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Abstract 

This paper presents a Bayesian-optimised Conditional Variational Autoencoder (CVAE) for synthetic data augmentation, 

embedded within an agent-based simulation framework. The CVAE systematically refines latent-space representations, 

generating high-quality synthetic character images that enhance dataset diversity and reduce the risk of overfitting. Bayesian 

optimisation ensures optimal latent variable selection, improving reconstruction accuracy while enabling scalable MICR 

training. The proposed agent-based system introduces autonomous agents: patient agents, doctor agents, imaging device 

agents, and recognition agents that collaborate to simulate real-world MICR workflows. This structured pipeline enables 

dynamic dataset augmentation while supporting medical diagnostics and automated text extraction. Experimental evaluations 

demonstrate significant performance improvements, with CNN models achieving accuracy gains of +3.2%, +3.5%, and 

+1.79% on the public dataset and +2.41%, +6.85%, and +1.60% on the private dataset when augmented with 50, 100, and 

150 synthetic images per class, respectively. This research validates the effectiveness of Bayesian-tuned latent-space encoding 

and a supporting agent-based data augmentation, offering a scalable, computationally efficient solution for MICR 

enhancement. 

 

Keywords: Conditional Variational Autoencoder CVAE, Medical Image Character Recognition (MICR), Agent-Based 

Simulation Framework, Optical Character Recognition OCR, Data Augmentation, Latent Variable Modelling. 
 

I. INTRODUCTION 

 

Medical Image Character Recognition (MICR) is the 

automated identification of alphanumeric characters 

embedded in medical imaging modalities (MIM), such as 

radiographs, ultrasound scans, and pathology slides. Unlike 

general Optical Character Recognition (OCR), which 

typically operates on structured, high-resolution text 

documents, MICR must contend with low-resolution, 

noisy, and spatially irregular character data. These 

characters often encode essential clinical metadata, making 

their accurate recognition critical for diagnostic workflows 

and data integrity. MICR faces persistent challenges due to 

limited dataset availability, which directly impacts deep 

learning (DL) model performance. Small datasets limit 

pattern generalisation, increase the risk of overfitting [1] 

and reduce the reliability of OCR models in medical 

contexts. Privacy constraints and high acquisition costs 

further limit access to annotated medical image datasets, 

necessitating the use of effective augmentation strategies. 

 

This study proposes a Conditional Variational 

Autoencoder (CVAE) as a targeted solution for synthetic 

data augmentation in MICR. The CVAE approximates the 

probability distribution (𝑃(𝑋)) over high-dimensional 

image data (Doersch, 2016), learning pixel dependencies 

[2] to generate realistic samples that match the original data 

distributions [3]. The objective is to develop a generative 

model (P) that closely approximates (𝑃(𝑋)), producing 

synthetic images that expand training datasets and improve 

classification accuracy. Despite the promise of generative 

models, many rely on strong assumptions [4] and require 

computationally intensive inference methods [5]. Neural 

networks, used as numerical approximators [6, 7], offer 

more stable training. Among these, the Variational 

Autoencoder (VAE) is notable for its fast convergence and 
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minimal assumptions [8], making it suitable for latent space 

encoding in MICR augmentation. Unlike traditional 

autoencoders, VAEs encode inputs as probability 

distributions rather than fixed points, enabling structured 

learning. The encoder computes mean (μ) and covariance 

(Σ), forming a Gaussian latent space that supports stable 

training [9]. Figure 1 illustrates the generative process, 

showing how latent space transformations contribute to 

MICR-specific augmentation [5, 10]. 

 

 
Fig 1 VAE Generative Modelling Process 

 

Latent variables represent compressed representations 

of high-dimensional data in a continuous, lower-

dimensional space. In image modelling, this means that a 

set of latent variables.  𝑍1… 𝑍𝑛 encodes the essential 

structure of an input image 𝑋1… 𝑋𝑚.  where   n < m. For 

example, a 28×28 image contains 784 observed pixel 

values, but its latent representation may consist of far fewer 

variables that capture the hidden features responsible for 

pixel dependencies. These latent variables are not directly 

observable but are inferred during training. Neighbouring 

pixels in an image exhibit strong spatial correlation, which 

can determine visual properties such as colour, shape, and 

layout. Latent space modelling aims to capture these spatial 

correlations and dependencies in a compact form suitable 

for generative synthesis. VAEs learn such representations 

by minimising a composite loss function that combines a 

reconstruction loss and a Kullback-Leibler (KL) 

divergence. This formulation encourages the model to 

generate outputs that are similar to the input while 

regularising the latent space to follow a known distribution. 

