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A B S T R A C T

With the explosion of digital images across multiple sectors like social media, health care, medical 
imaging, and remote sensing, there is a demand to optimise the storage and transmission of 
images. In this paper, a novel Structural Fidelity Weighted Ensemble model is proposed to 
dynamically adjust the weights between SVD and PCA outputs to enhance the quality of recon
structed images.

Unlike traditional static fusion techniques, the proposed SFWE deploys a fast bounded scalar 
optimization strategy so as to dynamically estimate the optimal fusion weights thereby ensuring 
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non-negativity and simplex constraints while significantly reducing computational overhead 
compared to Sequential Quadratic Programming(SQP) or constrained gradient descent methods.

Validation was done across multiple benchmarks datasets namely, USC-SIPI Sequences (gray
scale TIFF), Kodak, BSDS500, DRIVE (Digital Retinal Images for Vessel Extraction), and ISPRS 
Potsdam which cover natural, medical, and remote-sensing images. Per-image processing, run
time measurement, and compressed ratio (CR) were produced automatically by the provided 
evaluation pipeline;

The SFWE method provides greater image quality and structural fidelity across diverse data
sets, attaining a PSNR of 40 dB and SSIM of 0.95, outperforming existing approaches such as 
Discrete Cosine Transform (DCT), Wavelet Transform, Singular Value Decomposition (SVD), and 
Principal Component Analysis and JPEG2000 + CNN models. In addition, it also maintains a good 
compression ratio leading to an effective balance between the reduction in file size as well as 
visual quality of the images, which confirms enhanced structural preservation across diverse 
image types. 

• To implement a novel ensemble model (SFWE) that optimally balances the outputs of SVD and 
PCA for doing effective image compression.

• To achieve a higher SSIM (0.95) and good PSNR (40 dB) compared to compression techniques 
such as DCT, Wavelet, SVD, PCA, and JPEG2000 + CNN.

• To ensure adaptive high-quality reconstruction across multiple datasets, demonstrating its 
suitability for diverse image-intensive applications.

Specifications tableSpecifications of the proposed Structural Fidelity Weighted Ensemble (SFWE) model.

Subject area Computer Science
More specific subject area Image Compression and Decompression
Name of your method Structural Fidelity Weighted Ensemble (SFWE) model
Name and reference of original 

method
None

Resource availability https://sipi.usc.edu/database/database.php?volume=sequences
https://r0k.us/graphics/kodak/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
https://drive.grand-challenge.org/
https://www.isprs.org/resources/datasets/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx?utm_ 
source=chatgpt.com

Background

The omnipresence of digital images in various fields such as social media, healthcare, telecommunications, and remote sensing 
stresses the need to develop and apply various efficient image compression techniques. Compression techniques are needed to reduce 
redundancy and irrelevance in images as well as to enable faster transmission and a reduction in storage requirements. Traditional 
compression techniques like Discrete Cosine Transform (DCT), Wavelet Transform, Singular Value Decomposition (SVD), and Principal 
Component Analysis (PCA) though, provide desirable structural and statistical characteristics of images, there exist trade-offs between 
compression ratio and reconstructed image fidelity in terms of perceptual metrics such as Structural Similarity Index Measure (SSIM). 
Recent advances in ensemble and hybrid compression techniques have yielded promising results by combining appropriate methods to 
enhance the quality of images after reconstruction. The existing techniques heavily rely on either static or heuristic weight assignments 
that lack dynamic adaptation according to the images, and they do not fully integrate perceptual optimization [1].

Recent research has vastly moved towards hybrid and ensemble methods which combine transforms or integrate neural networks 
(e.g., DWT + CNN, JPEG2000 + CNN) so as to enhance reconstruction quality. However, deep learning–based models often need large 
amount of training data, large GPU resources, and significant fine-tuning, making them computationally heavy and unsuitable for 
lightweight or real-time compression tasks. To overcome all these setbacks, in this paper, a novel Structural Fidelity Weighted 
Ensemble (SFWE) model that adaptively fuses SVD and PCA reconstructions through data-driven weight optimization aimed at 
maximizing SSIM and PSNR. By dynamically balancing the contributions made by each fused method, SFWE delivers great structural 
preservation and noise resilience, thereby making it a dynamic solution for adaptive high-quality image compression.

