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Background and Objective: The Emergency Department (ED) is a critical, high-stakes environment 
where timely and accurate assessments of patient outcomes are essential for ensuring optimal care and 
effective resource management. This narrative review aimed to synthesise current evidence on machine 
learning (ML)-based predictive models used in the ED to forecast patient outcomes such as mortality, 
intensive care unit (ICU) admission, and discharge probability, whilst identifying key limitations and future 
research directions.
Methods: This narrative review synthesises recent advancements in ML-based predictive models for ED 
outcomes published between January 2015 and December 2024. It explores the integration of real-time 
and historical clinical data, focusing on key ML techniques such as regression models, decision trees, neural 
networks, and ensemble methods. The review also evaluates data sources, model evaluation metrics, and 
addresses challenges including data quality, interpretability, and ethical considerations. A comprehensive 
search of four major databases yielded 156 initial results, with 45 studies ultimately included after systematic 
screening.
Key Content and Findings: ML models demonstrate significant promise in processing complex, non-
linear data for ED outcome prediction with area under the receiver operating characteristic curve (AUC-
ROC) values typically ranging from 0.75–0.95 across different outcomes. Techniques like ensemble methods 
and neural networks offer strong performance, while personalized prediction models and explainable artificial 
intelligence (XAI) enhance precision and interpretability. However, current approaches face substantial 
limitations including data heterogeneity, poor model generalisability across institutions, and lack of real-
world implementation studies. Emerging integration of telemedicine further broadens the applicability of 
predictive modeling in the ED.
Conclusions: ML is reshaping predictive modeling in the ED, offering timely, data-driven support for 
clinical decision-making. Despite challenges, advancements in personalized and explainable models hold the 
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Introduction

The Emergency Department (ED) is a critical component 
of healthcare systems, serving as a frontline response for 
patients with a wide range of conditions, from minor 
injuries to severe, life-threatening emergencies (1). In 
this high-stakes, fast-paced environment, clinicians face 
immense pressure to quickly and accurately assess patient 
conditions and make informed treatment decisions. Rapid, 
precise assessment of patient outcomes is essential, as it 
guides clinical decisions, optimizes resource allocation, and 
directly impacts patient survival and recovery (2). However, 
due to the overwhelming influx of patients and the demand 
for swift decision-making, ED clinicians often rely on a 
combination of clinical experience, intuition, and traditional 
scoring systems, which, while helpful, have limitations in 
terms of speed, scalability, and predictive accuracy (3,4). As 
healthcare systems continue to manage increasing patient 
volumes and resource constraints, there is a growing need 
for innovative tools that enhance clinical decision-making 
in real-time.

In recent years, machine learning (ML) has emerged 
as a transformative technology in healthcare, especially in 
areas like the ED, where timely, data-driven insights can 
be lifesaving (5). ML, a branch of artificial intelligence 
(AI), uses algorithms and statistical models that learn 
patterns from vast amounts of data, enabling them to 
make predictions or decisions without requiring explicit 
programming for each task. ML-based predictive models 
are especially valuable in the ED, as they can process 
diverse inputs such as vital signs, lab results, demographics, 
and even unstructured clinical notes allowing for a more 
comprehensive and nuanced analysis than is typically 
achievable with traditional methods (4). For instance, while 
traditional scoring systems like the Acute Physiology and 
Chronic Health Evaluation (APACHE) or the Sequential 
Organ Failure Assessment (SOFA) have been instrumental 
in assessing risk in critically ill patients, these systems are 

limited by the number of variables they can incorporate and 
are often applied broadly, potentially overlooking individual 
patient nuances. ML models, in contrast, can integrate real-
time data with historical clinical information, enabling them 
to make individualized predictions about key outcomes such 
as mortality risk, likelihood of intensive care unit (ICU) 
admission, and discharge probability (6,7).

The implications of predictive modeling in the ED 
extend beyond immediate patient care, influencing 
broader operational and resource management decisions. 
By anticipating patient outcomes with greater accuracy, 
predictive models allow for earlier identification of high-risk 
patients, support more efficient triage processes, and help 
optimize bed utilization. These insights ultimately enable 
healthcare providers to allocate resources more effectively, 
improving patient throughput and potentially reducing 
wait times. Although ML-based predictive models hold 
significant promise, there are also challenges to consider, 
including the integration of models into existing ED 
workflows, issues related to data quality and consistency, and 
the need for model interpretability to ensure clinicians can 
trust and act on the predictions provided. This review aims 
to synthesise current developments in predictive modeling 
for patient outcomes in the ED, examining the types of 
data and ML techniques used, the performance of various 
models, and the challenges and opportunities that lie ahead. 
By exploring the practical implications of predictive models 
and identifying potential directions for future research, this 
paper seeks to highlight the transformative potential of ML 
in enhancing patient outcomes and operational efficiency in 
emergency care.

This review focuses specifically on ML applications 
within the ED setting, encompassing both immediate 
triage decisions and subsequent care pathways including 
ICU admission and mortality prediction within the first 
24–48 hours of ED presentation. This narrative review 
examines studies published between January 2015 and 
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December 2024, focusing on original research articles that 
developed or evaluated ML-based predictive models for 
patient outcomes in ED settings. The scope encompasses 
models predicting mortality, ICU admission, and discharge 
outcomes, whilst critically examining current limitations 
and identifying key areas requiring further research 
attention. We present this article in accordance with the 
Narrative Review reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-25-83/rc).

Methods

This narrative review was conducted to explore and 
synthesise existing literature on the application of ML 
models for predicting patient outcomes in the ED. The 
primary outcomes of interest included mortality, ICU 
admission, and discharge probability. The review aimed to 
provide an overview of the data sources, types of ML models 
used, evaluation metrics, and future directions in predictive 
modelling within ED settings whilst critically examining 
current limitations and methodological challenges.

Search strategy and study selection

A comprehensive search was conducted across major 
databases, including PubMed, Scopus, Web of Science, 
and IEEE Xplore, for peer-reviewed articles published 
between 14th January 2015 and 28th December 2024. Search 
terms included combinations of keywords such as “machine 
learning”, “predictive models”, “emergency department”, 
“mortality prediction”, “ICU admission”, “discharge”, 
“triage”, and “clinical decision support”. Additional terms 
included “artificial intelligence”, “deep learning”, “neural 
networks”, and “clinical decision support systems”. A 
comprehensive summary of the search strategy, including 
databases searched, search terms, and selection criteria, is 
presented in Table 1. The initial search strategy yielded 156 
articles across all databases: PubMed (68 articles), Scopus 
(41 articles), Web of Science (32 articles), and IEEE Xplore 
(15 articles). After removing duplicates (n=23), 133 articles 
underwent title and abstract screening. Of these, 76 articles 
were excluded for not meeting inclusion criteria, leaving  
57 articles for full-text review. Following full-text assessment, 
12 additional articles were excluded due to insufficient 
methodological detail or lack of ED-specific focus, resulting 
in 45 studies included in the final analysis (Figure 1).

