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Background and Objective: The Emergency Department (ED) is a critical, high-stakes environment
where timely and accurate assessments of patient outcomes are essential for ensuring optimal care and
effective resource management. This narrative review aimed to synthesise current evidence on machine
learning (ML)-based predictive models used in the ED to forecast patient outcomes such as mortality,
intensive care unit (ICU) admission, and discharge probability, whilst identifying key limitations and future
research directions.

Methods: This narrative review synthesises recent advancements in ML-based predictive models for ED
outcomes published between January 2015 and December 2024. It explores the integration of real-time
and historical clinical data, focusing on key ML techniques such as regression models, decision trees, neural
networks, and ensemble methods. The review also evaluates data sources, model evaluation metrics, and
addresses challenges including data quality, interpretability, and ethical considerations. A comprehensive
search of four major databases yielded 156 initial results, with 45 studies ultimately included after systematic
screening.

Key Content and Findings: ML models demonstrate significant promise in processing complex, non-
linear data for ED outcome prediction with area under the receiver operating characteristic curve (AUC-
ROC) values typically ranging from 0.75-0.95 across different outcomes. Techniques like ensemble methods
and neural networks offer strong performance, while personalized prediction models and explainable artificial
intelligence (XAI) enhance precision and interpretability. However, current approaches face substantial
limitations including data heterogeneity, poor model generalisability across institutions, and lack of real-
world implementation studies. Emerging integration of telemedicine further broadens the applicability of
predictive modeling in the ED.

Conclusions: ML is reshaping predictive modeling in the ED, offering timely, data-driven support for

clinical decision-making. Despite challenges, advancements in personalized and explainable models hold the

Copyright © 2025 AME Publishing Company. All rights reserved. Ann Transl Med 2025;13(5):60 | https://dx.doi.org/10.21037/atm-25-83


https://crossmark.crossref.org/dialog/?doi=10.21037/atm-25-83

Page 2 of 21

Olawade et al. Predictive ML models in emergency care

potential to increase trust and usability in clinical workflows. Critical gaps remain in addressing data quality

issues, standardising evaluation metrics, and conducting multi-centre validation studies.

Keywords: Machine learning (ML); predictive modeling; Emergency Department (ED); patient outcomes;

clinical decision-making
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Introduction

The Emergency Department (ED) is a critical component
of healthcare systems, serving as a frontline response for
patients with a wide range of conditions, from minor
injuries to severe, life-threatening emergencies (1). In
this high-stakes, fast-paced environment, clinicians face
immense pressure to quickly and accurately assess patient
conditions and make informed treatment decisions. Rapid,
precise assessment of patient outcomes is essential, as it
guides clinical decisions, optimizes resource allocation, and
directly impacts patient survival and recovery (2). However,
due to the overwhelming influx of patients and the demand
for swift decision-making, ED clinicians often rely on a
combination of clinical experience, intuition, and traditional
scoring systems, which, while helpful, have limitations in
terms of speed, scalability, and predictive accuracy (3,4). As
healthcare systems continue to manage increasing patient
volumes and resource constraints, there is a growing need
for innovative tools that enhance clinical decision-making
in real-time.

In recent years, machine learning (ML) has emerged
as a transformative technology in healthcare, especially in
areas like the ED, where timely, data-driven insights can
be lifesaving (5). ML, a branch of artificial intelligence
(AI), uses algorithms and statistical models that learn
patterns from vast amounts of data, enabling them to
make predictions or decisions without requiring explicit
programming for each task. ML-based predictive models
are especially valuable in the ED, as they can process
diverse inputs such as vital signs, lab results, demographics,
and even unstructured clinical notes allowing for a more
comprehensive and nuanced analysis than is typically
achievable with traditional methods (4). For instance, while
traditional scoring systems like the Acute Physiology and
Chronic Health Evaluation (APACHE) or the Sequential
Organ Failure Assessment (SOFA) have been instrumental
in assessing risk in critically ill patients, these systems are

Copyright © 2025 AME Publishing Company. All rights reserved.

limited by the number of variables they can incorporate and
are often applied broadly, potentially overlooking individual
patient nuances. ML models, in contrast, can integrate real-
time data with historical clinical information, enabling them
to make individualized predictions about key outcomes such
as mortality risk, likelihood of intensive care unit (ICU)
admission, and discharge probability (6,7).

The implications of predictive modeling in the ED
extend beyond immediate patient care, influencing
broader operational and resource management decisions.
By anticipating patient outcomes with greater accuracy,
predictive models allow for earlier identification of high-risk
patients, support more efficient triage processes, and help
optimize bed utilization. These insights ultimately enable
healthcare providers to allocate resources more effectively,
improving patient throughput and potentially reducing
wait times. Although ML-based predictive models hold
significant promise, there are also challenges to consider,
including the integration of models into existing ED
workflows, issues related to data quality and consistency, and
the need for model interpretability to ensure clinicians can
trust and act on the predictions provided. This review aims
to synthesise current developments in predictive modeling
for patient outcomes in the ED, examining the types of
data and ML techniques used, the performance of various
models, and the challenges and opportunities that lie ahead.
By exploring the practical implications of predictive models
and identifying potential directions for future research, this
paper seeks to highlight the transformative potential of ML
in enhancing patient outcomes and operational efficiency in
emergency care.

This review focuses specifically on ML applications
within the ED setting, encompassing both immediate
triage decisions and subsequent care pathways including
ICU admission and mortality prediction within the first
24-48 hours of ED presentation. This narrative review
examines studies published between January 2015 and
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December 2024, focusing on original research articles that
developed or evaluated ML-based predictive models for
patient outcomes in ED settings. The scope encompasses
models predicting mortality, ICU admission, and discharge
outcomes, whilst critically examining current limitations
and identifying key areas requiring further research
attention. We present this article in accordance with the
Narrative Review reporting checklist (available at https://
atm.amegroups.com/article/view/10.21037/atm-25-83/rc).

Methods

This narrative review was conducted to explore and
synthesise existing literature on the application of ML
models for predicting patient outcomes in the ED. The
primary outcomes of interest included mortality, ICU
admission, and discharge probability. The review aimed to
provide an overview of the data sources, types of ML models
used, evaluation metrics, and future directions in predictive
modelling within ED settings whilst critically examining
current limitations and methodological challenges.

