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Background and Objective: Diabetes mellitus (DM), particularly type 2 diabetes (T2D), represents a
significant global health crisis, often complicated by severe and progressive conditions such as retinopathy,
neuropathy, and cardiovascular disease. Traditional diagnostic approaches frequently detect these
complications at advanced stages, limiting the opportunity for early, effective intervention. This review aims
to examine how recent advancements in generative artificial intelligence (Al), particularly large language
models (LLMs), can transform diabetes management by enabling earlier detection and more personalized
interventions.

Methods: A narrative review was conducted to evaluate the current literature on the application of
generative Al and LLMs in diabetes care. The review focused on how these technologies analyse multi-
dimensional datasets, including medical imaging, electronic health records (EHRs), genetic profiles, and
lifestyle factors, and how they process both structured and unstructured data to enhance predictive analytics
and risk stratification for diabetes complications.

Key Content and Findings: Generative Al models have demonstrated significant promise in detecting
hidden trends and early risk factors for complications such as diabetic retinopathy and neuropathy, often
before clinical symptoms manifest. LLMs enhance predictive performance by synthesising unstructured
data sources, such as physician notes and patient-reported outcomes, with clinical datasets. Despite
limitations concerning data quality, model transparency, and ethical concerns surrounding data privacy, these
technologies offer powerful tools for proactive disease monitoring and personalized care.

Conclusions: Generative Al and LLMs are poised to redefine diabetes management by enabling earlier

detection of complications and personalised treatment strategies. Their integration into clinical decision
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support systems (CDSS) and precision medicine frameworks may reduce the global burden of diabetes,

improve patient outcomes, and shift care from reactive to preventative.
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Introduction

Diabetes mellitus (DM), particularly type 2 diabetes
(T2D), is a global health issue affecting over 537 million
adults worldwide, with this number expected to rise
significantly in the coming decades (1). T2D is described
as a complex metabolic disorder characterized by persistent
hyperglycemia due to insulin resistance or insufficient
insulin production (2). Its associated complications,
including diabetic retinopathy, neuropathy, nephropathy,
and cardiovascular diseases (CVDs), pose significant public
health challenges and remain leading causes of morbidity
and mortality (3). Managing these complications effectively
requires early detection and timely interventions, as they
tend to progress silently before manifesting into more
severe clinical outcomes (4).

"Traditional clinical approaches often rely on observable
symptoms and well-known biomarkers, such as fasting blood
glucose and hemoglobin A1C (HbA1C) levels, to assess disease
progression. While these methods have been fundamental in
managing diabetes, they are often insufficient for detecting
subtle, early changes that precede complications (5).
For instance, diabetic retinopathy can go undetected until
it has caused irreversible vision damage (6), and diabetic
neuropathy might only be diagnosed after patients experience
substantial nerve impairment (7). This limitation highlights
the need for more advanced, precise methods that can
identify early risk factors and changes in disease progression.

Artificial intelligence (AI) has emerged as a transformative
tool in healthcare, offering new possibilities for diabetes
management in the recent years (8). Generative Al, a subset
of Al focused on creating new outputs based on learned
patterns from existing data, has demonstrated immense
potential (9). Unlike traditional predictive models,
generative Al is capable of uncovering complex relationships
within vast datasets, including patient medical records,
imaging, lifestyle data, and genetic profiles (10). This
capability is particularly relevant for diabetes management,

Copyright © 2025 AME Publishing Company. All rights reserved.

where the disease’s progression and its complications are
influenced by a range of interrelated factors.

Among the most powerful forms of generative Al
are large language models (LLMs), such as Generative
Pretrained Transformers (GPT) and Bidirectional Encoder
Representations from Transformers (BERT). These models
have been trained on vast datasets and can process both
structured and unstructured data to generate meaningful
predictions (11). In the context of diabetes care, LLMs are
capable of analyzing diverse information sources, such as
electronic health records (EHRS), clinical notes, medical
literature, and even patient-reported outcomes (12). This
allows for the detection of complex patterns and hidden
trends in disease progression, which are often not visible
through traditional clinical approaches.

Current evidence underscores the growing role of Al
in healthcare, particularly in diabetes care. Various studies
have shown that Al algorithms can predict the onset of
T2D and its complications with remarkable accuracy
(13-15). For example, a study demonstrated that Al could
predict the likelihood of T2D onset using data from EHRs,
achieving over 90% accuracy (16). Additionally, Al has
shown great promise in screening for complications such as
diabetic retinopathy, where Al models have matched or even
surpassed the diagnostic capabilities of human specialists (17).
These advances underscore the potential of Al not only in
predicting disease onset but also in identifying early-stage
complications before they become clinically apparent (18).

Generative Al builds on these advances by offering deeper
insights into complex, multi-dimensional datasets (19). In
diabetes care, where factors such as metabolic dysfunction,
lifestyle habits, and genetic predispositions all play critical
roles, generative Al can integrate these diverse inputs to
provide personalized risk assessments (20). By identifying
hidden trends that may not be evident to human clinicians,
Al models can alert healthcare providers to emerging
complications before they progress, allowing for earlier,
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more targeted interventions (21).

LLMs are especially valuable in this regard. They can
process and analyze unstructured data, such as physician
notes or patient-reported outcomes, alongside structured
data like lab results or imaging studies (22). This ability to
synthesize diverse data sources enhances predictive accuracy
and provides a more holistic view of each patient’s health.
For instance, Tan et a/. worked on how LLMs can identify
early signs of diabetic retinopathy by cross-referencing
a patient’s clinical history with emerging trends in large
datasets, providing clinicians with a powerful tool to
intervene before irreversible damage occurs (23).

The integration of generative Al into diabetes care
represents a significant shift from reactive to proactive
management (24). Rather than waiting for complications
to become symptomatic, healthcare providers can use Al-
driven insights to monitor patients continuously and adjust
treatment plans in real time. This proactive approach not
only improves patient outcomes but also reduces the long-
term healthcare burden by preventing severe complications
from developing. It also revolutionizes chronic disease
management by enabling predictive modeling that enhances
early diagnosis, personalized treatment plans, and proactive
healthcare interventions (25).

