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Abstract

This paper presents a Bayesian-optimised Conditional Variational Autoencoder (CVAE) for synthetic data augmentation,
embedded within an agent-based simulation framework. The CVAE systematically refines latent-space representations,
generating high-quality synthetic character images that enhance dataset diversity and reduce the risk of overfitting. Bayesian
optimisation ensures optimal latent variable selection, improving reconstruction accuracy while enabling scalable MICR
training. The proposed agent-based system introduces autonomous agents: patient agents, doctor agents, imaging device
agents, and recognition agents that collaborate to simulate real-world MICR workflows. This structured pipeline enables
dynamic dataset augmentation while supporting medical diagnostics and automated text extraction. Experimental evaluations
demonstrate significant performance improvements, with CNN models achieving accuracy gains of +3.2%, +3.5%, and
+1.79% on the public dataset and +2.41%, +6.85%, and +1.60% on the private dataset when augmented with 50, 100, and
150 synthetic images per class, respectively. This research validates the effectiveness of Bayesian-tuned latent-space encoding
and a supporting agent-based data augmentation, offering a scalable, computationally efficient solution for MICR
enhancement.

Keywords: Conditional Variational Autoencoder CVAE, Medical Image Character Recognition (MICR), Agent-Based

Simulation Framework, Optical Character Recognition OCR, Data Augmentation, Latent Variable Modelling.

l. INTRODUCTION

Medical Image Character Recognition (MICR) is the
automated identification of alphanumeric characters
embedded in medical imaging modalities (MIM), such as
radiographs, ultrasound scans, and pathology slides. Unlike
general Optical Character Recognition (OCR), which
typically operates on structured, high-resolution text
documents, MICR must contend with low-resolution,
noisy, and spatially irregular character data. These
characters often encode essential clinical metadata, making
their accurate recognition critical for diagnostic workflows
and data integrity. MICR faces persistent challenges due to
limited dataset availability, which directly impacts deep
learning (DL) model performance. Small datasets limit
pattern generalisation, increase the risk of overfitting [1]
and reduce the reliability of OCR models in medical
contexts. Privacy constraints and high acquisition costs

further limit access to annotated medical image datasets,
necessitating the use of effective augmentation strategies.

This study proposes a Conditional Variational
Autoencoder (CVAE) as a targeted solution for synthetic
data augmentation in MICR. The CVAE approximates the
probability distribution (P(X)) over high-dimensional
image data (Doersch, 2016), learning pixel dependencies
[2] to generate realistic samples that match the original data
distributions [3]. The objective is to develop a generative
model (P) that closely approximates (P(X)), producing
synthetic images that expand training datasets and improve
classification accuracy. Despite the promise of generative
models, many rely on strong assumptions [4] and require
computationally intensive inference methods [5]. Neural
networks, used as numerical approximators [6, 7], offer
more stable training. Among these, the Variational
Autoencoder (VAE) is notable for its fast convergence and
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minimal assumptions [8], making it suitable for latent space (%), forming a Gaussian latent space that supports stable

encoding in MICR augmentation. Unlike traditional training [9]. Figure 1 illustrates the generative process,
autoencoders, VAEs encode inputs as probability showing how latent space transformations contribute to
distributions rather than fixed points, enabling structured MICR-specific augmentation [5, 10].
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Latent variables represent compressed representations the generator and discriminator compete, demands