The past few years have witnessed a proliferation of hybrid/ensemble methods for lossy image compression, where several 
mathematical models (e.g., neural networks, transforms, optimisation algorithms) are integrated to enhance compression effectiveness 
and image quality. �The following review on existing research works highlight �the ensemble model type, compression technique, 
key contributions, and application domain. Most works blend traditional transforms (DWT/DCT, wavelets, etc.) with neural networks 
or other algorithms. For instance, Li et al. [2] proposed an ROI-based hybrid model, "SDWTCNN," which employs the Discrete Wavelet 
Transform (DWT) to extract the region-of-interest (ROI) and a Convolutional Neural Network (CNN) for non-ROI compression. They 
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also employ Singular Value Decomposition (SVD) to determine ROI features. The hybrid DWT–CNN model achieves a 4–4.3 dB PSNR 
gain over state-of-the-art on medical MRI datasets. Whereas it has a high SSIM. The use case is medical imaging (MRI), and the 
compression is a scalable, lossy wavelet+CNN scheme. Likewise, Al-Khafaji and Ramaha [3] proposed a scalable medical image 
compression with a deep hybrid architecture. Their architecture employs Stationary Wavelet Transform (SWT) decomposition, Stacked 
Denoising Autoencoders (SDAE) for learned coding, texture features (GLCM), and K-means clustering. It is, in essence, a 
multi-resolution, texture-aware autoencoder.

Bindulal [4] suggested "SWDR-CNN" for compressing medical ROI. The hybrid model segments the image through SVD to ROI vs 
non-ROI, codes the ROI by a wavelet-based approach (Wavelet Difference Reduction, WDR) and the background with a CNN 
autoencoder. This WDR+CNN hybrid method (structured in scalable layers for scalability) attained 0.2–6 dB PSNR improvement over 
scalable SPIHT on medical images, demonstrating effectiveness in the transmission of clinical data.Another hybrid is by Thomas et al. 
[5]. They compressed medical images by initially applying a Discrete Wavelet Transform (DWT) and next conducting a novel 3 ×
3″reduction" followed by Huffman coding. This achieves high-fidelity lossy compression (e.g., PSNR ≈54.7 dB) for medical images. Not 
a learning technique, but rather a transform+entropy-coding hybrid (DWT+Huffman) optimised for the healthcare field.

An alternative approach is to use wavelet transforms with vector quantisation (VQ). Nandeesha and Somashekar [6] described a 
content-based compression that uses a 2-level DWT, separates each sub-band into plus Huffman coding. Nandeesha and Somashekar 
[6] achieve higher compression ratios than standard wavelet-based compression methods by adaptively quantising only the 
high-variance (redundant) blocks in the DWT output, to preserve edge information. Testing with a variety of standard and real images, 
the hybrid scheme performed better than traditional methods. The hybrid (DWT+BVQ+Huffman) method is developed for general 
imagery. Cardone et al. [7] proposed a fuzzy-transform approach published in MDPI Computation. They used the F1-transform in the 
YUV colour space. The results show that the values of luminance and chrominance yield better quality (PSNR) than the RGB colour 
space. The F1-transform with luminance chrominance values in YUV transformed standard images, resulting in higher PSNR gains (e. 
g., outperforming JPEG at similar bit-rates). Therefore, this may be seen as a hybrid colour-space + fuzzy-transform image 
compression technique for colour images generally.

