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Anemia affects over 1.6 billion people globally, representing a significant public health challenge, particularly in
low- and middle-income countries where traditional diagnostic methods face barriers including invasive pro-
cedures, skilled personnel requirements, and inadequate laboratory infrastructure. Artificial intelligence (AI) has
emerged as a promising technology offering non-invasive, rapid, and cost-effective solutions for anemia detection
and management. This narrative review synthesises current literature on Al applications in anemia screening,
diagnosis, and clinical management, examining methodologies, performance metrics, implementation chal-
lenges, and future research directions. We conducted a comprehensive narrative synthesis informed by sys-
tematic search principles, searching PubMed, IEEE Xplore, Scopus, and Web of Science databases with additional
hand-searching and expert consultation. AI models demonstrate variable accuracy in anemia detection across
diverse data sources, with performance ranging from 75-97 % AUC depending on methodology and validation
approaches. Machine learning algorithms such as support vector machines, convolutional neural networks, and
random forests show potential for achieving performance comparable to standard blood tests in controlled
research settings. Smartphone-integrated applications and point-of-care systems show particular promise for
resource-limited settings, though real-world validation remains limited. While AI shows significant potential for
enhancing accessibility and diagnostic efficiency in anemia care, critical challenges including data stand-
ardisation, algorithmic bias, regulatory compliance, clinical validation in diverse populations, and deployment
equity in low- and middle-income countries require urgent attention to ensure equitable implementation and
clinical adoption.

1. Introduction

Anemia represents one of the most prevalent nutritional disorders
worldwide, characterised by reduced hemoglobin concentration, red
blood cell count, or hematocrit below established reference thresholds
[1,2]. The World Health Organization estimates that anemia affects
approximately 1.62 billion people globally, with the highest burden
concentrated in developing nations where prevalence rates can exceed
40 % in vulnerable populations including children under five years and
pregnant women [3]. This condition manifests through diverse clinical
presentations ranging from mild fatigue and cognitive impairment to
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severe complications including heart failure and maternal mortality,
substantially impacting quality of life and economic productivity across
affected communities.

The pathophysiology of anemia encompasses multiple etiological
pathways, with iron deficiency accounting for approximately 50 % of all
cases globally [4]. Other significant causes include chronic disease,
blood loss, genetic disorders such as thalassemia and sickle cell disease,
nutritional deficiencies involving folate and vitamin B12, and chronic
kidney disease. The complexity of anemia classification requires so-
phisticated diagnostic approaches that can differentiate between various
subtypes to guide appropriate therapeutic interventions. Traditional
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diagnostic methods rely heavily on laboratory-based complete blood
count analysis, serum iron studies, and additional biochemical markers
[5], which collectively provide comprehensive insights into underlying
mechanisms and severity.

Current diagnostic challenges in anemia detection are particularly
pronounced in resource-limited settings where healthcare infrastructure
remains inadequate. The requirement for invasive blood sampling,
specialised laboratory equipment, trained phlebotomists, and reliable
electricity supply creates substantial barriers to timely diagnosis and
treatment initiation [6]. Many healthcare facilities in low- and
middle-income countries lack the necessary resources to perform
routine hemoglobin testing, resulting in delayed diagnosis, inappro-
priate treatment, and progression to severe anemia with associated
complications. Furthermore, the cost implications of repeated labora-
tory testing create additional barriers for patients and healthcare sys-
tems already operating under financial constraints.

The emergence of artificial intelligence technologies has opened
potential opportunities for transforming anemia care delivery through
innovative diagnostic and management approaches. Machine learning
algorithms demonstrate remarkable capability in pattern recognition,
enabling the development of non-invasive screening tools that can
analyse diverse data sources including smartphone-captured images,
wearable sensor data, and electronic health records [7]. These
Al-powered solutions offer the potential to democratise anemia
screening by eliminating traditional barriers while maintaining diag-
nostic accuracy comparable to conventional methods in research set-
tings. Recent advances in deep learning, computer vision, large language
models (LLMs), and biological AI models such as AlphaFold and
RoseTTAFold have accelerated the development of practical Al appli-
cations suitable for deployment in various healthcare settings [8,9].
However, the translation of these research advances to validated clinical
tools, particularly in low-resource settings where the anemia burden is
highest, remains a significant challenge.

Despite the significant burden of anemia globally and the promising
potential of Al technologies, there remains a critical gap in compre-
hensive understanding of current Al applications, their clinical effec-
tiveness, and implementation challenges in anemia care. While
numerous individual studies have demonstrated the feasibility of AI-
based anemia detection methods, a systematic synthesis of available
evidence is essential to guide future research priorities and clinical
implementation strategies. This narrative review addresses this knowl-
edge gap by examining the current state of Al applications in anemia
screening, diagnosis, and management, with particular emphasis on
methodological approaches, performance characteristics, and practical
implementation considerations. The primary objectives include: (1)
synthesising available evidence on Al-based anemia screening and
diagnostic tools, (2) evaluating the performance and clinical utility of
different AI methodologies, (3) identifying key challenges and limita-
tions in current Al applications, and (4) proposing future research di-
rections to advance Al integration in anemia care.

2. Methods

This narrative review employed a comprehensive literature search
strategy to identify relevant studies examining Al applications in anemia
care. We adopted a narrative synthesis approach informed by systematic
search principles rather than systematic review methodology to
accommodate the heterogeneous nature of Al applications, diverse
methodological approaches, and emerging technologies. This approach
allows for broader inclusion of innovative technologies and critical
synthesis of available evidence while maintaining methodological
rigour through structured search and screening protocols. A quantitative
meta-analysis was not performed due to substantial heterogeneity in Al
methodologies (ranging from traditional machine learning to deep
learning architectures), diverse outcome measures (accuracy, AUC,
sensitivity/specificity), variable validation approaches (internal cross-
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validation, temporal validation, external validation), and inconsistent
reporting of performance metrics across studies, which would preclude
meaningful statistical pooling.

Electronic databases including PubMed/MEDLINE, IEEE Xplore
Digital Library, Scopus, and Web of Science were systematically
searched for peer-reviewed articles published between January 2013
and December 2024. The search strategy utilised a combination of
Medical Subject Headings (MeSH) terms and free-text keywords
including "anemia" OR "anaemia," "artificial intelligence," "machine
learning," "deep learning," "neural networks," "non-invasive screening,"
"smartphone diagnosis," "clinical decision support," "digital health," and
"point-of-care testing." Additional searches included terms such as "large
language models," "foundation models," "transformer networks," and
"federated learning" to capture recent Al developments.

Manual hand-searching was conducted for key journals including
Nature Biomedical Engineering, JMIR Medical Informatics, and Artifi-
cial Intelligence in Medicine for the past two years. Additionally, we
contacted leading experts in the field (n = 2) to identify ongoing
research and unpublished findings.

Inclusion criteria comprised studies that: (1) focused on Al-based
tools, algorithms, or systems for anemia detection, diagnosis, or man-
agement; (2) involved human subjects or human-derived data; (3) were
published in English language; (4) presented original research findings
or significant technological developments; and (5) provided sufficient
methodological detail for quality assessment. Exclusion criteria
included: (1) studies without clear AI or machine learning frameworks;
(2) purely theoretical or conceptual papers without empirical valida-
tion; (3) studies focusing solely on other hematological conditions
without anemia-specific outcomes; (4) conference abstracts without full-
text availability; and (5) studies with insufficient methodological in-
formation for evaluation.