of high-dimensional data in a continuous, lower- extensive and diverse datasets to maintain balanced
dimensional space. In image modelling, this means that a learning dynamics; without sufficient data, the
set of latent variables. Z'... Z™ encodes the essential discriminator tends to overfit, destabilising the generator
structure of an input image X*... X™. where n<m. For and leading to the production of irrelevant or incoherent
example, a 28x28 image contains 784 observed pixel images, as noted in Ref [14]. By removing this dependency,
values, but its latent representation may consist of far fewer CVAEs maintain consistent training behaviour and are
variables that capture the hidden features responsible for better suited for small, class-imbalanced datasets where
pixel dependencies. These latent variables are not directly architectural simplicity and convergence stability are
observable but are inferred during training. Neighbouring critical. Here, a CVAE is proposed to generate class-
pixels in an image exhibit strong spatial correlation, which conditioned outputs [15, 16] that align with the dataset
can determine visual properties such as colour, shape, and characteristics of this study, namely the low-resolution
layout. Latent space modelling aims to capture these spatial constraint. Their standard neural architecture and
correlations and dependencies in a compact form suitable compatibility with stochastic gradient descent make them
for generative synthesis. VAESs learn such representations computationally efficient and easier to deploy in
by minimising a composite loss function that combines a constrained settings [17]. Prior research has demonstrated
reconstruction and a Kullback-Leibler (KL) CVAE’s effectiveness in digit and character recognition
divergence. This formulation encourages the model to tasks [18, 19], but its application to low-resolution MICR
generate outputs that are similar to the input while was not explored in these works. This underexplored area
regularising the latent space to follow a known distribution. shows the need for targeted investigation, positioning the
Although Generative Adversarial Networks (GANs) are current study as a relevant and timely contribution to MICR
widely used for data augmentation, they are difficult to train augmentation.
on small datasets due to discriminator overfitting and
architectural complexity [11, 12]. For instance, CycleGAN The primary focus of this work is to propose and
employs 26 layers and 18 residual blocks, which increases critically evaluate a CVAE-based solution as a targeted data
the risk of mode collapse and training instability [13]. In augmentation method for MICR under low-resolution
contrast, CVAEs offer a more stable alternative for low- constraints as low as 96 dpi. Unlike conventional
resolution image synthesis, as they optimise reconstruction augmentation techniques, CVAE enables structured latent
loss directly and avoid the adversarial feedback loop that space encoding, producing realistic synthetic character
characterises GAN training. This adversarial loop, where images that improve model generalisation and reduce
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overfitting. An agent-based simulation framework is
introduced to support dataset augmentation through
modular role-specific agents. However, its integration with
the CVAE is limited and not technically central to the
generative process. The framework simulates realistic
augmentation workflows but lacks programmatic control
over latent-space modelling and image synthesis. Bayesian
optimisation (BO) is applied to refine latent space
configurations, aiming to minimise reconstruction loss and
improve encoding efficiency. While this approach
enhances CVAE performance, the optimisation process
requires a more precise specification. Key elements such as
the acquisition function, hyperparameter search space, and
convergence criteria are discussed in Section 3 to enable
reproducibility and validation. This paper is organised as
follows: Section 2 reviews related literature, Section 3
details the proposed method, Section 4 presents
experimental results, and Section 5 concludes with future
directions.

Il.  RELATED WORK

MICR suffers from limited dataset availability,
particularly in low-resolution imaging modalities. This
constraint negatively impacts the generalisation of DL
models and increases the risk of overfitting. Traditional
augmentation techniques such as rotation, scaling, flipping,
blurring, and image blending have been widely used to
mitigate class imbalance and improve generalisation.
However, these methods operate at the pixel level and do
not introduce new semantic variations, rendering them
inadequate for tasks such as MICR classification, where
structural consistency and class-specific features are
critical. Moreover, they often fail to capture the diversity
needed in small datasets, leading to limited gains in model
robustness and increased risk of overfitting to superficial
transformations. Ref [20] demonstrated that multiscale
convolutional neural networks (CNNs) combined with
geometric augmentation can improve MICR performance.
Similarly, Ref [21] and Ref [22] applied online and offline
augmentation strategies to CNN and CRNN architectures,
respectively. While these methods enhance robustness, they
rely on deterministic transformations and offer limited
diversity, which restricts generalizability across unseen
medical imaging datasets. To address these limitations,
generative models have gained traction for synthetic data
augmentation. VAEs and GANs have shown promise in
medical imaging tasks. While VAE-based approaches are
frequently cited in the literature, their relevance to MICR-
specific constraints is rarely examined in depth. For
example, Ref [23] employed VAEs for feature learning in
content-based medical image retrieval, focusing on global
image descriptors rather than character-level synthesis.
Similarly, Ref [24] applied a Vector Quantised VAE (VQ-
VAE) to improve Gram-stain image classification,
targeting texture-rich bacterial images rather than sparse
alphanumeric characters. These studies demonstrate the
versatility of VAEs in modelling complex image structures,
but their domains and resolutions differ markedly from the
structural and semantic demands of MICR. In parallel,
GANSs have gained popularity for image synthesis tasks due