Fraihat and Al-Betar [8] proposed an ensemble-stacked autoencoder framework. They generate different stacked autoencoders 
with a CNN classifier to choose the autoencoder best suited for each image class. A binarised filter is also used. For the MNIST, 
grayscale, and colour datasets, this multi-model approach reached a near 20 % higher compression ratio than JPEG while holding 
SSIM>0.94. This is a deep-learning ensemble (stacked autoencoders + CNN) for general image databases. Khandekar et al. [9] 
combine JPEG2000 and deep learning. Their “semantic” compression consists of the JPEG2000 DWT codec (oldest of the classical 
transforms), with a Compact CNN encoder and a Rec CNN decoder with multi-structure ROI mapping. Effectively, this is a hybrid 
JPEG2000 + CNN mechanism. They report big gains at low quality factors: e.g., +3.52 dB PSNR and +0.072 MS-SSIM over prior 
mechanisms, PSNR≈38.45 dB and SSIM≈0.960 with 1.75 × compression ratio, which is an example of an ensemble with classical and 
learned components for general image compression. Gálvez et al. [10] discuss fractal image compression using a hybrid GA–PSO 
approach. They implemented a Genetic Algorithm to identify contractive maps, used PSO to set colour parameters, and applied local 
refinement and clustering . The result was a fully automatic fractal compression scheme with very high-fidelity reconstruction. This 
work is a hybrid of two metaheuristics along with fractal coding, specifically made for images that have self-similarity (e.g., textures, 
nature).

Di Martino and Sessa [11] proposed a multilevel fuzzy-transform (MF-tr) compression for very large images. They divide the image 
into tiles, apply fuzzy transforms on each tile, and merge the resulting tiles. In their fuzzy-transform, "MIMF-tr", compression ratios 
were much higher and computation times were much lower (2 × faster) than for standard MF-tr on remote-sensing images. This is a 
pure fuzzy transform method (lossy), but multilevel/hierarchical, and intended for remote-sensing/high-res images. Many studies used 
metaheuristic methods or fuzzy logic as a hybrid. For example, Sehgal et al. [12], designed a hybrid metaheuristic (PSO+Ant Lion 
Optimiser). Their system utilizes these optimization methods to find coding parameters (the details are at the abstract level). They state 
they receive much higher compression ratios and PSNR out of the PSO-ALO hybrid than either algorithm alone. This is an example of a 
hybrid optimisation process applied to some underlying transform (probably DCT/DWT) of general RGB images.

Though many ensemble and hybrid methods [13] have significantly performed well in doing lossy image compression, there is a 
demanding need for models which are optimized perceptually by deploying metrics like Structural Similarity Index (SSIM), Peak 
Signal-to-Noise (PSNR) incorporate dynamic and constraint-driven optimization of component weights, integrate classical algorithmic 
techniques with modern learning-based techniques through feedback loops and being applicable across various application domains 
[14]. The Structural Fidelity Weighted Ensemble (SFWE) model proposed in this work is designed to address these critical gaps by 
offering a data-driven, perceptually aligned, and dynamic framework for reconstructing the images perfectly.

Method details

Dataset

A controlled experimental setup using Python was made to compare the compression techniques. A standard grayscale TIFF image 
from the USC-SIPI Image Database (Sequences categories) was deployed and subjected to different mathematical compression (Lossy) 
and decompression techniques.
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Existing standard mathematical techniques (Lossy)

Discrete cosine transform (DCT)
The image data is transformed from the spatial domain to the frequency domain by the 2D DCT, after that high frequency com

ponents (often noises) can be filtered out. 

F(u, v) =
1
4

C(u)C(v)
∑N− 1

x=0

∑N− 1

y=0
f(x, y) cos

[
(2x + 1)uπ

2N

]

cos
[
(2y + 1)vπ

2N

]

(1) 

Where C(u)C(v) = 1̅ ̅
2

√ for u, v = 0, else u, v = 1f(x, y) is the original pixel value at coordinate (x,y). F(u, v) is DCT coefficient at fre

quency index (u,v). N is the image dimension (e.g., 512). cos
[
(2x+1)uπ

2N

]

is the basis function that varies with x and reflects changes in 

horizontal direction. cos
[
(2y+1)vπ

2N

]

is the basis function that varies with y and reflects changes in vertical direction. The terms C(u) and 

C(v) are normalized constants used to confirm orthogonality and energy preservation in the image that has been transformed. By 
retaining low-frequency coefficients, compression is achieved.

