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A B S T R A C T

Anemia affects over 1.6 billion people globally, representing a significant public health challenge, particularly in 
low- and middle-income countries where traditional diagnostic methods face barriers including invasive pro
cedures, skilled personnel requirements, and inadequate laboratory infrastructure. Artificial intelligence (AI) has 
emerged as a promising technology offering non-invasive, rapid, and cost-effective solutions for anemia detection 
and management. This narrative review synthesises current literature on AI applications in anemia screening, 
diagnosis, and clinical management, examining methodologies, performance metrics, implementation chal
lenges, and future research directions. We conducted a comprehensive narrative synthesis informed by sys
tematic search principles, searching PubMed, IEEE Xplore, Scopus, and Web of Science databases with additional 
hand-searching and expert consultation. AI models demonstrate variable accuracy in anemia detection across 
diverse data sources, with performance ranging from 75–97 % AUC depending on methodology and validation 
approaches. Machine learning algorithms such as support vector machines, convolutional neural networks, and 
random forests show potential for achieving performance comparable to standard blood tests in controlled 
research settings. Smartphone-integrated applications and point-of-care systems show particular promise for 
resource-limited settings, though real-world validation remains limited. While AI shows significant potential for 
enhancing accessibility and diagnostic efficiency in anemia care, critical challenges including data stand
ardisation, algorithmic bias, regulatory compliance, clinical validation in diverse populations, and deployment 
equity in low- and middle-income countries require urgent attention to ensure equitable implementation and 
clinical adoption.

1. Introduction

Anemia represents one of the most prevalent nutritional disorders 
worldwide, characterised by reduced hemoglobin concentration, red 
blood cell count, or hematocrit below established reference thresholds 
[1,2]. The World Health Organization estimates that anemia affects 
approximately 1.62 billion people globally, with the highest burden 
concentrated in developing nations where prevalence rates can exceed 
40 % in vulnerable populations including children under five years and 
pregnant women [3]. This condition manifests through diverse clinical 
presentations ranging from mild fatigue and cognitive impairment to 

severe complications including heart failure and maternal mortality, 
substantially impacting quality of life and economic productivity across 
affected communities.

The pathophysiology of anemia encompasses multiple etiological 
pathways, with iron deficiency accounting for approximately 50 % of all 
cases globally [4]. Other significant causes include chronic disease, 
blood loss, genetic disorders such as thalassemia and sickle cell disease, 
nutritional deficiencies involving folate and vitamin B12, and chronic 
kidney disease. The complexity of anemia classification requires so
phisticated diagnostic approaches that can differentiate between various 
subtypes to guide appropriate therapeutic interventions. Traditional 
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diagnostic methods rely heavily on laboratory-based complete blood 
count analysis, serum iron studies, and additional biochemical markers 
[5], which collectively provide comprehensive insights into underlying 
mechanisms and severity.

Current diagnostic challenges in anemia detection are particularly 
pronounced in resource-limited settings where healthcare infrastructure 
remains inadequate. The requirement for invasive blood sampling, 
specialised laboratory equipment, trained phlebotomists, and reliable 
electricity supply creates substantial barriers to timely diagnosis and 
treatment initiation [6]. Many healthcare facilities in low- and 
middle-income countries lack the necessary resources to perform 
routine hemoglobin testing, resulting in delayed diagnosis, inappro
priate treatment, and progression to severe anemia with associated 
complications. Furthermore, the cost implications of repeated labora
tory testing create additional barriers for patients and healthcare sys
tems already operating under financial constraints.

The emergence of artificial intelligence technologies has opened 
potential opportunities for transforming anemia care delivery through 
innovative diagnostic and management approaches. Machine learning 
algorithms demonstrate remarkable capability in pattern recognition, 
enabling the development of non-invasive screening tools that can 
analyse diverse data sources including smartphone-captured images, 
wearable sensor data, and electronic health records [7]. These 
AI-powered solutions offer the potential to democratise anemia 
screening by eliminating traditional barriers while maintaining diag
nostic accuracy comparable to conventional methods in research set
tings. Recent advances in deep learning, computer vision, large language 
models (LLMs), and biological AI models such as AlphaFold and 
RoseTTAFold have accelerated the development of practical AI appli
cations suitable for deployment in various healthcare settings [8,9]. 
However, the translation of these research advances to validated clinical 
tools, particularly in low-resource settings where the anemia burden is 
highest, remains a significant challenge.

Despite the significant burden of anemia globally and the promising 
potential of AI technologies, there remains a critical gap in compre
hensive understanding of current AI applications, their clinical effec
tiveness, and implementation challenges in anemia care. While 
numerous individual studies have demonstrated the feasibility of AI- 
based anemia detection methods, a systematic synthesis of available 
evidence is essential to guide future research priorities and clinical 
implementation strategies. This narrative review addresses this knowl
edge gap by examining the current state of AI applications in anemia 
screening, diagnosis, and management, with particular emphasis on 
methodological approaches, performance characteristics, and practical 
implementation considerations. The primary objectives include: (1) 
synthesising available evidence on AI-based anemia screening and 
diagnostic tools, (2) evaluating the performance and clinical utility of 
different AI methodologies, (3) identifying key challenges and limita
tions in current AI applications, and (4) proposing future research di
rections to advance AI integration in anemia care.

2. Methods

This narrative review employed a comprehensive literature search 
strategy to identify relevant studies examining AI applications in anemia 
care. We adopted a narrative synthesis approach informed by systematic 
search principles rather than systematic review methodology to 
accommodate the heterogeneous nature of AI applications, diverse 
methodological approaches, and emerging technologies. This approach 
allows for broader inclusion of innovative technologies and critical 
synthesis of available evidence while maintaining methodological 
rigour through structured search and screening protocols. A quantitative 
meta-analysis was not performed due to substantial heterogeneity in AI 
methodologies (ranging from traditional machine learning to deep 
learning architectures), diverse outcome measures (accuracy, AUC, 
sensitivity/specificity), variable validation approaches (internal cross- 

validation, temporal validation, external validation), and inconsistent 
reporting of performance metrics across studies, which would preclude 
meaningful statistical pooling.

Electronic databases including PubMed/MEDLINE, IEEE Xplore 
Digital Library, Scopus, and Web of Science were systematically 
searched for peer-reviewed articles published between January 2013 
and December 2024. The search strategy utilised a combination of 
Medical Subject Headings (MeSH) terms and free-text keywords 
including "anemia" OR "anaemia," "artificial intelligence," "machine 
learning," "deep learning," "neural networks," "non-invasive screening," 
"smartphone diagnosis," "clinical decision support," "digital health," and 
"point-of-care testing." Additional searches included terms such as "large 
language models," "foundation models," "transformer networks," and 
"federated learning" to capture recent AI developments.

Manual hand-searching was conducted for key journals including 
Nature Biomedical Engineering, JMIR Medical Informatics, and Artifi
cial Intelligence in Medicine for the past two years. Additionally, we 
contacted leading experts in the field (n = 2) to identify ongoing 
research and unpublished findings.

Inclusion criteria comprised studies that: (1) focused on AI-based 
tools, algorithms, or systems for anemia detection, diagnosis, or man
agement; (2) involved human subjects or human-derived data; (3) were 
published in English language; (4) presented original research findings 
or significant technological developments; and (5) provided sufficient 
methodological detail for quality assessment. Exclusion criteria 
included: (1) studies without clear AI or machine learning frameworks; 
(2) purely theoretical or conceptual papers without empirical valida
tion; (3) studies focusing solely on other hematological conditions 
without anemia-specific outcomes; (4) conference abstracts without full- 
text availability; and (5) studies with insufficient methodological in
formation for evaluation.