Search strategy and study selection

A comprehensive search was conducted across major
databases, including PubMed, Scopus, Web of Science,
and IEEE Xplore, for peer-reviewed articles published
between 14" January 2015 and 28" December 2024. Search
terms included combinations of keywords such as “machine
learning”, “predictive models”, “emergency department”,
“mortality prediction”, “ICU admission”, “discharge”,
“triage”, and “clinical decision support”. Additional terms
included “artificial intelligence”, “deep learning”, “neural
networks”, and “clinical decision support systems”. A
comprehensive summary of the search strategy, including
databases searched, search terms, and selection criteria, is
presented in Table 1. The initial search strategy yielded 156
articles across all databases: PubMed (68 articles), Scopus
(41 articles), Web of Science (32 articles), and IEEE Xplore
(15 articles). After removing duplicates (n=23), 133 articles
underwent title and abstract screening. Of these, 76 articles
were excluded for not meeting inclusion criteria, leaving
57 articles for full-text review. Following full-text assessment,
12 additional articles were excluded due to insufficient
methodological detail or lack of ED-specific focus, resulting
in 45 studies included in the final analysis (Figure I).
Inclusion criteria were: (I) studies focused on the
development or evaluation of ML-based predictive models

Copyright © 2025 AME Publishing Company. All rights reserved.
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in the ED; (IT) models aimed at predicting at least one of the
target outcomes (mortality, ICU admission, or discharge);
(TIT) use of real-world clinical data (real-time or historical);
and (IV) articles published in English. Exclusion criteria
included review articles, editorials, conference abstracts
without full text, and studies not specifically focused on ED
settings.

Data extraction and analysis strategy

The selected studies were reviewed for information on
study design, data type, ML algorithms applied, outcome
measures, and model performance metrics. Data extraction
focused on identifying: (I) study characteristics (sample size,
setting, study period); (II) ML methodologies employed;
(IIT) performance metrics [area under the receiver operating
characteristic curve (AUC-ROC), sensitivity, specificity, F1-
score]; (IV) data quality considerations; and (V) reported
limitations. The narrative synthesis focused on identifying
trends, strengths, limitations, and gaps in current evidence
to inform future research and clinical applications. Studies
were thematically grouped by primary outcome (mortality,
ICU admission, discharge prediction) and analytical
approach, with particular attention paid to methodological
limitations and real-world implementation challenges.

Data sources for predictive models

The performance of ML models in predicting patient
outcomes in the ED relies heavily on data quality and the
diversity of data inputs. Accurate, reliable models must
draw from comprehensive datasets that capture the patient’s
current condition and relevant medical history (8-10). ML
models for ED outcome prediction typically utilize two
main types of data: real-time clinical data and historical
clinical data. Each data source contributes distinct value to
the predictive process, enabling the generation of timely
and individualized predictions (11).

Table 2 summarizes key clinical scoring systems: Modified
Early Warning Score (MEWS), SOFA, APACHE, quick
SOFA (qSOFA), and National Early Warning Score
(NEWS), used in the ED for mortality prediction and risk
assessment (17). The MEWS and NEWS rely on basic vital
signs, enabling rapid assessments ideal for ED triage, while
SOFA and APACHE provide in-depth risk evaluation using
lab results and organ function metrics, though they are
more time-intensive (18-20). Simplified scores like SOFA
offer quick sepsis risk evaluations but may lack sensitivity.
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Table 1 The search strategy summary

ltems

Specification

Date of search

Databases and other sources
searched

Search terms used

Timeframe

Inclusion and exclusion criteria

February 15", 2025
PubMed, Scopus, Web of Science, IEEE Xplore

” o« » o«

Primary search terms: “machine learning”, “predictive models”, “emergency department”, “mortality

prediction”, “ICU admission”, “discharge”, “triage”, “clinical decision support”

Additional terms: “artificial intelligence”, “deep learning”, “neural networks”, “clinical decision support
systems”

January 2015 to December 2024 (peer-reviewed articles)

Inclusion criteria: studies focused on development or evaluation of ML-based predictive models in the
ED; models predicting at least one target outcome (mortality, ICU admission, or discharge); use of real-
world clinical data (real-time or historical); articles published in English

Exclusion criteria: review articles; editorials; conference abstracts without full text; studies not
specifically focused on ED settings

Selection process

Initial search yielded 156 articles across all databases

Duplicates removed (n=23), leaving 133 articles

Title and abstract screening conducted

76 articles excluded for not meeting inclusion criteria

57 articles underwent full-text review

12 additional articles excluded due to insufficient methodological detail or lack of ED-specific focus

Final inclusion: 45 studies

Selection process details not specified regarding independence or consensus methods

Any additional considerations, if
applicable

Reference lists of relevant studies were manually screened to identify additional sources

Search strategy focused on peer-reviewed articles only

No mention of grey literature or unpublished studies

Language restriction to English may have introduced geographical bias

ED, emergency department; ICU, intensive care unit; ML, machine learning.

These scoring systems form structured data inputs for
ML models, enhancing risk stratification and supporting
informed ED decision-making (21-23). However, traditional
scoring systems demonstrate limited predictive accuracy
with AUC-ROC values typically ranging from 0.65-0.80,
highlighting the potential value of ML approaches.

Real-time clinical data

Real-time clinical data is critical for ML models aiming
to predict patient outcomes as early as possible upon ED
arrival. This data encompasses immediate, continuously
monitored metrics and diagnostic information that provides
a snapshot of the patient’s current health status (24,25).

Copyright © 2025 AME Publishing Company. All rights reserved.

Real-time data commonly includes vital signs such as heart
rate, respiratory rate, blood pressure, and oxygen saturation
levels, which are foundational indicators of a patient’s
physiological stability. These vital signs can be predictive
of deterioration in the ED, with abnormal values often
indicating heightened risk for adverse outcomes, including
mortality and ICU admission (26,27). Additionally, real-
time clinical data can include results from initial lab tests
(e.g., blood counts, electrolyte levels, and biomarkers),
imaging reports, and triage assessments conducted by ED
staff. This data is generally available within minutes of
patient arrival and can be continuously updated, which
allows models to adjust their predictions as new data points
are acquired.
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Identification of studies via databases

Records identified through database

Records removed before screening:
 Duplicate records removed (n=23)

-

Records excluded* (n=76)
* Not meeting inclusion criteria (n=38)
* Not ED-specific (n=22)
¢ Conference abstracts (n=16)

-

Reports excluded (n=12):
* Insufficient methodological detail (n=7)
¢ Lack of ED-specific (n=5)

=

-% searching (n=156):
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Figure 1 PRISMA flow diagram for selected articles. *, nothing else to define apart from ED. ED, emergency department.

