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Abstract - Image classification is a cornerstone of computer vision, with the applications spanning healthcare, autonomous
driving and security. The dependence on large labeled datasets for supervised learning poses significant challenges,
particularly in specialized fields where the labeled data is scarce and expensive to obtain. Self-supervised learning (SSL) has
emerged as a promising paradigm, enabling models to learn useful representations from unlabelled data by designing pretext
tasks that generate pseudo-labels. SSL faces limitations in handling complex data distributions and achieving robust
generalization. This paper explores hybrid self-supervised learning strategies that combine multiple SSL techniques, such as
contrastive learning, masked image modeling, and clustering, to enhance image classification performance and reduce
dependence on labeled data. This study proposes a comprehensive framework that integrates data augmentation, feature
extraction, and hybrid learning mechanisms, evaluated on the CIFAR-100 dataset. The experimental results demonstrate that
hybrid SSL approaches achieve significant improvements in performance. The combination of SImCLR and masked image
modeling (MAE) achieves a Top-1 accuracy of 77.8% on the clean test set and 71.4% on the domain-shifted set, and self-
distillation with contrastive learning (DINO) achieves the highest Top-1 accuracy of 78.4% on the clean test set and 72.1% on
the domain-shifted set. Advanced data augmentation techniques, such as CutMix and RandAugment, additionally enhance
model robustness, with SWAV (contrastive clustering) achieving 76.5% Top-1 accuracy on the clean test set and 70.1% on the
domain-shifted set. The findings highlight the effectiveness of hybrid SSL methods in addressing the challenges of limited
labelled data, offering valuable insights for future research and applications in image classification.

Keywords - Image classification, Self-Supervised, Hybrid SSL, Computer Vision, Contrastive Clustering, Multi-Modal.

paradigms for learning. Traditional Supervised methods have
performed amazingly well on a wide range of benchmark

1. Introduction
Image classification is important to the application of

computer vision machines that interpret and classify visual
data. Its applications range from a very obvious area of
healthcare and diagnosing disease through images analysed,
to a more serious issue of autonomous cars, where objects in
the surrounding environment must be recognized by
extensive image classification. With increasing demand for
proper and efficient image classification systems, the need
for robust models of machine learning will gradually rise,
and these models should be capable of efficient classification
of large-scale image datasets. The importance of image
classification has dramatically grown in the recent past in
many sectors, such as autonomous driving, entertainment,
security, and healthcare. Deep learning shows that most
classification of images into classes has come from large
labelled datasets. Large amounts of labelled data have not
been obtained so easily; hence, continue research in other
paradigms of learning. This paper is going to specifically
focus on self-supervised learning, one of the most interesting

OSOE)

datasets, but it is inherent in their dependence on the usually
expensive and time-consuming labelled data.

By developing surrogate tasks, self-supervised learning
(SSL) has transformed picture classification by enabling
models to acquire effective representations from unlabeled
data. These strategies have worked incredibly well on a
variety of computer vision benchmarks. However, most SSL
work to date has centered around empirical progress, with
little emphasis on theoretical foundations. This has left a
variety of questions unanswered: Why are certain auxiliary
tasks better than others? How do neural architectures
influence the success of SSL? What is the size of the
unlabeled data required to learn robust representations? In
addition, the lack of systematic solutions to these basic
problems hinders the broader practical application of SSL.
[1]. The lack of knowledge of hybrid SSL methods is
another, and more important, limitation. While numerous
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studies have been conducted on each SSL method, including
contrastive learning, masked image modeling, and clustering,
their combination with hybrid frameworks is still in its early
stages. Preliminary results suggest that combining SSL
methods with additive, multiplicative, or concatenation-
based fusion methods can enhance performance, particularly
in hyperspectral image classification (HSIC). Yet, there has
been scant study of the theoretical foundations, design best
practices, and interpretability of such hybrid systems,
especially under scenarios when domain adaptation and
resilience are required.

