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A B S T R A C T

Background: Kangaroo Mother Care (KMC) is a critical intervention for improving neonatal outcomes, particu
larly for low-birth-weight infants. Identifying predictors of KMC practice remains essential for targeted health 
interventions and policy development.
Objective: This study utilizes data from the 2019 Sierra Leone demographic and health survey to identify pre
dictors of KMC using different feature selection techniques and classification algorithms.
Methods: We analyzed 7,377 maternal and child health records from the 2019 Sierra Leone demographic and 
health survey, applying three feature selection techniques and seven classification algorithms. Data pre
processing included class balancing and cross-validation. Three feature selection techniques employed were: 
Adaptive Ant Colony Optimization (ACO), Recursive Feature Elimination (RFE), and Backward Feature Selection. 
Seven machine learning algorithms implemented were: Logistic Regression, Support Vector Machine variants, K- 
Nearest Neighbours, Random Forest, XGBoost, Stacking Ensemble, and Voting Ensemble. Data preprocessing 
included SMOTE for class imbalance, 5-fold and 10-fold cross-validation, and hyperparameter optimization using 
GridSearchCV.
Results: Random Forest and XGBoost consistently achieved the highest performance across all feature selection 
methods. Using consensus features from multiple selection techniques, Random Forest achieved an accuracy of 
0.72, F1-score of 0.78, and ROC-AUC of 0.7689, whilst XGBoost demonstrated similar performance (accuracy: 
0.72, F1-score: 0.78, ROC-AUC: 0.7685). Backward Feature Selection and ACO outperformed RFE in identifying 
discriminative features. Ensemble methods showed robust generalization capabilities.
Conclusion: Machine learning models, particularly ensemble methods combined with comprehensive feature 
selection techniques, demonstrate strong predictive capability for KMC practice, offering valuable insights for 
maternal and child health interventions in Sierra Leone.

* Corresponding author at: Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom.
E-mail address: d.olawade@uel.ac.uk (D.B. Olawade). 

Contents lists available at ScienceDirect

International Journal of Medical Informatics

journal homepage: www.elsevier.com/locate/ijmedinf

https://doi.org/10.1016/j.ijmedinf.2025.106166
Received 2 July 2025; Received in revised form 17 October 2025; Accepted 22 October 2025  

International Journal of Medical Informatics 206 (2026) 106166 

Available online 26 October 2025 
1386-5056/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://orcid.org/0009-0009-9668-3128
https://orcid.org/0009-0009-9668-3128
https://orcid.org/0009-0006-6275-9030
https://orcid.org/0009-0006-6275-9030
https://orcid.org/0000-0003-0188-9836
https://orcid.org/0000-0003-0188-9836
mailto:d.olawade@uel.ac.uk
www.sciencedirect.com/science/journal/13865056
https://www.elsevier.com/locate/ijmedinf
https://doi.org/10.1016/j.ijmedinf.2025.106166
https://doi.org/10.1016/j.ijmedinf.2025.106166
http://creativecommons.org/licenses/by/4.0/


1. Introduction

Kangaroo Mother Care (KMC) represents one of the most effective, 
evidence-based interventions for improving survival rates and health 
outcomes among low-birth-weight infants, particularly in resource- 
limited settings [1]. This practice, which involves skin-to-skin contact 
between mother and infant, early initiation of breastfeeding, and 
continuous care, has been demonstrated to reduce neonatal mortality by 
up to 40 % and significantly improve thermal regulation, feeding pat
terns, and maternal-infant bonding [2]. Despite overwhelming evidence 
supporting its benefits, implementation rates of KMC vary considerably 
across different populations and healthcare systems. In Sierra Leone, 
neonatal mortality remains high, and understanding the determinants of 
KMC adoption is particularly urgent. This study leverages data from the 
2019 Sierra Leone Demographic and Health Survey (DHS), providing a 
unique opportunity to examine KMC practices in a nationally repre
sentative sample.

The variation in KMC uptake has prompted researchers to investigate 
the socio-demographic, clinical, and systemic factors that predict its 
practice [3]. Traditional statistical approaches have identified several 
important predictors, including maternal education, socioeconomic 
status, healthcare accessibility, and delivery circumstances [4]. How
ever, these conventional methods often struggle to capture the complex, 
non-linear relationships and interactions between multiple variables 
that may collectively influence health behaviours. The emergence of 
machine learning techniques offers promising opportunities to better 
understand and predict KMC practice by uncovering hidden patterns in 
large, multidimensional datasets and providing more accurate predic
tive models for targeted interventions [5].

