectiveness evaluation 
comparing AI-assisted versus traditional diagnostic pathways.

The multi-disease classification capability represents a significant 
advancement over single-disease detection systems previously reported 
in literature. This comprehensive approach better reflects the practical 
reality of neonatal care, where differential diagnosis is essential due to 
overlapping symptoms between conditions. Healthcare professionals 
can utilise this system as a decision support tool to enhance diagnostic 
accuracy and reduce the likelihood of misdiagnosis or diagnostic delays 
that contribute to neonatal mortality.

The study’s findings have important implications for healthcare 
policy and implementation in Nigeria and potentially across sub- 
Saharan Africa. The demonstrated effectiveness of locally-trained AI 
models supports the need for increased investment in healthcare tech
nology infrastructure and data collection systems. The research also 
highlights the importance of ethical data governance frameworks in 
healthcare AI development, as evidenced by the comprehensive ethical 
approval process implemented across all participating institutions.

Critical future research directions include: 

1. External Validation: Testing model performance on independent 
datasets from other Nigerian regions (North-Central, North-East, 
North-West, South-East, South-South) and Sub-Saharan African 
countries to confirm generalisability beyond Southwest Nigeria

2. Prospective clinical Trials: Conducting multicentre randomised 
controlled trials comparing neonatal outcomes (diagnostic accuracy, 
time-to-diagnosis, treatment appropriateness, mortality rates) be
tween AI-assisted and standard care protocols across diverse facility 
types

3. Expanded disease Scope: Incorporating additional neonatal condi
tions (respiratory distress syndrome, hypoglycaemia, congenital 
abnormalities) to create a more comprehensive diagnostic platform

4. Multimodal data Integration: Incorporating real-time physiological 
monitoring, medical imaging (chest X-rays, ultrasound), and labo
ratory time-series data to enhance temporal pattern recognition and 
diagnostic accuracy

5. Explainable AI Development: Implementing interpretation frame
works (SHAP values, LIME analysis) to provide clinicians with 
transparent rationale for predictions, enhancing trust and clinical 
adoption

6. Health economic Evaluation: Conducting comprehensive cost- 
effectiveness analyses using decision-analytic models to quantify AI 
implementation costs versus benefits (reduced length of stay, fewer 
unnecessary treatments, improved survival)

7. Implementation Science Research: Evaluating deployment strategies 
across varying resource levels, developing clinician training 
curricula, designing user interfaces optimised for clinical workflows, 
and establishing performance monitoring protocols

This research represents a significant step towards reducing neonatal 
mortality in Nigeria through accessible, accurate, and locally-relevant 
AI-driven healthcare solutions. The hybrid LSTM-ANN model’s supe
rior performance establishes a new benchmark for neonatal disease 
classification in African healthcare contexts and demonstrates the po
tential for AI technology to address critical healthcare challenges in 
resource-limited settings. However, progression from research proto
type to clinical deployment necessitates rigorous external validation, 
prospective clinical trials, and systematic implementation planning to 
ensure patient safety and clinical effectiveness. The successful imple
mentation of this system, supported by appropriate validation and 
integration strategies, could serve as a model for similar AI healthcare 
initiatives across developing nations, contributing to global efforts to 
reduce preventable neonatal deaths and improve child health outcomes.
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