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ARTICLE INFO ABSTRACT
Keywords: Background: Kangaroo Mother Care (KMC) is a critical intervention for improving neonatal outcomes, particu-
Kangaroo mother care larly for low-birth-weight infants. Identifying predictors of KMC practice remains essential for targeted health

Machine learning
Feature selection
Ensemble methods
Maternal health

interventions and policy development.

Objective: This study utilizes data from the 2019 Sierra Leone demographic and health survey to identify pre-
dictors of KMC using different feature selection techniques and classification algorithms.

Methods: We analyzed 7,377 maternal and child health records from the 2019 Sierra Leone demographic and
health survey, applying three feature selection techniques and seven classification algorithms. Data pre-
processing included class balancing and cross-validation. Three feature selection techniques employed were:
Adaptive Ant Colony Optimization (ACO), Recursive Feature Elimination (RFE), and Backward Feature Selection.
Seven machine learning algorithms implemented were: Logistic Regression, Support Vector Machine variants, K-
Nearest Neighbours, Random Forest, XGBoost, Stacking Ensemble, and Voting Ensemble. Data preprocessing
included SMOTE for class imbalance, 5-fold and 10-fold cross-validation, and hyperparameter optimization using
GridSearchCV.

Results: Random Forest and XGBoost consistently achieved the highest performance across all feature selection
methods. Using consensus features from multiple selection techniques, Random Forest achieved an accuracy of
0.72, Fl-score of 0.78, and ROC-AUC of 0.7689, whilst XGBoost demonstrated similar performance (accuracy:
0.72, Fl-score: 0.78, ROC-AUC: 0.7685). Backward Feature Selection and ACO outperformed RFE in identifying
discriminative features. Ensemble methods showed robust generalization capabilities.

Conclusion: Machine learning models, particularly ensemble methods combined with comprehensive feature
selection techniques, demonstrate strong predictive capability for KMC practice, offering valuable insights for
maternal and child health interventions in Sierra Leone.
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1. Introduction

Kangaroo Mother Care (KMC) represents one of the most effective,
evidence-based interventions for improving survival rates and health
outcomes among low-birth-weight infants, particularly in resource-
limited settings [1]. This practice, which involves skin-to-skin contact
between mother and infant, early initiation of breastfeeding, and
continuous care, has been demonstrated to reduce neonatal mortality by
up to 40 % and significantly improve thermal regulation, feeding pat-
terns, and maternal-infant bonding [2]. Despite overwhelming evidence
supporting its benefits, implementation rates of KMC vary considerably
across different populations and healthcare systems. In Sierra Leone,
neonatal mortality remains high, and understanding the determinants of
KMC adoption is particularly urgent. This study leverages data from the
2019 Sierra Leone Demographic and Health Survey (DHS), providing a
unique opportunity to examine KMC practices in a nationally repre-
sentative sample.

The variation in KMC uptake has prompted researchers to investigate
the socio-demographic, clinical, and systemic factors that predict its
practice [3]. Traditional statistical approaches have identified several
important predictors, including maternal education, socioeconomic
status, healthcare accessibility, and delivery circumstances [4]. How-
ever, these conventional methods often struggle to capture the complex,
non-linear relationships and interactions between multiple variables
that may collectively influence health behaviours. The emergence of
machine learning techniques offers promising opportunities to better
understand and predict KMC practice by uncovering hidden patterns in
large, multidimensional datasets and providing more accurate predic-
tive models for targeted interventions [5].

Feature selection represents a critical component in developing
robust machine learning models, particularly in healthcare applications
where datasets often contain numerous variables with varying degrees
of relevance [6]. The challenge lies not only in identifying which fea-
tures are most predictive but also in understanding how different se-
lection methodologies may influence model performance and
interpretability. Traditional wrapper methods like Recursive Feature
Elimination provide model-specific feature rankings [7], whilst meta-
heuristic approaches such as Ant Colony Optimization offer global
search capabilities that may identify optimal feature combinations
missed by greedy algorithms [8]. The comparative effectiveness of these
approaches in predicting health behaviours remains an active area of
investigation.

Ensemble learning methods have gained considerable attention in
medical prediction tasks due to their ability to combine the strengths of
multiple algorithms whilst mitigating individual model weaknesses [9].
Random Forest and Extreme Gradient Boosting (XGBoost) have
demonstrated particular success in healthcare applications, offering
robust performance across diverse datasets and providing interpretable
feature importance measures crucial for clinical decision-making [10].
However, the comparative performance of these ensemble methods
against traditional classification algorithms in predicting KMC practice
has not been thoroughly investigated, particularly when combined with
different feature selection strategies.