As these technologies continue to evolve, the future of
diabetes care will likely become more individualized and
precision-driven (26). A study noted that incorporating
genetics, lifestyle, and environmental data into predictive
models will enable Al tailor treatment strategies to each
patient’s unique needs (27). This personalized approach to
diabetes management holds great promise for improving
both the quality of life and the long-term health outcomes
of millions of patients worldwide (28).

The rationale for this review stems from the growing
need for more advanced, precise methods to manage DM
and its complications, given the limitations of traditional
clinical approaches in detecting early signs of disease
progression. Despite significant advancements in diabetes
care, complications such as diabetic retinopathy, neuropathy,
and CVDs often remain undetected until they have reached
advanced stages, leading to irreversible damage and
increased morbidity. The statement of the problem focuses
on the gap in early detection tools, which currently rely
heavily on standard biomarkers and observable symptoms,
potentially missing subtle yet critical changes that signal
the onset of complications. As diabetes continues to be
a leading cause of disability and death worldwide, there
is an urgent need to leverage emerging technologies

Copyright © 2025 AME Publishing Company. All rights reserved.
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to improve early detection and management (29). The
objective of this review is to explore the potential of
generative Al and LLMs in predictive analysis for diabetes
and its complications, assessing how these technologies
can uncover hidden patterns in large datasets and facilitate
proactive, personalized interventions. This paper aims to
provide insight into how Al can shift diabetes care from
reactive to preventive, improving patient outcomes and
reducing healthcare burdens associated with diabetes-
related complications. We present this article in accordance
with the Narrative Review reporting checklist (available at
https://atm.amegroups.com/article/view/10.21037/atm-25-
62/rc).

Methods

This narrative review was conducted to explore and
synthesise current evidence on the role of generative Al,
particularly LLMs, in the predictive analysis and early
detection of DM and its complications. A comprehensive
literature search was performed using electronic databases
including PubMed, Scopus, Web of Science, IEEE Xplore,
and Google Scholar to identify peer-reviewed articles,
reviews, and relevant grey literature published between 1
January 2018 and 31 December 2024.

The search strategy employed a combination of
keywords and Boolean operators: (“Generative AI” OR
“Large Language Models” OR “LLMs” OR “GPT” OR
“BERT”) AND (“diabetes” OR “type 2 diabetes” OR
“diabetic complications”) AND (“predictive analysis” OR
“early detection” OR “personalised medicine” OR “Al in
healthcare”).

Inclusion criteria were as follows:

(I) Articles published in English;

(II) Studies or reviews discussing the use of generative
Al or LLMs in diabetes management, early
detection, prediction, or complications (e.g.,
retinopathy, neuropathy, CVD);

(IIT) Papers that provided technical insights, clinical
applications, or future directions of generative Al
in the healthcare setting.

Exclusion criteria included articles focused solely on non-
generative Al models (e.g., traditional supervised learning)
without relevance to diabetes, commentaries without data-
backed discussion, and duplicate or outdated sources.

Relevant data were extracted and thematically grouped
to align with the objectives of the review:

(I) Articles published in English;
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Table 1 The search strategy summary

ltems

Specification

Date of search

Databases and other sources
searched

Search terms used

Timeframe

Inclusion and exclusion criteria

Selection process

Any additional considerations, if
applicable

The search was conducted 24 March 2025

PubMed, Scopus, Web of Science, IEEE Xplore, Google Scholar; relevant grey literature identified via
Google Scholar

Free-text Boolean string used: (“Generative Al” OR “Large Language Models” OR “LLMs” OR “GPT” OR
“BERT”) AND (“diabetes” OR “type 2 diabetes” OR “diabetic complications”) AND (“predictive analysis”
OR “early detection” OR “personalised medicine” OR “Al in healthcare”). Where available, database-
specific subject headings (e.g., MeSH) were mapped to diabetes and key complications (retinopathy,
neuropathy, cardiovascular disease)

1 January 2018 to 31 December 2024

Inclusion: English-language peer-reviewed articles and reviews, and relevant grey literature that discuss
generative Al or LLMs in diabetes management, early detection, prediction, or complications; studies
offering technical insights, clinical applications, or future directions

Exclusion: items focused only on non-generative Al without diabetes relevance; commentaries without
data-backed discussion; duplicates; outdated sources

Narrative review approach. Records were screened for thematic relevance to the review objectives by
the author team; formal dual independent screening was not undertaken. Disagreements were resolved
through discussion and consensus

No formal quality appraisal due to source heterogeneity; preference given to studies from higher-impact
venues or with robust methods and real-world relevance. Data were extracted and thematically grouped.

Narrative review design used for transparent reporting rather than exhaustive systematic coverage

Al, artificial intelligence; LLMs, large language models.

(II) Overview of Al in diabetes care;

(IIT) Predictive applications of generative Al;

(IV) Use of LLMs in synthesising structured and

unstructured health data;

(V) Early detection of diabetes complications;

(VI) Challenges, and

(VII) Future directions for clinical integration.

Quality assessment was not formally conducted due to
the heterogeneity of the sources included (e.g., primary
studies, technical papers, and reviews). However, preference
was given to high-impact journals and studies with robust
methodologies or significant relevance to real-world clinical
practice.

The search strategy, including databases and sources,
key terms, timeframe, inclusion and exclusion criteria, and
selection process, is summarised in Zable 1.

The role of Al in diabetes management

AT has transformed many aspects of healthcare, and diabetes
management is no exception. Al applications in this field range
from supervised machine learning models that predict disease

Copyright © 2025 AME Publishing Company. All rights reserved.

onset to tools that enhance patient self-management (30).
However, recent advancements in Al, particularly through
the development of predictive analytics, have significantly
improved the ability to monitor and manage diabetes (31).
AT’s capacity to handle large amounts of data and identify
complex patterns offers a level of precision and efficiency
that was previously unattainable (32).