to their ability to produce visually compelling outputs.
However, their reliance on large datasets and deep
architectures makes them less suitable for MICR
applications, which often involve low-resolution inputs and
limited class diversity as noted in Ref [14]. This instability,
coupled with the computational overhead of tuning deep
GAN architectures, limits their practicality for character-
level augmentation. Unlike the broader VAE applications
cited earlier, CVAE-based methods directly address the
challenges of character-level synthesis, thereby aligning
more closely with MICR requirements. However, existing
CVAE studies have not focused on MICR or low-resolution
modalities, leaving a gap in domain-specific validation.
This study addresses that gap by demonstrating how
Bayesian-optimised CVAE architectures can be tailored to
MICR constraints, offering an efficient semantically
coherent augmentation strategy.

While generative models such as VAEs and CVAEs
address the challenge of data scarcity through synthetic
augmentation, they do not inherently model the contextual
workflows in which medical image data is generated,
processed, and interpreted. To complement these
limitations, agent-based modelling has emerged as a
promising  approach  for  simulating  healthcare
environments and task-specific interactions. Ref [31]
explored multi-agent systems for autonomous decision-
making in clinical settings, demonstrating their potential for
workflow automation and decision support. However, such
frameworks are rarely integrated with generative
augmentation pipelines. Most implementations lack
structured mechanisms for character recognition or dataset
expansion. This study addresses that gap by embedding
CVAE-generated synthetic images within an agent-based
simulation framework. The agents representing patients,
clinicians, imaging devices, and recognition modules
facilitate dynamic data retrieval and augmentation.
However, the agent-based system serves a supporting role
and does not directly influence the CVAE architecture.

Conclusively, though VAEs and CVAEs are
frequently cited in the literature, their relevance to MICR
varies significantly. Many VAE studies focus on global
image features, whereas CVAE-based character synthesis
offers a more targeted solution, especially for low-
resolution medical images. Traditional augmentation
methods lack the diversity needed for robust generalisation,
and agent-based modelling remains underutilised in
character recognition pipelines. This study addresses these
gaps by combining CVAE-based augmentation with a
structured simulation framework, offering a scalable,
context-aware solution for MICR enhancement.

> Contribution of this Study

The core contributions of this study can be
summarised as follows, highlighting the most novel and
impactful elements of the proposed approach:

e The study applies Bayesian Optimisation to refine latent
space configurations within a CVAE framework,
offering a principled and empirically validated strategy
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for tuning latent dimensionality in MICR-specific
augmentation. While alternative automated methods
exist, this approach demonstrates that a compact latent
dimension vyields optimal reconstruction fidelity and
encoding efficiency under constrained, low-resolution
imaging conditions.

o It adapts the CVAE architecture to address modality-
specific constraints in MICR, including low resolution
at 96 dpi, which has not been reported in existing
literature to our knowledge, spatial noise, and limited
sample availability, thereby extending prior work on
general-purpose digit synthesis to a structurally
constrained medical imaging domain.

e An agent-based simulation framework is integrated to
contextualise the augmentation process, modelling real-
world MICR workflows through autonomous agents.
While it does not directly influence the CVAE’s
generative mechanics, it supports dynamic data retrieval
and scalable dataset expansion.

I1l.  PROPOSED WORK

This section outlines the integrated framework
combining CVAE augmentation with an agent-based
simulation system for MICR. The method is designed to
address dataset scarcity, structural variability, and
workflow realism in low-resolution medical imaging.

» Agent-Based Simulation Framework

The agent-based simulation framework models data
flow and task delegation in MICR environments. It consists
of four autonomous agents:

o Patient Agent: Represents individuals undergoing
imaging and initiates data generation requests.

o Doctor Agent: Structures clinical imaging requirements
and defines augmentation parameters.

e Imaging Device Agent: Simulates acquisition of raw
medical images and metadata.

e Recognition Agent: Applies CVAE-generated synthetic
data to train, evaluate MICR models and carry out
character recognition.