Inclusion criteria were: (I) studies focused on the 
development or evaluation of ML-based predictive models 

in the ED; (II) models aimed at predicting at least one of the 
target outcomes (mortality, ICU admission, or discharge); 
(III) use of real-world clinical data (real-time or historical); 
and (IV) articles published in English. Exclusion criteria 
included review articles, editorials, conference abstracts 
without full text, and studies not specifically focused on ED 
settings.

Data extraction and analysis strategy

The selected studies were reviewed for information on 
study design, data type, ML algorithms applied, outcome 
measures, and model performance metrics. Data extraction 
focused on identifying: (I) study characteristics (sample size, 
setting, study period); (II) ML methodologies employed; 
(III) performance metrics [area under the receiver operating 
characteristic curve (AUC-ROC), sensitivity, specificity, F1-
score]; (IV) data quality considerations; and (V) reported 
limitations. The narrative synthesis focused on identifying 
trends, strengths, limitations, and gaps in current evidence 
to inform future research and clinical applications. Studies 
were thematically grouped by primary outcome (mortality, 
ICU admission, discharge prediction) and analytical 
approach, with particular attention paid to methodological 
limitations and real-world implementation challenges.

Data sources for predictive models

The performance of ML models in predicting patient 
outcomes in the ED relies heavily on data quality and the 
diversity of data inputs. Accurate, reliable models must 
draw from comprehensive datasets that capture the patient’s 
current condition and relevant medical history (8-10). ML 
models for ED outcome prediction typically utilize two 
main types of data: real-time clinical data and historical 
clinical data. Each data source contributes distinct value to 
the predictive process, enabling the generation of timely 
and individualized predictions (11).

Table 2 summarizes key clinical scoring systems: Modified 
Early Warning Score (MEWS), SOFA, APACHE, quick 
SOFA (qSOFA), and National Early Warning Score 
(NEWS), used in the ED for mortality prediction and risk 
assessment (17). The MEWS and NEWS rely on basic vital 
signs, enabling rapid assessments ideal for ED triage, while 
SOFA and APACHE provide in-depth risk evaluation using 
lab results and organ function metrics, though they are 
more time-intensive (18-20). Simplified scores like qSOFA 
offer quick sepsis risk evaluations but may lack sensitivity. 

https://atm.amegroups.com/article/view/10.21037/atm-25-83/rc
https://atm.amegroups.com/article/view/10.21037/atm-25-83/rc
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These scoring systems form structured data inputs for 
ML models, enhancing risk stratification and supporting 
informed ED decision-making (21-23). However, traditional 
scoring systems demonstrate limited predictive accuracy 
with AUC-ROC values typically ranging from 0.65–0.80, 
highlighting the potential value of ML approaches.

Real-time clinical data

Real-time clinical data is critical for ML models aiming 
to predict patient outcomes as early as possible upon ED 
arrival. This data encompasses immediate, continuously 
monitored metrics and diagnostic information that provides 
a snapshot of the patient’s current health status (24,25). 

Real-time data commonly includes vital signs such as heart 
rate, respiratory rate, blood pressure, and oxygen saturation 
levels, which are foundational indicators of a patient’s 
physiological stability. These vital signs can be predictive 
of deterioration in the ED, with abnormal values often 
indicating heightened risk for adverse outcomes, including 
mortality and ICU admission (26,27). Additionally, real-
time clinical data can include results from initial lab tests 
(e.g., blood counts, electrolyte levels, and biomarkers), 
imaging reports, and triage assessments conducted by ED 
staff. This data is generally available within minutes of 
patient arrival and can be continuously updated, which 
allows models to adjust their predictions as new data points 
are acquired.

Table 1 The search strategy summary

Items Specification

Date of search February 15th, 2025 

Databases and other sources 
searched

PubMed, Scopus, Web of Science, IEEE Xplore

Search terms used Primary search terms: “machine learning”, “predictive models”, “emergency department”, “mortality 
prediction”, “ICU admission”, “discharge”, “triage”, “clinical decision support”

Additional terms: “artificial intelligence”, “deep learning”, “neural networks”, “clinical decision support 
systems”

Timeframe January 2015 to December 2024 (peer-reviewed articles)

Inclusion and exclusion criteria Inclusion criteria: studies focused on development or evaluation of ML-based predictive models in the 
ED; models predicting at least one target outcome (mortality, ICU admission, or discharge); use of real-
world clinical data (real-time or historical); articles published in English

Exclusion criteria: review articles; editorials; conference abstracts without full text; studies not 
specifically focused on ED settings

Selection process Initial search yielded 156 articles across all databases

Duplicates removed (n=23), leaving 133 articles

Title and abstract screening conducted

76 articles excluded for not meeting inclusion criteria

57 articles underwent full-text review

12 additional articles excluded due to insufficient methodological detail or lack of ED-specific focus

Final inclusion: 45 studies

Selection process details not specified regarding independence or consensus methods

Any additional considerations, if 
applicable

Reference lists of relevant studies were manually screened to identify additional sources

Search strategy focused on peer-reviewed articles only

No mention of grey literature or unpublished studies

Language restriction to English may have introduced geographical bias

ED, emergency department; ICU, intensive care unit; ML, machine learning.
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Records identified through database 
searching (n=156):

• PubMed (n=68)
• Scopus (n=41)
• Web of Science (n=32)
• IEEE Xplore (n=15)

Records screened (n=133)

Reports assessed for eligibility (n=57)

Studies included in review (n=45)

Records removed before screening:
• Duplicate records removed (n=23)

Records excluded* (n=76)
• Not meeting inclusion criteria (n=38)
• Not ED-specific (n=22)
• Conference abstracts (n=16)

Reports excluded (n=12):
• Insufficient methodological detail (n=7)
• Lack of ED-specific (n=5)
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Figure 1 PRISMA flow diagram for selected articles. *, nothing else to define apart from ED. ED, emergency department.

Table 2 Commonly used clinical scoring systems in ED predictive models

Scoring System Description Primary Use Advantages Limitations

MEWS (12) Assesses risk based on 
vital signs (e.g., heart rate, 
respiratory rate, blood 
pressure)

Early mortality prediction Simple, quick to apply Limited to physiological 
data

SOFA (13) Predicts likelihood of organ 
failure and mortality based 
on organ function parameters

ICU admission and 
mortality

Well-established in 
critical care

Requires lab values, less 
effective for ED triage

APACHE (14) Estimates risk of mortality 
using a range of physiological 
and lab data

Mortality prediction in 
ICU

Comprehensive, 
validated in ICU

Complex, time-
consuming to calculate

qSOFA (15) Simplified SOFA for 
rapid assessment, using 
respiration, mental state, 
blood pressure

Sepsis risk identification Easy to use, suitable for 
ED triage

Limited in sensitivity for 
sepsis

NEWS (16) Similar to MEWS, includes 
oxygen saturation and patient 
alertness as indicators

General patient 
deterioration

Broadly applicable in ED 
settings

May not capture all 
critical cases

APACHE, Acute Physiology and Chronic Health Evaluation; ED, emergency department; ICU, intensive care unit; MEWS, Modified Early 
Warning Score; NEWS, National Early Warning Score; qSOFA, Quick SOFA; SOFA, Sequential Organ Failure Assessment.
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Models utilising real-time data alone demonstrate 
moderate predictive performance, with AUC-ROC values 
typically ranging from 0.72–0.85 for mortality prediction 
and 0.70–0.83 for ICU admission prediction. However, 
real-time data faces significant limitations including 
measurement errors, temporal variability, and incomplete 
capture during peak ED volumes (28). 