Supervised machine learning and predictive analytics

Supervised machine learning in DM management, a subset
of Al has been instrumental in diabetes care by using labeled
datasets to make predictions based on input variables (33).
These models are trained on vast amounts of patient
data, including lab results, demographic information,
and lifestyle factors, to predict the likelihood of diabetes
onset, progression, and related complications using
sophisticated feature selection algorithms and machine
learning approaches to identify optimal predictors from
large datasets (34). Recent advances have demonstrated that
anthropometric measures, particularly those estimating
abdominal obesity such as waist circumference, serve as
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powerful predictors in machine learning models for diabetes
risk assessment (35).

De Silva et al. conducted a comprehensive analysis
using the National Health and Nutrition Examination
Survey (NHANES) data, employing feature selection
algorithms on 156 exposure variables and applying four
machine learning algorithms to identify 25 predictors of
prediabetes (34). Their models achieved >70% area under
the receiver operating characteristic curve (AUROC),
significantly outperforming the Centers for Disease Control
and Prevention (CDC) prediabetes screening tool (34).
Remarkably, Buccheri ez a/. demonstrated that a zero-
cost screening tool utilising only two variables, age and
waist circumference, could achieve 75.3% area under the
curve (AUC) for detecting undiagnosed dysglycemia, with
sensitivity and specificity of 0.65 and 0.73 respectively (35).
"This innovative approach, based on Darwinian evolutionary
theory principles, highlighted the critical importance of
walist circumference as a measure of abdominal obesity
in diabetes prediction (35). Further validation through
stratified analysis across different demographic groups
confirmed the robustness of the age-related waist
circumference model, achieving consistent AUC values of
0.69-0.78 across sex and ethnic groups, demonstrating its
applicability as a universal screening tool for dysglycemia in
diverse populations (36). These algorithms are capable of
identifying patients at risk long before they display clinical
symptoms, enabling earlier interventions and personalised
care strategies. Al’s capacity to predict diabetes-related
complications, such as CVD, is particularly valuable given
the difficulty in assessing individual patient risk using
traditional methods alone (31).

Al-powered wearables and mobile applications

Wearable devices and mobile applications powered by
AI have become essential tools for real-time diabetes
management (37). Continuous glucose monitors (CGMs),
smart insulin pens, and Al-driven smartphone apps allow
patients to monitor their blood sugar levels, activity,
diet, and medication adherence in real-time (38). These
devices use machine learning algorithms to analyze data
from daily life activities, offering personalized insights and
recommendations. For example, CGMs such as the Dexcom
G6 and Abbott FreeStyle Libre continuously measured
interstitial glucose levels and use Al algorithms to predict
blood sugar trends, allowing users to take preventative
action to avoid hypo- or hyperglycemia (39,40). Mobile

Copyright © 2025 AME Publishing Company. All rights reserved.
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applications like mySugr and Sugar.IQ analyze glucose data
and provide users with tailored feedback on diet, exercise, and
medication, helping them optimize glycemic control (41). In
addition to improving patient outcomes, these tools reduce
the cognitive burden on patients by automating much of
the day-to-day management of diabetes (42). While these
Al-powered technologies have significantly improved self-
management, they primarily focus on monitoring. The
next frontier lies in Al’s ability to go beyond observation
and generate novel insights for proactive care, particularly

through the use of generative Al models (43).

Generative Al: expanding predictive capabilities

Generative Al a type of machine learning that creates new
data or outputs based on learned patterns, has opened up new
possibilities in diabetes management (31). Unlike traditional
Al models that are focused on classification and regression
tasks, some studies mentioned that generative models are
designed to predict and generate new information, offering
unique insights into disease progression and complication
risks (44,45). These models use large datasets, including
clinical data, genetic information, and lifestyle factors, to
create highly personalized predictive models (46). One
of the most powerful aspects of generative Al is its ability
to uncover hidden trends and relationships that are not
immediately apparent to clinicians (47). For example,
in a study that analyed genetic markers, metabolic data,
and cardiovascular risk factors, it was concluded that
generative Al models can detect early signs of diabetes-
related complications, such as retinopathy, neuropathy, and
CVD, before they manifest clinically (48). It was noted that
generative Al could be used to screen and diagnose diabetic
retinopathy even at an early stage and without the resources
that are only accessible in special clinics (49). Generative
AT has been used to predict the onset of cardiovascular
complications in diabetes patients by analyzing longitudinal
data, including heart rate variability, cholesterol levels, and
inflammatory markers. A generative model trained on this
data can predict the likelihood of a heart attack or stroke in
a diabetic patient, offering clinicians valuable insights that
can inform preventative treatment plans (50,51).

Individualized risk assessments and personalized
interventions

One of the most significant advantages of generative Al in
diabetes management is its ability to offer individualized risk

Ann Transl Med 2025;13(5):59 | https://dx.doi.org/10.21037/atm-25-62



Page 6 of 19

assessments (52). While traditional risk calculators rely on
generalized population data, generative Al models can analyze
multi-dimensional datasets specific to an individual (19).
A study emphasized that by incorporating genetic
information, metabolic markers, and lifestyle data, these
Al models create a more accurate prediction of a patient’s
risk for developing diabetes-related complications (53). For
instance, Al models developed by IBM Watson have been
used to predict individual responses to different diabetes
medications, helping clinicians tailor treatments to each
patient’s unique genetic and metabolic profile (54). This
precision-medicine approach ensures that patients receive
the most effective therapy, minimizing the risk of adverse
effects and improving overall outcomes (55). Generative Al
can also recommend personalized interventions based on
real-time data (56). For example, an Al-driven system might
suggest lifestyle modifications, such as dietary changes
or exercise routines that are optimized for an individual’s
metabolism and cardiovascular risk (57). By integrating data
from wearable devices, CGMs, and genetic testing, these
models can offer real-time, adaptive recommendations that
evolve as the patient’s condition changes (58).