Table 2 Commonly used clinical scoring systems in ED predictive models

Scoring System

Description

Primary Use

Advantages

Limitations

MEWS (12)

SOFA (13)

APACHE (14)

qSOFA (15)

NEWS (16)

Assesses risk based on
vital signs (e.g., heart rate,
respiratory rate, blood
pressure)

Predicts likelihood of organ
failure and mortality based
on organ function parameters

Estimates risk of mortality
using a range of physiological
and lab data

Simplified SOFA for
rapid assessment, using
respiration, mental state,
blood pressure

Similar to MEWS, includes
oxygen saturation and patient
alertness as indicators

Early mortality prediction

ICU admission and
mortality

Mortality prediction in
ICU

Sepsis risk identification

General patient
deterioration

Simple, quick to apply

Well-established in
critical care

Comprehensive,
validated in ICU

Easy to use, suitable for
ED triage

Broadly applicable in ED
settings

Limited to physiological
data

Requires lab values, less
effective for ED triage

Complex, time-
consuming to calculate

Limited in sensitivity for
sepsis

May not capture all
critical cases

APACHE, Acute Physiology and Chronic Health Evaluation; ED, emergency department; ICU, intensive care unit; MEWS, Modified Early
Warning Score; NEWS, National Early Warning Score; gSOFA, Quick SOFA; SOFA, Sequential Organ Failure Assessment.

Copyright © 2025 AME Publishing Company. All rights reserved.
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Models utilising real-time data alone demonstrate
moderate predictive performance, with AUC-ROC values
typically ranging from 0.72-0.85 for mortality prediction
and 0.70-0.83 for ICU admission prediction. However,
real-time data faces significant limitations including
measurement errors, temporal variability, and incomplete
capture during peak ED volumes (28).

Predictive models trained on real-time data offer
significant advantages, particularly in terms of timeliness. By
processing and analyzing real-time data, these models can
make early, rapid predictions that aid in triage decisions and
the prioritization of critical interventions (29). For instance,
models using real-time data have been employed to identify
patients at high risk of sepsis or other severe complications
shortly after ED arrival, thereby facilitating expedited
care and reducing the time to diagnosis and treatment. In
environments where minutes matter, the ability to leverage
real-time data for quick, data-driven insights is invaluable.
Furthermore, real-time data enables the prediction of short-
term outcomes, such as the need for ICU admission or
discharge probability, providing critical support in resource
allocation and bed management (30).

Historical clinical data

While real-time data provides an immediate view of a
patient’s current health status, historical clinical data
adds a broader context that can enhance the accuracy of
predictive models. Historical data typically encompasses a
patient’s previous medical records, including past diagnoses,
comorbidities, medication history, previous admissions,
procedures, and long-term health outcomes. This data
allows ML models to incorporate insights into chronic
health conditions, previous responses to treatments, and
other trends that may influence the patient’s current
episode in the ED. The presence of chronic illnesses like
diabetes, hypertension, or chronic obstructive pulmonary
disease (COPD) has been shown to impact outcomes such
as ICU admission and in-hospital mortality, highlighting
the importance of these data points in building predictive
models (31). Models incorporating both real-time and
historical data demonstrate superior performance, with
AUC-ROC values ranging from 0.82-0.95 across different
outcomes. However, historical data presents unique
challenges including data accessibility, privacy concerns, and
significant variation in data completeness between patients
with different healthcare utilisation patterns (32).
Historical data contributes to a more personalized

Copyright © 2025 AME Publishing Company. All rights reserved.
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prediction framework by identifying pre-existing health
factors that could complicate the patient’s condition or
influence the trajectory of care. For instance, a patient
with a history of heart disease may have an elevated risk of
cardiovascular complications, which can be factored into
the model’s risk assessment for ICU admission or mortality.
Furthermore, historical data can assist in distinguishing
between patients who may present similarly upon arrival but
have different underlying risk profiles. Finding from a study
showed that incorporating a patient’s longitudinal health
data improves model performance for predicting various
outcomes, such as ED revisits or long-term prognosis, by
providing a richer understanding of individual risk factors
and health trajectories (33).

Current limitations in data sources

Despite the potential benefits of comprehensive data
integration, several critical limitations were identified
across the reviewed studies. Data heterogeneity represents
a significant challenge, with substantial variations in
electronic health record systems, data collection protocols,
and variable definitions between institutions that limit
model generalisability. These differences create barriers
to developing universally applicable predictive models
that can perform consistently across different healthcare
settings (34).

Missing data constitutes another major limitation,
with particularly high rates of missing values observed for
laboratory results (15-70%) and historical comorbidity data
(20-60%). This substantial data incompleteness significantly
impacts model performance and reliability, as algorithms
struggle to make accurate predictions when key clinical
variables are absent. The variability in missing data patterns
between institutions further compounds this challenge (35).

Temporal inconsistencies in data collection timing and
frequency between different ED settings create additional
challenges for model standardisation and validation. These
variations affect the comparability of datasets and limit the
ability to develop robust models that maintain performance
across different temporal contexts. Furthermore, limited
standardisation of data quality assurance protocols results in
inconsistent data reliability across institutions, undermining
confidence in model outputs and hampering efforts to
establish best practices for data governance in ML-based
predictive modelling (36).

The use of both real-time and historical data enables the
development of more robust and reliable predictive models
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for ED outcomes. Real-time data captures the immediate
clinical status, allowing for quick, actionable predictions
that are essential in the high-stakes ED setting, while
historical data provides the necessary context to personalize
and refine those predictions. When combined, these data
sources offer a comprehensive foundation for ML models,
enhancing their ability to predict diverse outcomes such as
mortality risk, ICU admission, and discharge probability
thus supporting timely and precise clinical decision-
making in the ED. Future models may also leverage
additional data sources, such as social determinants of
health or patient-reported outcomes, to further enhance
prediction accuracy and address broader factors that
influence health outcomes (37).

ML techniques for predictive modeling in the ED

ML has introduced a range of techniques suitable for
predicting patient outcomes in the ED. These techniques
vary in complexity, interpretability, and predictive power,
allowing researchers and clinicians to choose models that
best match the characteristics of their data and the needs of
their specific ED setting (38). However, each approach faces
distinct limitations that impact clinical implementation and
real-world performance.

Regression models

Regression models, particularly logistic and Cox regression,
are widely used in ED predictive modeling due to their
simplicity and ease of interpretation. Logistic regression
is frequently employed for binary outcomes, such as
mortality prediction or ICU admission likelihood, allowing
for straightforward estimation of probabilities based on
predictor variables (39). For example, logistic regression
models can predict the probability of patient mortality
by incorporating established risk factors such as age, vital
signs, comorbidities, and presenting symptoms. One of the
main strengths of regression models is their interpretability;
coefficients for each variable offer insight into how specific
risk factors contribute to the outcome. Additionally, Cox
regression models are suitable for time-to-event data,
allowing for the analysis of factors influencing the time until
events like ICU admission or patient discharge.

Across the reviewed studies, logistic regression models
demonstrated AUC-ROC values ranging from 0.68-0.82
for mortality prediction and 0.65-0.79 for ICU admission
prediction. Studies have shown that regression models can

Copyright © 2025 AME Publishing Company. All rights reserved.
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perform well in predicting ED outcomes, especially when
the relationships between variables and outcomes are linear
and relatively straightforward (33,34). However, these
models may struggle with complex, non-linear relationships,
which are often present in high-dimensional healthcare
data, limiting their performance in more nuanced predictive
tasks. However, these models face significant limitations
including poor performance with non-linear relationships,
limited ability to capture complex variable interactions, and
reduced accuracy when dealing with high-dimensional data
typical in modern ED settings. Furthermore, regression
models often struggle with multicollinearity issues when
multiple correlated predictors are included.