The literature search was conducted independently by two re-
viewers, with initial screening performed based on titles and abstracts,
followed by full-text review of potentially relevant articles. Reference
lists of included studies were manually examined to identify additional
relevant publications through backward citation tracking. Given the
rapidly evolving nature of Al technology, grey literature sources
including government reports, white papers, and clinical trial registries
were also consulted to capture emerging developments and ongoing
research initiatives. Grey literature quality was assessed using criteria
including author credentials, institutional affiliation, peer review status,
and methodological transparency.

Data extraction was performed using a standardised form capturing
study characteristics, AI methodology, target population, performance
metrics, and key findings. Quality assessment was conducted using
specific criteria adapted from QUADAS-2 for diagnostic accuracy studies
and PROBAST for prediction model studies, including assessment of: (1)
study population representativeness, (2) reference standard adequacy,
(3) validation methodology (internal/external/temporal), (4) sample
size adequacy, (5) handling of missing data, (6) bias assessment, and (7)
clinical applicability. Due to the heterogeneous nature of included
studies and diverse Al applications, a narrative synthesis approach was
employed rather than quantitative meta-analysis. To address potential
narrative bias, findings were synthesised using a structured framework
organized by clinical task (screening vs. diagnosis vs. management),
target population (pediatric, pregnancy, chronic disease), healthcare
setting (community vs. hospital), and technological modality (imaging,
laboratory parameters, wearables).

"on

3. Al in anemia screening

This section focuses specifically on Al applications for initial anemia
detection and population-based screening.
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3.1. Image-Based screening technologies

Revolutionary advances in computer vision and deep learning have
enabled the development of sophisticated image-based anemia
screening systems that leverage smartphone cameras and specialised
imaging devices. These non-invasive approaches analyse various
anatomical sites including palpebral conjunctiva, fingernails, sclera, and
facial features to infer hemoglobin levels and detect anemia presence.
The palpebral conjunctiva has emerged as the most promising target for
image-based screening due to its rich vascularisation and accessibility
for photography [10].

Deep learning models using conjunctival imaging demonstrate the
highest accuracy (AUC 0.97) but require controlled lighting conditions
and show reduced performance in darker skin tones [11]. Nailbed im-
aging offers practical advantages including easier image acquisition and
reduced privacy concerns, even with good accuracy (AUC 0.95) [12].
Retinal fundus imaging achieves intermediate performance (AUC
0.89-0.93) with the benefit of potential integration with existing dia-
betic retinopathy screening programmes, though requiring specialised
equipment. From a computational complexity perspective, ensemble
CNN models (VGG16, ResNet-50, InceptionV3) require 2-5 s processing
time on standard smartphones, whilst simpler SVM-based approaches
process images in under 1 s but with reduced accuracy [13]. Clinical
applicability favours nailbed and conjunctival approaches for
point-of-care settings, whilst retinal imaging suits hospital-based
screening due to equipment requirements [12].

Sehar et al. (2025) developed a non-invasive method for anemia
detection using smartphone-acquired images of the palpebral conjunc-
tiva, processed with advanced deep learning models. A dataset of 764
images was augmented to 4315 using a DCGAN (Deep Convolutional
Generative Adversarial Network) to improve model generalisation. A
stacking ensemble of VGG16, ResNet-50, and InceptionV3 achieved an
AUC (Area Under the Receiver Operating Characteristic Curve) of 0.97,
though this performance was achieved in a controlled research setting
with limited validation across diverse populations and lighting condi-
tions. Cost-effectiveness analysis and real-world deployment feasibility
were not assessed [11].

Nailbed imaging represents another promising approach for non-
invasive anemia screening, particularly advantageous due to the ease
of image acquisition and reduced privacy concerns [14]. Lee et al.
(2024) conducted a clinical study to evaluate the feasibility of using
smartphone-acquired images for non-invasive anemia detection in
paediatric patients [15]. Their Al-based system, HEMO-AI (Hemoglobin
Easy Measurement by Optical Artificial Intelligence), analysed finger-
nail photographs captured under controlled lighting conditions to pre-
dict hemoglobin levels, using deep learning models trained on colour,
texture, and morphological features of the nailbed achieving 87 %
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sensitivity and 84 % specificity with an AUC of 0.75 (95 % CI (Confi-
dence Interval): 0.71-0.79), validated using laboratory CBC (Complete
Blood Count) as reference standard with temporal validation over 6
months. However, validation was limited to a single institution, and
performance degradation was observed in patients with nail disorders or
peripheral circulation issues.

Table 1 presents a comprehensive comparison of image-based Al
screening methods, highlighting the diversity of approaches and their
respective performance characteristics across different anatomical sites
and target populations. Performance metrics include validation meth-
odology and confidence intervals where available.

3.2. Smartphone-based applications

The proliferation of smartphone technology has catalysed the
development of accessible mHealth applications for anemia screening,
particularly valuable in resource-limited settings where traditional
laboratory infrastructure is unavailable. These applications leverage
built-in cameras, processing capabilities, and connectivity features to
provide point-of-care anemia assessment with immediate results and
clinical guidance.

Smartphone-based applications face several deployment challenges.
HemaApp requires users to maintain steady finger positioning for 10-15
s, which may be challenging in field settings or with young children.
“Fingernail selfie” approaches (e.g., AnemoCheck Mobile, now Ruby)
have shown large-scale real-world feasibility and clinical validation,
with recent studies demonstrating population-scale usage and good
screening performance; these systems typically pair capture guidance
with image-analysis algorithms to improve data quality, though precise
failure-rate reductions vary by study and are not consistently reported
[21]. On-device battery use depends strongly on the model class and
optimization. Empirical and survey work consistently finds that
CNN-based vision models draw more energy per inference than lighter
classical ML models (e.g., SVM/MLP), unless aggressively optimized
(quantization, pruning, HW acceleration) [22]. For low- and
middle-income country (LMIC) deployment, offline-capable models
with periodic cloud synchronisation offer the most practical approach,
balancing accuracy with connectivity constraints [23].

HemaApp, developed by researchers at the University of Washing-
ton, represents a significant advancement in non-invasive hemoglobin
estimation using smartphone-based spectroscopy [24]. The application
utilises a smartphone’s camera flash and ambient light sensors to anal-
yse light absorption characteristics through the fingertip, similar to
pulse oximetry principles. Clinical validation studies involving 31 par-
ticipants demonstrated a correlation coefficient of 0.82 with standard
complete blood count measurements, with mean absolute error of 1.4
g/dL for hemoglobin estimation and 95 % confidence interval of +2.1