APDs role in drug discovery and development

In addition to the clinical applications of Al, generative Al
is also revolutionizing diabetes treatment by accelerating
the drug discovery process (59). Al models can simulate
the biological effects of potential drug compounds on
patients with diabetes, predicting efficacy and side effects
before clinical trials (60). For example, companies like
Insilico Medicine are using generative Al to discover novel
compounds for treating metabolic disorders like diabetes (61).
These Al-driven approaches significantly reduce the time
and cost associated with traditional drug development
pipelines. By generating virtual models of how drugs
interact with specific proteins and pathways implicated in
diabetes, Al can identify promising candidates for further
investigation. This capability is particularly important in the
search for drugs that can not only manage blood sugar levels
but also prevent or reverse diabetes-related complications,
such as neuropathy and nephropathy.

The foundation of Al in bealthcare: critical datasets for
model development

Large-scale, population-representative datasets serve as the
cornerstone for developing robust Al models in healthcare,

Copyright © 2025 AME Publishing Company. All rights reserved.
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with the NHANES and UK Biobank standing as exemplary
resources that have revolutionised Al-driven medical
research (62,63). NHANES, which collects comprehensive
health and nutrition data from diverse communities across
the United States through interviews, health examinations,
and laboratory tests, provides researchers with nationally
representative samples essential for developing
generalisable Al models (62). Similarly, UK Biobank’s
extensive biomedical database, encompassing half a million
participants since 2006, offers researchers worldwide
access to imaging data, biomarkers, genetic information,
healthcare records, and lifestyle data through its secure
Research Analysis Platform (63).

These datasets have proven instrumental in generating
breakthrough Al models across multiple internal medicine
pathologies, particularly in diabetes research where
the complexity and multifactorial nature of the disease
demands robust, diverse training data. NHANES data
has enabled the development of sophisticated machine
learning algorithms for prediabetes prediction, with
studies demonstrating superior performance compared
to traditional screening tools through feature selection
techniques applied to comprehensive exposure variables
(34-36). The richness of NHANES data, spanning decades
of collection and including detailed anthropometric
measurements, laboratory results, and lifestyle factors, has
been particularly valuable in identifying novel predictors
such as waist circumference as a powerful indicator of
diabetes risk (35).

CVD prediction has similarly benefited from these robust
datasets, with UK Biobank facilitating the development of
ensemble machine learning models that achieve remarkable
accuracy improvements by incorporating psychological
factors alongside traditional risk parameters (64). Recent
studies utilising UK Biobank data have demonstrated how
Al-powered electrocardiogram analysis can predict heart
failure risk from single-lead recordings, showcasing the
potential for scalable community-based risk assessment
using portable devices (65). The longitudinal nature of UK
Biobank’s follow-up data enables researchers to track disease
progression over time, providing crucial insights into the
temporal patterns that Al models can learn to recognise
early warning signs of cardiovascular complications in
diabetic patients.

Furthermore, NHANES data has supported the
creation of innovative Al-driven screening tools for
sarcopenia and muscle mass assessment, demonstrating how
anthropometric measurements can effectively substitute
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costly radiological examinations whilst maintaining high
diagnostic accuracy (66,67). These applications underscore
the versatility of well-curated datasets in enabling Al
models to address multiple health conditions using similar
methodological approaches.

The comprehensive nature and rigorous data collection
protocols of these datasets ensure that Al models developed
from them possess the statistical power and external
validity necessary for clinical implementation across diverse
populations. Without such foundational datasets, the
current advances in generative Al for diabetes care would
not be possible, as these models require vast amounts of
high-quality, representative data to learn the complex
patterns that enable accurate prediction and personalised
interventions. As generative Al continues to evolve, the
ongoing expansion and enhancement of datasets like
NHANES and UK Biobank will be crucial for developing
even more sophisticated models capable of addressing the
growing global burden of diabetes and its complications.

Generative Al and LLMs

Generative Al and LLMs are emerging as critical tools in
revolutionizing diabetes care (68). Their ability to analyze
diverse and complex data sources, ranging from structured
datasets like medical records to unstructured data like
patient notes, sets them apart from traditional Al models. By
producing novel insights based on learned representations,
these models hold the promise of significantly improving
early detection, personalized treatment, and overall
management of diabetes and its complications (69).

Overview of generative AI

Generative Al models are designed to analyze vast amounts
of data and generate meaningful outputs by learning from
underlying patterns (70). These models are particularly
useful in diabetes care because of the multifactorial nature
of the disease and its complications (71). Diabetes is
influenced by various factors, including genetics, lifestyle,
metabolic changes, and environmental exposures, making
it difficult for conventional models to predict outcomes
accurately (72). However, studies showed that generative Al
can integrate these data points and produce highly specific
and personalized predictions for each patient (73).

One of the most promising aspects of generative Al in
diabetes management is its ability to analyze both structured
and unstructured data (74). Structured data includes EHRs,
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laboratory results, medical images, and genetic profiles.
These datasets provide quantitative information about a
patient’s health, which generative Al models can analyze
to predict diabetes progression or potential complications.
For instance, by examining a patient’s blood glucose levels,
lipid profiles, and cardiovascular biomarkers over time,
generative Al can identify subtle changes that may precede
the development of conditions like diabetic retinopathy or
nephropathy (75).

Unstructured data, such as patient histories, lifestyle
factors, and physician notes, adds another layer of
complexity. Traditional models often struggle to incorporate
this type of qualitative information into predictive
analytics, but generative Al excels in this area (70,73). For
example, a patient’s diet, exercise patterns, and medication
adherence, which are typically recorded in free-text form,
can be processed by generative Al models to provide a
comprehensive understanding of how these lifestyle factors
contribute to disease progression.

Recent studies done have demonstrated the utility
of generative Al in detecting early signals of diabetes
complications (49,71,76). A notable example comes from
research on diabetic retinopathy, in this study, a deep
generative Al model was used to analyze retinal images
and patient records, identifying subtle retinal changes that
precede clinically observable damage (77). These predictions
were made well before the onset of symptoms, allowing for
earlier interventions that could prevent vision loss. Similar
applications have been explored in predicting neuropathy
and nephropathy, where generative Al models can detect
early signs of nerve and kidney damage by analyzing patient
biomarkers and longitudinal health data (78).