While SSL holds out the potential to reduce the amount
of tagged data needed, scalability and efficiency in the data
are still significant issues. Labeled as well as high-quality
unlabeled data are scarce in most domains, including remote
sensing and medical imaging. Generating pseudo-labels in
these cases can lead to noise and degrade performance,
particularly in the initial stages of training [2]. In addition,
the sample complexity of hybrid SSL models and domain
generalization capability remain to be explored. [1]. In
addition, applying SSL solutions in real-world environments
is restricted by domain-specific challenges.  Privacy-
preserving and federated SSL frameworks are needed in
medicine imaging because of issues such as data privacy and
the lack of annotations. Just like this, little is understood
about the applicability of hybrid SSL methods in expert
domains like satellite images [3, 4]. These limitations
showcase the need for efficient hybrid SSL solutions that are
domain-adaptable. Another significant bottleneck is the
absence of standardized evaluation protocols.

Cross-domain transferability, robustness to noisy inputs,
and significant computational efficiency factors for real-
world applications are often disregarded in benchmarking
protocols [2]. It becomes difficult to compare models or to
reasonably or exactly replicate experimental outcomes in the
absence of standardized evaluation criteria. Through an
exploration of the development, effectiveness, and tuning of
hybrid SSL methods for image classification, the study
closes these gaps in this paper. This work is mainly based on
the objectives to explore whether a combination of numerous
SSL methods can lead to visual representations that are more
transferable and generalizable, particularly in low-label or
privacy-restricted environments. This research
comprehensively analyze the primary hybrid SSL methods'
strengths and weaknesses, proposes potential enhancements,
and determines their efficiency in various fields.

Through this research, this work aims to enhance
knowledge and real-world applications of hybrid self-
supervised learning and assist in developing robust, scalable,
and efficient models to be utilized in a range of electronics
and communication engineering applications, including
automated visual inspection systems, satellite imaging, and
medical diagnostics.
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By systematically combining multiple SSL methods,
contrastive learning, masked image modeling, and clustering
into a single hybrid framework, this research presents a
unique contribution to the area of self-supervised learning.
As opposed to existing research that focuses on individual
SSL methods, this research:

* Provides and evaluates various combinations of hybrids
for different pretext tasks.

« Utilizes CIFAR-100 to assess the performance and
robustness of these models on domain-shifted data.

« Demonstrates how data augmentation methods such as
CutMix and RandAugment can enhance hybrid SSL
performance.

+ Provides a comparative evaluation scheme to investigate
the pros and cons of each hybrid configuration. In
addition to empirical benchmarking, these works provide
a deep comprehension of the hybrid. SSL methods that
open the door for generalizable learning in data-scarce
environments.

2. The Comprehensive Theoretical Basis

Hybrid self-supervised learning (SSL) techniques may
make use of both supervised and unsupervised learning
paradigms, and they have become more popular in picture
categorization. By integrating the advantages of several
learning approaches, these techniques seek to improve

feature representations.

Self-supervised learning that is heterogeneous (HSSL):
HSSL was introduced by the author and requires a base
model to learn from an auxiliary head that has a different

design. This method achieves better performance on
downstream tasks like object detection, semantic
segmentation,  instance  segmentation, and  picture

classification by adding new features to the basic model in a
representation learning fashion without causing structural
modifications [5] . Contrastive learning has been one of the
underlying techniques of SSL. BYOL, a technique proposed
by Grill et al., maximises the similarity of augmented views
of the same image without negative samples to learn the
representations.  Through  the training of  visual
representations using contrastive loss, Simple Siamese
Networks by Chen and He reached state-of-the-art scores in a
number of benchmarks in the year 2021 [6, 7].