Table 1
Performance comparison of image-based artificial intelligence (AI) methods for anemia screening using smartphone or fundus imaging data.
Reference  Imaging Site AI Method Sample Sensitivity Specificity AUC(95%CI)  Validation Type Population  Clinical
Size (%) (%) Readiness
[11] Conjunctiva Deep Learning 764 95 88 0.97 Internal cross- Adults Research stage
(0.94-0.99) validation
[15] Nailbed Machine Learning 823 87 84 Not reported Temporal Children Pilot testing
validation
[16] Retinal Fundus Deep Learning 539 91.2 80 0.89 External Adults Research stage
(0.85-0.93) validation
[17] Lip Mucosa Machine Learning 138 92 98 0.91 Internal Adults Early
(NB) (0.85-0.96) validation development
[18] Palm Lines CNN 527 99.98 99.79 0.95 Internal Mixed Requires
(0.95-0.98) validation validation
[19] Ultra-wide-field Deep Learning 14,814 91.2 80 0.93 Multi-center Mixed Clinical pilot
Fundus (0.92-0.94)
[20] Conjunctiva SVM-+MobileNetV2 218 91 94 Not reported Single-center Mixed Early

development

Abbreviations: AUC = Area Under the Curve; CI = Confidence Interval; CNN = Convolutional Neural Network; NB = Naive Bayes; SVM = Support Vector Machine.
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g/dL. HemaApp achieves a sensitivity and precision of 85.7 % and 76.5
% respectively. However, performance was significantly reduced in
patients with darker skin pigmentation (sensitivity dropped to 76 %)
and under varying lighting conditions, highlighting the need for bias
mitigation strategies. The application incorporates machine learning
algorithms to calibrate measurements based on individual characteris-
tics including skin tone, finger thickness, and ambient lighting
conditions.

AnemoCheck Mobile represents another significant advancement in
smartphone-based anemia screening. The application addresses critical
challenges in image-based screening including variations in lighting
conditions, camera quality, and user technique through automated
quality assessment and guided image acquisition protocols. Ane-
moCheck LRS is a point-of-care hemoglobin test designed for use in
resource-limited settings. The test was evaluated using 570 de-identified
blood samples with hemoglobin levels < 8 g/dL. Results from trained
readers using AnemoCheck LRS showed a strong correlation (r = 0.93
[95 % CI: 0.91-0.95]) with laboratory hemoglobin measurements. The
test demonstrated high reproducibility across multiple readers and
achieved sensitivities of 92 % and 99 % for detecting profound anemia
(Hb < 5 g/dL) and severe anemia (Hb < 7 g/dL), respectively [25]. Cost
analysis revealed $0.50 per test compared to $5-15 for laboratory CBC,
though this excludes smartphone acquisition and maintenance costs.

Recent developments in smartphone-based anemia screening have
incorporated advanced features including artificial intelligence-
powered image quality assessment, automated region-of-interest
detection, and integration with electronic health record systems for
longitudinal monitoring. These applications demonstrate particular
promise for community health worker programmes, enabling trained
non-medical personnel to conduct reliable anemia screening in remote
and underserved communities. However, real-world implementation
studies have identified significant challenges including user training
requirements, quality control maintenance, and integration with exist-
ing healthcare workflows.

Image-based anemia screening approaches utilise visible anatomical
sites such as the palpebral conjunctiva, sclera, and fingernails, combined
with Al pipelines for hemoglobin estimation and anemia prediction
(Fig. 1).

Fig. 1. Schematic overview of image-based anemia screening sites
and Al technologies. Left: Anatomical sites commonly used for image
acquisition, including the palpebral conjunctiva, sclera, facial features,
and fingernails (indicated by red dots). Right (top panel): Al pipeline

Conjunctiva
analysis

Palpebral
conjunctiva

Anemia

Ensemble
CNNs
—_—

Facial

Sclera features Fingaer::IainSii;nage predlctlon
[ﬂ m Al model
! Hemoglobin
Fingernails AT

Fig. 1. Schematic overview of image-based anemia screening sites and Al
technologies. Abbreviations: AUC, Area Under the Curve; CI, Confidence In-
terval; CNN, Convolutional Neural Network; NB, Naive Bayes; SVM, Support
Vector Machine; CBC, Complete Blood Count; Hb, Hemoglobin; EHR, Electronic
Health Record; RF, Random Forest.
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using smartphone-acquired conjunctival images processed by DCGAN
and ensemble CNNs for anemia classification, showing accuracy rates
and confidence intervals from validation studies. Right (bottom panel):
Al model estimating hemoglobin levels from fingernail images captured
via smartphone, with performance metrics displayed for different de-
mographic groups and lighting conditions.

4. Al in anemia diagnosis

This section specifically addresses Al applications for detailed ane-
mia classification and etiological determination, building upon initial
screening results from Section 3.

4.1. Machine learning with complete blood count parameters

Advanced machine learning algorithms have demonstrated remark-
able capability in analysing complete blood count (CBC) parameters to
differentiate anemia subtypes and predict underlying aetiologies,
addressing critical clinical needs for accurate diagnosis and appropriate
treatment selection. From an interpretability standpoint, decision tree-
based models (bagged and boosted trees) offer superior clinical trans-
parency, allowing clinicians to trace the decision pathway through
easily understood if-then rules [26]. Neural networks, whilst achieving
comparable or superior accuracy, function as "black boxes" requiring
post-hoc explainability methods such as SHAP (SHapley Additive ex-
Planations) values to identify feature importance [27]. Support vector
machines occupy a middle ground, with kernel functions enabling
complex decision boundaries whilst maintaining some mathematical
interpretability. Computational requirements vary substantially: neural
networks require 50-200 ms inference time on standard hardware,
compared to 5-20 ms for decision trees and 10-30 ms for SVMs, making
decision trees most suitable for real-time clinical decision support sys-
tems [26,27].

Karagiil Yildiz et al. (2021) developed a clinical decision support
system for automated anemia classification using machine learning
models trained on a dataset of 1663 patients from a university hospital
in Turkey [28]. Their model utilised 25 features - including haemogram
parameters, age, sex, symptoms, and comorbidities - to classify 12
anemia types. These included iron deficiency anemia, folate deficiency
anemia, vitamin B12 deficiency anemia, anemia of chronic disease,
thalassaemia, thalassaemia trait, and haemolytic anemia, among others.
Four algorithms were evaluated: Artificial Neural Networks, Support
Vector Machines, Naive Bayes, and Ensemble Decision Trees. The
highest accuracy was achieved using Bagged Decision Trees (85.6 % [95
% CI: 82.1-88.9 %)), followed by Boosted Trees (83.0 %) and Artificial
Neural Networks (79.6 %). The study used 80/20 train-test split with
10-fold cross-validation, though external validation at different in-
stitutions was not performed. The system’s clinical utility in routine
practice and potential for decision support integration remain
unvalidated.

Saputra et al. developed a high-performing artificial intelligence
model using the ELM (Extreme Learning Machine) algorithm to classify
anemia subtypes based on complete blood count (CBC) data and
confirmatory diagnostics [29]. The study analysed 190 patient records
from a clinical pathology department in Indonesia, focusing on four
commonly overlapping anemia types: iron deficiency anemia (IDA),
beta thalassaemia trait (BTT), haemoglobin E (HbE), and combination
anaemias. Using seven key haematological features, the ELM model
achieved an accuracy of 99.21 % [95 % CI: 96.8-99.9 %], sensitivity of
98.44 %, precision of 99.30 %, and an F1 score of 98.84 %, significantly
outperforming benchmark models such as Random Forest, K-nearest
neighbours, and support vector machines. However, the exceptionally
high performance raises concerns about potential overfitting, as the
sample size was relatively small and validation was conducted only
within the same institution. The clinical applicability across diverse
populations and healthcare settings requires further validation.
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4.2. Predictive modeling in high-risk populations

Artificial intelligence applications have shown particular promise in
identifying and managing anemia within high-risk populations
including pregnant women, cancer patients, chronic kidney disease
patients, and elderly individuals with multiple comorbidities. These
population-specific models demonstrate varying clinical readiness:
maternal anemia prediction models show the highest implementation
potential due to integration with existing antenatal care pathways [30],
whilst oncology-based models face challenges from treatment hetero-
geneity and rapidly changing clinical protocols [31]. Paediatric models
require careful age-specific calibration, as haematological parameters
vary substantially across developmental stages. Geriatric models must
account for polypharmacy and multiple comorbidities, increasing model
complexity but potentially offering the greatest clinical impact given the
high anemia prevalence in this population.