LLMs in bealthcare

Several studies have been carried out on LLMs; a subset
of generative Al use in healthcare. All concluded in their
studies that LLMs have become particularly influential in
healthcare due to their ability to process and synthesize
large volumes of textual information (19,79,80). LLMs,
such as GPT and BERT, are trained on massive datasets and
have the unique capability of understanding both structured
and unstructured text (11,81). In diabetes management,
this ability to integrate and interpret diverse sources of
information is invaluable. LLMs can analyze patient data
from a wide range of formats, including EHRSs, clinical trial
reports, genetic data, and even patient-reported outcomes

(31,82). One of the key advantages of LLMs is their ability
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to comprehend unstructured text, such as physician notes,
which often contain critical insights about a patient’s
condition that may not be captured in structured data
fields. These notes can include observations about patient
behavior, medication side effects, or subjective symptoms
that contribute to the overall understanding of diabetes
progression (68).

For instance, a physician might note that a patient has
been experiencing more frequent episodes of dizziness or
fatigue, which may suggest an underlying issue with blood
sugar management or early signs of neuropathy. An LLM
trained to analyze these notes, alongside structured data such
as lab results and medical imaging, can identify patterns and
correlations that might otherwise go unnoticed (83). This
capability enhances the predictive accuracy of diabetes
models by combining both quantitative and qualitative
data, providing a more holistic view of the patient’s
health (31). Moreover, LLMs can parse vast amounts of
research literature, identifying emerging trends in diabetes
treatment and complications (84). In clinical practice, this
means that an LLM could, for example, cross-reference a
patient’s genetic profile with the latest findings from genetic
research to predict their risk for specific diabetes-related
complications, such as nephropathy or CVD. This type
of real-time analysis ensures that clinicians are working
with the most up-to-date knowledge and can tailor their
treatment plans accordingly (85).

The use of LLMs is not limited to text-based analysis.
They can also be integrated with other Al models to process
multimodal data. For example, LLMs can analyze genetic
data alongside medical imaging, lab results, and patient
histories to generate more comprehensive predictive models
(83,86). This integration enhances the ability of clinicians
to detect early signs of complications, offering the potential
for more precise and personalized interventions (87). A
study demonstrated the use of LLMs in predicting diabetic
neuropathy by analyzing a combination of EHR data,
physician notes, and patient-reported symptoms (88). The
model was able to detect early signs of nerve damage before
patients presented with severe symptoms. By recognizing
these early patterns, clinicians were able to implement
preventative measures, such as medication adjustments and
lifestyle interventions, potentially slowing the progression
of the disease. Additionally, LL.Ms are transforming patient
care by enabling more efficient and accurate clinical
decision-making (89). Their ability to synthesize vast
amounts of patient data into actionable insights reduces
the cognitive load on clinicians, allowing them to focus on
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more complex tasks that require human judgment (90). By
providing real-time predictions and personalized treatment
recommendations, LLLMs have the potential to drastically
improve patient outcomes and reduce the burden of
diabetes-related complications (31).

Applications of generative Al in detecting
diabetes complications

Generative Al models have demonstrated immense
potential in the early detection and management of diabetes
complications (31). These models are capable of processing
and analyzing large volumes of diverse data, allowing them
to uncover hidden patterns that are difficult or impossible
for traditional diagnostic tools to identify. Other studies
also noted that by integrating clinical, genetic, lifestyle,
and other data sources, generative Al models provide
personalized risk assessments that are more accurate and
timelier than conventional methods (91). The following
sections highlight some of the key applications of generative
Al in detecting diabetes-related complications, focusing
on diabetic retinopathy, neuropathy, and CVDs. Figure 1
illustrates the key areas where Al is making an impact in
diabetes management.

Diabetic retinopathy

Diabetic retinopathy is one of the leading causes of blindness
among people with diabetes, and its progression can be
asymptomatic until irreversible damage has occurred (6).
Early detection is crucial for preventing vision loss, but
traditional screening methods are often limited by their
reliance on observable signs such as microaneurysms,
hemorrhages, or exudates. These signs typically indicate
that significant retinal damage has already occurred,
limiting the window for effective intervention (91).

A study mentioned that generative Al models, particularly
those using deep learning algorithms, have significantly
enhanced the ability to detect diabetic retinopathy at much
earlier stages. These models can analyze retinal images in
greater detail than human specialists, identifying patterns
that precede the visible symptoms of retinopathy (68). A
study carried out by Dai et a/. demonstrated that a deep
learning-based Al system could predict the progression of
diabetic retinopathy by analyzing subtle changes in retinal
microvasculature that are not easily detectable through
traditional screening methods (92,93). The Al model
was able to predict the likelihood of disease progression,
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Al helps in fine-tuning insulin
doses and offers treatment
recommendations based on
patient data
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Diagnosis

Al assists in automatic retinal

.\, screening for diabetic retinopathy
and provides clinical diagnosis
support

Al in diabetes
management

Prediction

Al contributes to risk stratification,
prediction of diabetes-related
complications, and forecasting
new-onset diabetes

Self-management

<O Al enhances continuous glucose
& monitoring, predicts hypoglycemic
events, and provides personalized
recommendations to patients

Figure 1 Multifaceted role of Al in diabetes management. Al artificial intelligence.

improve image collection quality, provide clinical reference,
and facilitate diabetic retinopathy screening with an
accuracy rate that rivaled expert ophthalmologists, offering
the potential for earlier intervention.

Moreover, generative Al models can integrate retinal
image analysis with additional patient data, such as glycemic
control history, blood pressure, and lipid levels, to provide a
more comprehensive risk assessment. By factoring in these
additional data points, Al models can offer personalized
predictions regarding the likelihood of retinopathy
progression for each patient (92). These capabilities allow
clinicians to intervene earlier, whether through tighter
blood sugar control, laser treatments, or other therapeutic
strategies, potentially preventing the progression to severe
visual impairment or blindness.