While previous studies have explored individual and health system
determinants of KMC, few have applied advanced machine learning
methods to large-scale, population-based datasets in sub-Saharan Africa.
Moreover, there is limited comparative evidence on the effectiveness of
different feature selection and classification approaches for predicting
KMC uptake. The current study addresses this knowledge gap by
implementing a comprehensive machine learning framework to predict
KMC practice using a large, nationally representative dataset. The pri-
mary aim is to compare the effectiveness of three distinct feature se-
lection techniques Adaptive Ant Colony Optimization, Recursive
Feature Elimination, and Backward Feature Selection in identifying
optimal predictors for KMC adoption. The specific objectives include: (1)
evaluating the predictive performance of seven machine learning
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algorithms across different feature subsets; (2) determining the most
effective combination of feature selection method and classification al-
gorithm; (3) assessing the value of ensemble approaches compared to
individual classifiers; and (4) identifying consensus features that
consistently predict KMC practice across multiple selection methodolo-
gies. This comprehensive approach offers novel insights into the appli-
cation of advanced machine learning techniques for maternal and child
health prediction, providing evidence-based guidance for developing
targeted interventions to improve KMC uptake.

2. Methods
2.1. Study design and rationale

This study adopted a supervised machine learning approach to
investigate predictors of Kangaroo Mother Care (KMC) practice. The
research process involved data cleaning, preprocessing, feature selec-
tion, model development, hyperparameter tuning, cross-validation,
ensemble learning, and final model evaluation. This structured pipe-
line was designed to ensure a robust and reproducible analysis, with
each stage contributing to the identification of the most effective pre-
dictive model for KMC uptake. Fig. 1 provides a visual overview of the
key steps followed in the study.

2.2. Dataset description

This study utilizes data from the 2019 Sierra Leone demographic and
health survey, a nationally representative, cross-sectional survey of
women aged 15-49 years. The DHS employed a two-stage stratified
cluster sampling design. All women who reported a live birth in the two
years preceding the survey and for whom KMC practice data were
available were included. The dataset used in this study comprises 7,377
individual records derived from a nationally representative maternal
and child health survey. It includes over 23 variables spanning socio-
demographic characteristics, maternal health indicators, delivery con-
ditions, and media exposure. The target variable is binary, representing
whether Kangaroo Mother Care (KMC) was practiced (1) or not (0). The
dataset is structured to facilitate classification tasks and is suitable for
the application of supervised machine learning models.

2.3. Data preprocessing

A structured preprocessing pipeline was applied to prepare the
dataset for machine learning tasks. This involved initial data cleaning to
remove duplicates and handle missing values. Outlier detection was
performed on continuous variables using standardized z-scores, with a
threshold of |z| > 3. This cut-off corresponds to values more than three
standard deviations from the mean, a widely accepted statistical rule
that flags extreme observations while retaining valid variability in the
data. Categorical variables were encoded based on their measurement
level: nominal variables were one-hot encoded, while ordinal variables
were encoded according to their natural order to preserve interpret-
ability and enhance model performance. All numerical features were
normalised using Min-Max scaling to ensure consistency across feature
ranges. The dataset was then partitioned into training (80 %) and testing
(20 %) sets using stratified sampling to preserve class distribution. To
address class imbalance in the target variable, the Synthetic Minority
Over-sampling Technique (SMOTE) was applied to the training set.

2.4. Feature selection techniques

To improve model performance, identify optimal features, reduce
computational time and enhance interpretability, three distinct feature
selection techniques were applied. Each method was chosen based on its
methodological strengths in identifying relevant predictors from high-
dimensional data:
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Fig. 1. Machine learning pipeline for classification of KMC practice.

a. Adaptive Ant Colony Optimization (ACO): A bio-inspired meta-

heuristic that simulates the foraging behaviour of ants was used to
explore the feature space efficiently and identify combinations of
variables that contribute significantly to classification performance.
Adaptive ACO was selected due to its powerful metaheuristic capa-

2.5. Model development

To predict KMC practice, seven supervised machine learning algo-

rithms were implemented. The selected models represent a balanced mix
of linear, nonlinear, distance-based, and ensemble approaches, enabling

bilities, which are particularly well-suited for complex, high- a robust evaluation of classification performance under varied
dimensional problems [11]. Unlike simpler greedy methods, ACO’s assumptions:

nature-inspired, probabilistic search allows exploration of a broad

spectrum of feature combinations by simulating the collective in- a. Logistic Regression (LR): Employed as a baseline model due to its
telligence of ant colonies, enhancing its ability to discover globally simplicity, interpretability, and established use in healthcare
optimal or near-optimal feature subsets. research for binary outcomes.