Predictive models trained on real-time data offer 
significant advantages, particularly in terms of timeliness. By 
processing and analyzing real-time data, these models can 
make early, rapid predictions that aid in triage decisions and 
the prioritization of critical interventions (29). For instance, 
models using real-time data have been employed to identify 
patients at high risk of sepsis or other severe complications 
shortly after ED arrival, thereby facilitating expedited 
care and reducing the time to diagnosis and treatment. In 
environments where minutes matter, the ability to leverage 
real-time data for quick, data-driven insights is invaluable. 
Furthermore, real-time data enables the prediction of short-
term outcomes, such as the need for ICU admission or 
discharge probability, providing critical support in resource 
allocation and bed management (30).

Historical clinical data

While real-time data provides an immediate view of a 
patient’s current health status, historical clinical data 
adds a broader context that can enhance the accuracy of 
predictive models. Historical data typically encompasses a 
patient’s previous medical records, including past diagnoses, 
comorbidities, medication history, previous admissions, 
procedures, and long-term health outcomes. This data 
allows ML models to incorporate insights into chronic 
health conditions, previous responses to treatments, and 
other trends that may influence the patient’s current 
episode in the ED. The presence of chronic illnesses like 
diabetes, hypertension, or chronic obstructive pulmonary 
disease (COPD) has been shown to impact outcomes such 
as ICU admission and in-hospital mortality, highlighting 
the importance of these data points in building predictive 
models (31). Models incorporating both real-time and 
historical data demonstrate superior performance, with 
AUC-ROC values ranging from 0.82–0.95 across different 
outcomes. However, historical data presents unique 
challenges including data accessibility, privacy concerns, and 
significant variation in data completeness between patients 
with different healthcare utilisation patterns (32).

Historical data contributes to a more personalized 

prediction framework by identifying pre-existing health 
factors that could complicate the patient’s condition or 
influence the trajectory of care. For instance, a patient 
with a history of heart disease may have an elevated risk of 
cardiovascular complications, which can be factored into 
the model’s risk assessment for ICU admission or mortality. 
Furthermore, historical data can assist in distinguishing 
between patients who may present similarly upon arrival but 
have different underlying risk profiles. Finding from a study 
showed that incorporating a patient’s longitudinal health 
data improves model performance for predicting various 
outcomes, such as ED revisits or long-term prognosis, by 
providing a richer understanding of individual risk factors 
and health trajectories (33).

Current limitations in data sources

Despite the potential benefits of comprehensive data 
integration, several critical limitations were identified 
across the reviewed studies. Data heterogeneity represents 
a significant challenge, with substantial variations in 
electronic health record systems, data collection protocols, 
and variable definitions between institutions that limit 
model generalisability. These differences create barriers 
to developing universally applicable predictive models 
that can perform consistently across different healthcare 
settings (34).

Missing data constitutes another major limitation, 
with particularly high rates of missing values observed for 
laboratory results (15–70%) and historical comorbidity data 
(20–60%). This substantial data incompleteness significantly 
impacts model performance and reliability, as algorithms 
struggle to make accurate predictions when key clinical 
variables are absent. The variability in missing data patterns 
between institutions further compounds this challenge (35).

Temporal inconsistencies in data collection timing and 
frequency between different ED settings create additional 
challenges for model standardisation and validation. These 
variations affect the comparability of datasets and limit the 
ability to develop robust models that maintain performance 
across different temporal contexts. Furthermore, limited 
standardisation of data quality assurance protocols results in 
inconsistent data reliability across institutions, undermining 
confidence in model outputs and hampering efforts to 
establish best practices for data governance in ML-based 
predictive modelling (36).

The use of both real-time and historical data enables the 
development of more robust and reliable predictive models 
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for ED outcomes. Real-time data captures the immediate 
clinical status, allowing for quick, actionable predictions 
that are essential in the high-stakes ED setting, while 
historical data provides the necessary context to personalize 
and refine those predictions. When combined, these data 
sources offer a comprehensive foundation for ML models, 
enhancing their ability to predict diverse outcomes such as 
mortality risk, ICU admission, and discharge probability 
thus supporting timely and precise clinical decision-
making in the ED. Future models may also leverage 
additional data sources, such as social determinants of 
health or patient-reported outcomes, to further enhance 
prediction accuracy and address broader factors that 
influence health outcomes (37).

ML techniques for predictive modeling in the ED

ML has introduced a range of techniques suitable for 
predicting patient outcomes in the ED. These techniques 
vary in complexity, interpretability, and predictive power, 
allowing researchers and clinicians to choose models that 
best match the characteristics of their data and the needs of 
their specific ED setting (38). However, each approach faces 
distinct limitations that impact clinical implementation and 
real-world performance.

Regression models

Regression models, particularly logistic and Cox regression, 
are widely used in ED predictive modeling due to their 
simplicity and ease of interpretation. Logistic regression 
is frequently employed for binary outcomes, such as 
mortality prediction or ICU admission likelihood, allowing 
for straightforward estimation of probabilities based on 
predictor variables (39). For example, logistic regression 
models can predict the probability of patient mortality 
by incorporating established risk factors such as age, vital 
signs, comorbidities, and presenting symptoms. One of the 
main strengths of regression models is their interpretability; 
coefficients for each variable offer insight into how specific 
risk factors contribute to the outcome. Additionally, Cox 
regression models are suitable for time-to-event data, 
allowing for the analysis of factors influencing the time until 
events like ICU admission or patient discharge. 

Across the reviewed studies, logistic regression models 
demonstrated AUC-ROC values ranging from 0.68–0.82 
for mortality prediction and 0.65–0.79 for ICU admission 
prediction. Studies have shown that regression models can 

perform well in predicting ED outcomes, especially when 
the relationships between variables and outcomes are linear 
and relatively straightforward (33,34). However, these 
models may struggle with complex, non-linear relationships, 
which are often present in high-dimensional healthcare 
data, limiting their performance in more nuanced predictive 
tasks. However, these models face significant limitations 
including poor performance with non-linear relationships, 
limited ability to capture complex variable interactions, and 
reduced accuracy when dealing with high-dimensional data 
typical in modern ED settings. Furthermore, regression 
models often struggle with multicollinearity issues when 
multiple correlated predictors are included.

Decision trees and random forests

Decision trees and random forests are popular ML 
techniques for ED predictive modeling due to their ability 
to capture complex, non-linear relationships within the 
data. A decision tree model breaks down data into branches 
based on feature values, ultimately leading to a predicted 
outcome based on the combination of variables. Random 
forests, an ensemble method that combines multiple 
decision trees, improve upon single decision tree models by 
reducing overfitting and enhancing generalizability (39,40). 