Feature selection represents a critical component in developing 
robust machine learning models, particularly in healthcare applications 
where datasets often contain numerous variables with varying degrees 
of relevance [6]. The challenge lies not only in identifying which fea
tures are most predictive but also in understanding how different se
lection methodologies may influence model performance and 
interpretability. Traditional wrapper methods like Recursive Feature 
Elimination provide model-specific feature rankings [7], whilst meta
heuristic approaches such as Ant Colony Optimization offer global 
search capabilities that may identify optimal feature combinations 
missed by greedy algorithms [8]. The comparative effectiveness of these 
approaches in predicting health behaviours remains an active area of 
investigation.

Ensemble learning methods have gained considerable attention in 
medical prediction tasks due to their ability to combine the strengths of 
multiple algorithms whilst mitigating individual model weaknesses [9]. 
Random Forest and Extreme Gradient Boosting (XGBoost) have 
demonstrated particular success in healthcare applications, offering 
robust performance across diverse datasets and providing interpretable 
feature importance measures crucial for clinical decision-making [10]. 
However, the comparative performance of these ensemble methods 
against traditional classification algorithms in predicting KMC practice 
has not been thoroughly investigated, particularly when combined with 
different feature selection strategies.

While previous studies have explored individual and health system 
determinants of KMC, few have applied advanced machine learning 
methods to large-scale, population-based datasets in sub-Saharan Africa. 
Moreover, there is limited comparative evidence on the effectiveness of 
different feature selection and classification approaches for predicting 
KMC uptake. The current study addresses this knowledge gap by 
implementing a comprehensive machine learning framework to predict 
KMC practice using a large, nationally representative dataset. The pri
mary aim is to compare the effectiveness of three distinct feature se
lection techniques Adaptive Ant Colony Optimization, Recursive 
Feature Elimination, and Backward Feature Selection in identifying 
optimal predictors for KMC adoption. The specific objectives include: (1) 
evaluating the predictive performance of seven machine learning 

algorithms across different feature subsets; (2) determining the most 
effective combination of feature selection method and classification al
gorithm; (3) assessing the value of ensemble approaches compared to 
individual classifiers; and (4) identifying consensus features that 
consistently predict KMC practice across multiple selection methodolo
gies. This comprehensive approach offers novel insights into the appli
cation of advanced machine learning techniques for maternal and child 
health prediction, providing evidence-based guidance for developing 
targeted interventions to improve KMC uptake.

2. Methods

2.1. Study design and rationale

This study adopted a supervised machine learning approach to 
investigate predictors of Kangaroo Mother Care (KMC) practice. The 
research process involved data cleaning, preprocessing, feature selec
tion, model development, hyperparameter tuning, cross-validation, 
ensemble learning, and final model evaluation. This structured pipe
line was designed to ensure a robust and reproducible analysis, with 
each stage contributing to the identification of the most effective pre
dictive model for KMC uptake. Fig. 1 provides a visual overview of the 
key steps followed in the study.

2.2. Dataset description

This study utilizes data from the 2019 Sierra Leone demographic and 
health survey, a nationally representative, cross-sectional survey of 
women aged 15–49 years. The DHS employed a two-stage stratified 
cluster sampling design. All women who reported a live birth in the two 
years preceding the survey and for whom KMC practice data were 
available were included. The dataset used in this study comprises 7,377 
individual records derived from a nationally representative maternal 
and child health survey. It includes over 23 variables spanning socio- 
demographic characteristics, maternal health indicators, delivery con
ditions, and media exposure. The target variable is binary, representing 
whether Kangaroo Mother Care (KMC) was practiced (1) or not (0). The 
dataset is structured to facilitate classification tasks and is suitable for 
the application of supervised machine learning models.

2.3. Data preprocessing

A structured preprocessing pipeline was applied to prepare the 
dataset for machine learning tasks. This involved initial data cleaning to 
remove duplicates and handle missing values. Outlier detection was 
performed on continuous variables using standardized z-scores, with a 
threshold of |z| > 3. This cut-off corresponds to values more than three 
standard deviations from the mean, a widely accepted statistical rule 
that flags extreme observations while retaining valid variability in the 
data. Categorical variables were encoded based on their measurement 
level: nominal variables were one-hot encoded, while ordinal variables 
were encoded according to their natural order to preserve interpret
ability and enhance model performance. All numerical features were 
normalised using Min-Max scaling to ensure consistency across feature 
ranges. The dataset was then partitioned into training (80 %) and testing 
(20 %) sets using stratified sampling to preserve class distribution. To 
address class imbalance in the target variable, the Synthetic Minority 
Over-sampling Technique (SMOTE) was applied to the training set.