. Recursive Feature Elimination (RFE): A wrapper-based method b. Support Vector Machine (SVM): Implemented with three kernel
that iteratively removes the least important features based on model functions (linear, polynomial, and radial basis function) to capture
weights, typically using a base estimator like Random Forest to varying degrees of complexity in decision boundaries.
evaluate feature relevance [6]. RFE was chosen because it offers a c. K-Nearest Neighbours (KNN): A non-parametric, instance-based
robust, model-driven approach that directly ties feature relevance to algorithm chosen for its ability to detect local data structures without
the performance of a specific machine learning model. RFE operates imposing distributional assumptions.
by iteratively training a base estimator on a diminishing set of fea- d. Random Forest (RF): An ensemble technique building multiple
tures, ranking their importance at each step. The algorithm was decision trees using bootstrapped datasets and randomly selected
configured to select a final subset of 10 features, a pre-specified features at each split, selected for its robustness and ability to handle
number chosen to balance model interpretability and predictive noisy and imbalanced data.
performance. e. Extreme Gradient Boosting (XGBoost): A highly efficient imple-

. Backward Elimination: A statistical approach that begins with all mentation of gradient boosting algorithms incorporating regular-
features and sequentially removes those with the least significance isation techniques to improve model generalisation and prevent
based on p-values, typically within a logistic regression framework overfitting.

[12]. Backward Feature Selection was included as it represents a f. Stacking Ensemble: integrates multiple base learners (Random

classic, greedy wrapper-based method that provides a distinct
contrast to RFE’s recursive nature and ACO’s global metaheuristic
search.

The final set of features included variables that were selected by at

Forest, XGBoost, and Logistic Regression). Logistic Regression was
used as the meta-learner because of its simplicity, low overfitting
risk, and ability to effectively combine outputs from heterogeneous
base models. Out-of-fold predictions from the base learners were
used as inputs to train the meta-learner.

least two of the three feature selection methods (ACO, RFE, and Back- g.
ward Elimination). This consensus-based approach was used to enhance
feature stability and reduce the influence of method-specific biases.

Voting Ensemble: A soft voting ensemble averaging the predicted
class probabilities from the base learners.

All models were trained using the scikit-learn and XGBoost libraries
in Python on a SMOTE-resampled dataset to address class imbalance.
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2.6. Hyperparameter optimization

To enhance the predictive performance and generalisability of the
developed models, hyperparameter tuning was conducted using a grid
search strategy embedded within 5-fold cross-validation. This approach
systematically explored a defined range of parameter values for each
algorithm, with selection criteria based on the highest average ROC-
AUC score across validation folds. The tuning process was performed
using the GridSearchCV module from the scikit-learn library, ensuring
reproducibility and consistency.

The final hyperparameter configurations selected for the top-
performing models were:

e Random Forest: n_estimators = 200, max_depth = 20, min_sam-
ples_split = 5, min_samples_leaf = 2

e XGBoost: n_estimators = 250, max_depth = 12, learning rate = 0.1,
subsample = 0.8, colsample_bytree = 0.9

e SVM (RBF Kernel): C = 10, gamma = 0.01, kernel = ’rbf’

2.7. Performance evaluation methods and metrics

Cross-validation was used to ensure model robustness and prevent
overfitting. During hyperparameter tuning, 5-fold cross-validation was
applied within GridSearchCV to evaluate parameter combinations. After
tuning, both 5-fold and 10-fold cross-validation were used on training
data to assess model stability and estimate generalisation performance.

To assess the performance of the developed classification models, a
comprehensive set of standard evaluation metrics was employed:

e Accuracy: Overall proportion of correctly classified instances

e Precision: Proportion of true positive predictions among all positive
predictions

e Recall (Sensitivity): Proportion of actual positives correctly
identified

e F1-Score: Harmonic mean of precision and recall

e ROC-AUC: Area Under the Receiver Operating Characteristic Curve

e Confusion Matrix: Detailed breakdown of classification outcomes

These metrics were calculated on the hold-out test set after model
training and cross-validation to ensure unbiased evaluation of general-
isation performance.