Wavelet transform
Here, the image is decomposed into a hierarchy of sub-bands (representing the spatial and frequency characteristics simulta

neously) through the wavelet transformation technique, unlike DCT that deploys cosine basis functions. Here, the signal is represented 
as a combination of scaling and wavelet functions as follows 

f(x) =
∑

j,k
aj,kϕj,k(x) +

∑

j,k
dj,kψ j,k(x) (2) 

f(x) is the original signal (e.g., a 1D signal or a row/column of an image). ϕj,k(x) is the scaling function which is also called as the father 
wavelet that captures the approximate (low frequency) components of the signal at scale j and location k. ψ j,k(x) is the wavelet 
function, which is also called the mother wavelet, that captures high-frequency components such as edges or texture at various scales. 
aj,k approximation coefficients which are actually weights that tell how much of the scaling function ϕj,k(x)contributes to f(x). dj,k 

detailed coefficients which are also weights that tell how much of wavelet function ψ j,k(x) contributes to f(x). After computing aj,k and 
dj,k using wavelet filters, small dj,k values which are usually considered as noises, are discarded to achieve compression. During the 
decompression, the images f(x) is reconstructed using the retained coefficients. The first sum 

∑
j,kaj,kϕj,k(x) represents the coarse 

approximation of the signal whereas the second sum represents the details or variations being added at the multiple levels of reso
lution. Together these sums construct the original signal. When applied to the images, the decomposition is done at horizontal as well 
as vertical directions resulting in sub bands like LL (approximation), LH, HL and HH (details in various orientation).

Singular value decomposition (SVD)
This matrix factorization technique captures the most significant features of an image while removing redundant or less important 

information. Let us represent the image as a grayscale matrix A ∈ Rm X n, where every element corresponds to the intensity of a pixel. 
This matrix A ∈ Rm X n is decomposed into A = UΣVT, Where U and V are orthogonal, and Σ contains singular values σi. The 
importance of every component is represented by the singular values σi in Σ. For compression, only the top -k singular values and their 
corresponding vectors are retained thus resulting in a rank-k approximation of the original image. Ak=UkΣkVk

T. Where Uk ∈ Rm X k, Σk 

∈ Rk X k, Vk
T ∈ Rk X n. The most critical features of the image are retained by this approximation while greatly reducing storage re

quirements. The Frobenius norm of difference ‖A− Ak‖F is minimized so that low-rank approximation turns optimal with respect to 
least-squares error. The dominant structures such as contours, contrast etc. are retained by high singular values whereas low singular 
values mostly represent noise or other minor details. Thus compression is achieved by discarding low-energy components. The quality 
of the reconstructed image largely depends upon the singular values retained. If more singular values are retained resulting in good 
fidelity but at the cost of space whereas a fewer values resulting in lower quality.

PCA
The dimensionality of the images is reduced while retaining the directions of the highest variance. Consider the image matrix X 

∈ Rm×n, the following steps are performed.The data is first mean-centered: X = X − μ where μ is the mean of each column also known 
as feature is done followed by calculating covariance matrix C = 1

n− 1X
T X , then eigen decomposition is done by solving for the eigen 

values λi and eigen vectors W of C. Next projection to principal components is done Z= X Wk Where Wk contains the top k eigen 
vectors. Finally, reconstruction X̂ = ZWT

k + μ is done. Here, Z is the compressed representation and X̂ is the reconstructed image form 
the top k components, Thus this technique retains dominant image features while reducing the dimensionality.
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The proposed structural fidelity weighted ensemble (SFWE) model

Overview of SFWE
The proposed SFWE is an adaptive ensemble model that maximizes structural similarity by fusing the reconstructed outputs from 

SVD and PCA using optimal weights, which are dynamically tuned to increase structural similarity. Let ISVD and IPCA denote the 
respective reconstructed images from SVD and PCA. The ensemble output is defined as 

ISFWE=w1ISVD+w2IPCA                                                                                                                                                              (3)

where w1 + w2 = 1.

Optimization formulation
To determine the optimal weights w1,w2, the optimization problem is framed 

minw1,w2L(w) = - SSIM(Iorig, w1 I SVD + w2IPCA)                                                                                                                        (4)

subject to w1 + w2 = 1, w1,w2 ≥ 0Additionally a gradient of the loss for optimization purposes is defined as 

∇L(ω) = −
∂SSIM

∂w1
ISVD −

∂SSIM
∂w2

IPCA (5) 

This formulation ensures that the resulting images achieves a perceptually optimal reconstruction.