Random forest models consistently demonstrated 
superior performance compared to single decision trees, 
with AUC-ROC values ranging from 0.78–0.91 across 
different ED outcomes (41). In the ED setting, random 
forest models have demonstrated strong performance 
in predicting patient outcomes, as they can account for 
interactions between variables that may not be captured in 
simpler models. For instance, random forests can combine 
factors like patient age, initial vital signs, lab results, and 
comorbid conditions to predict outcomes such as ICU 
admission or hospital discharge (42). These models are 
particularly valuable when there are numerous predictor 
variables with potentially complex interactions, as in 
emergency medicine. However, decision trees and random 
forests can be less interpretable than simpler models, 
especially as the number of trees and branches increases. 
This lack of transparency may limit clinicians’ trust in the 
predictions, underscoring the need for approaches that 
balance predictive accuracy with interpretability.

However, key limitations include reduced interpretability 
as model complexity increases, potential overfitting with 
small datasets, and computational intensity that may limit 
real-time implementation. Additionally, decision trees and 
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random forests can be sensitive to imbalanced datasets, a 
common challenge in ED settings where adverse outcomes 
are relatively rare.

Neural networks and deep learning

Neural networks, especially deep learning models, have 
shown remarkable success in capturing complex, high-
dimensional patterns in large datasets, making them well-
suited for certain predictive tasks in the ED. These models 
consist of interconnected layers of “neurons” that process 
inputs through a series of transformations to produce 
an output (43,44). Deep learning models, including 
Convolutional Neural Networks (CNNs) and Recurrent 
Neural Networks (RNNs), are particularly useful in the 
ED context. CNNs, for example, have been effectively 
applied to analyze medical imaging data, such as X-rays or 
computed tomography (CT) scans, to detect conditions like 
fractures, hemorrhages, or pneumonia, which can directly 
impact patient outcomes in the ED. RNNs, which are 
specialized for sequential data, have demonstrated utility 
in analyzing time-series data, such as a patient’s vital signs 
over time, allowing for real-time monitoring of patient 
deterioration or stability. 

Deep learning models achieved the highest predictive 
performance, with AUC-ROC values ranging from 
0.85–0.96 for mortality prediction and 0.82–0.94 for ICU 
admission prediction (45). Despite their powerful predictive 
capabilities, neural networks are often considered “black-
box” models due to their complex internal structure, making 
them less interpretable. This lack of transparency can be 
problematic in the clinical setting, as clinicians may hesitate 
to rely on predictions they do not fully understand. Efforts 
to improve model interpretability, such as the development 
of explainable AI (XAI) techniques, are ongoing and may 
increase the acceptance of neural networks in emergency 
medicine (46,47). Critical limitations include the requirement 
for large training datasets, substantial computational 
resources, extended training times, and most importantly, 
poor explainability which limits clinical acceptance. 
Additionally, deep learning models are prone to overfitting, 
particularly when applied to heterogeneous ED populations, 
and their performance can degrade significantly when applied 
to data from different institutions (48).

Ensemble models

Ensemble models are a class of ML techniques that 

combine predictions from multiple individual models to 
create a more robust and accurate final prediction. By 
aggregating predictions from different models, such as 
random forests and gradient boosting algorithms, ensemble 
methods can mitigate the weaknesses of individual models 
and improve overall performance (49,50). Ensemble models 
are particularly beneficial in the ED setting, where multiple 
outcomes, such as mortality, ICU admission, and discharge 
probability, need to be predicted simultaneously. For 
instance, gradient boosting, which sequentially improves 
predictions by focusing on misclassified cases in each 
iteration, has demonstrated strong predictive performance 
in ED settings for various outcomes. Similarly, random 
forest ensembles, which average predictions across a forest 
of decision trees, have shown success in identifying high-
risk patients and optimizing triage decisions. 

Ensemble models demonstrated robust performance 
across studies, with AUC-ROC values consistently ranging 
from 0.82–0.94 for various ED outcomes. Gradient boosting 
algorithms, in particular, showed strong performance with 
values between 0.84–0.93 (51). One of the main advantages 
of ensemble models is their ability to improve prediction 
accuracy without significantly increasing model complexity. 
Table 3 summarises the performance characteristics of 
different ML techniques across the reviewed studies.

F i g u re  2  s u m m a r i s e s  o f  t h e  p r o g r e s s i o n  a n d 
characteristics of different ML techniques used in ED 
predictive modelling. By leveraging the strengths of 
multiple algorithms, ensemble models offer a balanced 
approach to prediction in the ED, providing high accuracy 
while managing interpretability challenges. However, 
ensemble methods can still present a “black-box” issue, 
especially when multiple complex models are combined, 
which may hinder clinicians’ ability to interpret the specific 
contributions of individual predictors.

Current research gaps and limitations

Across all ML techniques, several critical limitations were 
identified that hinder the translation of research findings 
into clinical practice. Limited real-world validation 
represents a significant gap, as most studies lack validation 
in real clinical settings, with few reporting implementation 
outcomes or clinical impact assessments. This disconnects 
between research environments and actual clinical 
workflows creates uncertainty about how these models 
would perform when deployed in busy EDs with real 
patients and clinical staff.
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Table 3 Comparative performance of ML techniques in ED predictive modelling

ML technique
Mortality prediction 

AUC-ROC
ICU admission  

AUC-ROC
Discharge prediction 

AUC-ROC
Key advantages Primary limitations

Logistic regression (52) 0.68–0.82 0.65–0.79 0.70–0.81 High interpretability, 
fast training

Poor non-linear 
performance

Decision trees (53) 0.70–0.83 0.68–0.80 0.72–0.84 Good interpretability, 
handles interactions

Prone to overfitting

Random forests (54) 0.78–0.91 0.76–0.88 0.80–0.90 Robust performance, 
handles complex 
data

Reduced 
interpretability

Neural networks (55) 0.85–0.96 0.82–0.94 0.84–0.93 Highest predictive 
accuracy

Black-box nature, 
data hungry

Ensemble models (56) 0.82–0.94 0.80–0.92 0.83–0.91 Balanced accuracy 
and robustness

Computational 
complexity

AUC-ROC, area under the receiver operating characteristic curve; ED, emergency department; ML, machine learning.

Generalisability concerns pose another substantial 
challenge, as models often perform poorly when applied 
to different institutions or patient populations, indicating 
limited external validity. These performance drops highlight 
the models’ tendency to overfit to specific datasets or 
institutional practices, raising questions about their broader 
applicability across diverse healthcare settings. The lack of 

robust external validation studies further compounds this 
limitation.

Interpretabil i ty chal lenges persist  even among 
simpler models, which face adoption barriers due to 
insufficient explanation of clinical reasoning behind 
predictions. Clinicians require clear understanding of how 
predictions are generated to trust and act upon model 

Figure 2 Machine learning techniques for predictive modelling in EDs. This figure illustrates the progression of machine learning 
techniques used for predictive modeling in EDs, showcasing four main categories: regression models, decision trees and random forests, 
neural networks and deep learning, and ensemble models. CNN, convolutional neural networks; EDs, Emergency Departments; ICU, 
intensive care unit.