Although Generative Adversarial Networks (GANs) are 

widely used for data augmentation, they are difficult to train 

on small datasets due to discriminator overfitting and 

architectural complexity [11, 12]. For instance, CycleGAN 

employs 26 layers and 18 residual blocks, which increases 

the risk of mode collapse and training instability [13]. In 

contrast, CVAEs offer a more stable alternative for low-

resolution image synthesis, as they optimise reconstruction 

loss directly and avoid the adversarial feedback loop that 

characterises GAN training. This adversarial loop, where 

the generator and discriminator compete, demands 

extensive and diverse datasets to maintain balanced 

learning dynamics; without sufficient data, the 

discriminator tends to overfit, destabilising the generator 

and leading to the production of irrelevant or incoherent 

images, as noted in Ref [14]. By removing this dependency, 

CVAEs maintain consistent training behaviour and are 

better suited for small, class-imbalanced datasets where 

architectural simplicity and convergence stability are 

critical. Here, a CVAE is proposed to generate class-

conditioned outputs [15, 16] that align with the dataset 

characteristics of this study, namely the low-resolution 

constraint. Their standard neural architecture and 

compatibility with stochastic gradient descent make them 

computationally efficient and easier to deploy in 

constrained settings [17]. Prior research has demonstrated 

CVAE’s effectiveness in digit and character recognition 

tasks [18, 19], but its application to low-resolution MICR 

was not explored in these works. This underexplored area 

shows the need for targeted investigation, positioning the 

current study as a relevant and timely contribution to MICR 

augmentation. 

 

The primary focus of this work is to propose and 

critically evaluate a CVAE-based solution as a targeted data 

augmentation method for MICR under low-resolution 

constraints as low as 96 dpi. Unlike conventional 

augmentation techniques, CVAE enables structured latent 

space encoding, producing realistic synthetic character 

images that improve model generalisation and reduce 
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overfitting. An agent-based simulation framework is 

introduced to support dataset augmentation through 

modular role-specific agents. However, its integration with 

the CVAE is limited and not technically central to the 

generative process. The framework simulates realistic 

augmentation workflows but lacks programmatic control 

over latent-space modelling and image synthesis. Bayesian 

optimisation (BO) is applied to refine latent space 

configurations, aiming to minimise reconstruction loss and 

improve encoding efficiency. While this approach 

enhances CVAE performance, the optimisation process 

requires a more precise specification. Key elements such as 

the acquisition function, hyperparameter search space, and 

convergence criteria are discussed in Section 3 to enable 

reproducibility and validation. This paper is organised as 

follows: Section 2 reviews related literature, Section 3 

details the proposed method, Section 4 presents 

experimental results, and Section 5 concludes with future 

directions. 

 

II. RELATED WORK 

 

MICR suffers from limited dataset availability, 

particularly in low-resolution imaging modalities. This 

constraint negatively impacts the generalisation of DL 

models and increases the risk of overfitting. Traditional 

augmentation techniques such as rotation, scaling, flipping, 

blurring, and image blending have been widely used to 

mitigate class imbalance and improve generalisation. 

However, these methods operate at the pixel level and do 

not introduce new semantic variations, rendering them 

inadequate for tasks such as MICR classification, where 

structural consistency and class-specific features are 

critical. Moreover, they often fail to capture the diversity 

needed in small datasets, leading to limited gains in model 

robustness and increased risk of overfitting to superficial 

transformations. Ref [20] demonstrated that multiscale 

convolutional neural networks (CNNs) combined with 

geometric augmentation can improve MICR performance. 

Similarly, Ref [21] and Ref [22] applied online and offline 

augmentation strategies to CNN and CRNN architectures, 

respectively. While these methods enhance robustness, they 

rely on deterministic transformations and offer limited 

diversity, which restricts generalizability across unseen 

medical imaging datasets. To address these limitations, 

generative models have gained traction for synthetic data 

augmentation. VAEs and GANs have shown promise in 

medical imaging tasks. While VAE-based approaches are 

frequently cited in the literature, their relevance to MICR-

specific constraints is rarely examined in depth. For 

example, Ref [23] employed VAEs for feature learning in 

content-based medical image retrieval, focusing on global 

image descriptors rather than character-level synthesis. 

Similarly, Ref [24] applied a Vector Quantised VAE (VQ-

VAE) to improve Gram-stain image classification, 

targeting texture-rich bacterial images rather than sparse 

alphanumeric characters. These studies demonstrate the 
versatility of VAEs in modelling complex image structures, 

but their domains and resolutions differ markedly from the 

structural and semantic demands of MICR. In parallel, 

GANs have gained popularity for image synthesis tasks due 

to their ability to produce visually compelling outputs. 