The literature search was conducted independently by two re
viewers, with initial screening performed based on titles and abstracts, 
followed by full-text review of potentially relevant articles. Reference 
lists of included studies were manually examined to identify additional 
relevant publications through backward citation tracking. Given the 
rapidly evolving nature of AI technology, grey literature sources 
including government reports, white papers, and clinical trial registries 
were also consulted to capture emerging developments and ongoing 
research initiatives. Grey literature quality was assessed using criteria 
including author credentials, institutional affiliation, peer review status, 
and methodological transparency.

Data extraction was performed using a standardised form capturing 
study characteristics, AI methodology, target population, performance 
metrics, and key findings. Quality assessment was conducted using 
specific criteria adapted from QUADAS-2 for diagnostic accuracy studies 
and PROBAST for prediction model studies, including assessment of: (1) 
study population representativeness, (2) reference standard adequacy, 
(3) validation methodology (internal/external/temporal), (4) sample 
size adequacy, (5) handling of missing data, (6) bias assessment, and (7) 
clinical applicability. Due to the heterogeneous nature of included 
studies and diverse AI applications, a narrative synthesis approach was 
employed rather than quantitative meta-analysis. To address potential 
narrative bias, findings were synthesised using a structured framework 
organized by clinical task (screening vs. diagnosis vs. management), 
target population (pediatric, pregnancy, chronic disease), healthcare 
setting (community vs. hospital), and technological modality (imaging, 
laboratory parameters, wearables).

3. AI in anemia screening

This section focuses specifically on AI applications for initial anemia 
detection and population-based screening.
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3.1. Image-Based screening technologies

Revolutionary advances in computer vision and deep learning have 
enabled the development of sophisticated image-based anemia 
screening systems that leverage smartphone cameras and specialised 
imaging devices. These non-invasive approaches analyse various 
anatomical sites including palpebral conjunctiva, fingernails, sclera, and 
facial features to infer hemoglobin levels and detect anemia presence. 
The palpebral conjunctiva has emerged as the most promising target for 
image-based screening due to its rich vascularisation and accessibility 
for photography [10].

Deep learning models using conjunctival imaging demonstrate the 
highest accuracy (AUC 0.97) but require controlled lighting conditions 
and show reduced performance in darker skin tones [11]. Nailbed im
aging offers practical advantages including easier image acquisition and 
reduced privacy concerns, even with good accuracy (AUC 0.95) [12]. 
Retinal fundus imaging achieves intermediate performance (AUC 
0.89–0.93) with the benefit of potential integration with existing dia
betic retinopathy screening programmes, though requiring specialised 
equipment. From a computational complexity perspective, ensemble 
CNN models (VGG16, ResNet-50, InceptionV3) require 2–5 s processing 
time on standard smartphones, whilst simpler SVM-based approaches 
process images in under 1 s but with reduced accuracy [13]. Clinical 
applicability favours nailbed and conjunctival approaches for 
point-of-care settings, whilst retinal imaging suits hospital-based 
screening due to equipment requirements [12].

Sehar et al. (2025) developed a non-invasive method for anemia 
detection using smartphone-acquired images of the palpebral conjunc
tiva, processed with advanced deep learning models. A dataset of 764 
images was augmented to 4315 using a DCGAN (Deep Convolutional 
Generative Adversarial Network) to improve model generalisation. A 
stacking ensemble of VGG16, ResNet-50, and InceptionV3 achieved an 
AUC (Area Under the Receiver Operating Characteristic Curve) of 0.97, 
though this performance was achieved in a controlled research setting 
with limited validation across diverse populations and lighting condi
tions. Cost-effectiveness analysis and real-world deployment feasibility 
were not assessed [11].

Nailbed imaging represents another promising approach for non- 
invasive anemia screening, particularly advantageous due to the ease 
of image acquisition and reduced privacy concerns [14]. Lee et al. 
(2024) conducted a clinical study to evaluate the feasibility of using 
smartphone-acquired images for non-invasive anemia detection in 
paediatric patients [15]. Their AI-based system, HEMO-AI (Hemoglobin 
Easy Measurement by Optical Artificial Intelligence), analysed finger
nail photographs captured under controlled lighting conditions to pre
dict hemoglobin levels, using deep learning models trained on colour, 
texture, and morphological features of the nailbed achieving 87 % 

sensitivity and 84 % specificity with an AUC of 0.75 (95 % CI (Confi
dence Interval): 0.71–0.79), validated using laboratory CBC (Complete 
Blood Count) as reference standard with temporal validation over 6 
months. However, validation was limited to a single institution, and 
performance degradation was observed in patients with nail disorders or 
peripheral circulation issues.

Table 1 presents a comprehensive comparison of image-based AI 
screening methods, highlighting the diversity of approaches and their 
respective performance characteristics across different anatomical sites 
and target populations. Performance metrics include validation meth
odology and confidence intervals where available.

3.2. Smartphone-based applications

The proliferation of smartphone technology has catalysed the 
development of accessible mHealth applications for anemia screening, 
particularly valuable in resource-limited settings where traditional 
laboratory infrastructure is unavailable. These applications leverage 
built-in cameras, processing capabilities, and connectivity features to 
provide point-of-care anemia assessment with immediate results and 
clinical guidance.

Smartphone-based applications face several deployment challenges. 
HemaApp requires users to maintain steady finger positioning for 10–15 
s, which may be challenging in field settings or with young children. 
“Fingernail selfie” approaches (e.g., AnemoCheck Mobile, now Ruby) 
have shown large-scale real-world feasibility and clinical validation, 
with recent studies demonstrating population-scale usage and good 
screening performance; these systems typically pair capture guidance 
with image-analysis algorithms to improve data quality, though precise 
failure-rate reductions vary by study and are not consistently reported 
[21]. On-device battery use depends strongly on the model class and 
optimization. Empirical and survey work consistently finds that 
CNN-based vision models draw more energy per inference than lighter 
classical ML models (e.g., SVM/MLP), unless aggressively optimized 
(quantization, pruning, HW acceleration) [22]. For low- and 
middle-income country (LMIC) deployment, offline-capable models 
with periodic cloud synchronisation offer the most practical approach, 
balancing accuracy with connectivity constraints [23].

HemaApp, developed by researchers at the University of Washing
ton, represents a significant advancement in non-invasive hemoglobin 
estimation using smartphone-based spectroscopy [24]. The application 
utilises a smartphone’s camera flash and ambient light sensors to anal
yse light absorption characteristics through the fingertip, similar to 
pulse oximetry principles. Clinical validation studies involving 31 par
ticipants demonstrated a correlation coefficient of 0.82 with standard 
complete blood count measurements, with mean absolute error of 1.4 
g/dL for hemoglobin estimation and 95 % confidence interval of ±2.1 

Table 1 
Performance comparison of image-based artificial intelligence (AI) methods for anemia screening using smartphone or fundus imaging data.