A two-stage training procedure based on a variant of
Few-Shot Image Classification (FSIC) using a self-
supervised learning (SSL) paradigm in conjunction with the
possibility of exploiting the unsupervised data. To that
extent, FSIC works towards image classifier development
through little labelled training data, which further allows for
a possible combination of TSSL at the pre-training stage
supplemented by episodic contrastive loss (CL) as a sort of
auxiliary supervision during meta-training. On two
significant FSIC benchmark datasets, the proposed FSIC-
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SSL method outperforms existing methods [8]. The author
proposed a model, SWAV, a method combining clustering
and contrastive learning. It assigns augmented views of an
image to the same cluster without requiring negative pairs,
demonstrating robust performance on several benchmarks
[9]. Later, the authors extended their work by incorporating
Vision Transformers (ViTs) into self-supervised learning.
Their findings showed that ViTs could achieve state-of-the-
art results with fewer inductive biases [10]. This paper
introduces SImCLR, a simple framework that does not
require specialized architectures or memory banks for
learning visual representations via contrastive learning.
Three critical components in representation learning emerge:
(1) well-crafted data augmentations significantly boost the
performance on the predictive task, (2) adding a learnable
nonlinear transformation between representation and
contrastive loss improves representation quality, and (3)
longer training times and larger batch sizes benefit the
process of contrastive learning. With a linear classifier on
ImageNet, SImCLR achieves 76.5% top-1 accuracy, which is
7% better than earlier self-supervised techniques and
comparable to the performance of supervised ResNet-50.
SIMCLR beats AlexNet with 100 times fewer labels and
reaches 85.8% top-5 accuracy with only 1% labeled data
[11]. This paper introduces a novel generative self-
supervised learning method for the categorization of medical
images based on the StyleGAN generator. The system blends
the pre-trained style generator with large volumes of
unlabelled data to enable efficient capturing of style features
that capture crucial semantic information from input images
through image reconstruction.

This style feature is extracted as an auxiliary
regularization term for adding to the training of the
classification network, leveraging knowledge acquired from
unlabelled data for improvement in model performance. For
integration of the style generator with the classification
framework, a self-attention module that dynamically focuses
on significant feature elements associated with the
performance of the classification is designed to allow for
effective feature fusion [12]. For HSI classification, this
research proposed a novel hybrid self-supervised learning
framework (HSL) that matches the properties of
hyperspectral data. The HSL enhances performance by
combining both instance contrastive learning and masked
picture reconstruction, thereby seizing the efficacies from
both contrastive learning and masked picture modeling.
Specifically, a two-branch asymmetric encoder-decoder
structure is applied to the HSL. To extract spatial spectrum
information effectively, the structure applies the Vision
Transformer as the backbone network. Testing on two
popular HSI datasets shows that this pre-training assignment
yields higher performance and enhances the modeling of
feature interactions between shallow and deep layers [13].
The paper discusses the performance of ensemble-based
methods for picture classification. The Kather dataset was

92

developed using machine learning methods, including K-
Xception models' deep learning algorithms and Nearest
Neighbour algorithms [14].

3. Methodology
This section describes the suggested approach in an

attempt to depict a better image classification using hybrid

self-supervised learning techniques. The approach intends to
take full advantage of the benefits found in different self-
supervised learning strategies such as masked image
modelling, contrastive learning, and clustering. This
approach will be applied extensively to CIFAR-100 or

ImageNet picture databases in an attempt to detail how well

the proposed framework learns representations and

strengthens the accuracy of the picture classification. The
proposed hybrid SSL framework consists of the following
key components:

« Data Pre-processing and Augmentation: Preparing the
input data to improve the model's learning capabilities
through different augmentations is known as data pre-
processing and augmentation.

»  Feature Extraction: The backbone of a neural network is
applied to extract pertinent features from the input
images.

*  Hybrid Learning Mechanism: The combination of many
SSL approaches to produce an all-inclusive learning
procedure.

«  Testing and Fine-tuning: tests whether the model is able
to work well on labelled datasets for classification tasks.

3.1. Algorithm for the Proposed Model
Step 1: Data Pre-processing & Augmentation
* Load dataset X_train, X_(val ), X_(test)
* Pre-process images (resize, normalize, grayscale)
o For each image X in the dataset:
o Resize X to the target input size.
o normalize the pixel values to the range [0,
1] or zero-centred by subtracting the mean
and dividing by the standard deviation.
o Convert to grayscale.
» Apply random augmentations (rotation, flip, zoom,
noise)
Step 2: Feature Extraction
»  Load pre-trained backbone model (e.g., ResNet)
»  Freeze initial layers and add custom layers
+  Extract features from the backbone
Step 3: Hybrid Learning Mechanism
. Pre-train  with self-supervised learning (e.g.,
SimCLR, MAE)
. For multi-task learning: Add additional tasks
. Fine-tune on the labeled dataset X train with
both SSL and supervised loss
Step 4: Testing and Fine-tuning
+ Evaluate the model on the validation dataset
X_train
* Fine-tune hyperparameters (learning rate, batch
size)
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» Apply regularization (dropout, L2 regularization)
» Test the final model on X_train and report metrics