2.4. Feature selection techniques

To improve model performance, identify optimal features, reduce 
computational time and enhance interpretability, three distinct feature 
selection techniques were applied. Each method was chosen based on its 
methodological strengths in identifying relevant predictors from high- 
dimensional data: 
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a. Adaptive Ant Colony Optimization (ACO): A bio-inspired meta
heuristic that simulates the foraging behaviour of ants was used to 
explore the feature space efficiently and identify combinations of 
variables that contribute significantly to classification performance. 
Adaptive ACO was selected due to its powerful metaheuristic capa
bilities, which are particularly well-suited for complex, high- 
dimensional problems [11]. Unlike simpler greedy methods, ACO’s 
nature-inspired, probabilistic search allows exploration of a broad 
spectrum of feature combinations by simulating the collective in
telligence of ant colonies, enhancing its ability to discover globally 
optimal or near-optimal feature subsets.

b. Recursive Feature Elimination (RFE): A wrapper-based method 
that iteratively removes the least important features based on model 
weights, typically using a base estimator like Random Forest to 
evaluate feature relevance [6]. RFE was chosen because it offers a 
robust, model-driven approach that directly ties feature relevance to 
the performance of a specific machine learning model. RFE operates 
by iteratively training a base estimator on a diminishing set of fea
tures, ranking their importance at each step. The algorithm was 
configured to select a final subset of 10 features, a pre-specified 
number chosen to balance model interpretability and predictive 
performance.

c. Backward Elimination: A statistical approach that begins with all 
features and sequentially removes those with the least significance 
based on p-values, typically within a logistic regression framework 
[12]. Backward Feature Selection was included as it represents a 
classic, greedy wrapper-based method that provides a distinct 
contrast to RFE’s recursive nature and ACO’s global metaheuristic 
search.

The final set of features included variables that were selected by at 
least two of the three feature selection methods (ACO, RFE, and Back
ward Elimination). This consensus-based approach was used to enhance 
feature stability and reduce the influence of method-specific biases.

2.5. Model development

To predict KMC practice, seven supervised machine learning algo
rithms were implemented. The selected models represent a balanced mix 
of linear, nonlinear, distance-based, and ensemble approaches, enabling 
a robust evaluation of classification performance under varied 
assumptions: 

a. Logistic Regression (LR): Employed as a baseline model due to its 
simplicity, interpretability, and established use in healthcare 
research for binary outcomes.

b. Support Vector Machine (SVM): Implemented with three kernel 
functions (linear, polynomial, and radial basis function) to capture 
varying degrees of complexity in decision boundaries.

c. K-Nearest Neighbours (KNN): A non-parametric, instance-based 
algorithm chosen for its ability to detect local data structures without 
imposing distributional assumptions.

d. Random Forest (RF): An ensemble technique building multiple 
decision trees using bootstrapped datasets and randomly selected 
features at each split, selected for its robustness and ability to handle 
noisy and imbalanced data.

e. Extreme Gradient Boosting (XGBoost): A highly efficient imple
mentation of gradient boosting algorithms incorporating regular
isation techniques to improve model generalisation and prevent 
overfitting.

f. Stacking Ensemble: integrates multiple base learners (Random 
Forest, XGBoost, and Logistic Regression). Logistic Regression was 
used as the meta-learner because of its simplicity, low overfitting 
risk, and ability to effectively combine outputs from heterogeneous 
base models. Out-of-fold predictions from the base learners were 
used as inputs to train the meta-learner.

g. Voting Ensemble: A soft voting ensemble averaging the predicted 
class probabilities from the base learners.

All models were trained using the scikit-learn and XGBoost libraries 
in Python on a SMOTE-resampled dataset to address class imbalance.

Fig. 1. Machine learning pipeline for classification of KMC practice.
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2.6. Hyperparameter optimization

To enhance the predictive performance and generalisability of the 
developed models, hyperparameter tuning was conducted using a grid 
search strategy embedded within 5-fold cross-validation. This approach 
systematically explored a defined range of parameter values for each 
algorithm, with selection criteria based on the highest average ROC- 
AUC score across validation folds. The tuning process was performed 
using the GridSearchCV module from the scikit-learn library, ensuring 
reproducibility and consistency.

The final hyperparameter configurations selected for the top- 
performing models were: 

• Random Forest: n_estimators = 200, max_depth = 20, min_sam
ples_split = 5, min_samples_leaf = 2

• XGBoost: n_estimators = 250, max_depth = 12, learning_rate = 0.1, 
subsample = 0.8, colsample_bytree = 0.9

• SVM (RBF Kernel): C = 10, gamma = 0.01, kernel = ’rbf’

2.7. Performance evaluation methods and metrics

Cross-validation was used to ensure model robustness and prevent 
overfitting. During hyperparameter tuning, 5-fold cross-validation was 
applied within GridSearchCV to evaluate parameter combinations. After 
tuning, both 5-fold and 10-fold cross-validation were used on training 
data to assess model stability and estimate generalisation performance.