However, their reliance on large datasets and deep 

architectures makes them less suitable for MICR 

applications, which often involve low-resolution inputs and 

limited class diversity as noted in Ref [14]. This instability, 

coupled with the computational overhead of tuning deep 

GAN architectures, limits their practicality for character-

level augmentation. Unlike the broader VAE applications 

cited earlier, CVAE-based methods directly address the 

challenges of character-level synthesis, thereby aligning 

more closely with MICR requirements. However, existing 

CVAE studies have not focused on MICR or low-resolution 

modalities, leaving a gap in domain-specific validation. 

This study addresses that gap by demonstrating how 

Bayesian-optimised CVAE architectures can be tailored to 

MICR constraints, offering an efficient semantically 

coherent augmentation strategy. 

 

While generative models such as VAEs and CVAEs 

address the challenge of data scarcity through synthetic 

augmentation, they do not inherently model the contextual 

workflows in which medical image data is generated, 

processed, and interpreted. To complement these 

limitations, agent-based modelling has emerged as a 

promising approach for simulating healthcare 

environments and task-specific interactions. Ref [31] 

explored multi-agent systems for autonomous decision-

making in clinical settings, demonstrating their potential for 

workflow automation and decision support. However, such 

frameworks are rarely integrated with generative 

augmentation pipelines. Most implementations lack 

structured mechanisms for character recognition or dataset 

expansion. This study addresses that gap by embedding 

CVAE-generated synthetic images within an agent-based 

simulation framework. The agents representing patients, 

clinicians, imaging devices, and recognition modules 

facilitate dynamic data retrieval and augmentation. 

However, the agent-based system serves a supporting role 

and does not directly influence the CVAE architecture. 

 

 Conclusively, though VAEs and CVAEs are 

frequently cited in the literature, their relevance to MICR 

varies significantly. Many VAE studies focus on global 

image features, whereas CVAE-based character synthesis 

offers a more targeted solution, especially for low-

resolution medical images. Traditional augmentation 

methods lack the diversity needed for robust generalisation, 

and agent-based modelling remains underutilised in 

character recognition pipelines. This study addresses these 

gaps by combining CVAE-based augmentation with a 

structured simulation framework, offering a scalable, 

context-aware solution for MICR enhancement. 

 

 Contribution of this Study  
The core contributions of this study can be 

summarised as follows, highlighting the most novel and 

impactful elements of the proposed approach: 
 

 The study applies Bayesian Optimisation to refine latent 

space configurations within a CVAE framework, 

offering a principled and empirically validated strategy 
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for tuning latent dimensionality in MICR-specific 

augmentation. While alternative automated methods 

exist, this approach demonstrates that a compact latent 

dimension yields optimal reconstruction fidelity and 

encoding efficiency under constrained, low-resolution 

imaging conditions. 

 It adapts the CVAE architecture to address modality-

specific constraints in MICR, including low resolution 

at 96 dpi, which has not been reported in existing 

literature to our knowledge, spatial noise, and limited 

sample availability, thereby extending prior work on 

general-purpose digit synthesis to a structurally 

constrained medical imaging domain. 

 An agent-based simulation framework is integrated to 

contextualise the augmentation process, modelling real-

world MICR workflows through autonomous agents. 

While it does not directly influence the CVAE’s 

generative mechanics, it supports dynamic data retrieval 

and scalable dataset expansion. 

 

III. PROPOSED WORK 

 
This section outlines the integrated framework 

combining CVAE augmentation with an agent-based 

simulation system for MICR. The method is designed to 

address dataset scarcity, structural variability, and 

workflow realism in low-resolution medical imaging.  

 

 Agent-Based Simulation Framework  

The agent-based simulation framework models data 

flow and task delegation in MICR environments. It consists 

of four autonomous agents: 

 

 Patient Agent: Represents individuals undergoing 

imaging and initiates data generation requests. 

 Doctor Agent: Structures clinical imaging requirements 

and defines augmentation parameters. 

 Imaging Device Agent: Simulates acquisition of raw 

medical images and metadata. 

 Recognition Agent: Applies CVAE-generated synthetic 

data to train, evaluate MICR models and carry out 

character recognition. 