Decision trees and random forests

Decision trees and random forests are popular ML
techniques for ED predictive modeling due to their ability
to capture complex, non-linear relationships within the
data. A decision tree model breaks down data into branches
based on feature values, ultimately leading to a predicted
outcome based on the combination of variables. Random
forests, an ensemble method that combines multiple
decision trees, improve upon single decision tree models by
reducing overfitting and enhancing generalizability (39,40).

Random forest models consistently demonstrated
superior performance compared to single decision trees,
with AUC-ROC values ranging from 0.78-0.91 across
different ED outcomes (41). In the ED setting, random
forest models have demonstrated strong performance
in predicting patient outcomes, as they can account for
interactions between variables that may not be captured in
simpler models. For instance, random forests can combine
factors like patient age, initial vital signs, lab results, and
comorbid conditions to predict outcomes such as ICU
admission or hospital discharge (42). These models are
particularly valuable when there are numerous predictor
variables with potentially complex interactions, as in
emergency medicine. However, decision trees and random
forests can be less interpretable than simpler models,
especially as the number of trees and branches increases.
This lack of transparency may limit clinicians’ trust in the
predictions, underscoring the need for approaches that
balance predictive accuracy with interpretability.

However, key limitations include reduced interpretability
as model complexity increases, potential overfitting with
small datasets, and computational intensity that may limit
real-time implementation. Additionally, decision trees and
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random forests can be sensitive to imbalanced datasets, a
common challenge in ED settings where adverse outcomes
are relatively rare.

Neural networks and deep learning

Neural networks, especially deep learning models, have
shown remarkable success in capturing complex, high-
dimensional patterns in large datasets, making them well-
suited for certain predictive tasks in the ED. These models
consist of interconnected layers of “neurons” that process
inputs through a series of transformations to produce
an output (43,44). Deep learning models, including
Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs), are particularly useful in the
ED context. CNNs, for example, have been effectively
applied to analyze medical imaging data, such as X-rays or
computed tomography (CT) scans, to detect conditions like
fractures, hemorrhages, or pneumonia, which can directly
impact patient outcomes in the ED. RNNs, which are
specialized for sequential data, have demonstrated utility
in analyzing time-series data, such as a patient’s vital signs
over time, allowing for real-time monitoring of patient
deterioration or stability.

Deep learning models achieved the highest predictive
performance, with AUC-ROC values ranging from
0.85-0.96 for mortality prediction and 0.82-0.94 for ICU
admission prediction (45). Despite their powerful predictive
capabilities, neural networks are often considered “black-
box” models due to their complex internal structure, making
them less interpretable. This lack of transparency can be
problematic in the clinical setting, as clinicians may hesitate
to rely on predictions they do not fully understand. Efforts
to improve model interpretability, such as the development
of explainable Al (XAI) techniques, are ongoing and may
increase the acceptance of neural networks in emergency
medicine (46,47). Critical limitations include the requirement
for large training datasets, substantial computational
resources, extended training times, and most importantly,
poor explainability which limits clinical acceptance.
Additionally, deep learning models are prone to overfitting,
particularly when applied to heterogeneous ED populations,
and their performance can degrade significantly when applied
to data from different institutions (48).

Ensemble models

Ensemble models are a class of ML techniques that
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combine predictions from multiple individual models to
create a more robust and accurate final prediction. By
aggregating predictions from different models, such as
random forests and gradient boosting algorithms, ensemble
methods can mitigate the weaknesses of individual models
and improve overall performance (49,50). Ensemble models
are particularly beneficial in the ED setting, where multiple
outcomes, such as mortality, ICU admission, and discharge
probability, need to be predicted simultaneously. For
instance, gradient boosting, which sequentially improves
predictions by focusing on misclassified cases in each
iteration, has demonstrated strong predictive performance
in ED settings for various outcomes. Similarly, random
forest ensembles, which average predictions across a forest
of decision trees, have shown success in identifying high-
risk patients and optimizing triage decisions.

Ensemble models demonstrated robust performance
across studies, with AUC-ROC values consistently ranging
from 0.82-0.94 for various ED outcomes. Gradient boosting
algorithms, in particular, showed strong performance with
values between 0.84-0.93 (51). One of the main advantages
of ensemble models is their ability to improve prediction
accuracy without significantly increasing model complexity.
Table 3 summarises the performance characteristics of
different ML techniques across the reviewed studies.

Figure 2 summarises of the progression and
characteristics of different ML techniques used in ED
predictive modelling. By leveraging the strengths of
multiple algorithms, ensemble models offer a balanced
approach to prediction in the ED, providing high accuracy
while managing interpretability challenges. However,

4

ensemble methods can still present a “black-box” issue,
especially when multiple complex models are combined,
which may hinder clinicians’ ability to interpret the specific

contributions of individual predictors.

Current research gaps and limitations

Across all ML techniques, several critical limitations were
identified that hinder the translation of research findings
into clinical practice. Limited real-world validation
represents a significant gap, as most studies lack validation
in real clinical settings, with few reporting implementation
outcomes or clinical impact assessments. This disconnects
between research environments and actual clinical
workflows creates uncertainty about how these models
would perform when deployed in busy EDs with real
patients and clinical staff.
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Table 3 Comparative performance of ML techniques in ED predictive modelling

Mortality prediction ICU admission

Discharge prediction

ML technique AUC-ROC AUC-ROC AUC-ROC Key advantages Primary limitations

Logistic regression (52) 0.68-0.82 0.65-0.79 0.70-0.81 High interpretability, Poor non-linear
fast training performance

Decision trees (53) 0.70-0.83 0.68-0.80 0.72-0.84 Good interpretability, ~ Prone to overfitting
handles interactions

Random forests (54) 0.78-0.91 0.76-0.88 0.80-0.90 Robust performance,  Reduced
handles complex interpretability
data

Neural networks (55) 0.85-0.96 0.82-0.94 0.84-0.93 Highest predictive Black-box nature,
accuracy data hungry

Ensemble models (56) 0.82-0.94 0.80-0.92 0.83-0.91 Balanced accuracy Computational
and robustness complexity

AUC-ROC, area under the receiver operating characteristic curve; ED, emergency department; ML, machine learning.