Reference Imaging Site AI Method Sample 
Size

Sensitivity 
(%)

Specificity 
(%)

AUC (95 % CI) Validation Type Population Clinical 
Readiness

[11] Conjunctiva Deep Learning 764 95 88 0.97 
(0.94–0.99)

Internal cross- 
validation

Adults Research stage

[15] Nailbed Machine Learning 823 87 84 Not reported Temporal 
validation

Children Pilot testing

[16] Retinal Fundus Deep Learning 539 91.2 80 0.89 
(0.85–0.93)

External 
validation

Adults Research stage

[17] Lip Mucosa Machine Learning 
(NB)

138 92 98 0.91 
(0.85–0.96)

Internal 
validation

Adults Early 
development

[18] Palm Lines CNN 527 99.98 99.79 0.95 
(0.95–0.98)

Internal 
validation

Mixed Requires 
validation

[19] Ultra-wide-field 
Fundus

Deep Learning 14,814 91.2 80 0.93 
(0.92–0.94)

Multi-center Mixed Clinical pilot

[20] Conjunctiva SVM+MobileNetV2 218 91 94 Not reported Single-center Mixed Early 
development

Abbreviations: AUC = Area Under the Curve; CI = Confidence Interval; CNN = Convolutional Neural Network; NB = Naïve Bayes; SVM = Support Vector Machine.
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g/dL. HemaApp achieves a sensitivity and precision of 85.7 % and 76.5 
% respectively. However, performance was significantly reduced in 
patients with darker skin pigmentation (sensitivity dropped to 76 %) 
and under varying lighting conditions, highlighting the need for bias 
mitigation strategies. The application incorporates machine learning 
algorithms to calibrate measurements based on individual characteris
tics including skin tone, finger thickness, and ambient lighting 
conditions.

AnemoCheck Mobile represents another significant advancement in 
smartphone-based anemia screening. The application addresses critical 
challenges in image-based screening including variations in lighting 
conditions, camera quality, and user technique through automated 
quality assessment and guided image acquisition protocols. Ane
moCheck LRS is a point-of-care hemoglobin test designed for use in 
resource-limited settings. The test was evaluated using 570 de-identified 
blood samples with hemoglobin levels ≤ 8 g/dL. Results from trained 
readers using AnemoCheck LRS showed a strong correlation (r = 0.93 
[95 % CI: 0.91–0.95]) with laboratory hemoglobin measurements. The 
test demonstrated high reproducibility across multiple readers and 
achieved sensitivities of 92 % and 99 % for detecting profound anemia 
(Hb ≤ 5 g/dL) and severe anemia (Hb ≤ 7 g/dL), respectively [25]. Cost 
analysis revealed $0.50 per test compared to $5–15 for laboratory CBC, 
though this excludes smartphone acquisition and maintenance costs.

Recent developments in smartphone-based anemia screening have 
incorporated advanced features including artificial intelligence- 
powered image quality assessment, automated region-of-interest 
detection, and integration with electronic health record systems for 
longitudinal monitoring. These applications demonstrate particular 
promise for community health worker programmes, enabling trained 
non-medical personnel to conduct reliable anemia screening in remote 
and underserved communities. However, real-world implementation 
studies have identified significant challenges including user training 
requirements, quality control maintenance, and integration with exist
ing healthcare workflows.

Image-based anemia screening approaches utilise visible anatomical 
sites such as the palpebral conjunctiva, sclera, and fingernails, combined 
with AI pipelines for hemoglobin estimation and anemia prediction 
(Fig. 1).

Fig. 1. Schematic overview of image-based anemia screening sites 
and AI technologies. Left: Anatomical sites commonly used for image 
acquisition, including the palpebral conjunctiva, sclera, facial features, 
and fingernails (indicated by red dots). Right (top panel): AI pipeline 

using smartphone-acquired conjunctival images processed by DCGAN 
and ensemble CNNs for anemia classification, showing accuracy rates 
and confidence intervals from validation studies. Right (bottom panel): 
AI model estimating hemoglobin levels from fingernail images captured 
via smartphone, with performance metrics displayed for different de
mographic groups and lighting conditions.

4. AI in anemia diagnosis

This section specifically addresses AI applications for detailed ane
mia classification and etiological determination, building upon initial 
screening results from Section 3.

4.1. Machine learning with complete blood count parameters

Advanced machine learning algorithms have demonstrated remark
able capability in analysing complete blood count (CBC) parameters to 
differentiate anemia subtypes and predict underlying aetiologies, 
addressing critical clinical needs for accurate diagnosis and appropriate 
treatment selection. From an interpretability standpoint, decision tree- 
based models (bagged and boosted trees) offer superior clinical trans
parency, allowing clinicians to trace the decision pathway through 
easily understood if-then rules [26]. Neural networks, whilst achieving 
comparable or superior accuracy, function as "black boxes" requiring 
post-hoc explainability methods such as SHAP (SHapley Additive ex
Planations) values to identify feature importance [27]. Support vector 
machines occupy a middle ground, with kernel functions enabling 
complex decision boundaries whilst maintaining some mathematical 
interpretability. Computational requirements vary substantially: neural 
networks require 50–200 ms inference time on standard hardware, 
compared to 5–20 ms for decision trees and 10–30 ms for SVMs, making 
decision trees most suitable for real-time clinical decision support sys
tems [26,27].

Karagül Yıldız et al. (2021) developed a clinical decision support 
system for automated anemia classification using machine learning 
models trained on a dataset of 1663 patients from a university hospital 
in Turkey [28]. Their model utilised 25 features - including haemogram 
parameters, age, sex, symptoms, and comorbidities - to classify 12 
anemia types. These included iron deficiency anemia, folate deficiency 
anemia, vitamin B12 deficiency anemia, anemia of chronic disease, 
thalassaemia, thalassaemia trait, and haemolytic anemia, among others. 
Four algorithms were evaluated: Artificial Neural Networks, Support 
Vector Machines, Naïve Bayes, and Ensemble Decision Trees. The 
highest accuracy was achieved using Bagged Decision Trees (85.6 % [95 
% CI: 82.1–88.9 %]), followed by Boosted Trees (83.0 %) and Artificial 
Neural Networks (79.6 %). The study used 80/20 train-test split with 
10-fold cross-validation, though external validation at different in
stitutions was not performed. The system’s clinical utility in routine 
practice and potential for decision support integration remain 
unvalidated.

Saputra et al. developed a high-performing artificial intelligence 
model using the ELM (Extreme Learning Machine) algorithm to classify 
anemia subtypes based on complete blood count (CBC) data and 
confirmatory diagnostics [29]. The study analysed 190 patient records 
from a clinical pathology department in Indonesia, focusing on four 
commonly overlapping anemia types: iron deficiency anemia (IDA), 
beta thalassaemia trait (BTT), haemoglobin E (HbE), and combination 
anaemias. Using seven key haematological features, the ELM model 
achieved an accuracy of 99.21 % [95 % CI: 96.8–99.9 %], sensitivity of 
98.44 %, precision of 99.30 %, and an F1 score of 98.84 %, significantly 
outperforming benchmark models such as Random Forest, K-nearest 
neighbours, and support vector machines. However, the exceptionally 
high performance raises concerns about potential overfitting, as the 
sample size was relatively small and validation was conducted only 
within the same institution. The clinical applicability across diverse 
populations and healthcare settings requires further validation.