Diabetic neuropathy

Diabetic neuropathy is a common complication of
diabetes, characterized by nerve damage resulting from
prolonged high blood glucose levels (94). This condition
can lead to a range of symptoms, from pain and tingling
in the extremities to loss of sensation, which increases
the risk of injuries and infections. Neuropathy often goes
undetected until irreversible damage has occurred, largely
because early-stage symptoms can be mild or vague (95).
Conventional diagnostic tools, such as nerve conduction
studies, are often used after significant nerve damage has
developed. Generative Al models are transforming the
detection of diabetic neuropathy by analyzing complex
datasets, including nerve conduction studies, patient-
reported symptoms, and genetic data (20). These models
can detect early signs of neuropathy by identifying subtle
changes in nerve function that precede more severe
symptoms. A study demonstrated how Al-driven analysis

Copyright © 2025 AME Publishing Company. All rights reserved.

of nerve conduction and sensory data could predict
neuropathy before symptoms became debilitating, allowing
for earlier interventions such as medication adjustments or
lifestyle changes (96). Figure 1 highlights key areas where Al
contributes, including diagnosis through automatic retinal
screening and clinical support, treatment optimization
via insulin dose adjustments and recommendations, self-
management enhancements through CGM and personalized
advice, and predictive analytics for risk stratification and
complication forecasting.

Generative Al models excel in their ability to integrate
multiple types of data (47). For instance, these models
can combine sensory, motor, and autonomic data with
patient-reported outcomes, such as numbness or pain
levels, to create personalized risk profiles for neuropathy.
By including genetic information related to a patient’s
susceptibility to nerve damage, Al can further refine
predictions, allowing clinicians to tailor treatment plans
that mitigate the risk of severe nerve impairment. Early
detection of diabetic neuropathy through generative Al can
help prevent complications such as foot ulcers, infections,
and even amputations, which are common in advanced

stages of the disease (97).

Cardiovascular complications

CVD is the leading cause of death among individuals
with diabetes, with complications such as heart attacks
and strokes being major contributors to diabetes-related
morbidity and mortality (98). The multifactorial nature
of cardiovascular complications in diabetes, driven by a
combination of hyperglycemia, hypertension, dyslipidemia,
and lifestyle factors, makes prediction and early intervention
particularly challenging. Traditional risk calculators often
provide generalized risk assessments based on standard
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biomarkers (e.g., cholesterol levels, blood pressure) but
may not account for the complexity of individual risk
profiles (99). However, Generative Al models have shown
superior capabilities in predicting cardiovascular events
in diabetic patients by integrating diverse datasets that
extend beyond traditional risk factors. These models
are able to analyze cardiovascular biomarkers (such as
cholesterol levels, heart rate variability, and blood pressure),
alongside lifestyle factors like diet, physical activity, and
smoking habits, to create highly personalized risk profiles.
Additionally, generative Al models can incorporate genetic
predispositions to CVDs, which further enhance their
predictive accuracy (76).

Generative Al model can analyze longitudinal data from
patients with diabetes to predict cardiovascular events,
such as myocardial infarctions and strokes, with greater
accuracy than conventional risk assessment tools (100). Al
models detects subtle trends in cardiovascular markers and
metabolic profiles that are indicative of elevated risk, even
in patients who appear asymptomatic based on standard
clinical evaluations (101). LLMs, which are a subset of
generative Al, play a key role in this process by synthesizing
and analyzing large volumes of longitudinal data. LLMs
can identify hidden relationships between diabetes and
cardiovascular markers by processing both structured and
unstructured data, including clinical records, lab results, and

Copyright © 2025 AME Publishing Company. All rights reserved.

physician notes (102). For instance, an LLM might detect
a pattern of worsening blood pressure and lipid profiles in
a patient’s clinical history, combined with a family history
of CVD, signaling an elevated risk for a heart attack. By
recognizing these patterns, LLMs can help clinicians initiate
preventive measures, such as optimizing blood pressure
management, prescribing statins, or recommending
lifestyle changes, well before a cardiovascular event
occurs (103). Figure 2 is a chart depicting the process by
which Generative Al predicts and manages cardiovascular
complications in individuals with diabetes. The chart
outlines four key stages: data integration, where diverse
datasets, including traditional biomarkers, lifestyle
factors, genetic predispositions, and longitudinal data, are
combined; risk analysis, which involves pattern recognition
and trend analysis to assess patient risk; prediction, where
cardiovascular events are forecasted and risk stratification
is performed; and intervention, where personalized
recommendations and early preventive measures are
generated.

Future directions

The future of generative Al in diabetes management offers
immense potential to revolutionize how the disease and its
complications are diagnosed, monitored, and treated (104).
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As Al technology continues to evolve, and as more
comprehensive and high-quality datasets become available,
Al models are expected to increase in accuracy and
further expand their predictive capabilities (105). These
advancements will enable more precise and personalized
care for diabetes patients, leading to earlier interventions
and better outcomes. Below are some key areas where
generative Al is likely to shape the future of diabetes care.

Improved predictive capabilities with lavger and more
diverse datasets

As the availability of healthcare data continues to grow,
generative Al models will benefit from access to larger and
more diverse datasets (73). This includes data from CGM,
wearable devices, genetic testing, lifestyle tracking, and
environmental data. The integration of these diverse data
sources will allow Al models to generate more accurate and
nuanced predictions regarding disease progression, risk of
complications, and responses to different treatments. For
example, future Al models could analyze data from millions
of patients across different populations, identifying trends
and risk factors that are specific to various demographic
groups, such as age, gender, or ethnicity (106). This ability
to process diverse data will help Al systems account for
the unique genetic, metabolic, and lifestyle factors that
influence an individual’s diabetes risk and tailor treatment
plans accordingly. Moreover, as Al continues to learn from
new data, its predictive accuracy will improve, leading
to more reliable assessments of a patient’s future health

trajectory (107).