Regression
models

random forests

Neural networks
and deep learning

Decision trees and

Ensemble models ——>

Example: Logistic regression
for mortality prediction

Example: Random forest for
ICU admission prediction

Example: CNN for medical
image analysis

Example: Gradient boosting for
multiple outcome predictions

Figure 2 Machine learning techniques for predictive modelling in EDs. This figure illustrates the progression of machine learning

techniques used for predictive modeling in EDs, showcasing four main categories: regression models, decision trees and random forests,

neural networks and deep learning, and ensemble models. CNN, convolutional neural networks; EDs, Emergency Departments; ICU,

intensive care unit.

Generalisability concerns pose another substantial
challenge, as models often perform poorly when applied
to different institutions or patient populations, indicating
limited external validity. These performance drops highlight
the models’ tendency to overfit to specific datasets or
institutional practices, raising questions about their broader
applicability across diverse healthcare settings. The lack of

Copyright © 2025 AME Publishing Company. All rights reserved.

robust external validation studies further compounds this
limitation.

Interpretability challenges persist even among
simpler models, which face adoption barriers due to
insufficient explanation of clinical reasoning behind
predictions. Clinicians require clear understanding of how
predictions are generated to trust and act upon model
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recommendations, yet many studies fail to provide adequate
interpretability frameworks or user-friendly explanation
interfaces. Additionally, temporal stability remains poorly
addressed, with few studies assessing model performance
degradation over time or providing protocols for model
updating and maintenance. This oversight is particularly
concerning given that healthcare data patterns and clinical
practices evolve continuously, potentially rendering static
models obsolete or inaccurate over time.

Predictive models for specific outcomes

Predictive models have been developed to forecast a
range of critical outcomes in the ED, aiding in timely and
effective decision-making. These models focus on specific
predictions such as mortality risk, ICU admission, and
discharge probability, each of which has distinct clinical
implications (57,58). By enhancing clinicians’ ability to
anticipate these outcomes, predictive models contribute to
improved patient care and more efficient ED operations.
However, significant variations in model performance and
clinical applicability exist across different outcome types.

Mortality prediction

Mortality prediction models are designed to assess a
patient’s risk of death within a short timeframe, providing a
critical tool for identifying patients who require immediate,
intensive care. Traditionally, mortality risk has been
evaluated using clinical scoring systems like the MEWS
and the SOFA, which incorporate various physiological
measures to estimate risk (59,60). However, these scores
have limitations in accuracy and adaptability, particularly in
diverse patient populations.

Across the reviewed studies, ML-based mortality
prediction models demonstrated AUC-ROC values
ranging from 0.75-0.96, significantly outperforming
traditional scoring systems (AUC-ROC 0.65-0.80). The
most successful models incorporated both real-time
physiological data and historical comorbidity information,
with ensemble and deep learning approaches showing
superior performance (61). Integrating ML with traditional
scoring systems has been shown to enhance the precision
of mortality prediction as indicated that ML models,
particularly ensemble and deep learning approaches, can
outperform conventional scoring systems by effectively
managing high-dimensional, complex data (62).

Ensemble models such as gradient boosting and random
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forests have demonstrated strong performance in mortality
prediction by combining multiple algorithms to mitigate
the limitations of individual models. Deep learning
models, especially those with recurrent or convolutional
architectures, can further refine predictions by identifying
subtle patterns in time-series data, such as changes in vital
signs over time. These models also have the flexibility to
integrate diverse data sources, including lab results, imaging
reports, and clinical notes, improving risk stratification for
ED patients. For instance, deep learning models leveraging
electronic health records (EHRs) could predict in-hospital
mortality with higher accuracy than conventional scoring
systems (63,64).

However, mortality prediction models face significant
challenges including class imbalance (with mortality rates
typically <5% in general ED populations), difficulty in
defining appropriate prediction time horizons, and ethical
concerns regarding the clinical use of mortality predictions
in triage decisions. Additionally, model performance varies
substantially across different patient subgroups, with
reduced accuracy in elderly patients and those with multiple
comorbidities (65).

ICU admission

Accurate prediction of ICU admission is critical in the
ED, as it enables proactive resource allocation and bed
management, especially in hospitals with limited ICU
capacity. Predictive models for ICU admission rely on a
combination of physiological data, such as vital signs and
lab results, and demographic factors, including age and
comorbidities. ML techniques like random forests and
neural networks have shown promising results in predicting
ICU needs, as these models excel in managing complex,
non-linear data interactions. Random forests, with their
ability to capture variable interactions, can identify high-
risk patients who may require ICU care based on a broad
set of factors, such as severe respiratory distress, abnormal
lab values, and deteriorating clinical status.

ICU admission prediction models demonstrated AUC-
ROC values ranging from 0.76-0.94 across the reviewed
studies, with neural networks and ensemble methods
showing the strongest performance. Models incorporating
laboratory values and imaging results achieved higher
accuracy than those relying solely on vital signs and
demographic data (66).

Neural networks, particularly RNNs, are well-suited for
analyzing time-series data, making them useful for ICU
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Table 4 Predictive model performance by outcome type
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Best performing

Key predictive features

Primary clinical
challenges

Implementation
barriers

Outcome ) AUC-ROC range
technique

Mortality (72) Deep learning/ 0.75-0.96
ensemble

ICU admission (73) Neural networks/ 0.76-0.94
ensemble

Discharge (74) Gradient boosting/ 0.70-0.93

ensemble

Vital signs, lab values,

Class imbalance, Regulatory approval,

comorbidities ethical considerations clinical acceptance

Physiological Variable admission Real-time data
instability, organ criteria integration
dysfunction
Treatment response, Non-medical Dynamic factor

social factors discharge barriers incorporation

AUC-ROC, area under the receiver operating characteristic curve.

admission prediction in patients with rapidly changing
conditions (67). For example, if a patient’s heart rate,
respiratory rate, or oxygen saturation levels fluctuate
significantly over time, RNNs can capture these trends to
improve ICU admission predictions. A study highlighted
that RNN-based models trained on EHR data could predict
ICU admissions more accurately than traditional logistic
regression models, underscoring the potential of neural
networks in this domain (68). The predictive power of
these models can assist ED clinicians in prioritizing ICU
resources, ensuring that critically ill patients receive the
necessary level of care without delays.

Key limitations in ICU admission prediction include
significant variation in ICU admission criteria between
institutions, seasonal variations in ICU bed availability
that affect prediction utility, and difficulty distinguishing
between patients requiring ICU-level monitoring versus
active intervention. Furthermore, models trained at one
institution often show reduced performance when applied
elsewhere due to differences in admission practices and
patient populations (69).

Discharge probability

Predicting the likelihood of discharge is essential for
optimizing patient flow and reducing ED overcrowding, a
common challenge in many healthcare systems. Discharge
probability models help clinicians identify patients who
are likely to be safely discharged within a short timeframe,
allowing for more efficient use of ED resources and
reducing patient wait times. Logistic regression has
traditionally been used to predict discharge likelihood,
providing a straightforward approach to modeling binary
outcomes (i.e., discharge or admission). However, recent
advances have shown that more complex models, such as

Copyright © 2025 AME Publishing Company. All rights reserved.

gradient boosting, can significantly enhance prediction
accuracy by incorporating a wider range of factors,
including time-sensitive variables.