Example: Logistic regression 
for mortality prediction

Example: Random forest for 
ICU admission prediction

Example: CNN for medical 
image analysis

Example: Gradient boosting for 
multiple outcome predictions

Regression 
models

Decision trees and 
random forests

Neural networks 
and deep learning

Ensemble models
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recommendations, yet many studies fail to provide adequate 
interpretability frameworks or user-friendly explanation 
interfaces. Additionally, temporal stability remains poorly 
addressed, with few studies assessing model performance 
degradation over time or providing protocols for model 
updating and maintenance. This oversight is particularly 
concerning given that healthcare data patterns and clinical 
practices evolve continuously, potentially rendering static 
models obsolete or inaccurate over time.

Predictive models for specific outcomes

Predictive models have been developed to forecast a 
range of critical outcomes in the ED, aiding in timely and 
effective decision-making. These models focus on specific 
predictions such as mortality risk, ICU admission, and 
discharge probability, each of which has distinct clinical 
implications (57,58). By enhancing clinicians’ ability to 
anticipate these outcomes, predictive models contribute to 
improved patient care and more efficient ED operations. 
However, significant variations in model performance and 
clinical applicability exist across different outcome types.

Mortality prediction

Mortality prediction models are designed to assess a 
patient’s risk of death within a short timeframe, providing a 
critical tool for identifying patients who require immediate, 
intensive care. Traditionally, mortality risk has been 
evaluated using clinical scoring systems like the MEWS 
and the SOFA, which incorporate various physiological 
measures to estimate risk (59,60). However, these scores 
have limitations in accuracy and adaptability, particularly in 
diverse patient populations. 

Across the reviewed studies, ML-based mortality 
prediction models demonstrated AUC-ROC values 
ranging from 0.75–0.96, significantly outperforming 
traditional scoring systems (AUC-ROC 0.65–0.80). The 
most successful models incorporated both real-time 
physiological data and historical comorbidity information, 
with ensemble and deep learning approaches showing 
superior performance (61). Integrating ML with traditional 
scoring systems has been shown to enhance the precision 
of mortality prediction as indicated that ML models, 
particularly ensemble and deep learning approaches, can 
outperform conventional scoring systems by effectively 
managing high-dimensional, complex data (62).

Ensemble models such as gradient boosting and random 

forests have demonstrated strong performance in mortality 
prediction by combining multiple algorithms to mitigate 
the limitations of individual models. Deep learning 
models, especially those with recurrent or convolutional 
architectures, can further refine predictions by identifying 
subtle patterns in time-series data, such as changes in vital 
signs over time. These models also have the flexibility to 
integrate diverse data sources, including lab results, imaging 
reports, and clinical notes, improving risk stratification for 
ED patients. For instance, deep learning models leveraging 
electronic health records (EHRs) could predict in-hospital 
mortality with higher accuracy than conventional scoring 
systems (63,64). 

However, mortality prediction models face significant 
challenges including class imbalance (with mortality rates 
typically <5% in general ED populations), difficulty in 
defining appropriate prediction time horizons, and ethical 
concerns regarding the clinical use of mortality predictions 
in triage decisions. Additionally, model performance varies 
substantially across different patient subgroups, with 
reduced accuracy in elderly patients and those with multiple 
comorbidities (65).

ICU admission

Accurate prediction of ICU admission is critical in the 
ED, as it enables proactive resource allocation and bed 
management, especially in hospitals with limited ICU 
capacity. Predictive models for ICU admission rely on a 
combination of physiological data, such as vital signs and 
lab results, and demographic factors, including age and 
comorbidities. ML techniques like random forests and 
neural networks have shown promising results in predicting 
ICU needs, as these models excel in managing complex, 
non-linear data interactions. Random forests, with their 
ability to capture variable interactions, can identify high-
risk patients who may require ICU care based on a broad 
set of factors, such as severe respiratory distress, abnormal 
lab values, and deteriorating clinical status.

ICU admission prediction models demonstrated AUC-
ROC values ranging from 0.76–0.94 across the reviewed 
studies, with neural networks and ensemble methods 
showing the strongest performance. Models incorporating 
laboratory values and imaging results achieved higher 
accuracy than those relying solely on vital signs and 
demographic data (66).

Neural networks, particularly RNNs, are well-suited for 
analyzing time-series data, making them useful for ICU 



Annals of Translational Medicine, Vol 13, No 5 October 2025 Page 11 of 21

Copyright © 2025 AME Publishing Company. All rights reserved.   Ann Transl Med 2025;13(5):60 | https://dx.doi.org/10.21037/atm-25-83

admission prediction in patients with rapidly changing 
conditions (67). For example, if a patient’s heart rate, 
respiratory rate, or oxygen saturation levels fluctuate 
significantly over time, RNNs can capture these trends to 
improve ICU admission predictions. A study highlighted 
that RNN-based models trained on EHR data could predict 
ICU admissions more accurately than traditional logistic 
regression models, underscoring the potential of neural 
networks in this domain (68). The predictive power of 
these models can assist ED clinicians in prioritizing ICU 
resources, ensuring that critically ill patients receive the 
necessary level of care without delays.

Key limitations in ICU admission prediction include 
significant variation in ICU admission criteria between 
institutions, seasonal variations in ICU bed availability 
that affect prediction utility, and difficulty distinguishing 
between patients requiring ICU-level monitoring versus 
active intervention. Furthermore, models trained at one 
institution often show reduced performance when applied 
elsewhere due to differences in admission practices and 
patient populations (69).

Discharge probability

Predicting the likelihood of discharge is essential for 
optimizing patient flow and reducing ED overcrowding, a 
common challenge in many healthcare systems. Discharge 
probability models help clinicians identify patients who 
are likely to be safely discharged within a short timeframe, 
allowing for more efficient use of ED resources and 
reducing patient wait times. Logistic regression has 
traditionally been used to predict discharge likelihood, 
providing a straightforward approach to modeling binary 
outcomes (i.e., discharge or admission). However, recent 
advances have shown that more complex models, such as 

gradient boosting, can significantly enhance prediction 
accuracy by incorporating a wider range of factors, 
including time-sensitive variables.

Discharge prediction models showed AUC-ROC 
values ranging from 0.70–0.93, with ensemble methods 
demonstrating superior performance. Models that 
incorporated treatment response variables and time-to-
disposition factors achieved higher accuracy than those 
using only initial presentation data (70). 

Gradient boosting models can integrate real-time factors 
like lab turnaround times, initial treatment response, and 
the patient’s clinical improvement or deterioration over the 
course of their ED stay. By dynamically updating discharge 
predictions based on these factors, gradient boosting models 
can provide clinicians with near real-time insights into 
patient status. For instance, a study found that incorporating 
lab results and treatment progress in discharge prediction 
models increased accuracy and helped prevent unnecessary 
admissions, which can contribute to ED overcrowding (71). 