  

Each agent within the simulation framework operates 

in a defined state space: 

 

𝑆 =  {𝑠₁, 𝑠₂, . . . , 𝑠ₙ} 
 

Where augmentation actions Aᵢ govern transitions 

between states. The agent’s behaviour is modelled by the 

transition function: 

 

𝑃(𝑠ₜ₊₁ | 𝑠ₜ)  =  𝑓(𝐴ᵢ, 𝑠ₜ) 
 

To formalise the interaction between agents and the 

CVAE module, we define the probability of generating a 

synthetic image 𝑿_𝒔𝒚 from a real image 𝑿_𝒓𝒆 using a 

Bayesian likelihood model: 

 

𝑃(𝑋_𝑠𝑦 | 𝑋_𝑟𝑒)  =  ∫  𝑃(𝑋_𝑟𝑒 | 𝑧, 𝑦)  ·  𝑃(𝑧 | 𝑦) 𝑑𝑧 

 

Here, 𝒛 represents the latent variable sampled from the 

CVAE’s posterior distribution, and 𝒚 is the class label 

provided by the agent. The agent’s role is to supply 

contextual parameters, such as class labels, imaging 

conditions, or augmentation volume, that condition the 

CVAE’s generative process. This interaction can be 

expressed as: 

 

𝑋_𝑠𝑦 =  𝐶𝑉𝐴𝐸(𝑧, 𝑦) 
𝑤ℎ𝑒𝑟𝑒 𝑧 ~ 𝑞_𝜑(𝑧 | 𝑋_𝑟𝑒, 𝑦), 𝑎𝑛𝑑 𝑦 =  𝐴𝑔𝑒𝑛𝑡(𝑠ₜ) 

 

This formulation captures how agents influence the 

generation pipeline by dynamically assigning class labels 

and augmentation triggers based on their current state 𝒔ₜ. 
Figure 2 illustrates this workflow, showing how 

autonomous agents initiate augmentation requests, define 

imaging parameters, and coordinate with the CVAE 

module to produce synthetic character samples for MICR 

training and post-MICR processes. 
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Fig 2 Agent-Based Simulation Workflow 

 

Figure 2 presents a structured overview of the agent-

based simulation framework designed to support synthetic 

data augmentation for MICR. The diagram illustrates a 

sequential flow of tasks initiated by the Patient Agent, who 

triggers an imaging request, and coordinated by the Doctor 

Agent, who defines imaging parameters and contextual 

labels. These parameters guide the CVAE, which generates 

synthetic character samples conditioned on latent variables 

and agent-supplied labels. The Imaging Device Agent 

simulates acquisition conditions, while the Recognition 

Agent receives the synthetic samples directly from the 

CVAE for MICR training and evaluation. This stage marks 

the transition from generative modelling to recognition, 

where extracted features are used to optimise MICR 

performance. The final stage, labelled Post-MICR 

Processes, includes downstream tasks such as data entry, 

validation, or integration into document retrieval systems in 

Electronic Health Record (EHR) systems. The CVAE 

module is centrally positioned to reflect its role as a bridge 

between raw image simulation and recognition. Figure 2 

emphasises modular task delegation, explicitly 

distinguishing between generative, acquisition, 

recognition, and post-recognition phases. Each agent 

contributes uniquely to the augmentation pipeline, with 

clearly defined transitions and no architectural redundancy. 

 

 CVAE Architecture and Training Process 
Given the limitations of small medical datasets, we 

propose a CVAE as a generative modelling approach to 

synthesise realistic character images for medical text 

recognition in low-resolution medical imaging modalities 

of 96 dpi. The CVAE extends traditional VAEs by 

incorporating labels into the generative process, enabling 

class-conditional image generation. Let (X) represent an 

observed image and (y) its corresponding class label. The 

encoder network transforms the input (X) into a latent space 

representation (Z), governed by a normal distribution:  

 

𝑞_𝜑(𝑧 | 𝑥, 𝑦)  =  𝑁(𝜇_𝜑(𝑥, 𝑦), 𝛴_𝜑(𝑥, 𝑦))     
 

where μφ(x, y) is the mean and Σφ(x, y) represents the 

covariance matrix. The latent space sampling follows: 

 

𝑧 ~ 𝑞𝜑(𝑧 | 𝑥, 𝑦) 
 

The decoder reconstructs an output image conditioned 

on the latent variable 𝑧 and label 𝑦: 

 

𝑝𝜃(𝑥 | 𝑧, 𝑦)  =  𝑁(𝜇𝜃(𝑧, 𝑦), 𝛴𝜃(𝑧, 𝑦)) 
 

Therefore, a CVAE provides controlled image 

generation, ensuring that synthetic images closely reflect 

the characteristics of the original dataset. 

 

 Bayesian Optimisation for Latent Space Tuning 

To train the CVAE, a composite loss function is 

minimised that balances reconstruction fidelity with latent-

space regularisation. This objective integrates two 

components: the reconstruction loss, which ensures that 

generated images resemble the original input, and the KL 
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divergence, which encourages the latent space distribution 

to approximate a standard Gaussian prior. 