3. Results
3.1. Features obtained from feature selection techniques

Table 1 presents the outcomes of applying three distinct feature se-
lection techniques to identify the most influential factors for predicting
KMC practice. The Adaptive Ant Colony Optimization (ACO) method
identified 23 features, whilst Recursive Feature Elimination (RFE) and
Backward Feature Selection each identified 10 features.

3.2. Comparative performance of feature selection techniques

3.2.1. Model performance using RFE-selected features

Table 2 presents the detailed performance metrics of various ma-
chine learning models when trained exclusively on features identified by
the Recursive Feature Elimination (RFE) technique.

Random Forest and XGBoost both achieved balanced metrics (0.69
across accuracy, precision, recall, and F1-score) with solid AUCs (0.760
and 0.762 respectively). Logistic Regression and SVM (Linear Kernel)
demonstrated highly competitive AUCs of 0.777 and 0.776, indicating
strong discriminative power from linear models.

3.2.2. Model performance using backward-selected features
Table 3 presents the results obtained with the Backward feature

Table 1
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Feature selected for the employed feature selection techniques.

S/ RFE selected features Backward selection ACO selected features
N features
1 Birth order number Delivery by caesarean Sex of child
section
2 Age in 5-year groups Type of birth Birth order number
3 Highest educational Respondent currently Birth weight in
level working kilograms (3 decimals)
4 Current marital status Number of antenatal Delivery by caesarean
visits during section
pregnancy
5 Place of delivery Place of delivery Type of birth
6 Frequency of listening ~ Covered by health Age in 5-year groups
to radio insurance
7 Wealth index Region Highest educational
combined level
8 Women'’s individual Women’s individual Current marital status
sample weight (6 sample weight (6
decimals) decimals)
9 Primary sampling unit ~ Primary sampling unit ~ Respondent currently
working
10 Sample strata for Sample strata for Number of antenatal
sample errors sample errors visits during pregnancy
11 Place of delivery
12 Covered by health
insurance
13 Frequency of reading
newspaper or magazine
14 Frequency of listening to
radio
15 Frequency of watching
television
16 Wealth index combined
17 Region
18 Type of place of
residence
19 Community literacy
level
20 Community
socioeconomic status
21 Women'’s individual
sample weight (6
decimals)
22 Primary sampling unit
23 Sample strata for sample
errors
Table 2
Model performance using RFE-selected features.
Model Accuracy  Precision  Recall F1-Score  AUC
Logistic Regression 0.67 0.69 0.67 0.63 0.777
Random Forest 0.69 0.69 0.69 0.69 0.760
K-Nearest Neighbors 0.59 0.60 0.59 0.59 0.618
SVM (RBF Kernel) 0.65 0.64 0.65 0.64 0.701
SVM (Linear Kernel) 0.68 0.69 0.68 0.63 0.776
SVM (Polynomial Kernel)  0.65 0.64 0.65 0.64 0.704
XGBoost 0.69 0.69 0.69 0.69 0.762
Table 3
Model performance using backward-selected features.
Model Accuracy  Precision  Recall  F1-Score = AUC
Logistic Regression 0.68 0.68 0.68 0.65 0.763
Random Forest 0.71 0.71 0.71 0.71 0.772
K-Nearest Neighbors 0.69 0.69 0.69 0.69 0.738
SVM (RBF Kernel) 0.68 0.68 0.68 0.65 0.757
SVM (Linear Kernel) 0.68 0.68 0.68 0.65 0.762
SVM (Polynomial Kernel)  0.68 0.69 0.68 0.65 0.761
XGBoost 0.71 0.72 0.71 0.71 0.774
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selection technique.

Random Forest and XGBoost emerged as top performers, both
achieving accuracy of 0.71. XGBoost demonstrated slightly higher pre-
cision (0.72) and excellent AUC of 0.774.

3.2.3. Model performance using ACO-selected features

Table 4 presents the performance results using features selected by
Adaptive ACO.

Both Random Forest and XGBoost demonstrated strong performance,
each achieving accuracy of 0.71 with AUC values of 0.768 and 0.770
respectively.