Discharge prediction models showed AUC-ROC
values ranging from 0.70-0.93, with ensemble methods
demonstrating superior performance. Models that
incorporated treatment response variables and time-to-
disposition factors achieved higher accuracy than those
using only initial presentation data (70).

Gradient boosting models can integrate real-time factors
like Iab turnaround times, initial treatment response, and
the patient’s clinical improvement or deterioration over the
course of their ED stay. By dynamically updating discharge
predictions based on these factors, gradient boosting models
can provide clinicians with near real-time insights into
patient status. For instance, a study found that incorporating
lab results and treatment progress in discharge prediction
models increased accuracy and helped prevent unnecessary
admissions, which can contribute to ED overcrowding (71).

However, discharge prediction faces unique challenges
including high variability in discharge criteria between
clinicians, significant influence of non-medical factors
(bed availability, social circumstances), and difficulty in
incorporating time-dependent variables that affect discharge
timing. Additionally, discharge models must balance
sensitivity to prevent inappropriate early discharge with
specificity to avoid unnecessary admissions (71).

Table 4 summarises the performance characteristics and
clinical considerations for different outcome predictions.

Figure 3 provides a comprehensive visual summary of
how different predictive modeling techniques are applied
to critical decision-making processes in EDs, showcasing
the progression towards more advanced and accurate
prediction methods. These models have particular value in
supporting the management of patient flow, ensuring that
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Mortality Prediction
* Traditional scoring systems (MEWS, SOFA)
* ML models (ensemble methods, deep learning)
* Integration of diverse data sources
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ICU Admission
¢ Random forests for complex interactions
« RNNs for time-series analysis
« Factors: vital signs, lab results, demographics

Discharge Probability

* Logistic regression as traditional approach
* Gradient boosting for enhanced accuracy
* Real-time factors: lab turnaround, treatment response

Figure 3 Predictive models for critical outcomes in EDs. This figure illustrates three key predictive models used in EDs to forecast

critical patient outcomes. The diagram is divided into three panels, each representing a specific prediction type: mortality prediction, ICU

admission, and discharge probability. EDs, Emergency Departments; ICU, intensive care unit; MEWS, Modified Early Warning Score; ML,

machine learning; RNNs, Recurrent Neural Networks; SOFA, Sequential Organ Failure Assessment.

beds are available for new arrivals and helping ED staff
make more informed decisions patient care and discharge
readiness. However, successful clinical implementation
requires addressing significant methodological limitations
and developing robust validation frameworks.

Model evaluation and performance metrics

Evaluating the performance of predictive models is essential
to ensure that they provide reliable and actionable insights
in the ED. The unique demands of the ED environment,
where rapid, high-stakes decisions are routine, require
models that are not only accurate but also sensitive to
critical cases. The effectiveness of these models is assessed
using a variety of performance metrics, each of which
provides distinct information about model strengths and
weaknesses in the clinical context. However, significant
inconsistencies in evaluation approaches across studies limit
the ability to compare models and assess real-world clinical
utility. Commonly used metrics include accuracy, sensitivity,
specificity, AUC-ROC, F1 score, and model calibration.

Standard performance metrics

Accuracy is a fundamental metric that measures the
proportion of correct predictions (both true positives and
true negatives) out of all predictions made by the model.

Copyright © 2025 AME Publishing Company. All rights reserved.

While accuracy is useful for assessing overall model
performance, it may be less informative in ED predictive
modeling, where positive outcomes (e.g., ICU admission
or mortality) are often rare compared to negative outcomes
(e.g., discharge) (75). In these cases, a high accuracy score
could mask poor performance in detecting critical cases,
as the model may achieve high accuracy by predominantly
predicting negative outcomes.

Sensitivity (also known as recall or true positive rate)
is particularly crucial in mortality and ICU admission
prediction models, as it measures the model’s ability to
correctly identify patients who truly belong to the positive
class (e.g., high-risk patients). High sensitivity is often
prioritized in these models to ensure that critical patients
are identified early, as failing to detect such cases could
result in missed or delayed interventions with serious
consequences. Across the reviewed studies, sensitivity values
varied widely from 0.65-0.92 for mortality prediction and
0.70-0.89 for ICU admission prediction, highlighting
significant inconsistencies in model performance for critical
case detection (76). In mortality prediction, for instance,
a high-sensitivity model helps clinicians identify and
prioritize patients who may require intensive monitoring or
treatment, minimizing the risk of underestimating critical
cases.

Specificity (or true negative rate), on the other hand,
measures the model’s ability to correctly identify patients
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who do not belong to the positive class. High specificity
is important in predicting discharge probability, where
accurate identification of low-risk patients can support
efficient bed management and reduce unnecessary
admissions. Specificity values ranged from 0.72-0.95 across
different outcomes, with discharge prediction models
generally achieving higher specificity than mortality or ICU
admission models (77).

The AUC-ROC is a comprehensive metric that provides
insight into a model’s ability to distinguish between positive
and negative cases across various thresholds. The AUC-
ROC score ranges from 0 to 1, with higher scores indicating
better discriminatory power. An AUC-ROC of 0.5 suggests
no discriminatory ability, equivalent to random guessing,
whereas a score closer to 1 indicates strong discriminatory
performance. While AUC-ROC is widely reported, fewer
than 40% of reviewed studies provided confidence intervals
or statistical significance testing for AUC comparisons.
The AUC-ROC metric is widely used in ED predictive
modeling to compare the overall effectiveness of different
models, as it considers both sensitivity and specificity.

The F1 score is a harmonic mean of sensitivity and
precision (the proportion of true positive predictions out
of all positive predictions), making it particularly valuable
when there is an imbalance between positive and negative
outcomes, as is often the case in ED predictive tasks. F1
scores were reported in only 60% of reviewed studies,
limiting comparative analysis of model performance in
handling class imbalance (78). The F1 score helps assess a
model’s performance in identifying true positive cases while
minimizing false positives. For instance, in predicting ICU
admission, a high F1 score indicates that the model is both
sensitive to high-risk patients and precise in minimizing
unnecessary ICU recommendations, helping to balance
patient safety with resource utilization.