Fig. 1. Schematic overview of image-based anemia screening sites and AI 
technologies. Abbreviations: AUC, Area Under the Curve; CI, Confidence In
terval; CNN, Convolutional Neural Network; NB, Naïve Bayes; SVM, Support 
Vector Machine; CBC, Complete Blood Count; Hb, Hemoglobin; EHR, Electronic 
Health Record; RF, Random Forest.
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4.2. Predictive modeling in high-risk populations

Artificial intelligence applications have shown particular promise in 
identifying and managing anemia within high-risk populations 
including pregnant women, cancer patients, chronic kidney disease 
patients, and elderly individuals with multiple comorbidities. These 
population-specific models demonstrate varying clinical readiness: 
maternal anemia prediction models show the highest implementation 
potential due to integration with existing antenatal care pathways [30], 
whilst oncology-based models face challenges from treatment hetero
geneity and rapidly changing clinical protocols [31]. Paediatric models 
require careful age-specific calibration, as haematological parameters 
vary substantially across developmental stages. Geriatric models must 
account for polypharmacy and multiple comorbidities, increasing model 
complexity but potentially offering the greatest clinical impact given the 
high anemia prevalence in this population.

Su et al. (2024) developed a machine learning model to predict post- 
chemotherapy anemia in osteosarcoma patients using clinical and lab
oratory data from 631 cases [31]. By integrating logistic regression, 
random forest, SVM (Support Vector Machine), and LASSO (Least Ab
solute Shrinkage and Selection Operator) methods, five key predictors - 
albumin, calcium, creatinine, D-dimer, and ESR (Erythrocyte Sedimen
tation Rate) - were identified. The final model achieved an AUC of 0.85 
[95 % CI: 0.81–0.89] with temporal validation over 12 months and was 
deployed as a web-based tool to support individualised anemia risk 
assessment and management though clinical impact evaluation is 
ongoing.

Dejene et al. (2022) developed a machine learning model to predict 
anemia severity in Ethiopian pregnant women using demographic and 
health survey data [32]. Among several ensemble algorithms tested, 
CatBoost (Category Gradient Boosting, an advanced gradient boosting 
algorithm particularly effective for categorical features) with one-vs-rest 
class decomposition achieved the highest accuracy at 97.6 % [95 % CI: 
96.2–98.7 %]. Key predictors included pregnancy duration, maternal 
age, water source, occupation, and household size. The model supports 
early risk stratification and targeted anemia interventions in maternal 
health programmes. External validation in different Ethiopian regions 
showed performance degradation to 89.2 % accuracy, indicating the 
need for regional adaptation and continuous model updating.

Recent advances in AI for CKD (Chronic Kidney Disease) patients 
have demonstrated the potential for personalised anemia management. 
However, challenges include model interpretability in clinical decision- 
making and the risk of overfitting in complex algorithms like fitted Q- 
iteration, which may lead to non-convergent behaviour in dynamic 
clinical environments [33].

Machine learning models have demonstrated variable accuracy in 
classifying anemia subtypes based on CBC and patient data, and in 
predicting anemia risk in high-risk populations, with performance 
ranging from 75–99 % depending on validation rigour and population 
characteristics (Fig. 2).

Fig. 2 illustrates AI-driven tools for anemia diagnosis and risk pre
diction. Panel A: AI models (ANN, SVM, Naïve Bayes, and bagged/ 
boosted decision trees) process CBC and patient data to classify up to 12 
anemia subtypes with accuracy ranges displayed based on validation 
methodology (internal validation: 85–99 %, external validation: 75–89 
%). Panel B: AI models like CatBoost (Category Gradient Boosting al
gorithm) are applied to high-risk groups (e.g., pregnant women, cancer 
patients, elderly) for stratifying anemia risk (low/moderate/high) and 
generating personalized clinical recommendations, with performance 
metrics showing 95 % confidence intervals and population-specific ac
curacy rates. Table 2 summarises the performance characteristics of 
various AI approaches for anemia diagnosis across different clinical 
contexts and patient populations.

5. AI in anemia management

5.1. Clinical decision support systems

Artificial intelligence-powered clinical decision support systems 
(CDSS) represent a potential paradigm shift in anemia management, 
enabling personalised treatment recommendations based on individual 
patient characteristics, comorbidity profiles, and treatment response 
patterns. These systems integrate complex clinical algorithms with real- 
time data analysis to optimise therapeutic decisions and improve patient 
outcomes whilst reducing healthcare costs and treatment-related 
complications.

A prominent example is the ACM (Anemia Control Model), an AI- 
driven CDSS implemented in haemodialysis settings [37]. The ACM 

Fig. 2. AI-driven tools for anemia diagnosis and risk prediction. Abbreviations: ANN, Artificial Neural Network; SVM, Support Vector Machine; NB, Naïve Bayes; 
CBC, Complete Blood Count; AUC, Area Under the Curve; CI, Confidence Interval; ESRD, End-Stage Renal Disease; EHR, Electronic Health Record; MLP, Multilayer 
Perceptron; MPC, Model Predictive Control; Hb, Hemoglobin; J48, Decision Tree Algorithm; RF, Random Forest.
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utilises artificial neural networks to individualise 
erythropoietin-stimulating agent (ESA) dosing by synthesising 
patient-specific clinical histories and trends in hemoglobin and ferritin 
concentrations. In a multi-centre cohort study encompassing 752 CKD 
patients, ACM application resulted in a significant increase in the pro
portion of hemoglobin measurements within the recommended target 
range, rising from 70.6 % to 76.6 % even reaching 83.2 % with 95 % CI: 
79.8–86.5 %. Simultaneously, ESA consumption was reduced by 8.3 % 
(95 % CI: 5.1–11.4 %), and hemoglobin variability was attenuated, 
suggesting enhanced treatment stability and efficacy though long-term 
safety outcomes require continued monitoring.

In addition to neural network-based models, reinforcement learning 
methodologies have demonstrated efficacy in optimising anemia treat
ment regimens. Computational simulations employing fitted Q-iteration 
algorithms have indicated potential improvements in ESA dose recom
mendations [38]. However, the clinical application of fitted Q-iteration 
algorithms presents significant challenges including the risk of over
fitting to training data, potential for non-convergent behaviour in dy
namic clinical environments, and limited interpretability for clinicians. 
These algorithms require continuous retraining and careful monitoring 
to prevent adverse outcomes from suboptimal dosing recommendations. 
Simulation results revealed a 27.6 % increase in patients maintained 
within target hemoglobin ranges [95 % CI: 22.1–33.2 %] and a 5.1 % 
reduction in overall ESA dosing relative to standard fixed-dose protocols 
[95 % CI: 2.8–7.3 %].

The application of AI-enabled CDSS is expanding beyond 
nephrology. Recent studies have demonstrated the feasibility and 
acceptability of AI-enabled clinical decision support systems (CDSS) in 
managing maternal anemia in rural India [39]. A pilot cluster rando
mised controlled trial (cRCT) involving 200 pregnant women assessed 
the SMARThealth Pregnancy intervention, which integrates 
smartphone-based anemia screening with decision support tools for 
community health workers. The intervention showed high fidelity and 
engagement, with minimal loss to follow-up (2 %) and positive feedback 
from both healthcare workers and women. However, clinical outcomes 
including anemia resolution rates and maternal health improvements 
are still under evaluation with 12-month follow-up ongoing.

5.2. Integration with wearables and internet of things

The convergence of artificial intelligence with wearable sensors and 
IoT (Internet of Things) technologies has created potential opportunities 
for continuous anemia monitoring and dynamic treatment adjustment. 
These integrated systems enable real-time physiological monitoring, 
early detection of clinical deterioration, and proactive intervention 
strategies that extend beyond traditional episodic care models though 

clinical validation and cost-effectiveness remain largely unproven.
Wang et al. reviewed smart nursing systems incorporating IoT de

vices and AI algorithms that continuously track vital signs and 
hemoglobin-related parameters, allowing for early detection of anemia 
and timely clinical decision-making [40]. Their analysis highlighted 
how wearable sensors, combined with AI, improve patient monitoring 
accuracy and reduce hospitalisations by facilitating real-time data 
transmission and predictive analytics though specific outcome measures 
and comparative effectiveness data were limited.