3.3. Performance evaluation of common features

Table 5 shows the cross-validation results using features common to
all three feature selection techniques.

Random Forest and XGBoost significantly outperformed other
models with AUC values approaching 0.77, demonstrating superior
discriminatory power.

3.4. Test set evaluation results

Table 6 summarises the final test set performance of all models using
consensus features.

Random Forest and XGBoost achieved the highest performance with
accuracy of 0.72, Fl-scores of 0.78, and ROC-AUC values approaching
0.77. The ensemble methods performed competitively but did not
significantly outperform the best individual models.

4. Discussion

The findings of this study demonstrate the effectiveness of machine
learning approaches in predicting Kangaroo Mother Care practice, with
ensemble methods consistently outperforming traditional classification
algorithms. Beyond the technical achievements, this research provides
important insights into the determinants of KMC uptake that can inform
targeted interventions and policy development in Sierra Leone and
similar low-resource settings.

4.1. Technical performance and machine learning insights

The superior performance of Random Forest and XGBoost across all
feature selection techniques highlights their ability to capture complex,
non-linear relationships inherent in healthcare behaviour data [13].
These results align with previous studies in medical prediction tasks,
where ensemble methods have demonstrated robust performance. Spe-
cifically, Random Forest achieved 86 % accuracy, while LightGBM
outperformed with 88-90 % accuracy in maternal health risk prediction
[14,15]. The consistent ROC-AUC values approaching 0.77 achieved by
our top models demonstrate comparable or superior performance to
other maternal health prediction studies [16,17], supporting the
growing evidence that ensemble methods excel in healthcare applica-
tions due to their capacity to combine multiple weak learners and reduce
variance through bootstrapping and boosting mechanisms [18].

Our results corroborate findings from recent healthcare machine

Table 4
Model performance using ACO-selected features.

Model Accuracy  Precision  Recall = F1-Score  AUC

Logistic Regression 0.66 0.65 0.66 0.64 0.722
Random Forest 0.71 0.70 0.71 0.70 0.768
K-Nearest Neighbors 0.58 0.59 0.58 0.58 0.615
SVM (RBF Kernel) 0.66 0.65 0.66 0.65 0.712
SVM (Linear Kernel) 0.68 0.68 0.68 0.65 0.764
SVM (Polynomial Kernel)  0.66 0.65 0.66 0.65 0.721

XGBoost 0.71 0.70 0.71 0.70 0.770
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Table 5

Cross-validation mean ROC-AUC scores.
Model 5-Fold AUC 10-Fold AUC
Logistic Regression 0.6511 0.6473
SVM (Linear Kernel) 0.6358 0.6469
SVM (RBF Kernel) 0.7044 0.7070
SVM (Polynomial Kernel) 0.7018 0.7039
K-Nearest Neighbors 0.6848 0.6814
Random Forest 0.7753 0.7717
XGBoost 0.7741 0.7728

Table 6

Test set evaluation results.
Model Accuracy  Precision  Recall  F1-Score =~ ROC-AUC
SVM (Linear Kernel) 0.68 0.67 0.89 0.77 0.61
SVM (Polynomial) 0.66 0.69 0.79 0.74 0.69
K-Nearest Neighbors  0.61 0.70 0.60 0.65 0.66
Logistic Regression 0.68 0.68 0.88 0.77 0.6285
SVM (RBF Kernel) 0.67 0.71 0.76 0.73 0.6949
Random Forest 0.72 0.75 0.80 0.78 0.7689
XGBoost 0.72 0.75 0.81 0.78 0.7685
Stacking Ensemble 0.71 0.75 0.78 0.76 0.77
Voting Ensemble 0.71 0.75 0.79 0.77 0.7694

learning research, where Random Forest models boosted by AdaBoost
algorithms have demonstrated superior performance in health predic-
tion tasks [19,20], and Random Forest has been recognised as an
ensemble learning method that combines multiple decision trees to
improve predictive accuracy and control overfitting through the prin-
ciple of “wisdom of the crowd” [21]. The consistent performance of
XGBoost in our study aligns with its recognition as a scalable, distributed
gradient-boosted decision tree machine learning library that has gained
significant favour in helping individuals and teams win virtually every
Kaggle structured data competition, particularly in healthcare applica-
tions where XGBoost has been successfully implemented for COVID-19
severity prediction and health monitoring in intelligent environments
[22-25].

