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ARTICLE INFO ABSTRACT
Keywords: Introduction: Kangaroo Mother Care (KMC) reduces neonatal mortality and improves thermoregulation and
Kangaroo Mother Care breastfeeding, yet uptake remains inconsistent in Sierra Leone. Predictive and explainable tools could target

Machine Learning

Explainable Artificial Intelligence
Maternal Health

Sierra Leone

implementation where the need is most significant and resources are scarce. This study aimed to predict KMC
adoption and identify actionable predictors using explainable machine learning.

Methods: We analysed a nationally representative dataset from Sierra Leone comprising 7737 births. The study
setting was Sierra Leone’s healthcare system, with participants including mothers who delivered in health fa-
cilities. Following data preprocessing (imputation, MinMax normalisation, categorical encoding, and SMOTE for
class imbalance), forward-backward selection reduced 22 candidate variables to 10 key predictors. Five classi-
fiers were trained using a 70:30 stratified split: K-Nearest Neighbors (KNN), logistic regression (LR), Support
Vector Machine (SVM), Random Forest (RF), and XGBoost. The outcome was KMC adoption (binary: received/
not received). Performance was evaluated using accuracy, precision, recall, F1-score, and ROC-AUC. Interpret-
ability was achieved through SHAP and LIME for global and local explanations.

Results: XGBoost performed best (accuracy 0.72, precision 0.75, recall 0.81, F1 0.78, ROC AUC 0.7685), followed
by Random Forest. Predictors associated with KMC included delivery by caesarean section, type of birth,
maternal employment, number of antenatal visits, place of delivery, health insurance coverage, and region, while
sampling design variables captured contextual heterogeneity. SHAP and LIME consistently highlighted delivery
characteristics and socio-economic factors as primary drivers.

Conclusion: Explainable ensemble models can flag infants likely to receive or miss KMC and indicate modifiable
levers for improvement. High recall supports use as a screening aid to prioritise counselling, facility prepared-
ness, and postnatal support. Prospective validation, threshold calibration, and integration within routine health
information systems are warranted to translate these insights into sustained increases in KMC coverage in Sierra
Leone and similar settings.

Abbreviations: Al, Artificial Intelligence; AUC, Area Under the Curve; AUROC, Area Under the Receiver Operating Characteristic Curve; EEG, Electroencepha-
logram; GNN, Graph Neural Network; KMC, Kangaroo Mother Care; KNN, K-Nearest Neighbors; LIME, Local Interpretable Model-agnostic Explanations; LR, Logistic
Regression; ML, Machine Learning; NICU, Neonatal Intensive Care Unit; RBF, Radial Basis Function; RF, Random Forest; ROC, Receiver Operating Characteristic;
SHAP, SHapley Additive exPlanations; SMOTE, Synthetic Minority Oversampling Technique; SVM, Support Vector Machine; TSB, Total Serum Bilirubin; WHO, World
Health Organization; XAI, Explainable Artificial Intelligence.
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1. Introduction

Kangaroo Mother Care (KMC) is one of the simplest and most
effective ways to save the lives of babies born small or early. It involves
placing a newborn directly on the mother’s bare chest, supporting
breastfeeding, and encouraging early discharge when safe. Decades of
research show that this low-cost method helps babies stay warm, gain
weight, avoid infections, and bond with their mothers [1,2]. In 2023, the
World Health Organization reaffirmed KMC as the standard of care for
these vulnerable infants and recommended starting it immediately after
birth [3]. Despite these substantial benefits, many babies who could
receive KMC still do not, especially in countries with limited healthcare
resources [4,5]. This gap is especially concerning in Sub-Saharan Africa
[6], where newborn deaths remain among the highest in the world [7,8].
Sierra Leone, with its unique healthcare landscape shaped by recent
health system strengthening efforts following the Ebola epidemic, pre-
sents a critical case study for examining KMC implementation patterns
[9].

In recent years, researchers and healthcare workers have increas-
ingly explored how artificial intelligence (AI) and machine learning
(ML), computer systems that learn patterns from data, can support
maternal and newborn health [10-14]. These tools can help identify
mothers and infants at risk and enable health systems to act earlier. For
example, advanced computer models have been used to detect neonatal
jaundice from images [29], identify seizures using brainwave recordings
[30], and recognize newborns to prevent accidental swapping in hos-
pitals [31,32]. ML can also predict important events during pregnancy,
such as emergency caesarean sections [33], restricted fetal growth [34],
non-reassuring fetal heart patterns [35], the likelihood of episiotomy
[36], and whether early skin-to-skin contact will happen after birth
[37]. These examples show how AI can support health workers, espe-
cially in places where resources and staff are limited.