Model calibration and clinical utility

Model calibration is another critical component in
evaluating predictive models in clinical settings. Calibration
assesses whether the predicted probabilities generated by
the model align with actual observed outcomes. A well-
calibrated model provides probabilities that accurately
reflect the likelihood of outcomes, which is crucial in clinical
decision-making. For example, if a mortality prediction
model outputs a 20% risk of death, this should correspond
closely to an actual 20% mortality rate in patients with
similar risk scores. However, calibration assessment
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was reported in fewer than 30% of reviewed studies,
representing a significant gap in model evaluation practices.
Poor calibration can lead to over- or underestimation of
risk, which may mislead clinicians in assessing patient
urgency or appropriate levels of care. Techniques like
reliability diagrams and calibration curves are commonly
used to assess model calibration, ensuring that predictions
align with real-world outcomes.

Current limitations in model evaluation

Several critical limitations in model evaluation practices
were identified across the reviewed studies:

(I) Inconsistent metrics: significant variation in
reported performance metrics limits the ability to
compare models across studies and identify optimal
approaches.

(II) Limited external validation: only 25% of studies
included external validation, with most relying
solely on internal cross-validation or temporal split
validation.

(IIT) Insufficient calibration assessment: poor reporting
of model calibration limits understanding of real-
world prediction reliability.

(IV) Lack of clinical impact metrics: few studies assessed
clinical utility measures such as decision curve
analysis, net benefit, or clinical implementation
outcomes.

(V) Missing subgroup analysis: limited evaluation
of model performance across different patient
populations (e.g., elderly, paediatric, specific disease
groups).

(VI) Temporal validation gaps: insufficient assessment
of model performance degradation over time or
seasonal variations.

Recommendations for improved evaluation

Based on the identified limitations, future studies should
adopt standardised evaluation frameworks that include:

(I) Core metric set: consistent reporting of AUC-
ROC, sensitivity, specificity, positive predictive
value, negative predictive value, and F1 score with
confidence intervals.

(II) Calibration assessment: mandatory inclusion
of calibration plots and statistical tests for all
prediction models.

(III) External validation: multi-centre validation studies
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to assess model generalisability across different
settings.

(IV) Clinical utility measures: integration of decision
curve analysis and net benefit calculations to assess
clinical value.

(V) Subgroup analysis: systematic evaluation of model
performance across relevant patient subgroups.

(VI) Temporal stability: assessment of model performance
over extended time periods with regular recalibration
protocols.

Future directions

The field of predictive modeling in the ED is evolving
rapidly, with ongoing advancements that hold the potential
to further enhance patient outcomes and streamline
healthcare delivery. The future of ED predictive models will
likely be characterized by increased personalization, greater
interpretability, and integration with emerging technologies
such as telemedicine. However, significant research gaps
and implementation challenges must be addressed to realise
the full potential of these advances. Each of these directions
promises to address current limitations, making predictive
models more accurate, trustworthy, and applicable to a
broader range of clinical scenarios.

Personalized prediction models

As the demand for precision medicine grows, there is
increasing interest in developing predictive models that
account for individual patient characteristics beyond
standard clinical data. Personalized prediction models
incorporate features such as genomic information, lifestyle
factors, and social determinants of health, providing more
tailored and nuanced predictions (79-82).

For instance, genomic data can offer insights into a
patient’s predisposition to certain diseases or their likely
response to specific treatments, which may be especially
relevant in predicting outcomes for patients with complex
or rare conditions. Lifestyle factors, such as exercise habits,
smoking status, and diet, have been shown to influence
outcomes for various health conditions and could further
refine ED predictions. Social determinants of health,
including socioeconomic status, education level, and
access to healthcare resources, are also important, as they
can impact both health outcomes and the effectiveness
of interventions. By integrating these factors, future
predictive models could produce more individualized
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recommendations, allowing clinicians to make decisions
that are better aligned with each patient’s unique needs and
circumstances. However, current research in personalised
ED prediction models remains limited, with fewer than
15% of reviewed studies incorporating genetic or detailed
social determinant data.

Key challenges for personalised models include
data privacy concerns, the need for comprehensive
data integration platforms, increased computational
requirements, and the complexity of obtaining detailed
individual patient data in emergency settings. Furthermore,
the clinical utility of genetic information in acute care
decisions remains unclear, requiring substantial additional
research to demonstrate cost-effectiveness and clinical
impact.

XAI

One of the most significant challenges in adopting ML
models in clinical settings is their often “black-box” nature,
where complex models produce predictions without
clear explanations of the underlying reasoning. This
lack of transparency can create barriers to clinician trust
and acceptance, especially in high-stakes environments
like the ED, where decisions must be made quickly and
with confidence. XAI aims to address this challenge by
making predictive models more interpretable (83,84).
Through XAlI, clinicians would be able to understand why
a model made a particular prediction, potentially viewing
contributing factors, data patterns, or decision paths that led
to the outcome. For example, XAl techniques like Shapley
Additive Explanations (SHAP) values can quantify the
contribution of each input feature (e.g., age, blood pressure,
lab results) to a specific prediction, providing clinicians with
a clearer picture of the underlying reasoning (85,86).

Current XAl implementations in ED settings show
promise, with several studies demonstrating improved
clinician acceptance when explanations are provided.
However, significant limitations remain including
computational overhead for generating explanations,
inconsistency in explanation quality across different
cases, and lack of standardised approaches for presenting
explanations in clinical workflows. As XAI technologies
advance, they could play a pivotal role in increasing clinician
confidence and facilitating the integration of predictive
models into ED workflows, ultimately leading to better-
informed, data-driven decisions that align with clinical
intuition and expertise.
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Key areas requiring further research include optimal
explanation granularity for different clinical contexts,
standardisation of explanation formats, integration with
existing clinical decision support systems, and validation of
explanation accuracy and clinical utility.

Telemedicine integration

The rise of telemedicine has expanded the potential
applications of predictive models, particularly by enabling
remote monitoring and early intervention. Telemedicine
allows patients to connect with healthcare providers
from their homes, and in some cases, wearable devices
continuously transmit real-time data, such as heart rate,
oxygen saturation, and activity levels (87). Future predictive
models could leverage this data to anticipate ED outcomes
even before a patient arrives at the hospital, allowing for
preemptive interventions when necessary. For example, if a
remote monitoring system detects that a patient’s vital signs
are deteriorating, a predictive model could alert clinicians to
the need for an immediate ED visit, expediting the patient’s
arrival and enabling the ED to prepare for their specific
needs. This approach could be particularly beneficial for
managing chronic conditions or high-risk populations, such
as elderly patients or those with multiple comorbidities,
who may experience rapid health changes that require
prompt attention. However, telemedicine-integrated
prediction models face challenges including data quality
from consumer-grade devices, connectivity issues, privacy
concerns, and the need for real-time processing capabilities.

Current research in telemedicine integration remains
early-stage, with limited evidence for clinical effectiveness
and cost-benefit analysis. Key research priorities include
validating wearable device data accuracy, developing
standardised protocols for remote monitoring alerts,
establishing clear clinical pathways for telemedicine-
triggered interventions, and evaluating patient outcomes
and satisfaction with integrated prediction systems.