Optimization techniques
The optimal weights w1,w2 are predicted by maximizing SSIM between the original and fused images through a bounded scalar 

optimization algorithm rather than complex iterative solvers like SQP. This method employs minimize scalar algorithm to search the 1 
D weight space [0,1]. The resulting model dynamically adjusts the balance between SVD and PCA to improve the quality of the image. 
Thus, the proposed SFWE is a novel integration model grounded in perceptual optimization for adaptive compression.

SFWE Algorithm — Adaptive SVD/PCA Fusion.

Input: 
Input_original ← Input the Original image 
ε← Convergence threshold 
α← Learning rate (for CGD) 
max_iteration ← Maximum number of iterations 
Begin: 
1. Compute ISVD ← Reconstruct image by deploying Singular Value Decomposition (SVD) 
2. Compute IPCA ← Reconstruct image by deployingPrincipal Component Analysis (PCA) 
3. Initialize the weights 
w1 ← 0.5 
w2 ← 0.5 
4. For t in 1 to max_iteration: 
a. Compute the ensemble image 
I_SFWE ← w1 * ISVD + w2 * IPCA 
b. Compute the loss 
L ← -SSIM(I_orig, I_SFWE) 
c. Compute the gradient 
∇L_w1 ← -∂SSIM(I_orig, I_SFWE) / ∂w1 
∇L_w2 ← -∂SSIM(I_orig, I_SFWE) / ∂w2 
d. Gradient magnitude 
∣∇L∣ ← sqrt((∇L_w1)^2 + (∇L_w2)^2) 
e. Check for convergence if any 
If ∣∇L∣ < ε: 
Break 
f. Update the weights using the fast 1-D bounded scalar optimizer 
# Reduce the 2-D constrained problem to 1-D by setting w ––– w1 and w2 = 1 − w. 
# Warm-start with a coarse grid search on w ∈ [0,1] to find a good initial guess. 
# Refine the best coarse result using a bounded scalar optimizer (e.g., minimize_scalar with method=’bounded’). 
# Coarse grid (example): grid = linspace(0,1,odd_N); evaluate SSIM at each w; pick best_w_coarse. 
# Refinement: w_opt = argmax_{w ∈ [max(0,best_w_coarse− Δ), min(1,best_w_coarse+Δ)]} SSIM(I_orig, w*ISVD + (1 − w)*IPCA) 
w1 ← w_opt 
w2 ← 1 − w_opt 
g. Project weights to satisfy constraints 
w1 ← max(0, w1) 
w2 ← max(0, w2) 
Normalize 
total ← w1 + w2 

(continued on next page)
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Fig. 1. Workflow the proposed structural fidelity weighted ensemble model.

Fig. 2. Structural similarity performance of different compression techniques.

Fig. 3. Peak signal-to-noise ratio analysis of different compression techniques.
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(continued )

w1 ← w1 / total 
w2 ← w2 / total 
End For 
Return I_SFWE ← w1 * ISVD + w2 * IPCA 
End

Architecture flow
The ensemble image reconstruction architecture flow diagram as shown in Fig. 1 illustrates the workflow of the proposed Structural 

Fidelity Weighted Ensemble (SFWE) model, which produces a perceptually optimal image reconstruction by adaptively combining the 
outputs of SVD and PCA techniques.

SSIM and PSNR metrics are deployed to do a comparative analysis of compression techniques. The proposed SFWE method 
consistently provides the best performance by achieving the highest SSIM (~0.95) as shown in Fig. 2 and PSNR (40.91 dB) as shown in 
Fig. 3, depicting superior structural preservation and minimal noise after doing compression. The other techniques taken for 
comparative analysis namely PCA and SVD also perform well with moderate SSIM and PSNR values but DCT and Wavelet rank lower 
because of more distortion and quality loss. Though the hybrid JPEG2000+CNN depicts a noteworthy improvement in perceptual 
quality compared to traditional compression techniques, but still falls short of SFWE in maintaining fine detail and structural integrity.

The proposed SFWE achieves a balanced compression ratio and maintains high compression efficiency as shown in Fig. 4 at the 
same time preserves perceptual quality. Although JPEG+CNN achieves slightly higher compression, it introduces marginal structural 

Fig. 4. Compression Ratio (CR) comparison of compression techniques.