 

The Reconstruction Loss ensures generated images 

match the original input, as given by:  

 

𝐸[𝑞𝜑(𝑧 | 𝑥, 𝑦)] [ −𝑙𝑜𝑔 𝑝𝜃(𝑥 | 𝑧, 𝑦) ] 
 

Where, 𝐸 [·] denotes the expectation over the 

approximate posterior distribution 

 

The KL divergence loss regularises the latent space by 

encouraging the posterior distribution to approximate a 

standard Gaussian prior, as given by: : 

 

𝐷_𝐾𝐿 [ 𝑞𝜑(𝑧 | 𝑥, 𝑦) || 𝑝(𝑧) ] 
 

Where 𝑝(𝑧) = 𝑁 (0, 𝐼) represents the prior 

distribution. 

 

This formulation ensures that the learned distribution 

remains close to the prior 𝑝(𝑧) = 𝑁(0, 𝐼), promoting 

smoothness and generalisation in the latent representation. 

The total loss function is computed as the sum of the 

reconstruction loss and the KL divergence loss, weighted 

by a beta coefficient. The beta coefficient modulates the 

trade-off between reconstruction accuracy and latent space 

regularisation. A higher value of the coefficient encourages 

disentanglement and smoother latent representations, while 

a lower value prioritises reconstruction fidelity. This 

formulation enables the CVAE to generate diverse yet 

semantically coherent synthetic character samples, which 

are subsequently used for MICR training and evaluation. 

 

BO is mentioned in recent works on generative 

modelling [25], yet its application to latent space design for 

MICR remains underexplored and underdeveloped. Prior 

CVAE implementations often rely on fixed or heuristically 

selected latent dimensions, which limit their adaptability to 

domain-specific challenges. For instance, Ref [26] applied 

Convolutional VAEs to detect and eliminate eye blinks 

from EEG signals, a task focused on temporal noise 

suppression rather than spatial character reconstruction. 

While effective in that context, their approach did not 

incorporate latent space tuning or address the structural 

sparsity and resolution constraints inherent to MICR. In 

contrast, our study introduces BO as a principled 

mechanism for latent space refinement, using a structured 

search space (including latent size, dropout rate, and 

activation functions) and the Expected Improvement (EI) 

acquisition function to guide convergence. This represents 

a novel contribution, offering a reproducible, domain-

aware alternative to the static configurations used in earlier 

VAE-based models. EI was chosen for its ability to balance 

exploration and exploitation in low-sample, noise-prone 

environments [27], making it particularly effective for 

MICR, where each model evaluation can be 

computationally expensive. Its probabilistic nature directs 

the search toward configurations with statistically 

meaningful gains, avoiding speculative tuning and 

premature convergence, while being computationally 

cheaper [28]. Optimisation trials were conducted over 20 

iterations, with convergence assessed by stabilisation of the 

reconstruction loss and consistency across validation folds. 

The selection of z = 2 as the optimal latent dimension 

reflects empirical tuning rather than arbitrary choice, 

though statistical significance testing is still required to 

confirm robustness. Section 4 provides comparative 

metrics and clustering visualisations to support this claim.  

 

Following BO, the CVAE architecture was finalised 

to balance reconstruction fidelity and generalisation for 

MICR augmentation. The optimal architectural 

configuration includes: 

 

 Encoder:  

A sequential stack of fully connected layers beginning 

with a 256-unit dense layer, followed by a 128-unit dense 

layer. Regularisation is applied via a dropout layer with a 

rate of 0.3, followed by batch normalisation and a ReLU 

activation function to introduce non-linearity. 

 

 Latent Space: 

The latent variable z is two-dimensional, with its 

optimal dimensionality determined through Expected 

Improvement-based Bayesian optimisation, ensuring 

efficient encoding and reconstruction fidelity. 

 

 Decoder:  

The decoder mirrors the encoder structure, starting 

with a 128-unit dense layer followed by a 256-unit dense 

layer. It includes a dropout layer (0.3), batch normalisation, 

and a final dense layer with the exact resolution as the 

image. A sigmoid activation function is applied at the 

output to constrain pixel values between 0 and 1. 

 

This architecture was empirically validated across 20 

optimisation trials, with convergence assessed via 

reconstruction loss stabilisation and validation consistency. 

The input comprises original character images and one-hot 

encoded labels, enabling class-conditional generation. 