Integration into clinical decision support systems (CDSS)

The most promising future applications of generative Al,
is its integration into CDSS (83). Al-driven CDSS can
provide physicians with real-time, evidence-based insights
into their patients’ conditions, supporting more informed
and timely decision-making (108). By integrating generative
Al into these systems, healthcare providers will have access
to advanced tools that offer personalized recommendations
based on a comprehensive analysis of patient data. For
instance, an Al-powered CDSS could continuously
monitor a patient’s CGM data, lab results, medication
adherence, and lifestyle behaviors, flagging potential risks
for complications like diabetic retinopathy or neuropathy
before they become clinically apparent (109). Physicians
could then receive tailored alerts and recommendations
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for preventive measures, such as adjusting insulin dosages
or initiating dietary changes, without waiting for overt
symptoms to develop. Furthermore, the real-time
integration of generative Al into CDSS will reduce the
cognitive burden on healthcare providers, allowing them to
focus on patient care while benefiting from Al-generated
insights that guide treatment plans. These systems can
also help standardize care by ensuring that evidence-based
guidelines are consistently followed, reducing the risk of
human error in treatment decisions (110).

Advancements in personalized medicine

Personalized medicine is one of the most promising areas of
healthcare where generative Al can have a profound impact
(76,86). The ability to analyze an individual’s genetic,
environmental, and lifestyle factors enables Al to refine
treatment protocols specifically tailored to the needs of
each patient. In diabetes care, this personalized approach
could be transformative, as treatment responses can vary
widely based on genetic makeup, lifestyle habits, and
comorbid conditions. Generative Al models are uniquely
suited to integrate and process these complex data sets to
offer highly individualized treatment recommendations.
For example, Al could analyze a patient’s genetic profile to
predict how they might respond to certain medications or
dietary interventions, allowing clinicians to select therapies
that are most likely to be effective (111). This approach can
significantly reduce the trial-and-error period in diabetes
management, improving outcomes and reducing the risk of
side effects.

In the future, Al-driven personalized medicine could
extend beyond treatment selection to the optimization of
preventive strategies (112). Al models could identify high-
risk individuals based on their genetic predispositions and
lifestyle behaviors, enabling clinicians to intervene before
diabetes develops or its complications arise. For instance,
an Al model might recommend a specific exercise regimen
or dietary plan tailored to an individual’s metabolic profile,
reducing their risk of developing T2D or mitigating
the impact of diabetic complications such as CVD or
nephropathy.

Al-driven drug discovery and development

Another exciting future direction for generative Al in
diabetes care lies in the realm of drug discovery and
development (113). Al models have already begun to
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revolutionize how new drugs are identified and developed,
and their applications in diabetes therapeutics are
particularly promising (114). Generative Al can simulate
the effects of potential drug compounds on diabetic patients
by modeling complex interactions between the drugs and
biological systems, predicting efficacy, side effects, and
optimal dosing regimens before clinical trials even begin.
In the context of diabetes, generative Al could accelerate
the discovery of novel drugs that target not only glycemic
control but also the prevention or reversal of diabetes-
related complications (115). For example, Al could identify
compounds that have a protective effect on retinal cells in
diabetic retinopathy or that enhance nerve regeneration
in patients with diabetic neuropathy. Al-driven drug
development could significantly reduce the time and cost
associated with bringing new diabetes treatments to market,
ultimately benefiting patients by providing more effective
therapeutic options (116).

Enbanced patient self-management tools

Some studies discussed another future advancement
of generative Al in diabetes care. It proposed that the
future generative Al in diabetes care will also likely see
the continued development of advanced patient self-
management tools (117). Al-powered wearable devices,
mobile applications, and virtual health assistants can
empower patients to take greater control over their
diabetes management by providing real-time feedback
and personalized recommendations (45). These tools can
monitor blood glucose levels, physical activity, diet, and
sleep patterns, offering insights that help patients make
informed decisions about their health. As generative Al
models become more sophisticated, self-management
tools will become more proactive, providing patients
with anticipatory guidance (118). For example, Al-driven
applications could predict fluctuations in blood glucose
levels based on past trends, suggesting specific actions—
such as adjusting carbohydrate intake or increasing
physical activity—to prevent episodes of hyperglycemia or
hypoglycemia. Additionally, Al-powered apps could deliver
customized health education and motivational support,
encouraging patients to adhere to their treatment plans and
maintain healthier lifestyles (119).

Strengths and limitations of the review

Table 2 presents a comprehensive summary of the key
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studies discussed throughout this review, organised by
thematic sections. This synthesis demonstrates the extensive
evidence base supporting the applications of Al and
generative models across various aspects of diabetes care,
from early detection and risk prediction to personalised
treatment approaches.

This narrative review offers several key strengths,
including its comprehensive scope spanning from
established supervised machine learning to cutting-edge
generative Al and LLMs in diabetes care. The systematic
organization across multiple dimensions of diabetes
management, from early detection and risk stratification
to personalized treatment approaches, provides a
detailed technological landscape. A particular strength
lies in addressing the full spectrum of diabetes-related
complications whilst incorporating critical foundational
elements such as major datasets like NHANES and UK
Biobank. The review effectively bridges technological
innovation with clinical application, offering practical
insights into current implementations and future directions
for CDSS, personalized medicine, and patient self-
management tools, making it a valuable resource for
researchers, clinicians, and technology developers.

This narrative review presents a comprehensive synthesis
of current evidence on the role of generative Al, particularly
LLMs, in the predictive analysis and early detection of
diabetes and its complications. However, several limitations
should be acknowledged.

First, as a narrative review, the methodology lacks the
rigorous systematic framework typically used in systematic
reviews or meta-analyses. This introduces the potential for
selection bias, as study inclusion was based on relevance and
thematic alignment rather than a formal quality appraisal or
protocol-driven screening process.

Second, while the search strategy was extensive, it was
limited to articles published in English and accessible
through major academic databases. As a result, relevant
studies published in other languages or not indexed in the
selected databases may have been overlooked, possibly
limiting the global perspective of the findings.