Su et al. (2024) developed a machine learning model to predict post-
chemotherapy anemia in osteosarcoma patients using clinical and lab-
oratory data from 631 cases [31]. By integrating logistic regression,
random forest, SVM (Support Vector Machine), and LASSO (Least Ab-
solute Shrinkage and Selection Operator) methods, five key predictors -
albumin, calcium, creatinine, p-dimer, and ESR (Erythrocyte Sedimen-
tation Rate) - were identified. The final model achieved an AUC of 0.85
[95 % CI: 0.81-0.89] with temporal validation over 12 months and was
deployed as a web-based tool to support individualised anemia risk
assessment and management though clinical impact evaluation is
ongoing.

Dejene et al. (2022) developed a machine learning model to predict
anemia severity in Ethiopian pregnant women using demographic and
health survey data [32]. Among several ensemble algorithms tested,
CatBoost (Category Gradient Boosting, an advanced gradient boosting
algorithm particularly effective for categorical features) with one-vs-rest
class decomposition achieved the highest accuracy at 97.6 % [95 % CIL:
96.2-98.7 %]. Key predictors included pregnancy duration, maternal
age, water source, occupation, and household size. The model supports
early risk stratification and targeted anemia interventions in maternal
health programmes. External validation in different Ethiopian regions
showed performance degradation to 89.2 % accuracy, indicating the
need for regional adaptation and continuous model updating.

A Al Models Using CBC Data

for Anemia Subtyping
Input 5| ANN
E F O 91%
Complete Blood > Ssgc!/\:l
Count (CBC)
+ Patient Data ,
. J Ly | Naive Bayes
87%
Bagged/Boosted
Decision Trees
93%
Complete R —
Blood Count Classification
- Patient Data 12 Anemia Types
93%

Current Research in Translational Medicine 74 (2026) 103560

Recent advances in Al for CKD (Chronic Kidney Disease) patients
have demonstrated the potential for personalised anemia management.
However, challenges include model interpretability in clinical decision-
making and the risk of overfitting in complex algorithms like fitted Q-
iteration, which may lead to non-convergent behaviour in dynamic
clinical environments [33].

Machine learning models have demonstrated variable accuracy in
classifying anemia subtypes based on CBC and patient data, and in
predicting anemia risk in high-risk populations, with performance
ranging from 75-99 % depending on validation rigour and population
characteristics (Fig. 2).

Fig. 2 illustrates Al-driven tools for anemia diagnosis and risk pre-
diction. Panel A: AI models (ANN, SVM, Naive Bayes, and bagged/
boosted decision trees) process CBC and patient data to classify up to 12
anemia subtypes with accuracy ranges displayed based on validation
methodology (internal validation: 85-99 %, external validation: 75-89
%). Panel B: Al models like CatBoost (Category Gradient Boosting al-
gorithm) are applied to high-risk groups (e.g., pregnant women, cancer
patients, elderly) for stratifying anemia risk (low/moderate/high) and
generating personalized clinical recommendations, with performance
metrics showing 95 % confidence intervals and population-specific ac-
curacy rates. Table 2 summarises the performance characteristics of
various Al approaches for anemia diagnosis across different clinical
contexts and patient populations.

5. Al in anemia management
5.1. Clinical decision support systems

Artificial intelligence-powered clinical decision support systems
(CDSS) represent a potential paradigm shift in anemia management,
enabling personalised treatment recommendations based on individual
patient characteristics, comorbidity profiles, and treatment response
patterns. These systems integrate complex clinical algorithms with real-
time data analysis to optimise therapeutic decisions and improve patient
outcomes whilst reducing healthcare costs and treatment-related
complications.

A prominent example is the ACM (Anemia Control Model), an Al-
driven CDSS implemented in haemodialysis settings [37]. The ACM

B Classification of
12 Anemia Types

2 A, [y (888

Pregnant Cancer Elderly [Classification
l of 12
Anemia Types

000

Low/
Moderate
High

* CatBoost
5

Personalized
Recommendations

(eg. monitor Hb
nutritional support)

Fig. 2. Al-driven tools for anemia diagnosis and risk prediction. Abbreviations: ANN, Artificial Neural Network; SVM, Support Vector Machine; NB, Naive Bayes;
CBC, Complete Blood Count; AUC, Area Under the Curve; CI, Confidence Interval; ESRD, End-Stage Renal Disease; EHR, Electronic Health Record; MLP, Multilayer
Perceptron; MPC, Model Predictive Control; Hb, Hemoglobin; J48, Decision Tree Algorithm; RF, Random Forest.
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Table 2
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Performance of artificial intelligence (AI) models for anemia diagnosis across clinical contexts.

Application Area Al Method Data Sources Sample Primary Outcome Performance Metric Clinical Impact
Size

Anemia Subtype Random Forest CBC Parameters 1421 Subtype classification 99.82 % accuracy Highly precision subtype

Classification (micro-, normo-, diagnosis for clinical labs
macrocytic) [34]

Chemotherapy- SVM/Logistic Clinical + lab variables 631 Risk Prediction AUC 0.85 Early Intervention [35]
Induced Anemia Regression post-chemo patients

Treatment Response MLP (neural EHR Data 752 Geriatric Anemia >90 % prediction Personalized ESA dosing,
in ESRD network) + MPC accuracy; Hbft, cost & safety benefits [33]

controls ESA fluctuation |
Neonatal Anemia Random Forest + EHR vital signs, labs, and 9501 Moderate/severe anemia Accuracy 81.16 %, AUC Preventive Care [35]

Clinical Data
J48 and Random
Forest classifiers

demographic data

Hemogram, biochemistry, 438
malnutrition & activity

scores

Geriatric Anemia

0.818
J48 accuracy 97.8 %; RF
(non-CBC data) 85.4 %

prediction
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Abbreviations: AUC, Area Under the Receiver Operating Characteristic Curve; CBC, Complete Blood Count; ESA, Erythropoiesis-Stimulating Agent; ESRD, End-Stage
Renal Disease; EHR, Electronic Health Record; Hb, Hemoglobin; MLP, Multilayer Perceptron; MPC, Model Predictive Control; RF, Random Forest; SVM, Support

Vector Machine.

utilises artificial neural networks to individualise
erythropoietin-stimulating agent (ESA) dosing by synthesising
patient-specific clinical histories and trends in hemoglobin and ferritin
concentrations. In a multi-centre cohort study encompassing 752 CKD
patients, ACM application resulted in a significant increase in the pro-
portion of hemoglobin measurements within the recommended target
range, rising from 70.6 % to 76.6 % even reaching 83.2 % with 95 % CI:
79.8-86.5 %. Simultaneously, ESA consumption was reduced by 8.3 %
(95 % CL: 5.1-11.4 %), and hemoglobin variability was attenuated,
suggesting enhanced treatment stability and efficacy though long-term
safety outcomes require continued monitoring.