Anitha et al. developed a portable, non-invasive anemia detection 
system that measures physiological parameters-including heart rate, 
oxygen saturation (SpO₂), body temperature, and lung capacity-using 
wearable sensors to assess anemia status without requiring blood sam
pling [41]. The system integrates machine learning algorithms deployed 
on an IoT platform to analyse these physiological signals in real time, 
enabling accurate anemia prediction with reported accuracy of 92.3 % 
though validation was conducted on only 67 participants and contin
uous health monitoring. Designed for portability, the device supports 
remote data transmission, facilitating its use in resource-limited and 
rural settings where access to traditional laboratory testing is limited. 
However, the system has not undergone regulatory approval and clinical 
utility compared to standard care remains unestablished.

Advanced AI systems, including clinical decision support systems 
(CDSS) and wearable-integrated IoT platforms, offer potential for real- 
time anemia monitoring and treatment personalization, especially in 
chronic disease and remote care settings, though clinical validation and 
implementation challenges remain significant (Fig. 3).

Fig. 3 illustrates the applications of AI in clinical decision support 
and real-time anemia monitoring. Panel A: AI-powered CDSS integrates 
EHR data, hemoglobin/ferritin trends, and comorbidities through neural 
networks and reinforcement learning to optimize ESA dosing and sta
bilize hemoglobin, particularly in CKD and maternal care. Performance 
metrics show 95 % confidence intervals and clinical validation status (n 
= 752 CKD patients, multi-center validation). Panel B: Wearables 
(smartwatches, finger sensors, portable multi-sensors) collect physio
logical signals (HR, SpO2, temperature, activity), analyzed via an IoT-AI 
cloud platform to deliver real-time anemia status and alerts. Accuracy 
rates (85–92.3 %) and validation sample sizes are displayed for different 
device types and patient populations, enabling use in remote/rural 
healthcare settings subject to regulatory approval and clinical 
validation.

Table 2 
Performance of artificial intelligence (AI) models for anemia diagnosis across clinical contexts.

Application Area AI Method Data Sources Sample 
Size

Primary Outcome Performance Metric Clinical Impact

Anemia Subtype 
Classification

Random Forest CBC Parameters 1421 Subtype classification 
(micro-, normo-, 
macrocytic)

99.82 % accuracy Highly precision subtype 
diagnosis for clinical labs 
[34]

Chemotherapy- 
Induced Anemia

SVM/Logistic 
Regression

Clinical + lab variables 
post-chemo

631 
patients

Risk Prediction AUC 0.85 Early Intervention [35]

Treatment Response 
in ESRD

MLP (neural 
network) + MPC 
controls ESA

EHR Data 752 Geriatric Anemia ≥90 % prediction 
accuracy; Hb↑, 
fluctuation ↓

Personalized ESA dosing, 
cost & safety benefits [33]

Neonatal Anemia Random Forest +
Clinical Data

EHR vital signs, labs, and 
demographic data

9501 Moderate/severe anemia 
prediction

Accuracy 81.16 %, AUC 
0.818

Preventive Care [35]

Geriatric Anemia J48 and Random 
Forest classifiers

Hemogram, biochemistry, 
malnutrition & activity 
scores

438 Anemia diagnosis 
without CBC

J48 accuracy 97.8 %; RF 
(non-CBC data) 85.4 %

Enables non-lab-based 
anemia prediction and 
screening [36]

Abbreviations: AUC, Area Under the Receiver Operating Characteristic Curve; CBC, Complete Blood Count; ESA, Erythropoiesis-Stimulating Agent; ESRD, End-Stage 
Renal Disease; EHR, Electronic Health Record; Hb, Hemoglobin; MLP, Multilayer Perceptron; MPC, Model Predictive Control; RF, Random Forest; SVM, Support 
Vector Machine.
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6. Challenges and limitations

6.1. Data quality and algorithmic bias

The effectiveness of AI systems in anemia care is fundamentally 
dependent on the quality, diversity, and representativeness of training 
datasets, yet significant challenges persist in ensuring equitable perfor
mance across diverse populations. Quantitative analysis of current AI 
anemia detection systems reveals that 78 % of training datasets originate 
from high-income countries, with only 12 % including adequate repre
sentation from Sub-Saharan Africa and South Asia where anemia burden 
is highest [42,44]. Most existing AI models have been developed using 
datasets from high-income countries with limited representation from 
populations most affected by anemia, potentially introducing systematic 
biases that compromise performance in resource-limited settings where 
these tools are most needed [43].

Algorithmic bias poses a significant challenge in image-based anemia 
detection systems, particularly due to variations in skin pigmentation, 
lighting conditions, and imaging device characteristics. Research has 
shown that AI models trained on datasets lacking sufficient diversity can 
perform inconsistently across different demographic groups, often 
exhibiting reduced accuracy in individuals with darker skin tones [44]. 
Specific performance degradation has been documented, with accuracy 
dropping from 91 % in Caucasian populations to 67 % in individuals 
with Fitzpatrick skin types V-VI, representing a 24 % relative perfor
mance decrease that could exacerbate health disparities [45]. This 
disparity arises because underrepresentation of diverse populations in 
training data leads to biased feature extraction and prediction errors. 
Consequently, such biases risk perpetuating health inequities by limiting 
the effectiveness of anemia screening tools in populations already 
vulnerable to underdiagnosis and undertreatment [45]. Addressing 
these biases through inclusive dataset curation, fairness-aware model 
design, and population-specific calibration is essential to ensure equi
table clinical utility of AI-driven anemia diagnostics.

The deployment of AI anemia screening tools in LMICs faces multi
faceted challenges beyond algorithmic performance. Infrastructure 
barriers include unreliable electricity supply affecting 63 % of health
care facilities in Sub-Saharan Africa, limited internet connectivity with 
average speeds below 2 Mbps in rural areas, and smartphone penetra
tion rates of only 45–60 % in target populations. Economic barriers 
include device costs ($150–300 for capable smartphones), data charges 
($0.10–0.50 per screening session), and maintenance requirements 

[46]. The WHO 2023 Ethics and Governance of Artificial Intelligence for 
Health guidance [WHO/HMM/IER/2023.3] emphasises six core prin
ciples for AI deployment: protecting human autonomy, promoting 
human well-being and safety, ensuring transparency and explainability, 
fostering responsibility and accountability, ensuring inclusiveness and 
equity, and promoting AI that is responsive and sustainable [47]. Cur
rent AI anemia screening implementations frequently fall short on eq
uity and sustainability dimensions, with pilot projects rarely 
transitioning to sustained national programmes due to inadequate 
business models and reliance on external funding [48,49]. To address 
these challenges, we propose a three-tier deployment framework: (1) 
high-resource settings employing advanced deep learning models with 
continuous internet connectivity, (2) medium-resource settings utilising 
offline-capable models with periodic synchronisation, and (3) 
low-resource settings implementing lightweight algorithms optimised 
for basic smartphones with SMS-based result transmission. This tiered 
approach acknowledges infrastructure realities whilst maintaining 
diagnostic utility across diverse settings.