3.2. Process
The detailed model of the process is explained below
and shown in Figure 1.

= Data Preprocessing

=l Data Augmentation Techniques

« Contrastive Learning
« Clustering-Based Learning
» Masked Image Modeling

=1 Evaluation and Fine-Tuning

Fig. 1 Process model for hybrid self-supervised learning strategies

3.2.1. Data Preprocessing and Augmentation

The following  preprocessing  operations  and
augmentations are applied to the input images for reliable
model learning from data.

Standard Preprocessing: Normalize images. Normalizing
pixel values so that they fall within a particular range, which
can uniformly scale all input data, is very common and
ranges from [0, 1] to a standardized value of mean as 0 and
standard deviation as 1.

3.2.2. Data Augmentation Techniques

e Random cropping: Introduce randomness and emphasize
other parts of the image by letting the images be
randomly cropped.

e Flipping: To introduce diversity in the training data, use
horizontal and vertical flips.

e Colour jittering: To try different lighting conditions, the
hue, saturation, contrast, and brightness of the photos can
be shifted.

e CutMix: Creates new training examples by blurring and
pasting portions of one image onto another by cutting and
pasting.

e RandAugment: Improve the ability of the model to
generalise by applying a predetermined series of
augmentations at random intensities.
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3.2.3. Feature Extraction

* A deep CNN, usually based on an architecture like
ResNet or EfficientNet, will serve as the foundation for
the feature extraction component. High-dimensional
feature representations will be created by the backbone
network using input-side-augmented pictures.

» Output Representation: A projection head will be applied
to the backbone's output in order to get lower-
dimensional embeddings for the SSL tasks.

3.2.4. Hybrid Learning Mechanism
The hybrid learning mechanism will combine multiple

self-supervised learning techniques to maximize the

effectiveness of the model:

e To improve the model's effectiveness, multiple self-
supervised learning techniques will be included in the
hybrid learning mechanism.

e Contrastive Learning: Use methods like SImCLR or
BYOL to train using augmented views that come in
pairs. In this method, it will learn to pull positive pairs,
which are various augmentations of the same image
closer together in the feature space and push negative
pairs that are augmented views of different images
farther apart through a contrastive loss function. The
contrastive loss can be expressed as follows:

e (Sim(iLZZ))

= —log( = M

lconstrastive N
Y27 1 linj) €XP

(sim(:i,zj)))

e Sim (zi,zj) is the cosine similarity between the
embeddings zi and zj.

e 1 is the temperature parameter, which controls the
smoothness of the softmax distribution.

e N is the number of samples or pairs of data in the batch.

e The term 1y It is an indicator function, which
ensures that the comparison in the denominator
excludes the positive pair, i.e., it only sums over all
negative pairs [2].

Clustering-Based Learning: Use approaches such as
SWAV to group the augmented views of the same image in
the same cluster. The swapped assignment loss will be used
to optimize clustering assignments.

LSWAV = =% i 1,4 sim (qi, q]-) 2

The SwWAV loss function, or L SwAYV, aims to map
similar views, or augmented versions, of the same image to
the same prototype within the latent space. The anticipated
assignments of the representations of two different views of
an image to the prototypes in the feature space are denoted
by q i and q j. Specifically, after passing through a neural
network, each qi and gj may represent the vector (4).
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Masked Image Modeling

To allow the model to learn global and local
characteristics, use MAE to mask a large portion of the input
images and have the model learn to fill in the missing parts.
The definition of the reconstruction loss is

Lyar = llreconstructed patches — original patchesll3.
©)
1. LyagRefers to the loss function that can be used to
measure the error.

2. llreconstructed patches — original patchesl|3.
Refers to the squared L,-norm (or Euclidean norm)
computes the sum of squared differences between the
corresponding elements of the reconstructed and original
patches.