To assess the performance of the developed classification models, a 
comprehensive set of standard evaluation metrics was employed: 

• Accuracy: Overall proportion of correctly classified instances
• Precision: Proportion of true positive predictions among all positive 

predictions
• Recall (Sensitivity): Proportion of actual positives correctly 

identified
• F1-Score: Harmonic mean of precision and recall
• ROC-AUC: Area Under the Receiver Operating Characteristic Curve
• Confusion Matrix: Detailed breakdown of classification outcomes

These metrics were calculated on the hold-out test set after model 
training and cross-validation to ensure unbiased evaluation of general
isation performance.

3. Results

3.1. Features obtained from feature selection techniques

Table 1 presents the outcomes of applying three distinct feature se
lection techniques to identify the most influential factors for predicting 
KMC practice. The Adaptive Ant Colony Optimization (ACO) method 
identified 23 features, whilst Recursive Feature Elimination (RFE) and 
Backward Feature Selection each identified 10 features.

3.2. Comparative performance of feature selection techniques

3.2.1. Model performance using RFE-selected features
Table 2 presents the detailed performance metrics of various ma

chine learning models when trained exclusively on features identified by 
the Recursive Feature Elimination (RFE) technique.

Random Forest and XGBoost both achieved balanced metrics (0.69 
across accuracy, precision, recall, and F1-score) with solid AUCs (0.760 
and 0.762 respectively). Logistic Regression and SVM (Linear Kernel) 
demonstrated highly competitive AUCs of 0.777 and 0.776, indicating 
strong discriminative power from linear models.

3.2.2. Model performance using backward-selected features
Table 3 presents the results obtained with the Backward feature 

Table 1 
Feature selected for the employed feature selection techniques.

S/ 
N

RFE selected features Backward selection 
features

ACO selected features

1 Birth order number Delivery by caesarean 
section

Sex of child

2 Age in 5-year groups Type of birth Birth order number
3 Highest educational 

level
Respondent currently 
working

Birth weight in 
kilograms (3 decimals)

4 Current marital status Number of antenatal 
visits during 
pregnancy

Delivery by caesarean 
section

5 Place of delivery Place of delivery Type of birth
6 Frequency of listening 

to radio
Covered by health 
insurance

Age in 5-year groups

7 Wealth index 
combined

Region Highest educational 
level

8 Women’s individual 
sample weight (6 
decimals)

Women’s individual 
sample weight (6 
decimals)

Current marital status

9 Primary sampling unit Primary sampling unit Respondent currently 
working

10 Sample strata for 
sample errors

Sample strata for 
sample errors

Number of antenatal 
visits during pregnancy

11 ​ ​ Place of delivery
12 ​ ​ Covered by health 

insurance
13 ​ ​ Frequency of reading 

newspaper or magazine
14 ​ ​ Frequency of listening to 

radio
15 ​ ​ Frequency of watching 

television
16 ​ ​ Wealth index combined
17 ​ ​ Region
18 ​ ​ Type of place of 

residence
19 ​ ​ Community literacy 

level
20 ​ ​ Community 

socioeconomic status
21 ​ ​ Women’s individual 

sample weight (6 
decimals)

22 ​ ​ Primary sampling unit
23 ​ ​ Sample strata for sample 

errors

Table 2 
Model performance using RFE-selected features.

Model Accuracy Precision Recall F1-Score AUC

Logistic Regression 0.67 0.69 0.67 0.63 0.777
Random Forest 0.69 0.69 0.69 0.69 0.760
K-Nearest Neighbors 0.59 0.60 0.59 0.59 0.618
SVM (RBF Kernel) 0.65 0.64 0.65 0.64 0.701
SVM (Linear Kernel) 0.68 0.69 0.68 0.63 0.776
SVM (Polynomial Kernel) 0.65 0.64 0.65 0.64 0.704
XGBoost 0.69 0.69 0.69 0.69 0.762

Table 3 
Model performance using backward-selected features.

Model Accuracy Precision Recall F1-Score AUC

Logistic Regression 0.68 0.68 0.68 0.65 0.763
Random Forest 0.71 0.71 0.71 0.71 0.772
K-Nearest Neighbors 0.69 0.69 0.69 0.69 0.738
SVM (RBF Kernel) 0.68 0.68 0.68 0.65 0.757
SVM (Linear Kernel) 0.68 0.68 0.68 0.65 0.762
SVM (Polynomial Kernel) 0.68 0.69 0.68 0.65 0.761
XGBoost 0.71 0.72 0.71 0.71 0.774

A. Osborne et al.                                                                                                                                                                                                                                International Journal of Medical Informatics 206 (2026) 106166 

4 



selection technique.
Random Forest and XGBoost emerged as top performers, both 

achieving accuracy of 0.71. XGBoost demonstrated slightly higher pre
cision (0.72) and excellent AUC of 0.774.