In addition to neural network-based models, reinforcement learning
methodologies have demonstrated efficacy in optimising anemia treat-
ment regimens. Computational simulations employing fitted Q-iteration
algorithms have indicated potential improvements in ESA dose recom-
mendations [38]. However, the clinical application of fitted Q-iteration
algorithms presents significant challenges including the risk of over-
fitting to training data, potential for non-convergent behaviour in dy-
namic clinical environments, and limited interpretability for clinicians.
These algorithms require continuous retraining and careful monitoring
to prevent adverse outcomes from suboptimal dosing recommendations.
Simulation results revealed a 27.6 % increase in patients maintained
within target hemoglobin ranges [95 % CI: 22.1-33.2 %] and a 5.1 %
reduction in overall ESA dosing relative to standard fixed-dose protocols
[95 % CI: 2.8-7.3 %].

The application of Al-enabled CDSS is expanding beyond
nephrology. Recent studies have demonstrated the feasibility and
acceptability of Al-enabled clinical decision support systems (CDSS) in
managing maternal anemia in rural India [39]. A pilot cluster rando-
mised controlled trial (cRCT) involving 200 pregnant women assessed
the SMARThealth Pregnancy intervention, which integrates
smartphone-based anemia screening with decision support tools for
community health workers. The intervention showed high fidelity and
engagement, with minimal loss to follow-up (2 %) and positive feedback
from both healthcare workers and women. However, clinical outcomes
including anemia resolution rates and maternal health improvements
are still under evaluation with 12-month follow-up ongoing.

5.2. Integration with wearables and internet of things

The convergence of artificial intelligence with wearable sensors and
IoT (Internet of Things) technologies has created potential opportunities
for continuous anemia monitoring and dynamic treatment adjustment.
These integrated systems enable real-time physiological monitoring,
early detection of clinical deterioration, and proactive intervention
strategies that extend beyond traditional episodic care models though

clinical validation and cost-effectiveness remain largely unproven.

Wang et al. reviewed smart nursing systems incorporating IoT de-
vices and AI algorithms that continuously track vital signs and
hemoglobin-related parameters, allowing for early detection of anemia
and timely clinical decision-making [40]. Their analysis highlighted
how wearable sensors, combined with AI, improve patient monitoring
accuracy and reduce hospitalisations by facilitating real-time data
transmission and predictive analytics though specific outcome measures
and comparative effectiveness data were limited.

Anitha et al. developed a portable, non-invasive anemia detection
system that measures physiological parameters-including heart rate,
oxygen saturation (SpO:), body temperature, and lung capacity-using
wearable sensors to assess anemia status without requiring blood sam-
pling [41]. The system integrates machine learning algorithms deployed
on an IoT platform to analyse these physiological signals in real time,
enabling accurate anemia prediction with reported accuracy of 92.3 %
though validation was conducted on only 67 participants and contin-
uous health monitoring. Designed for portability, the device supports
remote data transmission, facilitating its use in resource-limited and
rural settings where access to traditional laboratory testing is limited.
However, the system has not undergone regulatory approval and clinical
utility compared to standard care remains unestablished.

Advanced Al systems, including clinical decision support systems
(CDSS) and wearable-integrated IoT platforms, offer potential for real-
time anemia monitoring and treatment personalization, especially in
chronic disease and remote care settings, though clinical validation and
implementation challenges remain significant (Fig. 3).

Fig. 3 illustrates the applications of Al in clinical decision support
and real-time anemia monitoring. Panel A: Al-powered CDSS integrates
EHR data, hemoglobin/ferritin trends, and comorbidities through neural
networks and reinforcement learning to optimize ESA dosing and sta-
bilize hemoglobin, particularly in CKD and maternal care. Performance
metrics show 95 % confidence intervals and clinical validation status (n
= 752 CKD patients, multi-center validation). Panel B: Wearables
(smartwatches, finger sensors, portable multi-sensors) collect physio-
logical signals (HR, SpO2, temperature, activity), analyzed via an IoT-Al
cloud platform to deliver real-time anemia status and alerts. Accuracy
rates (85-92.3 %) and validation sample sizes are displayed for different
device types and patient populations, enabling use in remote/rural
healthcare settings subject to regulatory approval and clinical
validation.
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Fig. 3. Al in clinical decision support and real-time anemia monitoring. Abbreviations: CDSS, Clinical Decision Support System; EHR, Electronic Health Record; ESA,
Erythropoiesis-Stimulating Agent; CKD, Chronic Kidney Disease; IoT, Internet of Things; Al, Artificial Intelligence; HR, Heart Rate; SpO2, Peripheral Capillary

Oxygen Saturation.

6. Challenges and limitations
6.1. Data quality and algorithmic bias

The effectiveness of Al systems in anemia care is fundamentally
dependent on the quality, diversity, and representativeness of training
datasets, yet significant challenges persist in ensuring equitable perfor-
mance across diverse populations. Quantitative analysis of current Al
anemia detection systems reveals that 78 % of training datasets originate
from high-income countries, with only 12 % including adequate repre-
sentation from Sub-Saharan Africa and South Asia where anemia burden
is highest [42,44]. Most existing Al models have been developed using
datasets from high-income countries with limited representation from
populations most affected by anemia, potentially introducing systematic
biases that compromise performance in resource-limited settings where
these tools are most needed [43].

Algorithmic bias poses a significant challenge in image-based anemia
detection systems, particularly due to variations in skin pigmentation,
lighting conditions, and imaging device characteristics. Research has
shown that Al models trained on datasets lacking sufficient diversity can
perform inconsistently across different demographic groups, often
exhibiting reduced accuracy in individuals with darker skin tones [44].
Specific performance degradation has been documented, with accuracy
dropping from 91 % in Caucasian populations to 67 % in individuals
with Fitzpatrick skin types V-VI, representing a 24 % relative perfor-
mance decrease that could exacerbate health disparities [45]. This
disparity arises because underrepresentation of diverse populations in
training data leads to biased feature extraction and prediction errors.
Consequently, such biases risk perpetuating health inequities by limiting
the effectiveness of anemia screening tools in populations already
vulnerable to underdiagnosis and undertreatment [45]. Addressing
these biases through inclusive dataset curation, fairness-aware model
design, and population-specific calibration is essential to ensure equi-
table clinical utility of Al-driven anemia diagnostics.

The deployment of Al anemia screening tools in LMICs faces multi-
faceted challenges beyond algorithmic performance. Infrastructure
barriers include unreliable electricity supply affecting 63 % of health-
care facilities in Sub-Saharan Africa, limited internet connectivity with
average speeds below 2 Mbps in rural areas, and smartphone penetra-
tion rates of only 45-60 % in target populations. Economic barriers
include device costs ($150-300 for capable smartphones), data charges
($0.10-0.50 per screening session), and maintenance requirements

[46]. The WHO 2023 Ethics and Governance of Artificial Intelligence for
Health guidance [WHO/HMM/IER/2023.3] emphasises six core prin-
ciples for Al deployment: protecting human autonomy, promoting
human well-being and safety, ensuring transparency and explainability,
fostering responsibility and accountability, ensuring inclusiveness and
equity, and promoting Al that is responsive and sustainable [47]. Cur-
rent Al anemia screening implementations frequently fall short on eq-
uity and sustainability dimensions, with pilot projects rarely
transitioning to sustained national programmes due to inadequate
business models and reliance on external funding [48,49]. To address
these challenges, we propose a three-tier deployment framework: (1)
high-resource settings employing advanced deep learning models with
continuous internet connectivity, (2) medium-resource settings utilising
offline-capable models with periodic synchronisation, and (3)
low-resource settings implementing lightweight algorithms optimised
for basic smartphones with SMS-based result transmission. This tiered
approach acknowledges infrastructure realities whilst maintaining
diagnostic utility across diverse settings.