3. Reconstructed patches and original patches are the
predicted outputs and ground truth inputs, respectively.

This approach allows the model to capture intricate details

within the images (5).

3.2.5. Evaluation and Fine-Tuning
The following evaluation and adjustment procedures are
scheduled after the model has been trained with the hybrid

e Performance Evaluation: Use metrics such as Top-1
accuracy and Top-5 accuracy to determine the
performance of the model on typical benchmark datasets
like CIFAR-100 or ImageNet. To assess the robustness
of learnt representations, determine generalisation
abilities by testing the model using domain-shifted
datasets.

e Fine-Tuning: For improved performance on specific
classification tasks, attach a classification head to the
model and fine-tune it on a labeled subset of the data.
For supervised training in the fine-tuning procedure,
standard cross-entropy loss will be used:

Leross—entropy = — 2 yilog(¥) 4)
Where y;The ground truth is a label and (y;) is the
predicted probability (6).

4. Comparative Study of Hybrid Approaches

A few hybrid approaches that combine several methods
to enhance performance in SSL for image classification are
listed here:

SSL framework:

Table 1. Comparison of hybrid approaches

A;'glrjor:(j:h Description Key Contribution Example
This is a technique that integrates clustering ]
methods with contrastive learning. SWAV This enhances model
optimizes and learns the representation of the | €fficiency and stability by
Contrastive | model without the need for negative samples | reducing dependency on SWAV
Clustering | through cluster assignments, as it assigns negative pairs (6).
multiple views of the same image to the same
cluster.
Uses the strengths of both methods as it Enhances feature
Contrastive combines masked image modeling techniques | representation by combining SimCLR + MAE

Contrastive

with the generative models, such as GANs or

strengthening the model's

Learning of | like MAE with contrastive learning techniques | global context learning from
Masked Image | similar to SimCLR. The model predicts missing | masked images with local
Modelling patches in images and learns to bring pairs | feature distinction through
closer together that are positive. contrastive loss.
Combines clustering This technique
techniques and BYOL. This method has enhan | reduces the number of need
Dual-Task ced representation with the use of a clustering ed negative samples
Learnin mechanism; two networks are used for self- and helps the BYOL + Clustering
g supervised learning- model generate unique
one is the target, and the other is the online. representations with the aid
of clustering (8)
Contrastive learning combines self-distillation. .
Self- . A - - Improves representation
Lo With the utilization of a contrastive objective : o
Distillation . quality by utilizing the
- that boosts the process of learning, DINO " .
using - . benefits of contrastive DINO
. adopts the student-teacher architecture. In this >
Contrastive , learning and self-
. method, the student learns from the teacher's PP
Learning distillation.(7)
output.
Generative- | It combines the contrastive learning frameworks | Improves generalisation by GANSs or VAES
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enhance the learning process.

understanding of complex
inter-linkages in multi-
modal datasets (9)

Hybrid Traini | VAEs. The hybrid technique will allow the understanding of feature
ng model to learn how to differentiate between correlations and data
generated and actual data while creating new distributions.
data points.
Combines self-supervised learning techniques | boosts performance in cross-
Hybrid Multi- | with multiple modalities (text and images, etc.). modal knowledge-based
Modal This approach leverages rich complementary tasks through improved Geminici q
Training information from a multitude of data sources to robustness and emini(images an

text).

Joint Learning
of Features

It allows the model to learn a variety of features
all at once by combining multiple self-
supervised tasks, like rotation prediction and

Improves generalisation
abilities through learning
several facets of the input

Predicting rotations,

gradually learns the inter-frame relationships as

classification applications.

and ; ST . . the image in the
. image inpainting, into one training framework. simultaneously, thereby oo
Representatio ; ! painting
ns creating a richer
representation.
This applies contrastive learning combined with
. the techniques that fuse the temporal It captures both temporal
Contrastive : ] . . : . .
Learning with |r}formatlon. T_he latter is. useful, espec!ally_ for | and spa}tlal dynamlc_s, Wh!Ch _
video data. With contrastive loss enabling it to | allows it to be used in action Video data
Temporal . . .
Dynamics learn spatial features, the model hereby detection and video

well.