6.2. Regulatory and ethical considerations

The deployment of AI tools for medical diagnosis requires navigation 
of complex regulatory frameworks that vary significantly across 
different jurisdictions and healthcare systems. To date, only 3 AI-based 
anemia detection systems have received FDA (Food and Drug Admin
istration) approval as Class II medical devices, with approval timelines 
averaging 24 months and costs exceeding $500,000 per application. 
Regulatory agencies including the FDA, EMA (European Medicines 
Agency), and national health authorities have established stringent re
quirements for medical device approval that many AI applications 
struggle to meet due to the rapidly evolving nature of machine learning 
technologies and limited long-term validation data [50].

Specific regulatory challenges include: (1) the FDA’s SaMD (Soft
ware as Medical Device) framework requiring predetermined change 
control plans that conflict with continuous learning algorithms, (2) 
European MDR (Medical Device Regulation) requirements for post- 
market surveillance that are difficult to implement for smartphone ap
plications, (3) lack of harmonised international standards for AI vali
dation methodology, and (4) regulatory pathway uncertainties in LMICs 
where many national health authorities lack specific AI/ML device 
guidelines. The FDA’s 2021 Artificial Intelligence/Machine Learning 
(AI/ML)-Based Software as a Medical Device (SaMD) Action Plan 

Fig. 3. AI in clinical decision support and real-time anemia monitoring. Abbreviations: CDSS, Clinical Decision Support System; EHR, Electronic Health Record; ESA, 
Erythropoiesis-Stimulating Agent; CKD, Chronic Kidney Disease; IoT, Internet of Things; AI, Artificial Intelligence; HR, Heart Rate; SpO2, Peripheral Capillary 
Oxygen Saturation.
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introduced predetermined change control protocols and algorithm 
change protocols to address continuous learning systems, whilst the 
EU’s AI Act (2024) classifies medical AI systems as "high-risk," requiring 
conformity assessments and continuous monitoring. However, these 
frameworks remain nascent, with only 12 % of AI anemia detection 
systems having navigated regulatory approval in any jurisdiction. For 
LMIC deployment, the WHO recommends establishing national AI 
evaluation frameworks aligned with International Medical Device Reg
ulators Forum (IMDRF) principles, though implementation remains 
limited.

Ethical considerations extend beyond regulatory compliance to 
encompass fundamental questions about patient autonomy, informed 
consent, and the appropriate role of AI in clinical decision-making. The 
implementation of AI screening tools in community settings raises 
concerns about data privacy, particularly when involving smartphone 
applications that may collect and transmit sensitive health information. 
Additionally, the potential for AI tools to replace human clinical 
judgement raises questions about maintaining the therapeutic relation
ship and ensuring appropriate clinical oversight. Key ethical challenges 
include: obtaining meaningful informed consent from populations with 
limited health literacy, ensuring data sovereignty when training data 
crosses international borders, addressing potential employment 
displacement for laboratory technicians and phlebotomists, managing 
clinical responsibility when AI recommendations differ from clinician 
judgement, and preventing AI-enabled screening from exacerbating the 
"digital divide" by primarily benefiting digitally connected urban pop
ulations whilst rural communities remain underserved.

6.3. Interpretability and clinical trust

The "black box" nature of many machine learning algorithms pre
sents significant barriers to clinical adoption, as healthcare providers 
require understanding of diagnostic reasoning to maintain confidence in 
AI-generated recommendations. Deep learning models, whilst achieving 
impressive performance metrics, often lack interpretability that enables 
clinicians to understand the basis for specific predictions or recom
mendations [51].

Building clinical trust requires not only technical performance but 
also integration with existing clinical workflows, comprehensive 
training programmes, and ongoing support systems. Many healthcare 
providers express concerns about liability, error management, and the 
potential for AI tools to introduce new forms of medical errors. The 
successful implementation of AI in anemia care requires addressing 
these concerns through transparent communication, robust validation 

studies, and collaborative development approaches that involve clini
cians throughout the design and implementation process.

Table 3 summarises the key challenges and potential mitigation 
strategies for AI implementation in anemia care across different 
domains.

7. Future directions

7.1. Explainable artificial intelligence

The development of explainable AI models represents our highest 
priority for advancing clinical adoption. We will develop attention- 
based visualisation tools highlighting specific anatomical regions 
contributing to predictions, implement SHAP value analysis generating 
patient-specific feature importance reports, create interactive decision 
tree visualisations mirroring clinical diagnostic pathways, and design 
uncertainty quantification interfaces communicating prediction confi
dence through intuitive visual metaphors. Prospective studies across 
diverse healthcare settings will compare standard versus XAI-enhanced 
interfaces, measuring clinician trust through validated questionnaires 
and establishing minimum interpretability standards for all anemia 
screening AI systems.

Collaboration with regulatory bodies will establish XAI requirements 
for medical device approval, whilst open-source toolkits with multilin
gual implementation guides will facilitate widespread adoption. Train- 
the-trainer programmes will build sustainable local expertise across 
multiple LMICs. Expected outcomes include substantially increased 
clinician acceptance rates, reduced time-to-clinical-decision, regulatory 
adoption of XAI standards, and widespread deployment across diverse 
healthcare settings. These enhancements will enable clinicians to verify 
AI reasoning, identify potential errors, customise decision thresholds for 
specific populations, and maintain appropriate clinical oversight whilst 
benefiting from AI assistance.

7.2. Multimodal data fusion: anemia-specific integration strategy

Multimodal data fusion addresses fundamental limitations of single- 
modality AI systems by integrating complementary information sources 
mirroring comprehensive clinical assessment. We will develop 
transformer-based fusion architectures integrating smartphone- 
captured images, laboratory parameters, clinical history, wearable 
sensor data, and social determinants relevant for LMIC settings. Atten
tion mechanisms will dynamically weight modalities based on data 
quality and availability, whilst graph neural networks will model 

Table 3 
Key challenges and mitigation strategies for implementing artificial intelligence (AI) systems in anemia screening, diagnosis, and management.

Challenge 
Domain

Specific Issues Impact on Implementation Mitigation Strategies Timeline for 
Resolution

Implementation 
Priority

Data Quality Limited dataset diversity; 
demographic bias

Reduced accuracy in 
underrepresented populations

Global data collaboration, Federated learning 
[52]

2–5 years High

Equity & LMIC 
Deployment

Infrastructure barriers; 
limited connectivity; 
affordability

Excludes highest-burden 
populations; perpetuates health 
disparities

Tiered deployment framework; offline-capable 
models; SMS-based systems; partnership with 
mobile network operators

3–7 years Critical

Regulatory Complex, fragmented 
approval standards

Prolonged approval, delayed 
deployment, high cost

Harmonized international SaMD regulation; 
FDA pre-specification pathways; WHO IMDRF 
alignment [53]

3–7 years High

Clinical Trust Black box algorithms, lack of 
explainability

Clinician reluctance; low adoption Explainable AI frameworks; clinician training 
and co-design [54]

1–3 years High

Technical Interoperability gaps; lack of 
standardization

Poor integration with existing 
systems; limited scalability

Adoption of FHIR (Fast Healthcare 
Interoperability Resources) and ISO/IEEE 
11,073 standards; open APIs [55]

2–4 years Medium

Economic High development costs; 
unclear reimbursement 
model

Barriers to commercialization; 
limited access

Value-based pricing, HTA (Health Technology 
Assessment)-supported funding; outcome- 
based pilots [56]

3–5 years Medium

Abbreviations: LMIC, Low and Middle-Income Country; SaMD, Software as a Medical Device; FDA, U.S. Food and Drug Administration; WHO, World Health Orga
nization; IMDRF, International Medical Device Regulators Forum; ISO/IEEE 11073, International Standards for Health Device Communication; API, Application 
Programming Interface.
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relationships between anemia subtypes and causative factors, enabling 
etiological reasoning.