Fig. 5. Runtime comparison of compression techniques.
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loss. On the other hand, DCT and Wavelet has lower CR value, showing limited compression and lower reconstruction fidelity
While SFWE involves adaptive optimization, its runtime (~0.05 s) remains competitive as shown in Fig. 5 and also well within the 

practical limits. Though there is a marginal increase in computational time but that can be justified by its significantly greater 
reconstruction quality and effective compression.

On the whole, based on all three metrics reveal the overall ranking as follows SFWE Ensemble > PCA > SVD > JPEG2000 + CNN >
Wavelet > DCT, highlighting the optimal trade-off achieved between image quality and compression efficiency by SFWE, demon
strating strong applicability of SFWE across diverse domains such as medical imaging, remote sensing and digital archiving.

The original image is subjected to two parallel decomposition techniques namely Singular Value Decomposition (SVD) and 
Principal Component Analysis (PCA). Each of the decomposed output is then independently reconstructed producing two intermediate 
images (ISVD and IPCA). To form the ensembled image ISFWE=w1ISVD+w2IPCA (where the weights w1 and w2 are non-negative and sum to 
one), these two images are fused using a weighted combination. The fusion is evaluated in an optimization loop that minimizes a loss 
function based on the negative SSIM between the original image and the ensemble output. A fast bounded scalar optimization strategy 
is used to determine the optimal weight dynamically, significantly reducing computational overhead while ensuring structural fidelity. 
The loop will continue iteratively until the convergence is achieved. Once the convergence condition (∣∇L∣<ε is satisfied, it means 
optimization is attained. The system produces the final output which is the optimal reconstructed image that preserves structural 
fidelity. This adaptive, dynamic, data-driven fusion model outperforms the static or heuristic methods.

Method validation
To evaluate the effectiveness of various image compression techniques, both Peak Signal-to-Noise Ratio (PSNR) and Structural 

Similarity Index Measure (SSIM) were used as evaluation metrics. Each technique is applied to a standardized grayscale test image 
dataset and the results are summarized below.

Quantitative results

Certain standard techniques taken for comparative analysis. Among them DCT and Wavelet techniques provide good quality 
whereas Wavelet outperforms DCT slightly by preserving the edges and textures. SVD and PCA techniques further enhance the quality 
by preserving the variance and capturing the global structures, with PCA attaining higher PSNR and SSIM than SVD. The hybrid 
JPEG2000+CNN method also demonstrates improved perceptual quality compared to traditional techniques; however, it still falls 
short of PCA and SVD in terms of structural fidelity and overall quantitative performance.

The proposed SFWE achieves better performance than the all five techniques by adaptively combining many transform-based 
strategies to preserve structural and perceptual details thereby yielding the highest PSNR (≈40.91 dB) and SSIM (≈0.95) indicating 

Table 1 
An overview of existing ensemble and hybrid approaches in image compression.

Paper Ensemble Model Lossy Method Contributions / Results Domain

Li et al. [2] DWT + CNN + SVD for 
ROI

Wavelet + CNN 
autoencoder

SDWTCNN: ROI via DWT+SVD, non-ROI via CNN; +4.3 / 
+3.8 dB PSNR vs prior work

Medical (MRI)

Al-Khafaji & 
Ramaha [3]

SWT + SDAE + GLCM +
K-means

SWT + Deep 
autoencoder

Texture-aware autoencoder; PSNR ≈ 50 dB, MS-SSIM ≈
0.9999; better than existing medical compression systems

Medical 
(Multiple)

Sharma et al. 
(2024)

DWT + Huffman 
(variant)

Wavelet + Huffman Variant of Thomas et al.; DWT + Huffman for efficient 
medical image storage

Medical

Gálvez et al. (2023) GA + PSO for Fractal 
Coding

Fractal Compression GA for mapping and PSO for colors + clustering; automatic 
high-fidelity fractal encoder

Textured/ 
Nature Images

Bindulal[4] WDR + CNN for ROI 
coding

Wavelet-based (WDR) +
CNN

SWDR-CNN: ROI via wavelet WDR, background via CNN; 
0.2–6 dB PSNR gain over scalable SPIHT