The comparative analysis of feature selection techniques reveals that
Backward Feature Elimination and Adaptive Ant Colony Optimization
generally yielded superior results compared to Recursive Feature Elim-
ination. This finding is consistent with the broader literature on feature
selection methodologies [26,27]. Backward elimination works in the
opposite direction to forward selection: instead of starting with no fea-
tures and greedily adding features, it starts with all the features and
greedily removes features from the set, which may explain its effec-
tiveness in capturing comprehensive feature interactions initially [28].
Our ACO implementation’s superior performance aligns with research
demonstrating that ACO algorithms inspired by ant’s social behaviour in
their search for shortest paths to food sources can achieve better per-
formance than both greedy and genetic algorithm-based feature selec-
tion methods [8]. The metaheuristic approach’s global search
capabilities, as evidenced in our study, support findings that bio-
inspired techniques including ACO can effectively handle complex
feature selection problems in healthcare applications [29].

The slightly lower performance of RFE in our study contrasts with
some literature suggesting its effectiveness, though this may be context-
dependent [30]. RFE is a wrapper-type feature selection algorithm that
begins by building a model on the entire set of predictors and computing
importance scores for each predictor, then recursively removing the
least important ones [30]. While RFE is recognised as an efficient
approach for eliminating features from training datasets and is effective
at selecting relevant features for predicting target variables, our results
suggest that in the context of KMC prediction, comprehensive search
strategies outperform iterative model-based elimination approaches.

The identification of consensus features across multiple selection
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techniques provides valuable insights into the most robust predictors of
KMC practice. Features consistently selected include birth order,
maternal education level, delivery circumstances, and socioeconomic
indicators, which align with existing literature on factors influencing
maternal health behaviours [1,31,32]. Previous research has identified
several barriers to KMC implementation including nurses’ perspectives
and emotions, healthcare institution barriers, and parental experiences,
whilst multi-country analyses have explored health system bottlenecks
affecting KMC scale-up, identifying the need for adequate manpower,
clear guidelines, and sufficient supplies [33,34]. Our machine learning
approach complements these qualitative findings by quantifying the
relative importance of these factors in predicting KMC practice.

The performance metrics achieved by the top models (ROC-AUC
values approaching 0.77) indicate good discriminatory capability,
which is particularly relevant for healthcare applications where accurate
risk stratification is crucial. This performance level is consistent with
other successful maternal health prediction models, highlighting the
potential for ML techniques to predict optimal childbirth outcomes and
detect various complications during childbirth [16,17,35,36]. Our
balanced performance across precision and recall aligns with recom-
mendations from studies emphasising that ML models in maternal and
fetal health must exhibit good predictive performance in both internal
and external validation to be considered suitable for clinical imple-
mentation [37].

4.2. Key predictors of KMC practice and their implications

The consensus features identified across multiple selection tech-
niques reveal critical determinants of KMC adoption. Birth order
emerged as a consistent predictor, suggesting that multiparous women
may have different levels of KMC uptake compared to primiparous
mothers. This aligns with research from Ethiopia showing that birth
order significantly predicts effective KMC practice, with multiparous
mothers potentially having greater confidence and experience in
newborn care practices [31]. However, the relationship is complex:
whilst experience may facilitate KMC adoption, first-time mothers who
receive adequate support and education may be more receptive to new
practices.

Maternal education level consistently appeared across feature se-
lection methods, reinforcing extensive evidence that education is a
fundamental determinant of health behaviours. Previous studies have
demonstrated that maternal education influences KMC adoption
through multiple pathways: improved health literacy, better communi-
cation with healthcare providers, and greater autonomy in decision-
making [1,4]. In the Sierra Leone context, where literacy rates vary
considerably across regions, this finding underscores the need for
tailored health education approaches that accommodate different lit-
eracy levels.

The prominence of delivery circumstances, including delivery loca-
tion, caesarean section, and type of birth, as predictive features reflects
the critical role of healthcare system contact in KMC initiation. Research
has consistently shown that institutional delivery provides crucial op-
portunities for KMC introduction and support [32]. However, studies
from multiple countries have identified significant barriers within
health facilities, including inadequate space, insufficient staffing, and
lack of clear guidelines [33,34]. Our findings suggest that strengthening
facility-based KMC programmes, particularly for women delivering by
caesarean section who may face additional challenges in implementing
KMC, should be a priority intervention area.