Figure 3 illustrates the final architecture, highlighting the 

encoding-decoding flow and regularisation components. It 

visually outlines the encoder-decoder structure, highlights 

the selected latent dimension z = 2, and illustrates how 

dropout and batch normalisation are integrated to improve 

generalisation. This architecture reflects a data-driven 

configuration tailored to MICR augmentation, rather than a 

heuristic or static design. 
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Fig 3 Final CVAE Architecture Determined Through Bayesian Optimisation 

 

Figure 3 illustrates the final CVAE architecture 

selected via BO iterations, reflecting a configuration 

tailored to MICR's structural constraints. The encoder 

compresses the input, comprising a flattened character 

image and its one-hot encoded label, through two dense 

layers, followed by dropout (0.3), batch normalisation, and 

ReLU activation. These components were chosen to 

stabilise training and reduce overfitting [29], particularly in 

small medical datasets. The latent space dimension (z = 2), 

determined via EI-guided tuning, offers a compact 

representation that preserves essential character features 

while minimising reconstruction loss. The decoder mirrors 

the encoder’s structure, culminating in a sigmoid output 

layer that reconstructs the image at the original resolution. 

This architecture balances expressiveness and 

generalisation, enabling the generation of structurally valid 

synthetic samples that enhance MICR performance.  

 

Conclusively, the proposed method integrates agent-

based simulation with a Bayesian-optimised CVAE 

architecture to address the challenges of MICR 

augmentation. By aligning architectural design with 

domain-specific and modality-specific constraints while 

validating through iterative optimisation, this study offers a 

promising solution for enhancing character recognition in 

low-resolution medical imaging. The following section 

presents experimental results that demonstrate the 

effectiveness of this approach across reconstruction quality, 

clustering consistency, and performance. 

 

 

 

 

IV. RESULTS AND DISCUSSION 

 

All experiments were conducted on a Google 

Compute Engine instance with 12.7 GB of system RAM, 

using Python 3, TensorFlow, and Keras. The study utilised 

two datasets: MEDPIX (a publicly available medical 

imaging dataset) and PRIVATEDT (a curated private 

dataset). Together, they provided a total of 5,126-character 

patches, comprising 3,050 samples from MEDPIX and 

2,076 samples from PRIVATEDT, spanning 62 

alphanumeric classes (A–Z, a–z, 0–9). Each image was 

standardised to dimensions (28 × 28 × 3) at 96 dpi 

resolution, reflecting typical constraints in low-resolution 

medical imaging. To ensure reproducibility and statistical 

validity, all reported metrics averaged over 20 independent 

experimental runs. Each run used a consistent 70:30 train–

test split, allowing for controlled variation and reducing the 

influence of random initialisation and sampling bias. 

 

 Latent Variable Investigation 

 To identify the optimal latent variable size for MICR 

augmentation, we conducted a series of controlled 

experiments to minimise reconstruction loss. The goal was 

to ensure that CVAE-generated synthetic images closely 

resemble their real counterparts in structure and intensity. 

Pixel normalisation was applied to standardise image 

brightness and contrast across samples, while conventional 

augmentation techniques were deliberately excluded to 

avoid bias during latent-space optimisation. The CVAE 

model was evaluated across a range of latent dimensions, 

and the minimum reconstruction loss (MRL) was recorded 

for both the MEDPIX and PRIVATEDT datasets. The 

results of these experiments are presented in Table 1 below. 

 

Table 1 Latent Variables and Minimum Reconstruction Loss (MRL) for the CVAE Model 

Latent Variables MLR (Medpix) 95% CI (Medpix) MRL (Privatedt) 95%CI (Privatedt) 

2 27.03 ±0.02 [27.02, 27.04] 13.23 ±0.11 [13.18, 13.28] 

3 28.22 ±0.03 [28.21, 28.23] 14.58 ±0.04 [14.56, 14.60] 

4 28.78 ±0.04 [28.76, 28.80] 14.69 ±0.02 [14.68, 14.70] 

5 28.65 ±0.02 [28.64, 28.66] 14.65 ±0.04 [14.63, 14.67] 

6 28.72 ±0.03 [28.71, 28.73] 14.87 ±0.04 [14.85, 14.89] 

7 28.86 ±0.14 [28.79, 28.93] 14.77 ±0.10 [14.72, 14.82] 