Third, much of the current research on generative Al in
healthcare, including diabetes care, is still emerging. Some
of the included studies are preprints or based on preliminary
findings, and long-term clinical validation of Al models
remains limited. This means that many of the reported
outcomes, although promising, may not yet be generalisable
or reproducible across different populations and healthcare
settings.
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Table 2 Summary of main articles considered in diabetes Al review
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Section

Study/reference

Key focus

Main findings/applications

Dataset/technology

Supervised machine
learning and predictive
analytics

Al-powered wearables
and mobile applications

Generative Al: expanding
predictive capabilities

Individualized risk
assessments and
personalized interventions

Al’s role in drug discovery
and development

The foundation of Al in
healthcare: critical
datasets for model
development

Overview of generative Al

LLMs in healthcare

Diabetic retinopathy

Diabetic neuropathy

Cardiovascular
complications

Future directions

De Silva et al. (34)

Buccheri et al. (35)

Buccheri et al. (36)
Dexcom G6 & Abbott
FreeStyle Libre (39,40)
mySugr & Sugar.lQ (41)

Genetic markers

Cardiovascular prediction
models (50,51)

IBM Watson (54)

Zhavoronkov et al. (61)

Dorraki et al. (64)

Dhingra et al. (65)

Buccheri et al. (66,67)

Deep generative model

Neuropathy/nephropathy

LLM neuropathy study

Dai et al. (92,93)

Al-driven neuropathy

Cardiovascular events
prediction (100)

LLMs cardiovascular

Feature selection and ML
for prediabetes prediction

Zero-cost screening tool
for dysglycemia

Stratified analysis of waist
circumference model

Continuous glucose
monitoring

Mobile diabetes
management

Early complication
detection

Heart attack/stroke
prediction

Personalized medication
prediction

Novel compound
discovery

Cardiovascular prediction
with mental health

Heart failure prediction
from ECG

Sarcopenia screening

Diabetic retinopathy early
detection

Early nerve/kidney damage
detection

Diabetic neuropathy
prediction

Deep learning retinopathy
detection

Early neuropathy detection
Ml/stroke prediction in

diabetes

CVD pattern recognition

Various studies (104-119) Multiple future applications

Achieved =70% AUROC, identified
25 predictors, outperformed CDC

screening tool

75.3% AUC using only age and
waist circumference, sensitivity 0.65,

specificity 0.73

Consistent AUC 0.69-0.78 across

sex and ethnic groups

Al algorithms predict blood sugar
trends, prevent hypo/hyperglycemia

Tailored feedback on diet, exercise,
medication for glycemic control

Detect retinopathy, neuropathy, CVD

before clinical manifestation

Longitudinal analysis of heart rate
variability, cholesterol, inflammatory

markers

Individual responses to diabetes
medications based on genetic/

metabolic profiles

Generative Al for discovering
metabolic disorder treatments

85.13% accuracy incorporating

psychological factors

Al-enabled single-lead ECG analysis

for HF risk stratification

Al simplification of muscle mass loss
detection, zero-cost variables

Identify subtle retinal changes before

clinical symptoms

Biomarker analysis and longitudinal

health data

Early nerve damage detection before

severe symptoms

Predict progression via retinal
microvasculature analysis, rival

expert accuracy

Predict neuropathy before symptoms

become debilitating

Superior accuracy vs conventional

risk assessment tools

Synthesize structured/unstructured

data for cardiovascular risk

CDSS integration, personalized
medicine, drug discovery, self-

management tools

NHANES 2013-2014
(n=6,346)

NHANES 2007-2016
(10 years)

NHANES data
stratification

CGM technology

Smartphone
applications

Genetic/metabolic data

Longitudinal datasets

Clinical/genetic data

Virtual drug modeling

UK Biobank (n=375,145)

Multi-national cohorts

NHANES 1999-2006

Retinal images + patient
records

Patient biomarkers

EHR + physician notes
+ patient symptoms
Retinal imaging + clinical
data

Nerve conduction +
sensory data
Longitudinal patient
data

Clinical records + lab
results + notes

Emerging technologies
and datasets

Al, artificial intelligence; AUC, area under the curve; AUROC, area under the receiver operating characteristic curve; CDC, Centers for Disease
Control and Prevention; CDSS, clinical decision support systems; CGM, continuous glucose monitor; CVD, cardiovascular disease; ECG,
electrocardiogram; EHR, electronic health record; HF, heart failure; LLMs, large language models; MI, myocardial infarction; ML, machine learning;
NHANES, National Health and Nutrition Examination Survey.
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Furthermore, the field of generative Al is rapidly
evolving. New developments, models, and applications may
have emerged after the time of writing, potentially limiting
the review’s ability to capture the most recent innovations
and technologies.

Finally, while this review aimed to highlight the
opportunities and challenges associated with generative
Al it did not include a formal risk-benefit analysis or
stakeholder perspectives from patients, clinicians, or
developers, which are critical for real-world implementation.

Despite these limitations, this review provides a
valuable foundation for understanding how generative Al
is reshaping diabetes care and serves as a springboard for
future research and interdisciplinary dialogue.

Conclusions

Generative Al, particularly LLMs, is revolutionizing
the management of diabetes and its complications. By
harnessing the power of these advanced models to analyze
vast, multi-dimensional datasets, clinicians are gaining new
insights into the hidden patterns of disease progression,
metabolic dysfunction, and risk factors that were previously
undetectable. This capability enables earlier detection of
complications such as diabetic retinopathy, neuropathy,
and CVDs, allowing for more timely and personalized
interventions. As generative Al continues to evolve, it is
poised to shift diabetes care from a reactive to a proactive
approach, where individualized treatments are based on
a patient’s unique genetic, lifestyle, and clinical data. Al-
driven tools are already beginning to empower both
clinicians and patients with real-time insights, improving
glycemic control, reducing complications, and enhancing
overall quality of life. The integration of Al into CDSS,
personalized medicine, and patient self-management
platforms will further enhance the precision and
effectiveness of diabetes management. While challenges
related to data availability, model transparency, and ethical
considerations remain, ongoing advancements in Al
technology are expected to address these issues. As the
field moves forward, generative Al will play an increasingly
central role in diabetes care, improving outcomes for
millions of patients worldwide by enabling more tailored,
proactive, and effective treatment strategies. In the years
to come, this transformative technology will be integral to
reducing the global burden of diabetes and its associated
complications.
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