3.2.3. Model performance using ACO-selected features
Table 4 presents the performance results using features selected by 

Adaptive ACO.
Both Random Forest and XGBoost demonstrated strong performance, 

each achieving accuracy of 0.71 with AUC values of 0.768 and 0.770 
respectively.

3.3. Performance evaluation of common features

Table 5 shows the cross-validation results using features common to 
all three feature selection techniques.

Random Forest and XGBoost significantly outperformed other 
models with AUC values approaching 0.77, demonstrating superior 
discriminatory power.

3.4. Test set evaluation results

Table 6 summarises the final test set performance of all models using 
consensus features.

Random Forest and XGBoost achieved the highest performance with 
accuracy of 0.72, F1-scores of 0.78, and ROC-AUC values approaching 
0.77. The ensemble methods performed competitively but did not 
significantly outperform the best individual models.

4. Discussion

The findings of this study demonstrate the effectiveness of machine 
learning approaches in predicting Kangaroo Mother Care practice, with 
ensemble methods consistently outperforming traditional classification 
algorithms. Beyond the technical achievements, this research provides 
important insights into the determinants of KMC uptake that can inform 
targeted interventions and policy development in Sierra Leone and 
similar low-resource settings.

4.1. Technical performance and machine learning insights

The superior performance of Random Forest and XGBoost across all 
feature selection techniques highlights their ability to capture complex, 
non-linear relationships inherent in healthcare behaviour data [13]. 
These results align with previous studies in medical prediction tasks, 
where ensemble methods have demonstrated robust performance. Spe
cifically, Random Forest achieved 86 % accuracy, while LightGBM 
outperformed with 88–90 % accuracy in maternal health risk prediction 
[14,15]. The consistent ROC-AUC values approaching 0.77 achieved by 
our top models demonstrate comparable or superior performance to 
other maternal health prediction studies [16,17], supporting the 
growing evidence that ensemble methods excel in healthcare applica
tions due to their capacity to combine multiple weak learners and reduce 
variance through bootstrapping and boosting mechanisms [18].

Our results corroborate findings from recent healthcare machine 

learning research, where Random Forest models boosted by AdaBoost 
algorithms have demonstrated superior performance in health predic
tion tasks [19,20], and Random Forest has been recognised as an 
ensemble learning method that combines multiple decision trees to 
improve predictive accuracy and control overfitting through the prin
ciple of “wisdom of the crowd” [21]. The consistent performance of 
XGBoost in our study aligns with its recognition as a scalable, distributed 
gradient-boosted decision tree machine learning library that has gained 
significant favour in helping individuals and teams win virtually every 
Kaggle structured data competition, particularly in healthcare applica
tions where XGBoost has been successfully implemented for COVID-19 
severity prediction and health monitoring in intelligent environments 
[22–25].

The comparative analysis of feature selection techniques reveals that 
Backward Feature Elimination and Adaptive Ant Colony Optimization 
generally yielded superior results compared to Recursive Feature Elim
ination. This finding is consistent with the broader literature on feature 
selection methodologies [26,27]. Backward elimination works in the 
opposite direction to forward selection: instead of starting with no fea
tures and greedily adding features, it starts with all the features and 
greedily removes features from the set, which may explain its effec
tiveness in capturing comprehensive feature interactions initially [28]. 
Our ACO implementation’s superior performance aligns with research 
demonstrating that ACO algorithms inspired by ant’s social behaviour in 
their search for shortest paths to food sources can achieve better per
formance than both greedy and genetic algorithm-based feature selec
tion methods [8]. The metaheuristic approach’s global search 
capabilities, as evidenced in our study, support findings that bio- 
inspired techniques including ACO can effectively handle complex 
feature selection problems in healthcare applications [29].

The slightly lower performance of RFE in our study contrasts with 
some literature suggesting its effectiveness, though this may be context- 
dependent [30]. RFE is a wrapper-type feature selection algorithm that 
begins by building a model on the entire set of predictors and computing 
importance scores for each predictor, then recursively removing the 
least important ones [30]. While RFE is recognised as an efficient 
approach for eliminating features from training datasets and is effective 
at selecting relevant features for predicting target variables, our results 
suggest that in the context of KMC prediction, comprehensive search 
strategies outperform iterative model-based elimination approaches.