8 29.62 ±0.39 [29.44, 29.80] 15.29 ±0.07 [15.26, 15.32] 
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The optimal latent variable size was determined to be 

z = 2, as larger configurations consistently led to increased 

reconstruction errors and diminished convergence 

efficiency due to excessive dimensionality [30]. Latent 

sizes beyond 8 were particularly unstable, often requiring 

longer training cycles with no measurable gain in 

reconstruction fidelity. Principal Component Analysis 

(PCA) confirmed that two latent variables captured 58.34% 

and 41.66% of the total variance, respectively, indicating 

that the tuned latent space was compact and sufficient to 

encode the structural complexity of MICR characters even 

at the low resolution of 96 dpi. To support this latent-

variable size selection, 95% confidence intervals were 

calculated for each latent variable using the mean and 

standard deviation across 20 runs. For z = 2, the intervals 

were [27.02, 27.04] for MEDPIX and [13.18, 13.28] for 

PRIVATEDT, both of which were non-overlapping with 

those of higher latent sizes, providing strong descriptive 

evidence of its significance in reducing reconstruction 

error. Additionally, class-conditioned latent clustering 

shows that synthetic samples retained distinctive class 

features, supporting models' ability to encode small-

sample-size classes while preserving the discriminative 

structure. The latent space distribution is visualised in 

Figure 4, showing clusters of character embeddings and 

maintaining semantic separation across classes. These 

findings align with prior work on dimensionality-

constrained generative modelling in medical imaging [30]. 

 

Fig 4 (a) Scatter Plot of Latent Space. (b)Similarity Assessment of Images 

 

As seen in Figure 4, which provides a visual 

assessment of the latent space structure and image 

similarity, it offers insight into how different latent 

dimensions encode character features. Building on this, 

Figure 5 below presents the optimal latent-variable 

analysis, reinforcing the trends reported in Table 1. It 

demonstrates that a latent space of size z = 2 yields the 

lowest reconstruction loss across both MEDPIX and 

PRIVATEDT datasets. 

 

 

 
Fig 5 Optimal Latent Variables Investigation 
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By incorporating class labels during training, the 

CVAE achieves localised clustering in latent space while 

maintaining global packing, ensuring structural similarity 

between nearby encodings. This behaviour is evident in 

Figure 4a, where PCA-based visualisation reveals distinct 

groupings of character embeddings, suggesting semantic 

coherence across MICR classes. Although clustering 

metrics such as the silhouette score or Davies–Bouldin 

index were not computed in this study, visual inspection 

supports the CVAE model’s ability to preserve class 

structure under constrained latent dimensionality. Future 

work may incorporate t-SNE and UMAP projections to 

validate non-linear separability further. Figure 4b 

complements this analysis by comparing original and 

generated images of “Q” and “W,” with structural 

similarity scores of 93.21% and 97.86%, respectively. 

These results confirm the CVAE’s ability to preserve 

essential image features, even for small-sample-size 

classes, aligning with the perceptual similarity framework 

proposed by Ref. [32] for assessing image quality. 

Together, the scatter plot and pixel-level evidence reinforce 

the model’s capacity to encode and regenerate structurally 

valid MICR characters. 

 

 Quantitative Analysis - Augmenting Datasets with 

Synthetic Images 

To assess the impact of CVAE-generated synthetic 

images, we augmented the training datasets by adding N 

synthetic samples per class. Model performance was then 

evaluated using a standard CNN-based MICR classifier 

with basic hyperparameter tuning. As the classifier 

architecture is not the focus of this study, detailed 

configuration is omitted. The primary objective was to 

measure the relative performance gains attributable to the 

synthetic data augmentation. The results are presented in 

Table 2. 

 

Table 2 Accuracy (%) of a CNN Classifier on Augmented Datasets Averaged on 20 runs. 

 NUMBER OF SYNTHETIC IMAGES PER CLASS (N) 

 0 50 100 150 

MEDPIX 87.13 ±0.18 90.33 ±0.12 90.63 ±0.10 88.92 ±0.02 

PRIVATEDT 91.42+0.14% 93.83 ±0.02 98.27 ±0.06 93.02+0.06% 

 

Table 2 shows that CVAE-based augmentation 

consistently improved CNN classification accuracy across 

both datasets. For MEDPIX, accuracy increased from 

87.13% to 90.33%, 90.63%, and 88.92% when 50, 100, and 

150 synthetic images per class were added, corresponding 

to gains of +3.2%, +3.5%, and +1.79%, respectively. 

Similarly, PRIVATEDT showed improvements from 

91.42% to 93.83%, 98.27%, and 93.02%, yielding gains of 

+2.41%, +6.85%, and +1.60%. However, a decline in 

performance was observed beyond N = 100, indicating 

diminishing returns as synthetic samples began to outweigh 

original data. This trend underscores the importance of 

maintaining a balanced ratio of real to synthetic images to 

preserve data diversity and prevent overfitting to generated 

patterns. These results validate the effectiveness of CVAE 

augmentation while highlighting the need to carefully 

calibrate augmentation volume for constrained medical 

imaging tasks. 