However, discharge prediction faces unique challenges 
including high variability in discharge criteria between 
clinicians, significant influence of non-medical factors 
(bed availability, social circumstances), and difficulty in 
incorporating time-dependent variables that affect discharge 
timing. Additionally, discharge models must balance 
sensitivity to prevent inappropriate early discharge with 
specificity to avoid unnecessary admissions (71).

Table 4 summarises the performance characteristics and 
clinical considerations for different outcome predictions.

Figure 3 provides a comprehensive visual summary of 
how different predictive modeling techniques are applied 
to critical decision-making processes in EDs, showcasing 
the progression towards more advanced and accurate 
prediction methods. These models have particular value in 
supporting the management of patient flow, ensuring that 

Table 4 Predictive model performance by outcome type

Outcome
Best performing 

technique
AUC-ROC range Key predictive features

Primary clinical 
challenges

Implementation 
barriers

Mortality (72) Deep learning/
ensemble

0.75–0.96 Vital signs, lab values, 
comorbidities

Class imbalance, 
ethical considerations

Regulatory approval, 
clinical acceptance

ICU admission (73) Neural networks/
ensemble

0.76–0.94 Physiological 
instability, organ 

dysfunction

Variable admission 
criteria

Real-time data 
integration

Discharge (74) Gradient boosting/
ensemble

0.70–0.93 Treatment response, 
social factors

Non-medical 
discharge barriers

Dynamic factor 
incorporation

AUC-ROC, area under the receiver operating characteristic curve.
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beds are available for new arrivals and helping ED staff 
make more informed decisions patient care and discharge 
readiness. However, successful clinical implementation 
requires addressing significant methodological limitations 
and developing robust validation frameworks.

Model evaluation and performance metrics

Evaluating the performance of predictive models is essential 
to ensure that they provide reliable and actionable insights 
in the ED. The unique demands of the ED environment, 
where rapid, high-stakes decisions are routine, require 
models that are not only accurate but also sensitive to 
critical cases. The effectiveness of these models is assessed 
using a variety of performance metrics, each of which 
provides distinct information about model strengths and 
weaknesses in the clinical context. However, significant 
inconsistencies in evaluation approaches across studies limit 
the ability to compare models and assess real-world clinical 
utility. Commonly used metrics include accuracy, sensitivity, 
specificity, AUC-ROC, F1 score, and model calibration.

Standard performance metrics

Accuracy is a fundamental metric that measures the 
proportion of correct predictions (both true positives and 
true negatives) out of all predictions made by the model. 

While accuracy is useful for assessing overall model 
performance, it may be less informative in ED predictive 
modeling, where positive outcomes (e.g., ICU admission 
or mortality) are often rare compared to negative outcomes 
(e.g., discharge) (75). In these cases, a high accuracy score 
could mask poor performance in detecting critical cases, 
as the model may achieve high accuracy by predominantly 
predicting negative outcomes.

Sensitivity (also known as recall or true positive rate) 
is particularly crucial in mortality and ICU admission 
prediction models, as it measures the model’s ability to 
correctly identify patients who truly belong to the positive 
class (e.g., high-risk patients). High sensitivity is often 
prioritized in these models to ensure that critical patients 
are identified early, as failing to detect such cases could 
result in missed or delayed interventions with serious 
consequences. Across the reviewed studies, sensitivity values 
varied widely from 0.65–0.92 for mortality prediction and 
0.70–0.89 for ICU admission prediction, highlighting 
significant inconsistencies in model performance for critical 
case detection (76). In mortality prediction, for instance, 
a high-sensitivity model helps clinicians identify and 
prioritize patients who may require intensive monitoring or 
treatment, minimizing the risk of underestimating critical 
cases.

Specificity (or true negative rate), on the other hand, 
measures the model’s ability to correctly identify patients 

Mortality Prediction
Traditional scoring systems (MEWS, SOFA)
ML models (ensemble methods, deep learning)
Integration of diverse data sources

ICU Admission
Random forests for complex interactions
RNNs for time-series analysis
Factors: vital signs, lab results, demographics

Discharge Probability
Logistic regression as traditional approach
Gradient boosting for enhanced accuracy
Real-time factors: lab turnaround, treatment response

Figure 3 Predictive models for critical outcomes in EDs. This figure illustrates three key predictive models used in EDs to forecast 
critical patient outcomes. The diagram is divided into three panels, each representing a specific prediction type: mortality prediction, ICU 
admission, and discharge probability. EDs, Emergency Departments; ICU, intensive care unit; MEWS, Modified Early Warning Score; ML, 
machine learning; RNNs, Recurrent Neural Networks; SOFA, Sequential Organ Failure Assessment.
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who do not belong to the positive class. High specificity 
is important in predicting discharge probability, where 
accurate identification of low-risk patients can support 
efficient bed management and reduce unnecessary 
admissions. Specificity values ranged from 0.72–0.95 across 
different outcomes, with discharge prediction models 
generally achieving higher specificity than mortality or ICU 
admission models (77).

The AUC-ROC is a comprehensive metric that provides 
insight into a model’s ability to distinguish between positive 
and negative cases across various thresholds. The AUC-
ROC score ranges from 0 to 1, with higher scores indicating 
better discriminatory power. An AUC-ROC of 0.5 suggests 
no discriminatory ability, equivalent to random guessing, 
whereas a score closer to 1 indicates strong discriminatory 
performance. While AUC-ROC is widely reported, fewer 
than 40% of reviewed studies provided confidence intervals 
or statistical significance testing for AUC comparisons. 
The AUC-ROC metric is widely used in ED predictive 
modeling to compare the overall effectiveness of different 
models, as it considers both sensitivity and specificity.

The F1 score is a harmonic mean of sensitivity and 
precision (the proportion of true positive predictions out 
of all positive predictions), making it particularly valuable 
when there is an imbalance between positive and negative 
outcomes, as is often the case in ED predictive tasks. F1 
scores were reported in only 60% of reviewed studies, 
limiting comparative analysis of model performance in 
handling class imbalance (78). The F1 score helps assess a 
model’s performance in identifying true positive cases while 
minimizing false positives. For instance, in predicting ICU 
admission, a high F1 score indicates that the model is both 
sensitive to high-risk patients and precise in minimizing 
unnecessary ICU recommendations, helping to balance 
patient safety with resource utilization.

Model calibration and clinical utility

Model calibration is another critical component in 
evaluating predictive models in clinical settings. Calibration 
assesses whether the predicted probabilities generated by 
the model align with actual observed outcomes. A well-
calibrated model provides probabilities that accurately 
reflect the likelihood of outcomes, which is crucial in clinical 
decision-making. For example, if a mortality prediction 
model outputs a 20% risk of death, this should correspond 
closely to an actual 20% mortality rate in patients with 
similar risk scores. However, calibration assessment 

was reported in fewer than 30% of reviewed studies, 
representing a significant gap in model evaluation practices. 
Poor calibration can lead to over- or underestimation of 
risk, which may mislead clinicians in assessing patient 
urgency or appropriate levels of care. Techniques like 
reliability diagrams and calibration curves are commonly 
used to assess model calibration, ensuring that predictions 
align with real-world outcomes.