Al tools are most helpful when their decisions are easy to understand.
Explainable Artificial Intelligence (XAI) helps achieve this by showing
how and why a model makes specific predictions [15]. Two widely used
XAI methods are SHAP and LIME, which highlight the factors influ-
encing each prediction in transparent and interpretable ways [16-20].
This transparency is essential in healthcare, where trust, clarity, and
accountability matter. Combining accurate predictions with explainable
results can help health workers see not just who is at risk, but also which
factors contribute most to those risks.

However, little is known about how these techniques can help
improve KMC adoption in real health systems. Many factors: clinical,
economic, social, and regional, may influence whether a newborn re-
ceives KMC [21-23]. Understanding these factors through a data-driven
and explainable approach can support better planning, guide counsel-
ling for mothers, strengthen health facilities, and reduce preventable
newborn deaths.

In this study, we aimed to use ML to predict which newborns in Sierra
Leone receive Kangaroo Mother Care and to identify the most important
factors influencing this decision. We analysed a nationally representa-
tive dataset of 7737 births using multiple machine learning models. We
applied explainable AI methods (SHAP and LIME) to ensure that the
findings are clear, transparent, and valid for healthcare workers and
policymakers. Our goal is to provide evidence that can support practical
actions to increase KMC adoption and improve newborn survival in
resource-limited settings.

2. Methods
2.1. Data acquisition and description

This study employed a comprehensive preprocessing pipeline to
ensure the dataset was suitable for training machine learning models to

predict KMC adoption in children born in Sierra Leone. A series of
preprocessing steps was applied to handle missing values, normalise
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numerical features, encode categorical variables, and address class
imbalance. These steps were critical to preparing a robust dataset that
would support accurate, reliable model predictions. The dataset used in
this study is a nationally representative sample of births in Sierra Leone,
comprising 7737 births. Data were collected from mothers who deliv-
ered in health facilities across the country, capturing a wide range of
clinical, socio-economic, and demographic variables. This large sample
size provides sufficient statistical power for machine learning model
development and evaluation, enabling robust predictions of KMC
adoption.

2.2. Data preprocessing

I Handling Missing Values: Missing values in the dataset were
imputed using the mean for each numerical column. This approach
was chosen because it preserves the data’s central tendency and
minimises bias, particularly when missingness is assumed to be
random. For each feature with missing values, the mean was calcu-
lated using available data points within the same column, and
missing entries were replaced with this value. This method ensured
the dataset remained complete without discarding valuable records
or imposing complex assumptions about missing-data patterns.
Normalisation: To ensure that numerical features with varying
scales did not unduly influence model performance, MinMax nor-
malisation was applied. This technique rescales feature values to a
fixed range of [0, 1] using the formula:

I

=1

X — Xmin

Xnorm = ————min_
Norm Xmax - Xmin

where X is the original feature value, X_min is the minimum value in the
feature column, and X_max is the maximum value. MinMax normal-
isation was selected because it preserves the relative relationships be-
tween data points whilst ensuring compatibility with algorithms
sensitive to feature scales, such as Support Vector Machines (SVMs) and
K-Nearest Neighbours (KNNs).

In the MinMax normalisation formula, (X) represents the original
feature value for a given data point, (X_{min}) is the minimum value
observed in that feature column across the dataset, and (X_{max}) is the
maximum value in the same column. This transformation rescales the
feature values to the fixed range [0, 1], preserving the relative re-
lationships between data points while ensuring compatibility with ma-
chine learning algorithms sensitive to feature scales, such as Support
Vector Machines (SVMs) and K-Nearest Neighbors (KNNs).

III. Encoding Categorical Variables: Categorical variables in the
dataset were encoded as numerical values to make them
compatible with machine learning algorithms. The .replace
function was used to map categorical values to numerical
equivalents based on predefined mappings. For instance, ordinal
categories (e.g., Poorer, Poor, Middle, Richer and Richest) were
assigned sequential integers (1, 2, 3, 4 and 5), whilst nominal
categories (such as Region, Frequency of listening to radio, Type
of place of residence and others) were encoded using distinct
integers. This approach was chosen over one-hot encoding to
reduce dimensionality and over label encoding to allow the
researcher to assign distinct integers to corresponding variables,
as the dataset contained a moderate number of categorical vari-
ables, and the selected models (e.g., XGBoost, Random Forest) are
robust to non-binary numerical encodings.