The identification of consensus features across multiple selection 

Table 4 
Model performance using ACO-selected features.

Model Accuracy Precision Recall F1-Score AUC

Logistic Regression 0.66 0.65 0.66 0.64 0.722
Random Forest 0.71 0.70 0.71 0.70 0.768
K-Nearest Neighbors 0.58 0.59 0.58 0.58 0.615
SVM (RBF Kernel) 0.66 0.65 0.66 0.65 0.712
SVM (Linear Kernel) 0.68 0.68 0.68 0.65 0.764
SVM (Polynomial Kernel) 0.66 0.65 0.66 0.65 0.721
XGBoost 0.71 0.70 0.71 0.70 0.770

Table 5 
Cross-validation mean ROC-AUC scores.

Model 5-Fold AUC 10-Fold AUC

Logistic Regression 0.6511 0.6473
SVM (Linear Kernel) 0.6358 0.6469
SVM (RBF Kernel) 0.7044 0.7070
SVM (Polynomial Kernel) 0.7018 0.7039
K-Nearest Neighbors 0.6848 0.6814
Random Forest 0.7753 0.7717
XGBoost 0.7741 0.7728

Table 6 
Test set evaluation results.

Model Accuracy Precision Recall F1-Score ROC-AUC

SVM (Linear Kernel) 0.68 0.67 0.89 0.77 0.61
SVM (Polynomial) 0.66 0.69 0.79 0.74 0.69
K-Nearest Neighbors 0.61 0.70 0.60 0.65 0.66
Logistic Regression 0.68 0.68 0.88 0.77 0.6285
SVM (RBF Kernel) 0.67 0.71 0.76 0.73 0.6949
Random Forest 0.72 0.75 0.80 0.78 0.7689
XGBoost 0.72 0.75 0.81 0.78 0.7685
Stacking Ensemble 0.71 0.75 0.78 0.76 0.77
Voting Ensemble 0.71 0.75 0.79 0.77 0.7694
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techniques provides valuable insights into the most robust predictors of 
KMC practice. Features consistently selected include birth order, 
maternal education level, delivery circumstances, and socioeconomic 
indicators, which align with existing literature on factors influencing 
maternal health behaviours [1,31,32]. Previous research has identified 
several barriers to KMC implementation including nurses’ perspectives 
and emotions, healthcare institution barriers, and parental experiences, 
whilst multi-country analyses have explored health system bottlenecks 
affecting KMC scale-up, identifying the need for adequate manpower, 
clear guidelines, and sufficient supplies [33,34]. Our machine learning 
approach complements these qualitative findings by quantifying the 
relative importance of these factors in predicting KMC practice.

The performance metrics achieved by the top models (ROC-AUC 
values approaching 0.77) indicate good discriminatory capability, 
which is particularly relevant for healthcare applications where accurate 
risk stratification is crucial. This performance level is consistent with 
other successful maternal health prediction models, highlighting the 
potential for ML techniques to predict optimal childbirth outcomes and 
detect various complications during childbirth [16,17,35,36]. Our 
balanced performance across precision and recall aligns with recom
mendations from studies emphasising that ML models in maternal and 
fetal health must exhibit good predictive performance in both internal 
and external validation to be considered suitable for clinical imple
mentation [37].

4.2. Key predictors of KMC practice and their implications

The consensus features identified across multiple selection tech
niques reveal critical determinants of KMC adoption. Birth order 
emerged as a consistent predictor, suggesting that multiparous women 
may have different levels of KMC uptake compared to primiparous 
mothers. This aligns with research from Ethiopia showing that birth 
order significantly predicts effective KMC practice, with multiparous 
mothers potentially having greater confidence and experience in 
newborn care practices [31]. However, the relationship is complex: 
whilst experience may facilitate KMC adoption, first-time mothers who 
receive adequate support and education may be more receptive to new 
practices.

Maternal education level consistently appeared across feature se
lection methods, reinforcing extensive evidence that education is a 
fundamental determinant of health behaviours. Previous studies have 
demonstrated that maternal education influences KMC adoption 
through multiple pathways: improved health literacy, better communi
cation with healthcare providers, and greater autonomy in decision- 
making [1,4]. In the Sierra Leone context, where literacy rates vary 
considerably across regions, this finding underscores the need for 
tailored health education approaches that accommodate different lit
eracy levels.

The prominence of delivery circumstances, including delivery loca
tion, caesarean section, and type of birth, as predictive features reflects 
the critical role of healthcare system contact in KMC initiation. Research 
has consistently shown that institutional delivery provides crucial op
portunities for KMC introduction and support [32]. However, studies 
from multiple countries have identified significant barriers within 
health facilities, including inadequate space, insufficient staffing, and 
lack of clear guidelines [33,34]. Our findings suggest that strengthening 
facility-based KMC programmes, particularly for women delivering by 
caesarean section who may face additional challenges in implementing 
KMC, should be a priority intervention area.