Each agent within the simulation framework operates
in a defined state space:

S = {51,S2,-.-,Sn}

Where augmentation actions A; govern transitions
between states. The agent’s behaviour is modelled by the
transition function:

P(Ste1|s) = f(AiSt)

To formalise the interaction between agents and the
CVAE module, we define the probability of generating a
synthetic image X_sy from a real image X_re using a
Bayesian likelihood model:

P(X_sy|X_re) = [ P(Xre|zy) - P(z|y)dz

Here, z represents the latent variable sampled from the
CVAE’s posterior distribution, and y is the class label
provided by the agent. The agent’s role is to supply
contextual parameters, such as class labels, imaging
conditions, or augmentation volume, that condition the
CVAE’s generative process. This interaction can be
expressed as:

X sy = CVAE(z,y)
wherez ~q_@p(z | X_re,y),andy = Agent(sy)

This formulation captures how agents influence the
generation pipeline by dynamically assigning class labels
and augmentation triggers based on their current state s..
Figure 2 illustrates this workflow, showing how
autonomous agents initiate augmentation requests, define
imaging parameters, and coordinate with the CVAE
module to produce synthetic character samples for MICR
training and post-MICR processes.
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Figure 2 presents a structured overview of the agent-
based simulation framework designed to support synthetic
data augmentation for MICR. The diagram illustrates a
sequential flow of tasks initiated by the Patient Agent, who
triggers an imaging request, and coordinated by the Doctor
Agent, who defines imaging parameters and contextual
labels. These parameters guide the CVAE, which generates
synthetic character samples conditioned on latent variables
and agent-supplied labels. The Imaging Device Agent
simulates acquisition conditions, while the Recognition
Agent receives the synthetic samples directly from the
CVAE for MICR training and evaluation. This stage marks
the transition from generative modelling to recognition,
where extracted features are used to optimise MICR
performance. The final stage, labelled Post-MICR
Processes, includes downstream tasks such as data entry,
validation, or integration into document retrieval systems in
Electronic Health Record (EHR) systems. The CVAE
module is centrally positioned to reflect its role as a bridge
between raw image simulation and recognition. Figure 2
emphasises  modular  task  delegation,  explicitly
distinguishing between generative, acquisition,
recognition, and post-recognition phases. Each agent
contributes uniquely to the augmentation pipeline, with
clearly defined transitions and no architectural redundancy.

» CVAE Architecture and Training Process

Given the limitations of small medical datasets, we
propose a CVAE as a generative modelling approach to
synthesise realistic character images for medical text

recognition in low-resolution medical imaging modalities
of 96 dpi. The CVAE extends traditional VAEs by
incorporating labels into the generative process, enabling
class-conditional image generation. Let (X) represent an
observed image and (y) its corresponding class label. The
encoder network transforms the input (X) into a latent space
representation (Z), governed by a normal distribution:

g oz|xy) = Nuoy),2_o(xy))

where po(x, y) is the mean and Zo(X, y) represents the
covariance matrix. The latent space sampling follows:

z~qe(z|x,y)

The decoder reconstructs an output image conditioned
on the latent variable z and label y:

po(x|zy) = Nub(zy),20(zy))

Therefore, a CVAE provides controlled image
generation, ensuring that synthetic images closely reflect
the characteristics of the original dataset.

» Bayesian Optimisation for Latent Space Tuning
To train the CVAE, a composite loss function is
minimised that balances reconstruction fidelity with latent-
space regularisation. This objective integrates two
components: the reconstruction loss, which ensures that
generated images resemble the original input, and the KL
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divergence, which encourages the latent space distribution
to approximate a standard Gaussian prior.

The Reconstruction Loss ensures generated images
match the original input, as given by:

Elqp(z | x,y)] [ —logpb(x|zY)]

Where, E [-] denotes the expectation over the
approximate posterior distribution

The KL divergence loss regularises the latent space by
encouraging the posterior distribution to approximate a
standard Gaussian prior, as given by: :

D KL[qp(z|x,y)|lp(2)]

Where p(z) = N(0,I) represents the prior
distribution.