Socioeconomic indicators, particularly wealth index and health in-
surance coverage, emerged as important predictors. This finding reso-
nates with global evidence that socioeconomic disparities significantly
affect maternal and child health service utilisation [1]. Whilst KMC is
promoted as a low-cost intervention, our results suggest that broader
socioeconomic factors, potentially reflecting access to healthcare facil-
ities, ability to attend antenatal care, and overall health-seeking
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behaviours influence uptake. This challenges the assumption that KMC
implementation is purely a matter of knowledge transfer and highlights
the importance of addressing systemic barriers related to poverty and
healthcare access.

The number of antenatal visits featured prominently in the selected
predictors, supporting evidence that antenatal care provides crucial
touchpoints for KMC education and preparation [31,32]. Women with
more frequent antenatal contacts have greater exposure to health in-
formation and stronger relationships with healthcare providers, poten-
tially facilitating KMC adoption. This finding suggests that integrating
KMC education throughout the antenatal care continuum, rather than
limiting it to immediate postnatal period, could improve uptake.

Media exposure variables, frequency of reading newspapers,
listening to radio, and watching television were identified by ACO,
highlighting the potential role of health communication strategies in
promoting KMC. In Sierra Leone, where radio remains a primary source
of health information in many communities, these findings support the
development of mass media campaigns targeting KMC awareness and
adoption. This aligns with broader evidence on the effectiveness of
community-level interventions and health communication in maternal
and child health.

Regional and community-level factors, including community literacy
level and socioeconomic status, suggest that KMC adoption is influenced
not only by individual characteristics but also by the broader social and
healthcare environment. This finding is consistent with ecological
models of health behaviour that emphasise the importance of multi-level
interventions addressing individual, interpersonal, community, and
health system factors [3,34]. Programmes that work solely at the indi-
vidual level may be insufficient if community norms and health system
structures do not support KMC practice.

4.3. Comparison with global evidence and context-specific considerations

Our findings align with and extend previous research on KMC de-
terminants across diverse settings. Studies from multiple countries have
identified similar predictors, including maternal education, facility de-
livery, and socioeconomic status [1,31,32]. However, the relative
importance of these factors may vary by context. For instance, whilst our
study found health insurance coverage to be predictive, this may reflect
Sierra Leone’s specific healthcare financing landscape and differs from
settings with universal health coverage.

The predictive power of birth weight, delivery type, and birth order
in our study parallels findings from other African contexts. Research in
Ambhara, Ethiopia, identified similar predictors whilst also highlighting
the importance of counselling during antenatal care and postnatal
follow-up [31]. The multi-country EN-BIRTH study demonstrated that
measurement validity for KMC varies considerably, with coverage
ranging from 3 % to 38 % across study sites, emphasising the importance
of accurate measurement alongside implementation efforts [32].

Importantly, our machine learning approach complements existing
qualitative and quantitative research by providing a data-driven method
for identifying and ranking predictors. Whilst qualitative studies have
illuminated the complex barriers to KMC implementation from pro-
viders’ and parents’ perspectives [3,33], our quantitative models offer a
complementary approach for risk stratification and targeted interven-
tion design.

4.4. Practical implications for KMC programme implementation

The practical implications of our findings extend beyond model
performance metrics. Recent applications of machine learning in
maternal health programs have demonstrated that predictive models
can provide “real-time” predictions for new enrollees and enable early
provision of extra support for individuals at risk, which directly aligns
with our study’s objectives for KMC practice prediction [38,39]. Our
predictive models could be integrated into existing health information
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systems to identify women at risk of low KMC uptake during pregnancy
or immediately after delivery, enabling healthcare providers to offer
targeted counselling and support.

Specifically, the identified predictors suggest several actionable
intervention strategies:

1. Education-focused interventions: Given the strong predictive value
of maternal education, developing literacy-appropriate KMC educa-
tion materials and utilising visual aids and demonstrations could
improve uptake among women with lower educational attainment

2. Facility-based interventions: The importance of delivery circum-
stances suggests that strengthening KMC initiation protocols in
health facilities, particularly in operating theatres for caesarean de-
liveries, could significantly improve practice. Training healthcare
providers on supporting KMC in diverse delivery contexts is essential

3. Antenatal care integration: The predictive value of antenatal visits
indicates that incorporating KMC education and preparation
throughout antenatal care, rather than only postnatally, could
enhance readiness and confidence