Socioeconomic indicators, particularly wealth index and health in
surance coverage, emerged as important predictors. This finding reso
nates with global evidence that socioeconomic disparities significantly 
affect maternal and child health service utilisation [1]. Whilst KMC is 
promoted as a low-cost intervention, our results suggest that broader 
socioeconomic factors, potentially reflecting access to healthcare facil
ities, ability to attend antenatal care, and overall health-seeking 

behaviours influence uptake. This challenges the assumption that KMC 
implementation is purely a matter of knowledge transfer and highlights 
the importance of addressing systemic barriers related to poverty and 
healthcare access.

The number of antenatal visits featured prominently in the selected 
predictors, supporting evidence that antenatal care provides crucial 
touchpoints for KMC education and preparation [31,32]. Women with 
more frequent antenatal contacts have greater exposure to health in
formation and stronger relationships with healthcare providers, poten
tially facilitating KMC adoption. This finding suggests that integrating 
KMC education throughout the antenatal care continuum, rather than 
limiting it to immediate postnatal period, could improve uptake.

Media exposure variables, frequency of reading newspapers, 
listening to radio, and watching television were identified by ACO, 
highlighting the potential role of health communication strategies in 
promoting KMC. In Sierra Leone, where radio remains a primary source 
of health information in many communities, these findings support the 
development of mass media campaigns targeting KMC awareness and 
adoption. This aligns with broader evidence on the effectiveness of 
community-level interventions and health communication in maternal 
and child health.

Regional and community-level factors, including community literacy 
level and socioeconomic status, suggest that KMC adoption is influenced 
not only by individual characteristics but also by the broader social and 
healthcare environment. This finding is consistent with ecological 
models of health behaviour that emphasise the importance of multi-level 
interventions addressing individual, interpersonal, community, and 
health system factors [3,34]. Programmes that work solely at the indi
vidual level may be insufficient if community norms and health system 
structures do not support KMC practice.

4.3. Comparison with global evidence and context-specific considerations

Our findings align with and extend previous research on KMC de
terminants across diverse settings. Studies from multiple countries have 
identified similar predictors, including maternal education, facility de
livery, and socioeconomic status [1,31,32]. However, the relative 
importance of these factors may vary by context. For instance, whilst our 
study found health insurance coverage to be predictive, this may reflect 
Sierra Leone’s specific healthcare financing landscape and differs from 
settings with universal health coverage.

The predictive power of birth weight, delivery type, and birth order 
in our study parallels findings from other African contexts. Research in 
Amhara, Ethiopia, identified similar predictors whilst also highlighting 
the importance of counselling during antenatal care and postnatal 
follow-up [31]. The multi-country EN-BIRTH study demonstrated that 
measurement validity for KMC varies considerably, with coverage 
ranging from 3 % to 38 % across study sites, emphasising the importance 
of accurate measurement alongside implementation efforts [32].

Importantly, our machine learning approach complements existing 
qualitative and quantitative research by providing a data-driven method 
for identifying and ranking predictors. Whilst qualitative studies have 
illuminated the complex barriers to KMC implementation from pro
viders’ and parents’ perspectives [3,33], our quantitative models offer a 
complementary approach for risk stratification and targeted interven
tion design.

4.4. Practical implications for KMC programme implementation

The practical implications of our findings extend beyond model 
performance metrics. Recent applications of machine learning in 
maternal health programs have demonstrated that predictive models 
can provide “real-time” predictions for new enrollees and enable early 
provision of extra support for individuals at risk, which directly aligns 
with our study’s objectives for KMC practice prediction [38,39]. Our 
predictive models could be integrated into existing health information 
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systems to identify women at risk of low KMC uptake during pregnancy 
or immediately after delivery, enabling healthcare providers to offer 
targeted counselling and support.