This formulation ensures that the learned distribution
remains close to the prior p(z) = N(0,1), promoting
smoothness and generalisation in the latent representation.
The total loss function is computed as the sum of the
reconstruction loss and the KL divergence loss, weighted
by a beta coefficient. The beta coefficient modulates the
trade-off between reconstruction accuracy and latent space
regularisation. A higher value of the coefficient encourages
disentanglement and smoother latent representations, while
a lower value prioritises reconstruction fidelity. This
formulation enables the CVAE to generate diverse yet
semantically coherent synthetic character samples, which
are subsequently used for MICR training and evaluation.

BO is mentioned in recent works on generative
modelling [25], yet its application to latent space design for
MICR remains underexplored and underdeveloped. Prior
CVAE implementations often rely on fixed or heuristically
selected latent dimensions, which limit their adaptability to
domain-specific challenges. For instance, Ref [26] applied
Convolutional VAEs to detect and eliminate eye blinks
from EEG signals, a task focused on temporal noise
suppression rather than spatial character reconstruction.
While effective in that context, their approach did not
incorporate latent space tuning or address the structural
sparsity and resolution constraints inherent to MICR. In
contrast, our study introduces BO as a principled
mechanism for latent space refinement, using a structured
search space (including latent size, dropout rate, and
activation functions) and the Expected Improvement (EI)
acquisition function to guide convergence. This represents
a novel contribution, offering a reproducible, domain-
aware alternative to the static configurations used in earlier
VAE-based models. EI was chosen for its ability to balance
exploration and exploitation in low-sample, noise-prone

environments [27], making it particularly effective for
MICR, where each model evaluation can be
computationally expensive. Its probabilistic nature directs
the search toward configurations with statistically
meaningful gains, avoiding speculative tuning and
premature convergence, while being computationally
cheaper [28]. Optimisation trials were conducted over 20
iterations, with convergence assessed by stabilisation of the
reconstruction loss and consistency across validation folds.
The selection of z = 2 as the optimal latent dimension
reflects empirical tuning rather than arbitrary choice,
though statistical significance testing is still required to
confirm robustness. Section 4 provides comparative
metrics and clustering visualisations to support this claim.

Following BO, the CVAE architecture was finalised
to balance reconstruction fidelity and generalisation for
MICR  augmentation. The optimal architectural
configuration includes:

e Encoder:

A sequential stack of fully connected layers beginning
with a 256-unit dense layer, followed by a 128-unit dense
layer. Regularisation is applied via a dropout layer with a
rate of 0.3, followed by batch normalisation and a ReLU
activation function to introduce non-linearity.

e Latent Space:

The latent variable z is two-dimensional, with its
optimal dimensionality determined through Expected
Improvement-based Bayesian optimisation, ensuring
efficient encoding and reconstruction fidelity.

e Decoder:

The decoder mirrors the encoder structure, starting
with a 128-unit dense layer followed by a 256-unit dense
layer. It includes a dropout layer (0.3), batch normalisation,
and a final dense layer with the exact resolution as the
image. A sigmoid activation function is applied at the
output to constrain pixel values between 0 and 1.

This architecture was empirically validated across 20
optimisation trials, with convergence assessed via
reconstruction loss stabilisation and validation consistency.
The input comprises original character images and one-hot
encoded labels, enabling class-conditional generation.
Figure 3 illustrates the final architecture, highlighting the
encoding-decoding flow and regularisation components. It
visually outlines the encoder-decoder structure, highlights
the selected latent dimension z = 2, and illustrates how
dropout and batch normalisation are integrated to improve
generalisation. This architecture reflects a data-driven
configuration tailored to MICR augmentation, rather than a
heuristic or static design.
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Fig 3 Final CVAE Architecture Determined Through Bayesian Optimisation

Figure 3 illustrates the final CVAE architecture
selected via BO iterations, reflecting a configuration
tailored to MICR's structural constraints. The encoder
compresses the input, comprising a flattened character
image and its one-hot encoded label, through two dense
layers, followed by dropout (0.3), batch normalisation, and
ReLU activation. These components were chosen to
stabilise training and reduce overfitting [29], particularly in
small medical datasets. The latent space dimension (z = 2),
determined via El-guided tuning, offers a compact
representation that preserves essential character features
while minimising reconstruction loss. The decoder mirrors
the encoder’s structure, culminating in a sigmoid output
layer that reconstructs the image at the original resolution.
This  architecture  balances  expressiveness  and
generalisation, enabling the generation of structurally valid
synthetic samples that enhance MICR performance.