Medical (MRI)

Thomas et al. [5] DWT + Huffman (with 3 
× 3 reduction)

Wavelet + Huffman DWT + 3 × 3 reduction and Huffman coding; PSNR ≈ 54.7 
dB

Medical

Nandeesha & 
Somashekar 
[6]

DWT + Block VQ +
Huffman

Transform + Vector 
Quantization

2-level DWT + Block Variance VQ and Huffman; outperforms 
JPEG/SPIHT; content-based quantization for better 
compression

General Images

Cardone et al. [7] Fuzzy F1-transform in 
YUV

Fuzzy Transform Uses luminance-chrominance space; higher PSNR vs RGB/ 
JPEG

General Color 
Images

Fraihat & Al-Betar 
[8]

Stacked AEs + CNN 
classifier

Neural Autoencoder Multi-model stacked AE system with CNN selector; ~20 % 
higher CR than JPEG, SSIM ≈ 0.946

General Images

Khandekar et al. 
[9]

JPEG2000 + CNN with 
semantic mapping

JPEG2000 + Deep 
Codec

CompactCNN and RecCNN with ROI-based optimization; 
PSNR +3.52 dB, SSIM ≈ 0.9602 at QF=5

General Images

Di Martino & Sessa 
[11]

Multilevel Fuzzy 
Transform (MF-tr)

Fuzzy Transform Tiled image and fuzzy transform; ≈2 × speedup, better 
compression ratio vs baseline

Remote Sensing

Bao et al. [15] Hybrid Spatial + Channel 
Attention

Neural Autoencoder +
Postprocessing

Attention in AE and inverse quantization and postprocess; 
higher PSNR/MS-SSIM than JPEG2000 and advanced neural 
methods

General Images

Wang et al. [16] Ensemble of Deep 
Autoencoders

End-to-end Neural 
Compression

Boosted AE models and self-ensemble; block-level model 
selection; 21 % BD-rate reduction on Kodak

General Images

Sehgal et al. [12] PSO + Ant Lion 
Optimizer

Metaheuristic (likely 
DWT-based)

Hybrid optimizer improves compression ratio and PSNR 
significantly over individual methods

General RGB 
Images
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near-original image quality in spite of being lossy compression as depicted in Table 1.

Comparative visualization of compression techniques

To qualitatively evaluate the visual performance of the proposed Structural Fidelity Weighted Ensemble (SFWE) model, recon
structed outputs were compared against compression methods such as DCT, Wavelet, SVD, PCA, and JPEG2000 + CNN—across five 
representative datasets: USC-SIPI, Kodak, BSDS500, DRIVE, and ISPRS-Potsdam.

Fig. 6 illustrates the before-and-after compression results for each dataset, where the original images are shown alongside their 
reconstructed counterparts.

As observed, the SFWE reconstructions consistently preserve perceptually important structural details such as edges, textures, and 
fine patterns, with minimal visible artifacts compared to other methods. In particular, SFWE demonstrates superior contrast retention 
and feature continuity in high-frequency regions (e.g., retinal vessels in DRIVE and urban tile details in ISPRS-Potsdam).

These visual findings corroborate the quantitative results presented in Table 2, where SFWE achieved the highest SSIM,PSNR,CR 
values across all datasets, confirming its effectiveness in balancing compression ratio and perceptual fidelity.

Limitations

Since dynamic weight optimization is done either by using bounded optimization techniques, which adds computational overhead 
compared to static ensemble techniques. Due to this reason, this may result in difficulty in applying for high-resolution or streaming 
images.

In future, the computational overhead of SFWE will be reduced by deploying faster optimization techniques such as L-BFGS-B or 
Adam with projection onto simplex constraints, Adaptive Gradient Clipping, Sharpness-Aware Minimisation etc. In addition, GPU- 
based implementation and deep learning models will be integrated to enhance efficiency and adaptability. It will also be extended 
to real-time, high-resolution and video compression applications.

Ethics statements

a) informed consent was obtained from participants or that participant data has been fully anonymized, and b) the platform(s)’ data 

Fig. 6. Comparative visualization of image compression results across multiple datasets.
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