Implementation science and real-world validation

A critical gap identified across the reviewed literature is
the lack of real-world implementation studies and clinical
impact assessment. Future research must prioritise:

() Multi-centre validation studies: large-scale
validation across diverse healthcare systems to
establish model generalisability and performance
consistency.
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(II) Clinical implementation trials: randomised
controlled trials evaluating the clinical impact of
ML-assisted decision making on patient outcomes,
ED efficiency, and cost-effectiveness.

(IIT) Human factors research: studies examining the
integration of predictive models into clinical
workflows, including user interface design, alert
fatigue prevention, and workflow optimisation.

(IV) Long-term performance monitoring: development
of frameworks for continuous model monitoring,
performance tracking, and systematic updating
protocols.

Regulatory and ethical considerations

Future development must address several regulatory and
ethical challenges:

(I) Regulatory approval pathways: development of
standardised regulatory frameworks for ML-
based clinical decision support tools in emergency
medicine.

(II) Bias and fairness: systematic evaluation and
mitigation of algorithmic bias across different
patient populations, particularly underrepresented
groups.

(III) Data governance: establishment of robust data
governance frameworks ensuring patient privacy
while enabling model development and validation.

(IV) Clinical liability: clarification of legal
responsibilities and liability frameworks for ML-
assisted clinical decisions.

Figure 4 provides a comprehensive visual summary of
how predictive modeling in EDs is expected to evolve,
showcasing the potential for more personalized, explainable,
and proactive approaches to emergency care. By integrating
telemedicine data, predictive models could support a
more proactive approach to emergency care, reducing the
likelihood of delayed treatment and improving outcomes
for vulnerable patients. However, realising these future
directions requires substantial investment in research
infrastructure, regulatory framework development, and
systematic validation studies to demonstrate clinical utility
and cost-effectiveness.

Limitations of the review

This narrative review has several limitations that should be
acknowledged. First, as a narrative rather than systematic
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Figure 4 Future directions in predictive modeling for EDs. This figure illustrates three key future directions in predictive modeling for

EDs: personalized prediction models, explainable Al, and telemedicine integration. The diagram is divided into three interconnected

panels, each representing a specific area of advancement. Al artificial intelligence; EDs, emergency departments; SHAP, Shapley Additive

Explanations.

review, this study was not conducted according to a
structured protocol such as PRISMA; therefore, it may be
subject to selection bias in the identification and inclusion of
relevant studies. Second, the search was limited to English-
language publications, which may have excluded relevant
research published in other languages, potentially affecting
the global comprehensiveness of the findings. Third, while
efforts were made to include recent and high-quality studies,
the rapid evolution of ML in healthcare means that some
emerging models or unpublished innovations may have
been missed. Fourth, the heterogeneity among the included
studies, in terms of data sources, model types, outcome
definitions, and performance metrics, limits the ability
to directly compare results across studies. Additionally,
heterogeneity among the included studies, in terms of data
sources, model types, outcome definitions, and performance
metrics, limits the ability to directly compare results across
studies. Fifth, the review did not systematically assess study
quality using standardised assessment tools, which may
affect the reliability of synthesised findings. Sixth, the focus
on English-language publications from major databases may
have introduced geographical and publication bias. Finally,
as this is a narrative rather than quantitative synthesis, we
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did not perform a meta-analysis, which could have provided
pooled estimates of model performance. Finally, the rapid
pace of technological advancement in this field means that
some findings may become outdated quickly, requiring
regular updates to maintain relevance. Despite these
limitations, this review provides a valuable overview of the
current landscape of ML-based predictive modelling in the
ED and highlights key areas for future research and clinical
integration.

Conclusions

MUL-based predictive models represent a transformative
advancement in the ED, offering a powerful tool to enhance
patient outcomes through timely, data-driven decision-
making. These models can analyze large volumes of clinical
data, providing rapid predictions that assist clinicians in
triaging patients, prioritizing critical interventions, and
efficiently managing ED resources. By predicting key
outcomes, such as mortality, ICU admission, and discharge
likelihood, predictive models support a proactive approach
to emergency care, where high-risk patients can be
identified early, and resources can be allocated to optimize
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patient flow.

This comprehensive review demonstrates that ML
models consistently outperform traditional clinical scoring
systems, with AUC-ROC values ranging from 0.75-0.96
for mortality prediction, 0.76-0.94 for ICU admission, and
0.70-0.93 for discharge prediction. Ensemble methods and
deep learning approaches showed superior performance,
though significant implementation challenges remain.

Despite their potential, several challenges remain in
the implementation of ML models in the ED. Critical
limitations identified include substantial data quality
issues with missing value rates of 15-70% for key clinical
variables, limited external validation with only 25% of
studies including multi-centre validation, poor model
generalisability across different institutions and patient
populations, and insufficient attention to model calibration
and clinical utility assessment. Data quality is paramount;
without consistent, comprehensive, and high-quality data,
model predictions may lack reliability. The interpretability
of complex ML models also presents a barrier, as clinicians
require clear, understandable explanations to fully trust
and act on predictions. Ethical considerations, including
data privacy, bias, and the need for accountability, must be
carefully addressed to ensure that predictive models uphold
the standards and values of patient care. Nevertheless,
ongoing research and development in areas such as XAl and
model calibration are making these models more accessible,
interpretable, and aligned with clinical practice.

Key areas requiring immediate research attention
include developing standardised evaluation frameworks,
conducting multi-centre validation studies, addressing
algorithmic bias and fairness concerns, establishing
regulatory approval pathways, and implementing robust
clinical impact assessment protocols. Only 15% of reviewed
studies incorporated detailed social determinant data, and
fewer than 30% assessed model calibration, highlighting
significant methodological gaps.

The future of predictive modeling in the ED is promising,
particularly with the integration of personalized prediction
models, advances in explainability, and telemedicine
capabilities. Personalized models, incorporating genomic,
lifestyle, and social data, will offer tailored insights for
individual patients, enhancing precision in care. XAl can
foster greater clinician trust by providing transparency
around model predictions, facilitating smoother integration
into clinical workflows. The integration of telemedicine can
enable preemptive risk assessment and early intervention,
transforming ED care for patients with chronic or high-
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risk conditions. However, these advances face substantial
implementation barriers including data privacy concerns,
computational requirements, regulatory uncertainty, and
the need for extensive validation studies to demonstrate
clinical utility and cost-effectiveness.

As these advancements continue, ML-based predictive
models will increasingly support the ED’s capacity to
provide efficient, patient-centered care, aligning with the
evolving demands and challenges of modern healthcare.
Success will depend on addressing fundamental challenges
in data standardisation, model validation, clinical
integration, and regulatory approval whilst maintaining
focus on demonstrated clinical utility rather than purely
technical performance metrics.
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