Current limitations in model evaluation

Several critical limitations in model evaluation practices 
were identified across the reviewed studies:

(I)	 Inconsistent metrics: significant variation in 
reported performance metrics limits the ability to 
compare models across studies and identify optimal 
approaches.

(II)	 Limited external validation: only 25% of studies 
included external validation, with most relying 
solely on internal cross-validation or temporal split 
validation.

(III)	 Insufficient calibration assessment: poor reporting 
of model calibration limits understanding of real-
world prediction reliability.

(IV)	 Lack of clinical impact metrics: few studies assessed 
clinical utility measures such as decision curve 
analysis, net benefit, or clinical implementation 
outcomes.

(V)	 Missing subgroup analysis: limited evaluation 
of model performance across different patient 
populations (e.g., elderly, paediatric, specific disease 
groups).

(VI)	 Temporal validation gaps: insufficient assessment 
of model performance degradation over time or 
seasonal variations.

Recommendations for improved evaluation

Based on the identified limitations, future studies should 
adopt standardised evaluation frameworks that include:

(I)	 Core metric set: consistent reporting of AUC-
ROC, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1 score with 
confidence intervals.

(II)	 Calibration assessment: mandatory inclusion 
of calibration plots and statistical tests for all 
prediction models.

(III)	 External validation: multi-centre validation studies 
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to assess model generalisability across different 
settings.

(IV)	 Clinical utility measures: integration of decision 
curve analysis and net benefit calculations to assess 
clinical value.

(V)	 Subgroup analysis: systematic evaluation of model 
performance across relevant patient subgroups.

(VI)	 Temporal stability: assessment of model performance 
over extended time periods with regular recalibration 
protocols.

Future directions

The field of predictive modeling in the ED is evolving 
rapidly, with ongoing advancements that hold the potential 
to further enhance patient outcomes and streamline 
healthcare delivery. The future of ED predictive models will 
likely be characterized by increased personalization, greater 
interpretability, and integration with emerging technologies 
such as telemedicine. However, significant research gaps 
and implementation challenges must be addressed to realise 
the full potential of these advances. Each of these directions 
promises to address current limitations, making predictive 
models more accurate, trustworthy, and applicable to a 
broader range of clinical scenarios.

Personalized prediction models

As the demand for precision medicine grows, there is 
increasing interest in developing predictive models that 
account for individual patient characteristics beyond 
standard clinical data. Personalized prediction models 
incorporate features such as genomic information, lifestyle 
factors, and social determinants of health, providing more 
tailored and nuanced predictions (79-82).

For instance, genomic data can offer insights into a 
patient’s predisposition to certain diseases or their likely 
response to specific treatments, which may be especially 
relevant in predicting outcomes for patients with complex 
or rare conditions. Lifestyle factors, such as exercise habits, 
smoking status, and diet, have been shown to influence 
outcomes for various health conditions and could further 
refine ED predictions. Social determinants of health, 
including socioeconomic status, education level, and 
access to healthcare resources, are also important, as they 
can impact both health outcomes and the effectiveness 
of interventions. By integrating these factors, future 
predictive models could produce more individualized 

recommendations, allowing clinicians to make decisions 
that are better aligned with each patient’s unique needs and 
circumstances. However, current research in personalised 
ED prediction models remains limited, with fewer than 
15% of reviewed studies incorporating genetic or detailed 
social determinant data.

Key challenges for personalised models include 
data privacy concerns, the need for comprehensive 
data integration platforms, increased computational 
requirements, and the complexity of obtaining detailed 
individual patient data in emergency settings. Furthermore, 
the clinical utility of genetic information in acute care 
decisions remains unclear, requiring substantial additional 
research to demonstrate cost-effectiveness and clinical 
impact.

XAI

One of the most significant challenges in adopting ML 
models in clinical settings is their often “black-box” nature, 
where complex models produce predictions without 
clear explanations of the underlying reasoning. This 
lack of transparency can create barriers to clinician trust 
and acceptance, especially in high-stakes environments 
like the ED, where decisions must be made quickly and 
with confidence. XAI aims to address this challenge by 
making predictive models more interpretable (83,84). 
Through XAI, clinicians would be able to understand why 
a model made a particular prediction, potentially viewing 
contributing factors, data patterns, or decision paths that led 
to the outcome. For example, XAI techniques like Shapley 
Additive Explanations (SHAP) values can quantify the 
contribution of each input feature (e.g., age, blood pressure, 
lab results) to a specific prediction, providing clinicians with 
a clearer picture of the underlying reasoning (85,86).

Current XAI implementations in ED settings show 
promise, with several studies demonstrating improved 
clinician acceptance when explanations are provided. 
However, significant limitations remain including 
computational overhead for generating explanations, 
inconsistency in explanation quality across different 
cases, and lack of standardised approaches for presenting 
explanations in clinical workflows. As XAI technologies 
advance, they could play a pivotal role in increasing clinician 
confidence and facilitating the integration of predictive 
models into ED workflows, ultimately leading to better-
informed, data-driven decisions that align with clinical 
intuition and expertise.
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Key areas requiring further research include optimal 
explanation granularity for different clinical contexts, 
standardisation of explanation formats, integration with 
existing clinical decision support systems, and validation of 
explanation accuracy and clinical utility.

Telemedicine integration

The rise of telemedicine has expanded the potential 
applications of predictive models, particularly by enabling 
remote monitoring and early intervention. Telemedicine 
allows patients to connect with healthcare providers 
from their homes, and in some cases, wearable devices 
continuously transmit real-time data, such as heart rate, 
oxygen saturation, and activity levels (87). Future predictive 
models could leverage this data to anticipate ED outcomes 
even before a patient arrives at the hospital, allowing for 
preemptive interventions when necessary. For example, if a 
remote monitoring system detects that a patient’s vital signs 
are deteriorating, a predictive model could alert clinicians to 
the need for an immediate ED visit, expediting the patient’s 
arrival and enabling the ED to prepare for their specific 
needs. This approach could be particularly beneficial for 
managing chronic conditions or high-risk populations, such 
as elderly patients or those with multiple comorbidities, 
who may experience rapid health changes that require 
prompt attention. However, telemedicine-integrated 
prediction models face challenges including data quality 
from consumer-grade devices, connectivity issues, privacy 
concerns, and the need for real-time processing capabilities.

Current research in telemedicine integration remains 
early-stage, with limited evidence for clinical effectiveness 
and cost-benefit analysis. Key research priorities include 
validating wearable device data accuracy, developing 
standardised protocols for remote monitoring alerts, 
establishing clear clinical pathways for telemedicine-
triggered interventions, and evaluating patient outcomes 
and satisfaction with integrated prediction systems.

Implementation science and real-world validation

A critical gap identified across the reviewed literature is 
the lack of real-world implementation studies and clinical 
impact assessment. Future research must prioritise:

(I)	 Multi-centre validation studies: large-scale 
validation across diverse healthcare systems to 
establish model generalisability and performance 
consistency.

(II)	 Clinical implementation trials: randomised 
controlled trials evaluating the clinical impact of 
ML-assisted decision making on patient outcomes, 
ED efficiency, and cost-effectiveness.