6.2. Regulatory and ethical considerations

The deployment of Al tools for medical diagnosis requires navigation
of complex regulatory frameworks that vary significantly across
different jurisdictions and healthcare systems. To date, only 3 Al-based
anemia detection systems have received FDA (Food and Drug Admin-
istration) approval as Class II medical devices, with approval timelines
averaging 24 months and costs exceeding $500,000 per application.
Regulatory agencies including the FDA, EMA (European Medicines
Agency), and national health authorities have established stringent re-
quirements for medical device approval that many Al applications
struggle to meet due to the rapidly evolving nature of machine learning
technologies and limited long-term validation data [50].

Specific regulatory challenges include: (1) the FDA’s SaMD (Soft-
ware as Medical Device) framework requiring predetermined change
control plans that conflict with continuous learning algorithms, (2)
European MDR (Medical Device Regulation) requirements for post-
market surveillance that are difficult to implement for smartphone ap-
plications, (3) lack of harmonised international standards for Al vali-
dation methodology, and (4) regulatory pathway uncertainties in LMICs
where many national health authorities lack specific AI/ML device
guidelines. The FDA’s 2021 Artificial Intelligence/Machine Learning
(AI/ML)-Based Software as a Medical Device (SaMD) Action Plan
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introduced predetermined change control protocols and algorithm
change protocols to address continuous learning systems, whilst the
EU’s AI Act (2024) classifies medical Al systems as "high-risk," requiring
conformity assessments and continuous monitoring. However, these
frameworks remain nascent, with only 12 % of Al anemia detection
systems having navigated regulatory approval in any jurisdiction. For
LMIC deployment, the WHO recommends establishing national Al
evaluation frameworks aligned with International Medical Device Reg-
ulators Forum (IMDRF) principles, though implementation remains
limited.

Ethical considerations extend beyond regulatory compliance to
encompass fundamental questions about patient autonomy, informed
consent, and the appropriate role of Al in clinical decision-making. The
implementation of Al screening tools in community settings raises
concerns about data privacy, particularly when involving smartphone
applications that may collect and transmit sensitive health information.
Additionally, the potential for AI tools to replace human -clinical
judgement raises questions about maintaining the therapeutic relation-
ship and ensuring appropriate clinical oversight. Key ethical challenges
include: obtaining meaningful informed consent from populations with
limited health literacy, ensuring data sovereignty when training data
crosses international borders, addressing potential employment
displacement for laboratory technicians and phlebotomists, managing
clinical responsibility when AI recommendations differ from clinician
judgement, and preventing Al-enabled screening from exacerbating the
"digital divide" by primarily benefiting digitally connected urban pop-
ulations whilst rural communities remain underserved.

6.3. Interpretability and clinical trust

The "black box" nature of many machine learning algorithms pre-
sents significant barriers to clinical adoption, as healthcare providers
require understanding of diagnostic reasoning to maintain confidence in
Al-generated recommendations. Deep learning models, whilst achieving
impressive performance metrics, often lack interpretability that enables
clinicians to understand the basis for specific predictions or recom-
mendations [51].

Building clinical trust requires not only technical performance but
also integration with existing clinical workflows, comprehensive
training programmes, and ongoing support systems. Many healthcare
providers express concerns about liability, error management, and the
potential for Al tools to introduce new forms of medical errors. The
successful implementation of Al in anemia care requires addressing
these concerns through transparent communication, robust validation
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studies, and collaborative development approaches that involve clini-
cians throughout the design and implementation process.

Table 3 summarises the key challenges and potential mitigation
strategies for Al implementation in anemia care across different
domains.

7. Future directions
7.1. Explainable artificial intelligence

The development of explainable AI models represents our highest
priority for advancing clinical adoption. We will develop attention-
based visualisation tools highlighting specific anatomical regions
contributing to predictions, implement SHAP value analysis generating
patient-specific feature importance reports, create interactive decision
tree visualisations mirroring clinical diagnostic pathways, and design
uncertainty quantification interfaces communicating prediction confi-
dence through intuitive visual metaphors. Prospective studies across
diverse healthcare settings will compare standard versus XAl-enhanced
interfaces, measuring clinician trust through validated questionnaires
and establishing minimum interpretability standards for all anemia
screening Al systems.

Collaboration with regulatory bodies will establish XAI requirements
for medical device approval, whilst open-source toolkits with multilin-
gual implementation guides will facilitate widespread adoption. Train-
the-trainer programmes will build sustainable local expertise across
multiple LMICs. Expected outcomes include substantially increased
clinician acceptance rates, reduced time-to-clinical-decision, regulatory
adoption of XAI standards, and widespread deployment across diverse
healthcare settings. These enhancements will enable clinicians to verify
Al reasoning, identify potential errors, customise decision thresholds for
specific populations, and maintain appropriate clinical oversight whilst
benefiting from AI assistance.

7.2. Multimodal data fusion: anemia-specific integration strategy

Multimodal data fusion addresses fundamental limitations of single-
modality Al systems by integrating complementary information sources
mirroring comprehensive clinical assessment. We will develop
transformer-based fusion architectures integrating smartphone-
captured images, laboratory parameters, clinical history, wearable
sensor data, and social determinants relevant for LMIC settings. Atten-
tion mechanisms will dynamically weight modalities based on data
quality and availability, whilst graph neural networks will model

Table 3
Key challenges and mitigation strategies for implementing artificial intelligence (AI) systems in anemia screening, diagnosis, and management.
Challenge Specific Issues Impact on Implementation Mitigation Strategies Timeline for Implementation
Domain Resolution Priority
Data Quality Limited dataset diversity; Reduced accuracy in Global data collaboration, Federated learning 2-5 years High
demographic bias underrepresented populations [52]
Equity & LMIC Infrastructure barriers; Excludes highest-burden Tiered deployment framework; offline-capable 3-7 years Critical
Deployment limited connectivity; populations; perpetuates health models; SMS-based systems; partnership with
affordability disparities mobile network operators
Regulatory Complex, fragmented Prolonged approval, delayed Harmonized international SaMD regulation; 3-7 years High
approval standards deployment, high cost FDA pre-specification pathways; WHO IMDRF
alignment [53]
Clinical Trust Black box algorithms, lack of ~ Clinician reluctance; low adoption ~ Explainable AI frameworks; clinician training 1-3 years High
explainability and co-design [54]
Technical Interoperability gaps; lack of ~ Poor integration with existing Adoption of FHIR (Fast Healthcare 2-4 years Medium
standardization systems; limited scalability Interoperability Resources) and ISO/IEEE
11,073 standards; open APIs [55]
Economic High development costs; Barriers to commercialization; Value-based pricing, HTA (Health Technology 3-5 years Medium

unclear reimbursement limited access

model

Assessment)-supported funding; outcome-
based pilots [56]

Abbreviations: LMIC, Low and Middle-Income Country; SaMD, Software as a Medical Device; FDA, U.S. Food and Drug Administration; WHO, World Health Orga-
nization; IMDRF, International Medical Device Regulators Forum; ISO/IEEE 11073, International Standards for Health Device Communication; API, Application

Programming Interface.
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relationships between anemia subtypes and causative factors, enabling
etiological reasoning.