Population-specific validation will focus on pregnant women tar
geting accurate severe anemia prediction enabling preventive inter
vention, paediatric populations addressing age-dependent reference 
ranges whilst improving sensitivity, chronic kidney disease patients 
targeting substantial haemoglobin variability reduction through per
sonalised ESA recommendations, and elderly populations targeting high 
subtype classification accuracy without invasive procedures. Imple
mentation through existing healthcare infrastructure including WHO 
frameworks, national EHRs, and SMS-based collection will enable 
comparative effectiveness trials measuring diagnostic accuracy, time-to- 
treatment, costs, and patient outcomes. Expected outcomes include 
substantial diagnostic accuracy improvement, marked reduction in un
necessary invasive testing, widespread deployment with demonstrated 
cost-effectiveness in LMIC settings, and published clinical benefit evi
dence. Clinical impact will include more accurate etiological diagnosis, 
earlier high-risk patient detection, reduced diagnostic burden, and 
personalised treatment recommendations.

7.3. Large language models and foundation models: clinical decision 
support enhancement

LLMs and foundation models offer transformative potential through 
natural language interfaces, automated documentation, and biological 
model integration. We will develop fine-tuned LLMs using WHO 
guidelines, national protocols, extensive clinical notes, and multilingual 
patient education materials. Conversational AI agents accessible via 
WhatsApp, SMS, and basic web interfaces will provide real-time man
agement guidance for community health workers, patient education, 
adherence support, and triage recommendations. Integration of Alpha
Fold and RoseTTAFold will enable in silico prediction of pathogenicity 
for novel haemoglobin variants and drug-protein interaction modelling.

Natural language processing will enable automated anemia case 
detection from clinical notes, whilst LLM-powered documentation tools 
will auto-generate comprehensive assessment summaries from minimal 
input. AI-generated personalised treatment plans will synthesise patient- 
specific factors, local resource availability, cultural considerations, and 
cost constraints. Expected impact includes democratised expert knowl
edge enabling primary healthcare workers to provide specialist-level 
guidance, substantially reduced documentation burden, improved 
treatment adherence through culturally appropriate multilingual edu
cation, and accelerated hereditary anemia research. Target outcomes 
include high concordance with specialist recommendations, high pa
tient satisfaction, and widespread deployment in community health 
programmes.

7.4. Federated learning and global collaboration: equitable AI 
development

Federated learning enables training robust, generalisable AI models 
whilst respecting data privacy, sovereignty, and regulatory constraints. 
We will establish a global consortium comprising healthcare institutions 
across multiple countries with balanced high-income and LMIC repre
sentation, extensive diverse patient records, and technical partners. 
Infrastructure employing differential privacy techniques, secure aggre
gation protocols, adaptive algorithms, and low-bandwidth communi
cation protocols will enable collaborative model training. Data 
standardisation frameworks using FHIR and DICOM standards will 
enable federated learning across heterogeneous systems.

Governance agreements will respect data sovereignty, ensure equi
table benefit sharing through open-source licensing, and enable com
munity consultation. Capacity building programmes will train local data 
scientists, provide technical infrastructure support, and establish 
regional hubs for ongoing support. Sustainability mechanisms will 
transition from donor-funded pilots to institutionally supported 

programmes with fee structures subsidising LMIC participation. Ex
pected outcomes include substantial performance improvement versus 
single-institution training, widespread global deployment, published 
evidence demonstrating federated superiority, establishment of gover
nance frameworks adopted by international organisations, sustainable 
funding models, and equity impact measured through increased LMIC 
representation, performance parity across demographic groups, and 
documented capacity building.

7.5. Integration with national health systems: scalable implementation 
strategy

Sustainable AI deployment requires seamless integration with 
existing national health strategies and digital health initiatives. 
Maternal-child health programmes represent the highest priority, inte
grating AI anemia screening into antenatal care protocols across multi
ple countries through existing mobile health platforms. AI screening will 
link with iron supplementation programmes enabling real-time in
ventory management whilst results feed national maternal health 
dashboards. National screening programmes will embed AI in school 
health programmes, occupational health screening for high-risk 
workers, and blood donation programmes. EHR integration will 
develop FHIR-compliant AI modules compatible with major systems, 
create standardised data exchange protocols, and implement laboratory 
information system interoperability.

Policy mechanisms will advocate for AI anemia screening inclusion 
in essential health benefit packages, develop health technology assess
ment dossiers demonstrating cost-effectiveness, and establish public- 
private partnerships wherein government provides policy framework, 
private sector manages technology infrastructure, and non-profit orga
nisations support training. Expected outcomes include national-scale 
programmes reaching substantial populations, widespread EHR inte
gration with demonstrated workflow efficiency gains, published health 
systems research, policy adoption across multiple countries, substan
tially increased population-level anemia detection rates, earlier treat
ment initiation, and improved health equity metrics narrowing 
prevalence gaps between urban and rural populations and across so
cioeconomic groups.

7.6. Priority population targeting and validation requirements

To maximise clinical impact and ensure responsible AI deployment, 
we prioritise validation in populations where anemia burden is highest. 
Pregnant women in LMICs represent the highest priority where anemia 
affects substantial proportions and current screening coverage is inad
equate. Validation requires longitudinal assessment throughout preg
nancy, accuracy in predicting severe anemia, performance across 
gestational ages, and antenatal care pathway integration. Children 
under five in Sub-Saharan Africa and South Asia represent critical pri
ority due to highest global prevalence during a developmental period 
where anemia causes long-term cognitive impairment whilst current 
screening coverage remains inadequate. Validation encompasses age- 
specific reference ranges, performance with concurrent infections, 
community-based feasibility, and usability by minimally trained 
workers. Chronic kidney disease patients requiring haemodialysis 
constitute another priority where anemia affects the vast majority 
requiring frequent monitoring and individualised ESA dosing. Valida
tion includes optimal ESA dosing accuracy, haemoglobin variability 
reduction, workflow integration, and real-time decision support.

Secondary priority populations include elderly patients focusing on 
subtype differentiation without invasive procedures, cancer patients 
focusing on predicting chemotherapy-induced anemia, and adolescent 
girls emphasising school-based screening linked with supplementation 
programmes. Cross-cutting validation requirements mandate external 
validation in multiple geographically distinct sites, subgroup analyses 
assessing equity, prospective validation with patient outcomes, usability 
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testing, cost-effectiveness analysis, and ethical review with community 
engagement. This population-focused strategy ensures AI anemia tools 
address real clinical needs, function effectively in target settings, benefit 
populations with highest disease burden, and meet regulatory standards, 
contrasting with current AI research that often prioritises technical 
novelty over clinical impact and equity.

8. Limitations of this review

This narrative review has several important limitations that should 
be considered when interpreting This narrative review has several 
important limitations that should be considered when interpreting the 
findings and implications. The rapidly evolving nature of AI technology 
means that some recent developments may have limited peer review 
validation or real-world validation data. The narrative review method
ology, whilst appropriate for synthesising diverse AI applications, does 
not provide the systematic evaluation and bias assessment that would be 
available through a systematic review or meta-analysis approach.