These results show that hybrid models like DINO
outperform SwAV both in clean and domain-shifted
environments, despite the fact that SwAV [9] improves
training stability and eliminates the need for negative pairs.
As such, MAE-based models [13] work better in conjunction
with SImCLR to identify global and local features, even
though they excel at reconstructing the masked images.

This approach provides a clearer understanding of SSL
performance as it studies multiple fusion methods within one
joint experiment environment, unlike earlier literature that
only considers a single SSL paradigm at a time [5, 6, 8].

5. Results and Discussions

This section describes experimental findings from
evaluating the proposed hybrid self-supervised learning
(SSL) methods for image classification. The research focuses
on hybrid methods with masked image modeling, contrastive
learning, clustering, and more. The experiment was
conducted using the CIFAR-100 dataset, which aims to find
how well these hybrid models perform in terms of accuracy
and generalization.

This section demonstrates the experimental results for
assessing the proposed hybrid Self-Supervised Learning
(SSL) approaches for image classification. The focus is
primarily on hybrid approaches that involve masked image
modeling, contrastive learning, clustering, and other
techniques. The experimental evaluation has been conducted
using the CIFAR-100 dataset and aims to determine how

95

well hybrid models perform in terms of accuracy, loss, and
generalization.

5.1. Experimental Setup
Dataset: The CIFAR-100 dataset was used with 10,000

test images and 50,000 training images spread over 100

classes.

. Domain-Shifted Test Set: A domain-shifted version of
the test set was created by introducing Gaussian noise
and other perturbations to assess generalisation.

. Training Setup:

e Backbone Network: ResNet-50 was used as the
feature extraction backbone.
e Batch Size: Each training batch processed 512
pictures.
e Learning Rate: Cosine decay was used with a learning
rate of 0.3.
e SGD optimizer
momentum of 0.9.
e Training Epochs: Each model was trained for 800 epochs.

with weight decay of 1le-4 and

5.2. Performance of Each Hybrid Approach
5.2.1. Contrastive Clustering (SWAV)

SwWAYV showed strong performance in Figure 2 on the
clean test set, demonstrating its ability to assign different
augmented views to the same cluster without negative
samples. On the domain-shifted dataset, SWAV retained
effective generalisation capabilities, showing its robustness
against data variations. (SimCLR + MAE).
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Model Performance Metrics (SWAV)

AlOO
S\i 80
&> 60
£ 40
<&(>’ 20
0
Clean Test Set Domain-Shifted Set
Datasets

m Top-1 Accuracy (%) = Top-5 Accuracy (%)

Fig. 2 Performance metrics of contrastive clustering (SWAV)

5.2.2. Contrastive Learning with Masked Image offering extra context for contrastive learning. The hybrid
Modeling.(SimCLR + MAE) model was shown to be accurate and robust in both domain-

SIMCLR and MAE combined to produce improved shifted and clean situations, as shown in the Figure 3.
feature representations, with MAE's masked modelling

Model Performance Metrics (SIimCLR + MAE)

® Top-1 Accuracy (%) = Top-5 Accuracy (%)

[N
N
o

[y
o
o

(o]
o

40 -

Accuracy (%)
(o]
o

N
o
!

o
|

Clean Test Set Domain-Shifted Set
Datasets

Fig. 3 Performance metrics of contrastive learning with masked image modeling
5.2.3. Dual-Task Learning (BYOL + Clustering)
Model Performance Metrics (BYOL + Clustering)

m Top-1 Accuracy (%) = Top-5 Accuracy (%)

100
80

40 -
20 -

Accuracy (%)

Clean Test Set Domain-Shifted Set
Datasets

Fig. 4 Performance metrics of dual-task learning (BYOL + clustering)
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The performance on the clean test set was excellent, as
shown in Figure 4. However, there was a noticeable drop in
performance on the domain-shifted dataset, which suggests
that further refinements may improve generalization. The
dual-task learning approach successfully reduced the
requirement for negative samples while improving
representation quality through clustering.