(III)	 Human factors research: studies examining the 
integration of predictive models into clinical 
workflows, including user interface design, alert 
fatigue prevention, and workflow optimisation.

(IV)	 Long-term performance monitoring: development 
of frameworks for continuous model monitoring, 
performance tracking, and systematic updating 
protocols.

Regulatory and ethical considerations

Future development must address several regulatory and 
ethical challenges:

(I)	 Regulatory approval pathways: development of 
standardised regulatory frameworks for ML-
based clinical decision support tools in emergency 
medicine.

(II)	 Bias and fairness: systematic evaluation and 
mitigation of algorithmic bias across different 
patient populations, particularly underrepresented 
groups.

(III)	 Data governance: establishment of robust data 
governance frameworks ensuring patient privacy 
while enabling model development and validation.

(IV)	 C l i n i c a l  l i a b i l i t y :  c l a r i f i c a t i o n  o f  l e g a l 
responsibilities and liability frameworks for ML-
assisted clinical decisions.

Figure 4 provides a comprehensive visual summary of 
how predictive modeling in EDs is expected to evolve, 
showcasing the potential for more personalized, explainable, 
and proactive approaches to emergency care. By integrating 
telemedicine data, predictive models could support a 
more proactive approach to emergency care, reducing the 
likelihood of delayed treatment and improving outcomes 
for vulnerable patients. However, realising these future 
directions requires substantial investment in research 
infrastructure, regulatory framework development, and 
systematic validation studies to demonstrate clinical utility 
and cost-effectiveness.

Limitations of the review

This narrative review has several limitations that should be 
acknowledged. First, as a narrative rather than systematic 
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review, this study was not conducted according to a 
structured protocol such as PRISMA; therefore, it may be 
subject to selection bias in the identification and inclusion of 
relevant studies. Second, the search was limited to English-
language publications, which may have excluded relevant 
research published in other languages, potentially affecting 
the global comprehensiveness of the findings. Third, while 
efforts were made to include recent and high-quality studies, 
the rapid evolution of ML in healthcare means that some 
emerging models or unpublished innovations may have 
been missed. Fourth, the heterogeneity among the included 
studies, in terms of data sources, model types, outcome 
definitions, and performance metrics, limits the ability 
to directly compare results across studies. Additionally, 
heterogeneity among the included studies, in terms of data 
sources, model types, outcome definitions, and performance 
metrics, limits the ability to directly compare results across 
studies. Fifth, the review did not systematically assess study 
quality using standardised assessment tools, which may 
affect the reliability of synthesised findings. Sixth, the focus 
on English-language publications from major databases may 
have introduced geographical and publication bias. Finally, 
as this is a narrative rather than quantitative synthesis, we 

did not perform a meta-analysis, which could have provided 
pooled estimates of model performance. Finally, the rapid 
pace of technological advancement in this field means that 
some findings may become outdated quickly, requiring 
regular updates to maintain relevance. Despite these 
limitations, this review provides a valuable overview of the 
current landscape of ML-based predictive modelling in the 
ED and highlights key areas for future research and clinical 
integration.

Conclusions

ML-based predictive models represent a transformative 
advancement in the ED, offering a powerful tool to enhance 
patient outcomes through timely, data-driven decision-
making. These models can analyze large volumes of clinical 
data, providing rapid predictions that assist clinicians in 
triaging patients, prioritizing critical interventions, and 
efficiently managing ED resources. By predicting key 
outcomes, such as mortality, ICU admission, and discharge 
likelihood, predictive models support a proactive approach 
to emergency care, where high-risk patients can be 
identified early, and resources can be allocated to optimize 

Personalized
Prediction Models

Integration of genomic data
Incorporation of lifestyle factors
Consideration of social determinants of health

Telemedicine
Integration

Remote monitoring of vital signs
Early intervention capabilities
Proactive approach to emergency care

Explainable Al
SHAP values
Visualization of contributing factors
Increased clinician trust and acceptance

Figure 4 Future directions in predictive modeling for EDs. This figure illustrates three key future directions in predictive modeling for 
EDs: personalized prediction models, explainable AI, and telemedicine integration. The diagram is divided into three interconnected 
panels, each representing a specific area of advancement. AI, artificial intelligence; EDs, emergency departments; SHAP, Shapley Additive 
Explanations.
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patient flow.
This comprehensive review demonstrates that ML 

models consistently outperform traditional clinical scoring 
systems, with AUC-ROC values ranging from 0.75–0.96 
for mortality prediction, 0.76–0.94 for ICU admission, and 
0.70–0.93 for discharge prediction. Ensemble methods and 
deep learning approaches showed superior performance, 
though significant implementation challenges remain.

Despite their potential, several challenges remain in 
the implementation of ML models in the ED. Critical 
limitations identified include substantial data quality 
issues with missing value rates of 15–70% for key clinical 
variables, limited external validation with only 25% of 
studies including multi-centre validation, poor model 
generalisability across different institutions and patient 
populations, and insufficient attention to model calibration 
and clinical utility assessment. Data quality is paramount; 
without consistent, comprehensive, and high-quality data, 
model predictions may lack reliability. The interpretability 
of complex ML models also presents a barrier, as clinicians 
require clear, understandable explanations to fully trust 
and act on predictions. Ethical considerations, including 
data privacy, bias, and the need for accountability, must be 
carefully addressed to ensure that predictive models uphold 
the standards and values of patient care. Nevertheless, 
ongoing research and development in areas such as XAI and 
model calibration are making these models more accessible, 
interpretable, and aligned with clinical practice.

Key areas requiring immediate research attention 
include developing standardised evaluation frameworks, 
conducting multi-centre validation studies, addressing 
algorithmic bias and fairness concerns, establishing 
regulatory approval pathways, and implementing robust 
clinical impact assessment protocols. Only 15% of reviewed 
studies incorporated detailed social determinant data, and 
fewer than 30% assessed model calibration, highlighting 
significant methodological gaps.

The future of predictive modeling in the ED is promising, 
particularly with the integration of personalized prediction 
models, advances in explainability, and telemedicine 
capabilities. Personalized models, incorporating genomic, 
lifestyle, and social data, will offer tailored insights for 
individual patients, enhancing precision in care. XAI can 
foster greater clinician trust by providing transparency 
around model predictions, facilitating smoother integration 
into clinical workflows. The integration of telemedicine can 
enable preemptive risk assessment and early intervention, 
transforming ED care for patients with chronic or high-

risk conditions. However, these advances face substantial 
implementation barriers including data privacy concerns, 
computational requirements, regulatory uncertainty, and 
the need for extensive validation studies to demonstrate 
clinical utility and cost-effectiveness.

As these advancements continue, ML-based predictive 
models will increasingly support the ED’s capacity to 
provide efficient, patient-centered care, aligning with the 
evolving demands and challenges of modern healthcare. 
Success will depend on addressing fundamental challenges 
in data standardisation, model validation, clinical 
integration, and regulatory approval whilst maintaining 
focus on demonstrated clinical utility rather than purely 
technical performance metrics.
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