Conclusively, the proposed method integrates agent-
based simulation with a Bayesian-optimised CVAE
architecture to address the challenges of MICR
augmentation. By aligning architectural design with
domain-specific and modality-specific constraints while
validating through iterative optimisation, this study offers a
promising solution for enhancing character recognition in
low-resolution medical imaging. The following section
presents experimental results that demonstrate the
effectiveness of this approach across reconstruction quality,
clustering consistency, and performance.

V.

RESULTS AND DISCUSSION

All experiments were conducted on a Google
Compute Engine instance with 12.7 GB of system RAM,
using Python 3, TensorFlow, and Keras. The study utilised
two datasets: MEDPIX (a publicly available medical
imaging dataset) and PRIVATEDT (a curated private
dataset). Together, they provided a total of 5,126-character
patches, comprising 3,050 samples from MEDPIX and
2,076 samples from PRIVATEDT, spanning 62
alphanumeric classes (A-Z, a-z, 0-9). Each image was
standardised to dimensions (28 x 28 x 3) at 96 dpi
resolution, reflecting typical constraints in low-resolution
medical imaging. To ensure reproducibility and statistical
validity, all reported metrics averaged over 20 independent
experimental runs. Each run used a consistent 70:30 train—
test split, allowing for controlled variation and reducing the
influence of random initialisation and sampling bias.

> Latent Variable Investigation

To identify the optimal latent variable size for MICR
augmentation, we conducted a series of controlled
experiments to minimise reconstruction loss. The goal was
to ensure that CVAE-generated synthetic images closely
resemble their real counterparts in structure and intensity.
Pixel normalisation was applied to standardise image
brightness and contrast across samples, while conventional
augmentation techniques were deliberately excluded to
avoid bias during latent-space optimisation. The CVAE
model was evaluated across a range of latent dimensions,
and the minimum reconstruction loss (MRL) was recorded
for both the MEDPIX and PRIVATEDT datasets. The
results of these experiments are presented in Table 1 below.

Table 1 Latent Variables and Minimum Reconstruction Loss (MRL) for the CVAE Model

Latent Variables MLR (Medpix) 95% CI (Medpix) MRL (Privatedt) 95%ClI (Privatedt)
2 27.03 +0.02 [27.02, 27.04] 13.23 +£0.11 [13.18, 13.28]
3 28.22 £0.03 [28.21, 28.23] 14.58 +0.04 [14.56, 14.60]
4 28.78 +0.04 [28.76, 28.80] 14.69 +0.02 [14.68, 14.70]
5 28.65 +£0.02 [28.64, 28.66] 14.65 +0.04 [14.63, 14.67]
6 28.72 +0.03 [28.71, 28.73] 14.87 +0.04 [14.85, 14.89]
7 28.86 +0.14 [28.79, 28.93] 14.77 +£0.10 [14.72, 14.82]
8 29.62 +£0.39 [29.44, 29.80] 15.29 +£0.07 [15.26, 15.32]
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The optimal latent variable size was determined to be
z = 2, as larger configurations consistently led to increased
reconstruction errors and diminished convergence
efficiency due to excessive dimensionality [30]. Latent
sizes beyond 8 were particularly unstable, often requiring
longer training cycles with no measurable gain in
reconstruction fidelity. Principal Component Analysis
(PCA) confirmed that two latent variables captured 58.34%
and 41.66% of the total variance, respectively, indicating
that the tuned latent space was compact and sufficient to
encode the structural complexity of MICR characters even
at the low resolution of 96 dpi. To support this latent-
variable size selection, 95% confidence intervals were
calculated for each latent variable using the mean and