Specifically, the identified predictors suggest several actionable 
intervention strategies: 

1. Education-focused interventions: Given the strong predictive value 
of maternal education, developing literacy-appropriate KMC educa
tion materials and utilising visual aids and demonstrations could 
improve uptake among women with lower educational attainment

2. Facility-based interventions: The importance of delivery circum
stances suggests that strengthening KMC initiation protocols in 
health facilities, particularly in operating theatres for caesarean de
liveries, could significantly improve practice. Training healthcare 
providers on supporting KMC in diverse delivery contexts is essential

3. Antenatal care integration: The predictive value of antenatal visits 
indicates that incorporating KMC education and preparation 
throughout antenatal care, rather than only postnatally, could 
enhance readiness and confidence

4. Community-level approaches: The influence of community literacy 
and socioeconomic factors suggests that community-based in
terventions, including peer support groups and community health 
worker programmes, could address social and environmental bar
riers to KMC

5. Equity-focused strategies: The prominence of socioeconomic in
dicators highlights the need for interventions that address financial 
and access barriers, potentially including transportation support, 
extended postnatal care, and social protection measures for vulner
able families

The ensemble learning approaches, whilst competitive, did not 
substantially outperform the best individual models in this specific 
application. This finding suggests that Random Forest and XGBoost, 
being inherently ensemble methods themselves, may already capture 
much of the benefit that additional ensemble techniques might provide. 
This observation is consistent with research on ensemble methods for 
medical prediction, where weighted feature selection algorithms based 
on Random Forest combined with XGBoost classifiers have achieved 
superior prediction accuracy compared to individual algorithms 
[40,41]. The strong performance of linear models, particularly Logistic 
Regression and linear SVM, when combined with effective feature se
lection techniques, highlights the importance of feature engineering in 
predictive modelling [42].

Overall, our results support the finding that machine learning tech
niques in healthcare can assist medical practitioners in enhancing 
maternal and fetal health outcomes through early and precise prediction 
leading to prompt interventions, particularly in resource-constrained 
settings where model interpretability and computational efficiency are 
important considerations [14,37,43]. The clinical relevance of our 
findings is underscored by the broader context of KMC implementation 
challenges. The International Confederation of Midwives has emphas
ised that KMC is relevant and important across all economic contexts, 
requiring healthcare provision where mothers, infants and families form 
an inseparable centre around which maternal-newborn service delivery 
is organized [44]. Our predictive models could support this vision by 
enabling healthcare providers to identify mothers who may require 
additional support in KMC implementation, thereby improving overall 
programme effectiveness and neonatal outcomes.

5. Limitations of the study

Several limitations should be acknowledged in interpreting the re
sults of this study. Firstly, the cross-sectional nature of the data limits the 
ability to establish causal relationships between predictors and KMC 
practice, as temporal sequences cannot be determined from the avail
able dataset. The study relies on self-reported KMC practice, which may 

be subject to recall bias and social desirability bias, potentially affecting 
the accuracy of the target variable.

The dataset, whilst nationally representative, may not fully capture 
regional variations in healthcare practices, cultural factors, or policy 
implementations that could influence KMC adoption. The binary clas
sification of KMC practice (practiced/not practiced) may oversimplify 
the reality of partial or intermittent KMC implementation, potentially 
limiting the nuanced understanding of practice patterns.

The feature selection techniques employed, whilst comprehensive, 
may have different sensitivities to correlated features and could poten
tially exclude relevant predictors that work synergistically. The hyper
parameter optimization was limited to grid search methods, and more 
advanced optimization techniques such as Bayesian optimization might 
yield improved results.

The generalizability of the models to different populations, health
care systems, or temporal contexts remains to be validated. The study 
did not account for potential changes in healthcare policies, training 
programs, or cultural attitudes towards KMC that might have occurred 
during the data collection period.

Finally, the evaluation metrics, whilst comprehensive, focus pri
marily on predictive accuracy rather than clinical utility or cost- 
effectiveness, which are important considerations for real-world 
implementation of predictive models in healthcare settings.

6. Conclusion

This study demonstrates the successful application of machine 
learning techniques for predicting Kangaroo Mother Care practice, with 
ensemble methods, particularly Random Forest and XGBoost, achieving 
superior predictive performance. The comparative analysis of feature 
selection techniques reveals that Backward Feature Elimination and 
Adaptive Ant Colony Optimization are more effective than Recursive 
Feature Elimination in identifying discriminative features for this 
healthcare prediction task.

The consensus feature approach provides robust identification of key 
predictors, offering valuable insights for developing targeted in
terventions to improve KMC uptake. The achieved performance metrics 
(ROC-AUC ≈ 0.77) indicate good discriminatory capability suitable for 
clinical decision support systems.

These findings contribute to the growing body of evidence support
ing the use of advanced machine learning techniques in maternal and 
child health research. The identified predictors and model frameworks 
can inform the development of screening tools and targeted intervention 
strategies to improve KMC adoption rates, ultimately contributing to 
better neonatal outcomes.

Future research should focus on external validation of these models 
across different populations and healthcare contexts, investigation of 
model interpretability through advanced explainable AI techniques, and 
assessment of the clinical utility and cost-effectiveness of implementing 
such predictive models in real-world healthcare settings.
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