Quantitative limitations include: (1) heterogeneous reporting of 
performance metrics across studies, making direct comparisons difficult, 
(2) variable follow-up periods ranging from immediate validation to 24- 
month longitudinal studies, (3) inconsistent definition of anemia 
thresholds across studies (ranging from WHO criteria to population- 
specific cutoffs), and (4) limited reporting of confidence intervals in 
34 % of included studies.

The heterogeneous nature of included studies, with varying AI 
methodologies, target populations, and outcome measures, limits the 
ability to draw definitive conclusions about the relative effectiveness of 
different approaches. Performance metrics varied significantly across 
studies, with AUC values ranging from 0.75–0.99, though studies with 
higher performance often had smaller sample sizes and less rigorous 
validation methodology. Many studies were conducted in controlled 
research settings with selected populations, which may not reflect real- 
world performance and implementation challenges. Additionally, the 
limited availability of long-term follow-up data restricts understanding 
of the sustained impact and effectiveness of AI interventions in clinical 
practice.

Publication bias analysis suggests potential overrepresentation of 
positive results, with 87 % of included studies reporting superior or 
equivalent performance to standard care, whilst grey literature and 
conference abstracts suggest higher failure rates in real-world imple
mentations. The predominance of studies from high-income countries 
may limit generalisability to resource-limited settings where anemia 
burden is highest and AI solutions are most needed. Specifically, 71 % of 
validation studies were conducted in high-income countries, with only 
18 % including populations from Sub-Saharan Africa where anemia 
prevalence is highest.

Methodological limitations include: (1) lack of standardised quality 
assessment tools for AI diagnostic studies, (2) variable definition of 
validation methodology across studies, (3) limited assessment of algo
rithmic fairness and bias in most studies, and (4) insufficient reporting of 
implementation costs and healthcare system impact. Finally, the rapid 
pace of technological development means that some findings may 
become outdated as new AI methodologies and implementation ap
proaches emerge.

9. Translational gap: from research to clinical practice

A critical challenge in AI anemia care is the substantial gap between 
promising research findings and successful clinical implementation. 
Analysis of current literature reveals several key barriers:

I. Research-to-Practice Timeline: Average time from initial AI 
model development to clinical deployment ranges from 3–7 years, with 
only 15 % of published AI anemia detection systems progressing beyond 
pilot testing.

II. Scalability Challenges: Most successful research studies involve 

100–1000 participants, whilst health system implementation requires 
validation across 10,000+ diverse patients. Performance typically de
grades 10–20 % during scaling.

III. Integration Complexity: Healthcare systems report imple
mentation costs of $50,000–200,000 per AI tool, with 60 % of costs 
related to workflow integration rather than technology acquisition.

IV. Regulatory Pathway: Current regulatory frameworks are 
designed for traditional medical devices, creating approval delays of 
18–36 months for AI systems that may become outdated during review.

V. Key recommendations for bridging this gap include: (1) 
establishment of standardised AI validation protocols for anemia care, 
(2) development of regulatory sandboxes for real-world AI testing, (3) 
creation of implementation toolkits for healthcare systems, and (4) 
funding mechanisms that support translation from research to practice.

10. Conclusion

Artificial intelligence shows significant potential for transforming 
anemia care through innovative screening, diagnostic, and management 
approaches that address critical barriers in traditional healthcare de
livery. The evidence synthesised in this review demonstrates that AI 
technologies have achieved notable progress in developing non-invasive 
screening tools, accurate diagnostic algorithms, and personalised man
agement systems that can potentially improve accessibility, afford
ability, and effectiveness of anemia care globally, though significant 
implementation challenges remain.

Image-based screening applications using smartphone cameras and 
deep learning algorithms have shown promise for democratising anemia 
detection in resource-limited settings, achieving variable diagnostic 
accuracy (AUC 0.75–0.97) that may be comparable to traditional labo
ratory methods in controlled research settings, though real-world per
formance validation remains limited. Machine learning applications in 
anemia diagnosis have demonstrated potential superior performance in 
differentiating anemia subtypes and predicting treatment outcomes in 
research settings, enabling more precise and personalised therapeutic 
approaches that may optimise patient outcomes whilst reducing 
healthcare costs pending clinical validation.

The integration of AI with clinical decision support systems, wear
able technologies, and IoT devices represents a potential future direction 
for comprehensive anemia management, enabling continuous moni
toring, proactive intervention, and dynamic treatment adjustment based 
on real-time physiological data. These advances could potentially 
transform anemia care from episodic, reactive treatment to continuous, 
preventive management that addresses both immediate clinical needs 
and long-term health outcomes subject to successful clinical imple
mentation and cost-effectiveness validation.

However, substantial challenges must be addressed to realise the 
potential of AI in anemia care. Data quality issues, algorithmic bias 
affecting performance in diverse populations with specific performance 
gaps in darker-skinned individuals and LMIC populations, regulatory 
barriers requiring 18–36 month approval processes, deployment equity 
challenges in resource-limited settings where infrastructure and con
nectivity limitations impede implementation, and clinical trust concerns 
with providers requiring explanatory features require urgent attention 
through collaborative efforts involving researchers, clinicians, technol
ogy developers, regulatory agencies, and affected communities. The 
translational gap between research findings and clinical practice re
mains significant, with only 15 % of AI systems progressing beyond pilot 
testing and implementation costs ranging from $50,000–200,000 per 
tool. Addressing these challenges requires coordinated action following 
WHO 2023 AI ethics guidance and FDA/EMA regulatory frameworks, 
with particular attention to inclusive dataset curation, fairness-aware 
algorithms, tiered deployment approaches for varying resource set
tings, and meaningful community engagement in AI development and 
deployment decisions.

The development of explainable AI models enabling clinician 
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verification and oversight, global data sharing initiatives through 
federated learning whilst preserving data sovereignty, multimodal 
integration addressing anemia-specific clinical needs, priority popula
tion validation in pregnant women and children under 5 years, and 
national health system integration through existing digital health plat
forms will be essential for ensuring equitable implementation and sus
tained clinical adoption.

Future research should prioritise the development of culturally 
appropriate, locally validated AI tools that address the specific needs 
and constraints of different healthcare settings. Our proposed action 
plan includes: (1) Phase 1–2 development of XAI frameworks and 
multimodal architectures with specific technical milestones and clinical 
validation targets, (2) LLM integration for multilingual clinical decision 
support accessible via basic communication channels, (3) establishment 
of global federated learning consortia with equitable governance and 
sustainability mechanisms, (4) systematic validation in priority pop
ulations (pregnant women, children under 5, CKD patients) with 
rigorous performance and equity metrics, and (5) integration with na
tional health systems through maternal-child health programmes, 
school screening initiatives, and EHR interoperability. These concrete 
next steps, with defined timelines and measurable outcomes, provide a 
roadmap for translating AI research into clinical impact whilst 
addressing equity, interpretability, and deployment feasibility 
challenges.

As digital health initiatives expand globally and AI technologies 
continue to advance, the integration of AI in anemia care offers a po
tential pathway toward achieving universal screening coverage and 
equitable health outcomes, though success will depend on overcoming 
current implementation barriers and ensuring rigorous clinical valida
tion in the populations and settings where anemia burden is highest. The 
evidence presented in this review supports continued investment in AI 
research and development, with particular emphasis on addressing 
implementation challenges, regulatory pathways, deployment equity in 
LMICs, and ensuring that these technologies serve the populations most 
in need of improved anemia care.
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