standard deviation across 20 runs. For z = 2, the intervals
were [27.02, 27.04] for MEDPIX and [13.18, 13.28] for
PRIVATEDT, both of which were non-overlapping with
those of higher latent sizes, providing strong descriptive
evidence of its significance in reducing reconstruction
error. Additionally, class-conditioned latent clustering
shows that synthetic samples retained distinctive class
features, supporting models' ability to encode small-
sample-size classes while preserving the discriminative
structure. The latent space distribution is visualised in
Figure 4, showing clusters of character embeddings and
maintaining semantic separation across classes. These
findings align with prior work on dimensionality-
constrained generative modelling in medical imaging [30].

Latent space visualisation
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Fig 4 (a) Scatter Plot of Latent Space. (b)Similarity Assessment of Images

As seen in Figure 4, which provides a visual
assessment of the latent space structure and image
similarity, it offers insight into how different latent
dimensions encode character features. Building on this,
Figure 5 below presents the optimal latent-variable

analysis, reinforcing the trends reported in Table 1. It
demonstrates that a latent space of size z = 2 yields the
lowest reconstruction loss across both MEDPIX and
PRIVATEDT datasets.

Optimal latent variables investigation at 1000 epoch
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By incorporating class labels during training, the
CVAE achieves localised clustering in latent space while
maintaining global packing, ensuring structural similarity
between nearby encodings. This behaviour is evident in
Figure 4a, where PCA-based visualisation reveals distinct
groupings of character embeddings, suggesting semantic
coherence across MICR classes. Although clustering
metrics such as the silhouette score or Davies—Bouldin
index were not computed in this study, visual inspection
supports the CVAE model’s ability to preserve class
structure under constrained latent dimensionality. Future
work may incorporate t-SNE and UMAP projections to
validate non-linear separability further. Figure 4b
complements this analysis by comparing original and
generated images of “Q” and “W,” with structural
similarity scores of 93.21% and 97.86%, respectively.
These results confirm the CVAE’s ability to preserve
essential image features, even for small-sample-size

classes, aligning with the perceptual similarity framework
proposed by Ref. [32] for assessing image quality.
Together, the scatter plot and pixel-level evidence reinforce
the model’s capacity to encode and regenerate structurally
valid MICR characters.

» Quantitative Analysis - Augmenting Datasets with
Synthetic Images

To assess the impact of CVAE-generated synthetic
images, we augmented the training datasets by adding N
synthetic samples per class. Model performance was then
evaluated using a standard CNN-based MICR classifier
with basic hyperparameter tuning. As the classifier
architecture is not the focus of this study, detailed
configuration is omitted. The primary objective was to
measure the relative performance gains attributable to the
synthetic data augmentation. The results are presented in
Table 2.

Table 2 Accuracy (%) of a CNN Classifier on Augmented Datasets Averaged on 20 runs.

NUMBER OF SYNTHETIC IMAGES PER CLASS (N)
0 50 100 150
MEDPIX 87.13 +0.18 90.33 +0.12 90.63 +0.10 88.92 +0.02
PRIVATEDT 91.42+0.14% 93.83 +0.02 98.27 +0.06 93.02+0.06%

Table 2 shows that CVAE-based augmentation
consistently improved CNN classification accuracy across
both datasets. For MEDPIX, accuracy increased from
87.13% to 90.33%, 90.63%, and 88.92% when 50, 100, and
150 synthetic images per class were added, corresponding
to gains of +3.2%, +3.5%, and +1.79%, respectively.
Similarly, PRIVATEDT showed improvements from
91.42% to 93.83%, 98.27%, and 93.02%, yielding gains of
+2.41%, +6.85%, and +1.60%. However, a decline in
performance was observed beyond N = 100, indicating
diminishing returns as synthetic samples began to outweigh
original data. This trend underscores the importance of
maintaining a balanced ratio of real to synthetic images to
preserve data diversity and prevent overfitting to generated

patterns. These results validate the effectiveness of CVAE
augmentation while highlighting the need to carefully
calibrate augmentation volume for constrained medical
imaging tasks.