4. Community-level approaches: The influence of community literacy
and socioeconomic factors suggests that community-based in-
terventions, including peer support groups and community health
worker programmes, could address social and environmental bar-
riers to KMC

5. Equity-focused strategies: The prominence of socioeconomic in-
dicators highlights the need for interventions that address financial
and access barriers, potentially including transportation support,
extended postnatal care, and social protection measures for vulner-
able families

The ensemble learning approaches, whilst competitive, did not
substantially outperform the best individual models in this specific
application. This finding suggests that Random Forest and XGBoost,
being inherently ensemble methods themselves, may already capture
much of the benefit that additional ensemble techniques might provide.
This observation is consistent with research on ensemble methods for
medical prediction, where weighted feature selection algorithms based
on Random Forest combined with XGBoost classifiers have achieved
superior prediction accuracy compared to individual algorithms
[40,41]. The strong performance of linear models, particularly Logistic
Regression and linear SVM, when combined with effective feature se-
lection techniques, highlights the importance of feature engineering in
predictive modelling [42].

Overall, our results support the finding that machine learning tech-
niques in healthcare can assist medical practitioners in enhancing
maternal and fetal health outcomes through early and precise prediction
leading to prompt interventions, particularly in resource-constrained
settings where model interpretability and computational efficiency are
important considerations [14,37,43]. The clinical relevance of our
findings is underscored by the broader context of KMC implementation
challenges. The International Confederation of Midwives has emphas-
ised that KMC is relevant and important across all economic contexts,
requiring healthcare provision where mothers, infants and families form
an inseparable centre around which maternal-newborn service delivery
is organized [44]. Our predictive models could support this vision by
enabling healthcare providers to identify mothers who may require
additional support in KMC implementation, thereby improving overall
programme effectiveness and neonatal outcomes.

5. Limitations of the study

Several limitations should be acknowledged in interpreting the re-
sults of this study. Firstly, the cross-sectional nature of the data limits the
ability to establish causal relationships between predictors and KMC
practice, as temporal sequences cannot be determined from the avail-
able dataset. The study relies on self-reported KMC practice, which may
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be subject to recall bias and social desirability bias, potentially affecting
the accuracy of the target variable.

The dataset, whilst nationally representative, may not fully capture
regional variations in healthcare practices, cultural factors, or policy
implementations that could influence KMC adoption. The binary clas-
sification of KMC practice (practiced/not practiced) may oversimplify
the reality of partial or intermittent KMC implementation, potentially
limiting the nuanced understanding of practice patterns.

The feature selection techniques employed, whilst comprehensive,
may have different sensitivities to correlated features and could poten-
tially exclude relevant predictors that work synergistically. The hyper-
parameter optimization was limited to grid search methods, and more
advanced optimization techniques such as Bayesian optimization might
yield improved results.

The generalizability of the models to different populations, health-
care systems, or temporal contexts remains to be validated. The study
did not account for potential changes in healthcare policies, training
programs, or cultural attitudes towards KMC that might have occurred
during the data collection period.

Finally, the evaluation metrics, whilst comprehensive, focus pri-
marily on predictive accuracy rather than clinical utility or cost-
effectiveness, which are important considerations for real-world
implementation of predictive models in healthcare settings.

6. Conclusion

This study demonstrates the successful application of machine
learning techniques for predicting Kangaroo Mother Care practice, with
ensemble methods, particularly Random Forest and XGBoost, achieving
superior predictive performance. The comparative analysis of feature
selection techniques reveals that Backward Feature Elimination and
Adaptive Ant Colony Optimization are more effective than Recursive
Feature Elimination in identifying discriminative features for this
healthcare prediction task.

The consensus feature approach provides robust identification of key
predictors, offering valuable insights for developing targeted in-
terventions to improve KMC uptake. The achieved performance metrics
(ROC-AUC = 0.77) indicate good discriminatory capability suitable for
clinical decision support systems.

These findings contribute to the growing body of evidence support-
ing the use of advanced machine learning techniques in maternal and
child health research. The identified predictors and model frameworks
can inform the development of screening tools and targeted intervention
strategies to improve KMC adoption rates, ultimately contributing to
better neonatal outcomes.

Future research should focus on external validation of these models
across different populations and healthcare contexts, investigation of
model interpretability through advanced explainable Al techniques, and
assessment of the clinical utility and cost-effectiveness of implementing
such predictive models in real-world healthcare settings.
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