Population-specific validation will focus on pregnant women tar-
geting accurate severe anemia prediction enabling preventive inter-
vention, paediatric populations addressing age-dependent reference
ranges whilst improving sensitivity, chronic kidney disease patients
targeting substantial haemoglobin variability reduction through per-
sonalised ESA recommendations, and elderly populations targeting high
subtype classification accuracy without invasive procedures. Imple-
mentation through existing healthcare infrastructure including WHO
frameworks, national EHRs, and SMS-based collection will enable
comparative effectiveness trials measuring diagnostic accuracy, time-to-
treatment, costs, and patient outcomes. Expected outcomes include
substantial diagnostic accuracy improvement, marked reduction in un-
necessary invasive testing, widespread deployment with demonstrated
cost-effectiveness in LMIC settings, and published clinical benefit evi-
dence. Clinical impact will include more accurate etiological diagnosis,
earlier high-risk patient detection, reduced diagnostic burden, and
personalised treatment recommendations.

7.3. Large language models and foundation models: clinical decision
support enhancement

LLMs and foundation models offer transformative potential through
natural language interfaces, automated documentation, and biological
model integration. We will develop fine-tuned LLMs using WHO
guidelines, national protocols, extensive clinical notes, and multilingual
patient education materials. Conversational Al agents accessible via
WhatsApp, SMS, and basic web interfaces will provide real-time man-
agement guidance for community health workers, patient education,
adherence support, and triage recommendations. Integration of Alpha-
Fold and RoseTTAFold will enable in silico prediction of pathogenicity
for novel haemoglobin variants and drug-protein interaction modelling.

Natural language processing will enable automated anemia case
detection from clinical notes, whilst LLM-powered documentation tools
will auto-generate comprehensive assessment summaries from minimal
input. Al-generated personalised treatment plans will synthesise patient-
specific factors, local resource availability, cultural considerations, and
cost constraints. Expected impact includes democratised expert knowl-
edge enabling primary healthcare workers to provide specialist-level
guidance, substantially reduced documentation burden, improved
treatment adherence through culturally appropriate multilingual edu-
cation, and accelerated hereditary anemia research. Target outcomes
include high concordance with specialist recommendations, high pa-
tient satisfaction, and widespread deployment in community health
programmes.

7.4. Federated learning and global collaboration: equitable AT
development

Federated learning enables training robust, generalisable AI models
whilst respecting data privacy, sovereignty, and regulatory constraints.
We will establish a global consortium comprising healthcare institutions
across multiple countries with balanced high-income and LMIC repre-
sentation, extensive diverse patient records, and technical partners.
Infrastructure employing differential privacy techniques, secure aggre-
gation protocols, adaptive algorithms, and low-bandwidth communi-
cation protocols will enable collaborative model training. Data
standardisation frameworks using FHIR and DICOM standards will
enable federated learning across heterogeneous systems.

Governance agreements will respect data sovereignty, ensure equi-
table benefit sharing through open-source licensing, and enable com-
munity consultation. Capacity building programmes will train local data
scientists, provide technical infrastructure support, and establish
regional hubs for ongoing support. Sustainability mechanisms will
transition from donor-funded pilots to institutionally supported
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programmes with fee structures subsidising LMIC participation. Ex-
pected outcomes include substantial performance improvement versus
single-institution training, widespread global deployment, published
evidence demonstrating federated superiority, establishment of gover-
nance frameworks adopted by international organisations, sustainable
funding models, and equity impact measured through increased LMIC
representation, performance parity across demographic groups, and
documented capacity building.

7.5. Integration with national health systems: scalable implementation
strategy

Sustainable AI deployment requires seamless integration with
existing national health strategies and digital health initiatives.
Maternal-child health programmes represent the highest priority, inte-
grating Al anemia screening into antenatal care protocols across multi-
ple countries through existing mobile health platforms. Al screening will
link with iron supplementation programmes enabling real-time in-
ventory management whilst results feed national maternal health
dashboards. National screening programmes will embed Al in school
health programmes, occupational health screening for high-risk
workers, and blood donation programmes. EHR integration will
develop FHIR-compliant Al modules compatible with major systems,
create standardised data exchange protocols, and implement laboratory
information system interoperability.

Policy mechanisms will advocate for Al anemia screening inclusion
in essential health benefit packages, develop health technology assess-
ment dossiers demonstrating cost-effectiveness, and establish public-
private partnerships wherein government provides policy framework,
private sector manages technology infrastructure, and non-profit orga-
nisations support training. Expected outcomes include national-scale
programmes reaching substantial populations, widespread EHR inte-
gration with demonstrated workflow efficiency gains, published health
systems research, policy adoption across multiple countries, substan-
tially increased population-level anemia detection rates, earlier treat-
ment initiation, and improved health equity metrics narrowing
prevalence gaps between urban and rural populations and across so-
cioeconomic groups.

7.6. Priority population targeting and validation requirements

To maximise clinical impact and ensure responsible Al deployment,
we prioritise validation in populations where anemia burden is highest.
Pregnant women in LMICs represent the highest priority where anemia
affects substantial proportions and current screening coverage is inad-
equate. Validation requires longitudinal assessment throughout preg-
nancy, accuracy in predicting severe anemia, performance across
gestational ages, and antenatal care pathway integration. Children
under five in Sub-Saharan Africa and South Asia represent critical pri-
ority due to highest global prevalence during a developmental period
where anemia causes long-term cognitive impairment whilst current
screening coverage remains inadequate. Validation encompasses age-
specific reference ranges, performance with concurrent infections,
community-based feasibility, and usability by minimally trained
workers. Chronic kidney disease patients requiring haemodialysis
constitute another priority where anemia affects the vast majority
requiring frequent monitoring and individualised ESA dosing. Valida-
tion includes optimal ESA dosing accuracy, haemoglobin variability
reduction, workflow integration, and real-time decision support.

Secondary priority populations include elderly patients focusing on
subtype differentiation without invasive procedures, cancer patients
focusing on predicting chemotherapy-induced anemia, and adolescent
girls emphasising school-based screening linked with supplementation
programmes. Cross-cutting validation requirements mandate external
validation in multiple geographically distinct sites, subgroup analyses
assessing equity, prospective validation with patient outcomes, usability
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testing, cost-effectiveness analysis, and ethical review with community
engagement. This population-focused strategy ensures AI anemia tools
address real clinical needs, function effectively in target settings, benefit
populations with highest disease burden, and meet regulatory standards,
contrasting with current Al research that often prioritises technical
novelty over clinical impact and equity.

8. Limitations of this review

This narrative review has several important limitations that should
be considered when interpreting This narrative review has several
important limitations that should be considered when interpreting the
findings and implications. The rapidly evolving nature of Al technology
means that some recent developments may have limited peer review
validation or real-world validation data. The narrative review method-
ology, whilst appropriate for synthesising diverse Al applications, does
not provide the systematic evaluation and bias assessment that would be
available through a systematic review or meta-analysis approach.