 

 Comparison with Geometric Data Augmentation 

Methods 
To evaluate the effectiveness of different data 

augmentation strategies for MICR, comparative 

experiments were conducted using geometric 

transformations (GT), specifically random translation, 

scaling, and rotation, alongside the proposed method. The 

results are presented in Table 3 below. 

 

Table 3 Accuracy (%) of a Quantitative Comparison Averaged on 20 runs. 

(N = 100) GT CVAE 

MEDPIX 87.82 ±0.13 90.58 ±0.18 

PRIVATEDT 92.02 ±0.04 98.41 ±0.08 

 

Results in Table 3 show that CVAE-based 

augmentation significantly outperformed GT methods 

across both datasets. When augmented with 100 synthetic 

images per class, character classification accuracy 

improved from 87.82% ± 0.13 to 90.58% ± 0.18 for 

MEDPIX and from 92.02% ± 0.04 to 98.41% ± 0.06 for 

PRIVATEDT. These gains confirm CVAE’s better 

performing ability to preserve structural features and 

enhance dataset diversity, particularly under the 96-dpi 

low-resolution constraint. Unlike GT, which applies pixel-

level distortions such as translation, scaling, and rotation, 

CVAE generates class-conditioned samples that retain 

semantic integrity and reflect the underlying data 

distribution. This is made possible by its compact latent 

space. Furthermore, GT do not introduce new semantic 

content and may degrade legibility at low resolutions, 

whereas CVAE augmentation maintains edge sharpness 

and spatial coherence. GAN-based augmentation was 

excluded from this comparison due to training instability, 

susceptibility to model collapse, and high computational 

overhead. This makes it unsuitable for small, class-

imbalanced MICR datasets. 

 

While the proposed model showed effective 

augmentation for MICR, its generative capacity is 

constrained by the simplicity of the underlying network and 

the low resolution of input data. The model employs dense 

layers without convolutional layers, which may restrict its 

ability to capture fine-grained spatial features. 

Additionally, although BO was used to tune latent space 
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parameters, the search space was limited to a small set of 

regularisation variables, leaving room for broader 

exploration and exploitation. The agent-based simulation 

framework, while helpful for contextualising augmentation 

workflows, remains decoupled from the generative process 

and does not directly influence latent-space modelling. 

Finally, the CNN classifier used for evaluation was a 

standard configuration with minimal tuning, selected to 

directly isolate the impact of synthetic augmentation rather 

than optimise classification performance. However, we 

prioritised interpretability and reproducibility, which may 

limit generalisability across more complex imaging 

modalities. Our future work will consider expanding the 

CVAE architecture to include convolutional layers, 

broadening the optimisation search space, and integrating 

agent feedback mechanisms to enable adaptive 

augmentation workflows. 

 

Conclusively, the agent-based simulation framework 

served a supporting role in this study by structuring the 

augmentation workflow and modelling realistic MICR 

interactions. Its modular design enabled task delegation 

across autonomous agents, thereby contextualising the 

deployment of synthetic data. The central focus of this 

research remains the principled design and empirical 

validation of a Bayesian-optimised CVAE architecture 

tailored to low-resolution MICR augmentation. This 

emphasis on latent space refinement, structural fidelity, and 

augmentation efficiency defines the methodological core 

and primary contribution of the study. 

 

V. CONCLUSION 

 
This study demonstrates the effectiveness of 

Bayesian-optimised CVAE augmentation for MICR 

classification, integrated within an agent-based simulation 

framework to support text recognition and extraction in 

medical imaging workflows. By refining latent-space 

configurations via BO, the model achieved efficient 

synthetic data generation, improved reconstruction 

accuracy, and maintained dataset diversity. The agent-

based simulation enabled dynamic interactions among 

autonomous agents, streamlining the augmentation pipeline 

and enabling adaptive control over data generation. The 

findings have broader implications for low-resource, low-

resolution (up to 96 dpi) imaging environments, where 

conventional augmentation strategies often fail to capture 

class-specific variability. The structured latent space 

representation not only enhances model generalisation and 

reduces overfitting risk but also improves downstream 

OCR reliability, especially in scenarios with limited 

annotated data and low-resolution constraints. While the 

agent-based framework was not the primary 

methodological focus, its inclusion proved instrumental in 

automating and scaling the augmentation process. It offers 

a modular, extensible foundation for future research into 

intelligent data curation, adaptive sampling, and 
reinforcement-driven augmentation. 
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