» Comparison with Geometric Data Augmentation

Methods

To evaluate the effectiveness of different data
augmentation  strategies for MICR, comparative
experiments  were  conducted using  geometric
transformations (GT), specifically random translation,
scaling, and rotation, alongside the proposed method. The
results are presented in Table 3 below.

Table 3 Accuracy (%) of a Quantitative Comparison Averaged on 20 runs.

(N = 100) GT CVAE
MEDPIX 87.82 +0.13 90.58 +0.18
PRIVATEDT 92.02 +0.04 98.41 +0.08

Results in Table 3 show that CVAE-based
augmentation significantly outperformed GT methods
across both datasets. When augmented with 100 synthetic
images per class, character classification accuracy
improved from 87.82%+0.13 to 90.58%=0.18 for
MEDPIX and from 92.02% +0.04 to 98.41% +0.06 for
PRIVATEDT. These gains confirm CVAE’s better
performing ability to preserve structural features and
enhance dataset diversity, particularly under the 96-dpi
low-resolution constraint. Unlike GT, which applies pixel-
level distortions such as translation, scaling, and rotation,
CVAE generates class-conditioned samples that retain
semantic integrity and reflect the underlying data
distribution. This is made possible by its compact latent
space. Furthermore, GT do not introduce new semantic

content and may degrade legibility at low resolutions,
whereas CVAE augmentation maintains edge sharpness
and spatial coherence. GAN-based augmentation was
excluded from this comparison due to training instability,
susceptibility to model collapse, and high computational
overhead. This makes it unsuitable for small, class-
imbalanced MICR datasets.

While the proposed model showed effective
augmentation for MICR, its generative capacity is
constrained by the simplicity of the underlying network and
the low resolution of input data. The model employs dense
layers without convolutional layers, which may restrict its
ability to capture fine-grained spatial features.
Additionally, although BO was used to tune latent space
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parameters, the search space was limited to a small set of
regularisation variables, leaving room for broader
exploration and exploitation. The agent-based simulation
framework, while helpful for contextualising augmentation
workflows, remains decoupled from the generative process
and does not directly influence latent-space modelling.
Finally, the CNN classifier used for evaluation was a
standard configuration with minimal tuning, selected to
directly isolate the impact of synthetic augmentation rather
than optimise classification performance. However, we
prioritised interpretability and reproducibility, which may
limit generalisability across more complex imaging
modalities. Our future work will consider expanding the
CVAE architecture to include convolutional layers,
broadening the optimisation search space, and integrating
agent feedback mechanisms to enable adaptive
augmentation workflows.

Conclusively, the agent-based simulation framework
served a supporting role in this study by structuring the
augmentation workflow and modelling realistic MICR
interactions. Its modular design enabled task delegation
across autonomous agents, thereby contextualising the
deployment of synthetic data. The central focus of this
research remains the principled design and empirical
validation of a Bayesian-optimised CVAE architecture
tailored to low-resolution MICR augmentation. This
emphasis on latent space refinement, structural fidelity, and
augmentation efficiency defines the methodological core
and primary contribution of the study.

V. CONCLUSION

This study demonstrates the effectiveness of
Bayesian-optimised CVAE augmentation for MICR
classification, integrated within an agent-based simulation
framework to support text recognition and extraction in
medical imaging workflows. By refining latent-space
configurations via BO, the model achieved efficient
synthetic data generation, improved reconstruction
accuracy, and maintained dataset diversity. The agent-
based simulation enabled dynamic interactions among
autonomous agents, streamlining the augmentation pipeline
and enabling adaptive control over data generation. The
findings have broader implications for low-resource, low-
resolution (up to 96 dpi) imaging environments, where
conventional augmentation strategies often fail to capture
class-specific variability. The structured latent space
representation not only enhances model generalisation and
reduces overfitting risk but also improves downstream
OCR reliability, especially in scenarios with limited
annotated data and low-resolution constraints. While the
agent-based  framework was not the primary
methodological focus, its inclusion proved instrumental in
automating and scaling the augmentation process. It offers
a modular, extensible foundation for future research into
intelligent data curation, adaptive sampling, and
reinforcement-driven augmentation.
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