Quantitative limitations include: (1) heterogeneous reporting of
performance metrics across studies, making direct comparisons difficult,
(2) variable follow-up periods ranging from immediate validation to 24-
month longitudinal studies, (3) inconsistent definition of anemia
thresholds across studies (ranging from WHO criteria to population-
specific cutoffs), and (4) limited reporting of confidence intervals in
34 % of included studies.

The heterogeneous nature of included studies, with varying Al
methodologies, target populations, and outcome measures, limits the
ability to draw definitive conclusions about the relative effectiveness of
different approaches. Performance metrics varied significantly across
studies, with AUC values ranging from 0.75-0.99, though studies with
higher performance often had smaller sample sizes and less rigorous
validation methodology. Many studies were conducted in controlled
research settings with selected populations, which may not reflect real-
world performance and implementation challenges. Additionally, the
limited availability of long-term follow-up data restricts understanding
of the sustained impact and effectiveness of Al interventions in clinical
practice.

Publication bias analysis suggests potential overrepresentation of
positive results, with 87 % of included studies reporting superior or
equivalent performance to standard care, whilst grey literature and
conference abstracts suggest higher failure rates in real-world imple-
mentations. The predominance of studies from high-income countries
may limit generalisability to resource-limited settings where anemia
burden is highest and Al solutions are most needed. Specifically, 71 % of
validation studies were conducted in high-income countries, with only
18 % including populations from Sub-Saharan Africa where anemia
prevalence is highest.

Methodological limitations include: (1) lack of standardised quality
assessment tools for AI diagnostic studies, (2) variable definition of
validation methodology across studies, (3) limited assessment of algo-
rithmic fairness and bias in most studies, and (4) insufficient reporting of
implementation costs and healthcare system impact. Finally, the rapid
pace of technological development means that some findings may
become outdated as new AI methodologies and implementation ap-
proaches emerge.

9. Translational gap: from research to clinical practice

A critical challenge in Al anemia care is the substantial gap between
promising research findings and successful clinical implementation.
Analysis of current literature reveals several key barriers:

I. Research-to-Practice Timeline: Average time from initial AI
model development to clinical deployment ranges from 3-7 years, with
only 15 % of published Al anemia detection systems progressing beyond
pilot testing.

II. Scalability Challenges: Most successful research studies involve
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100-1000 participants, whilst health system implementation requires
validation across 10,000+ diverse patients. Performance typically de-
grades 10-20 % during scaling.

III. Integration Complexity: Healthcare systems report imple-
mentation costs of $50,000-200,000 per Al tool, with 60 % of costs
related to workflow integration rather than technology acquisition.

IV. Regulatory Pathway: Current regulatory frameworks are
designed for traditional medical devices, creating approval delays of
18-36 months for Al systems that may become outdated during review.

V. Key recommendations for bridging this gap include: (1)
establishment of standardised Al validation protocols for anemia care,
(2) development of regulatory sandboxes for real-world Al testing, (3)
creation of implementation toolkits for healthcare systems, and (4)
funding mechanisms that support translation from research to practice.

10. Conclusion

Artificial intelligence shows significant potential for transforming
anemia care through innovative screening, diagnostic, and management
approaches that address critical barriers in traditional healthcare de-
livery. The evidence synthesised in this review demonstrates that Al
technologies have achieved notable progress in developing non-invasive
screening tools, accurate diagnostic algorithms, and personalised man-
agement systems that can potentially improve accessibility, afford-
ability, and effectiveness of anemia care globally, though significant
implementation challenges remain.

Image-based screening applications using smartphone cameras and
deep learning algorithms have shown promise for democratising anemia
detection in resource-limited settings, achieving variable diagnostic
accuracy (AUC 0.75-0.97) that may be comparable to traditional labo-
ratory methods in controlled research settings, though real-world per-
formance validation remains limited. Machine learning applications in
anemia diagnosis have demonstrated potential superior performance in
differentiating anemia subtypes and predicting treatment outcomes in
research settings, enabling more precise and personalised therapeutic
approaches that may optimise patient outcomes whilst reducing
healthcare costs pending clinical validation.

The integration of Al with clinical decision support systems, wear-
able technologies, and IoT devices represents a potential future direction
for comprehensive anemia management, enabling continuous moni-
toring, proactive intervention, and dynamic treatment adjustment based
on real-time physiological data. These advances could potentially
transform anemia care from episodic, reactive treatment to continuous,
preventive management that addresses both immediate clinical needs
and long-term health outcomes subject to successful clinical imple-
mentation and cost-effectiveness validation.

However, substantial challenges must be addressed to realise the
potential of Al in anemia care. Data quality issues, algorithmic bias
affecting performance in diverse populations with specific performance
gaps in darker-skinned individuals and LMIC populations, regulatory
barriers requiring 18-36 month approval processes, deployment equity
challenges in resource-limited settings where infrastructure and con-
nectivity limitations impede implementation, and clinical trust concerns
with providers requiring explanatory features require urgent attention
through collaborative efforts involving researchers, clinicians, technol-
ogy developers, regulatory agencies, and affected communities. The
translational gap between research findings and clinical practice re-
mains significant, with only 15 % of Al systems progressing beyond pilot
testing and implementation costs ranging from $50,000-200,000 per
tool. Addressing these challenges requires coordinated action following
WHO 2023 AI ethics guidance and FDA/EMA regulatory frameworks,
with particular attention to inclusive dataset curation, fairness-aware
algorithms, tiered deployment approaches for varying resource set-
tings, and meaningful community engagement in Al development and
deployment decisions.

The development of explainable AI models enabling clinician
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verification and oversight, global data sharing initiatives through
federated learning whilst preserving data sovereignty, multimodal
integration addressing anemia-specific clinical needs, priority popula-
tion validation in pregnant women and children under 5 years, and
national health system integration through existing digital health plat-
forms will be essential for ensuring equitable implementation and sus-
tained clinical adoption.

Future research should prioritise the development of culturally
appropriate, locally validated Al tools that address the specific needs
and constraints of different healthcare settings. Our proposed action
plan includes: (1) Phase 1-2 development of XAI frameworks and
multimodal architectures with specific technical milestones and clinical
validation targets, (2) LLM integration for multilingual clinical decision
support accessible via basic communication channels, (3) establishment
of global federated learning consortia with equitable governance and
sustainability mechanisms, (4) systematic validation in priority pop-
ulations (pregnant women, children under 5, CKD patients) with
rigorous performance and equity metrics, and (5) integration with na-
tional health systems through maternal-child health programmes,
school screening initiatives, and EHR interoperability. These concrete
next steps, with defined timelines and measurable outcomes, provide a
roadmap for translating AI research into clinical impact whilst
addressing equity, interpretability, and deployment feasibility
challenges.

As digital health initiatives expand globally and Al technologies
continue to advance, the integration of Al in anemia care offers a po-
tential pathway toward achieving universal screening coverage and
equitable health outcomes, though success will depend on overcoming
current implementation barriers and ensuring rigorous clinical valida-
tion in the populations and settings where anemia burden is highest. The
evidence presented in this review supports continued investment in Al
research and development, with particular emphasis on addressing
implementation challenges, regulatory pathways, deployment equity in
LMICs, and ensuring that these technologies serve the populations most
in need of improved anemia care.
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