5.2.4. Self-Distillation with Contrastive Learning (DINO)

DINO showed the effectiveness of its student-teacher
architecture by using self-distillation to achieve the highest
Top-1 accuracy among the hybrid methods in Figure 5. The
model performed well in many test scenarios and had robust
resistance to domain shifts.

m Top-1 Accuracy (%)
120

Model Performance Metrics (DINO)

= Top-5 Accuracy (%)

100

[0}
o
!

H o
o O
! !

Accuracy (%)

N
o
!

o
!

Clean Test Set

Datasets

Domain-Shifted Set

Fig. 5 Performance metrics of self-distillation with contrastive learning (DINO)

5.2.5. Hybrid Generative-Contrastive Learning
It combines contrastive learning with generative models,
which further improves the understanding of the model with

respect to various data distributions, as shown in the Figure
6. The shift in domain results in moderate performance; this
suggests that the resilience of the model has to be improved.

m Top-1 Accuracy (%)
100

Model Performance Metrics (Hybrid Generative-
Contrastive)

m Top-5 Accuracy (%)

(o]
o

B D
o o
! !

Accuracy (%0)

N
o
!

o
!

Clean Test Set

Datasets

Domain-Shifted Set

Fig. 6 Performance metrics of hybrid generative-contrastive learning

5.2.6. Multi-Modal Hybrid Learning
Observations:

»  This technique enhances model robustness and comprehension of intricate interactions through various modalities of data

usage, as shown in Figure 7.
»  However, the model cannot extrapolate unknown data.
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100

m Top-1 Accuracy (%)

Model Performance Metrics (Multi-Modal Hybrid)

m Top-5 Accuracy (%)

90
80

70 -
60 -
50 -
40 -
30 -
20 -
10 -

Accuracy (%0)

Clean Test Set

Datasets

Domain-Shifted Set

Fig. 7 Performance metrics of multi-modal hybrid learning

5.2.7. Joint Learning of Features and Representations

By learning various characteristics at once, this method
produced a rich representation, which improved the
performance of the clean dataset as shown in Figure 8. The
issues of the model with domain generalization highlighted
the requirements of good training techniques.

m Top-1 Accuracy (%)

Model Performance Metrics (Joint Learning)

Compared to the other hybrid models, the standard
image classification task was performed with a lower ability.
However, it enhanced the performance of the addition of
temporal dynamics in capturing the linkage between frames.
More optimization might be required to boost its
performance and robustness over multiple datasets.

= Top-5 Accuracy (%)

100

80

Accuracy (%0)

60 -
40 -
20 -
0 - x

Clean Test Set

Datasets

Domain-Shifted Set

Fig. 8 Performance metrics of joint learning of features and representations

5.2.8. Contrastive Learning with Temporal Dynamics

As the experimental results indicate, hybrid self-
supervised learning techniques dramatically enhance image
classification performance even with a small amount of
labelled data. Although the advanced data augmentation
techniques positively influence performance for all models,
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models such as DINO and MAE perform very well and
consistently have good accuracy and generalisation.
Knowing each hybrid approach's pros and cons will provide
significant information for upcoming studies and advances in
self-supervised learning techniques.
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Model Performance Metrics (Temporal Dynamics)
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Fig. 9 Performance metrics of contrastive learning with temporal dynamics
5.3. Comparison of Hybrid Approaches in Self-Supervised =~ main topics include key performance indicators, advantages,
Learning disadvantages, and overall efficacy in improving picture
This section compares the different hybrid SSL classification performance.
strategies evaluated in the preceding part. The comparisons '

5.3.1. Performance Summary

Performance Metrics Across Hybrid Approaches

m Top-1 Accuracy (Clean) = Top-5 Accuracy (Clean) m Top-1 Accuracy (Domain-Shifted)

Accuracy (%)

Hybrid Approaches
Fig. 10 represents the comparative performance
5.3.2. Analysis of Key Strengths and Weaknesses e Weaknesses: SWAV shows sensitivity to large domain
SwWAYV, or Contrastive Clustering: changes, which results in reduced performance on
e Strengths: SWAV is excellent in clustering augmented perturbed datasets, even though it performs well on
perspectives of the same image, which reduces the need clean data.

for negative samples and improves training stability.
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Masked Image Modelling with Contrastive Learning
(SimCLR + MAE)

Strengths: The combination of SimCLR's contrastive
learning with MAE's masked modelling achieves strong
performance metrics on both clean and domain-shifted
datasets, allowing for the efficient capture of both global
and local characteristics.

Weaknesses: To get the best results from this hybrid
model, data augmentation techniques may need to be
carefully adjusted.

Dual-Task Learning (Clustering + BYOL)

Strengths: Because BYOL never uses negative samples
and now uses a clustering technique, the overall
accuracy of the model and its ability to learn distinct
representations improve.

Weaknesses: When domain changes are included, the
model has significant performance degradations,
indicating that it does not generalize as well to unseen
data distributions.

Self-Distillation with Contrastive Learning (DINO)
Strengths: Among the techniques evaluated, DINO's
student-teacher framework is resilient in domain
adaptability and achieves the highest Top-1 accuracy
due to its efficient use of self-distillation.

Weaknesses: This approach requires careful design of
the distillation process for it to be implemented
effectively.

Generative-Contrastive Hybrid Learning

Advantages: This method combines generative models
and contrastive learning to improve the model's ability to
capture various data distributions, making it possible for
it to learn more robust features.

Weaknesses: Domain changes impact its performance
slightly, meaning robustness needs to be strengthened a
little.

Multi-Modal Hybrid Learning

Strengths: Robustness and capability to understand
complex relationships can be significantly enhanced by
the use of many data modalities. So, it can be highly
useful for multi-modal tasks.

Weaknesses: Since data distribution discrepancies may
degrade the effectiveness of multi-modal learning, the
model has difficulty generalizing to unseen data.

Joint Learning of Features and Representations

Strengths: This is an improvement that enables
generalisation through many self-supervised tasks, so
that it enables rich representations of the model to learn
about the different sides of the data.

Weaknesses: The only demerit that needs improvement
in this method is the restriction in effectiveness due to
domain-shifted datasets.
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Contrastive Learning by Temporal Dynamics

Strengths: Since this hybrid method captures both spatial
and temporal dynamics, it is particularly well-suited for
video data and performs better in tasks involving
temporal understanding.

Weaknesses: The method is weaker than previous hybrid
algorithms for static picture classification applications.

Comparison analysis results indicate that hybrid self-
supervised learning techniques greatly enhance the
performance of picture classification, especially in the
presence of a shortage of labelled data. The more advanced
data augmentation approaches are seen to affect performance
for all models positively. The DINO and MAE models
exhibit consistently high accuracy and good generalization
capabilities. Information regarding the strengths and
weaknesses of each hybrid approach can be invaluable for
future studies and progressions of self-supervised learning
techniques.

6. Conclusion

This paper extensively evaluates hybrid Self-Supervised
Learning (SSL) methods that aim to improve picture
classification performance, particularly when limited labeled
data are available. They proposed and explored a hybrid
approach that has the ability to learn strong, portable visual
representations by combining complementary SSL methods
such as contrastive learning, masked image modeling, and
clustering. Hybrid methods such as SImCLR+MAE and
DINO are more accurate and generalize better than
independent models based on experimental results on the
CIFAR-100 dataset, which encompasses domain-shifted test
conditions.

Although SImMCLR+MAE was able to extract both
global and local features, DINO performed better than other
approaches, measured in terms of Top-1 accuracy and
domain shift robustness. These findings affirm how
effectively hybrid SSL methods perform in addressing
domain variability, data sparsity, and representation learning
quality issues.

In addition, the performance and robustness of hybrid
models were enhanced by advanced data augmentation
techniques such as CutMix and RandAugment, emphasizing
the importance of preprocessing pipelines in SSL.

The results of this work contribute to the growing body
of evidence that hybrid SSL is a scalable, general-purpose,
and effective framework for real-world picture classification
tasks. To further enhance hybrid SSL performance, future
research will focus on extending the proposed framework to
privacy-constrained and multi-modal domains (e.g., medical
imaging), and developing automated architectural selection
mechanisms and adaptive fusion methods.
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