IV. Addressing Class Imbalance: The dataset was imbalanced, with
a disproportionate number of instances in the non-KMC class
(2950) compared to the KMC class (4787). To mitigate this, the
Synthetic Minority Oversampling Technique (SMOTE) was
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applied. SMOTE generates synthetic samples for the minority
class by interpolating between existing minority class instances,
thereby balancing the class distribution without introducing
excessive noise. This technique was selected because it improves
model performance on imbalanced datasets by reducing bias to-
ward the majority class, which is particularly important for
health-related predictions where correctly identifying the mi-
nority class is critical.

These preprocessing steps collectively ensured that the dataset was
clean, normalised, and balanced, providing a solid foundation for
training and evaluating machine learning models.

2.3. Feature selection

To enhance model performance and reduce computational
complexity, feature selection was performed to identify the most rele-
vant predictors of KMC adoption. The dataset initially contained 22
features, encompassing demographic, clinical, and socio-economic
variables. Forward-backward feature selection, a hybrid wrapper
method, was employed to select an optimal subset of 10 features.
Forward-backward feature selection combines forward selection (itera-
tively adding features that improve model performance) and backward
elimination (removing features that contribute least to performance).
This method was chosen because it balances feature-combination
exploration with computational efficiency, making it suitable for data-
sets with a moderate number of features. The selection process used a
performance metric (e.g., accuracy or F1 score) on a validation set to
evaluate feature subsets, iteratively adding or removing features until
the optimal subset was identified.

The final 10 features selected through this process include delivery
by caesarean section, type of birth, maternal employment status
(respondent currently working), number of antenatal visits during
pregnancy, place of delivery, health insurance coverage, region,
women’s individual sample weight, primary sampling unit, and sample
strata for sample errors. These features were chosen based on their
significant contribution to model performance, as evaluated by metrics
such as accuracy or F1 score on a validation set. By reducing the feature
set from 22 to 10, this approach minimised overfitting, improved model
interpretability, and reduced training time, whilst retaining the most
informative predictors.

2.4. Prediction of KMC using machine learning models

To predict KMC adoption, five ML models were employed: Random
Forest (RF), XGBoost, SVM, Logistic Regression (LR), and KNN. These
models were chosen for their complementary strengths in handling
diverse data characteristics, robustness across different feature types,
and suitability for binary classification tasks in healthcare settings.

I Random Forest: Random Forest is an ensemble learning method
selected for its ability to handle complex, non-linear relationships
in data and its robustness to overfitting. By constructing multiple
decision trees and aggregating their predictions, Random Forest
provides stable, accurate predictions, making it well-suited to
datasets with mixed feature types, such as those in this study.

II XGBoost: XGBoost is a gradient boosting algorithm and was
chosen as the primary model due to its superior performance on
structured data tasks and its effective handling of imbalanced
datasets after SMOTE preprocessing. XGBoost optimises a loss
function through iterative boosting, incorporating regularisation
to prevent overfitting, which is particularly valuable for small-to-
medium-sized healthcare datasets like the one used in this study.
Support Vector Machine (SVM): SVM was included to explore
its capability to find an optimal hyperplane for separating classes
in high-dimensional spaces. With a radial basis function (RBF)

II

=1
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kernel, SVM can capture non-linear patterns, making it a strong
candidate for this task. Its sensitivity to feature scaling was
addressed through MinMax normalisation, ensuring optimal
performance.

IV Logistic Regression (LR): Logistic Regression was also selected
as a baseline model due to its simplicity, interpretability, and
effectiveness in binary classification tasks. Despite its linearity
assumption, LR provides a robust benchmark for comparing the
performance of more complex models and is widely used in
medical research for its straightforward interpretation of
coefficients.

V K-Nearest Neighbors (KNN): KNN was chosen for its non-
parametric nature, which allows it to capture local patterns in
the data without assuming a specific functional form. Its perfor-
mance depends on proper feature scaling, which was ensured
through MinMax normalisation. KNN was included to assess
whether local neighborhood-based predictions could comple-
ment the global patterns captured by other models.

These models were selected to provide a comprehensive evaluation
of KMC prediction, balancing interpretability, robustness, and predic-
tive power. Their diverse approaches to classification ensured the study
captured a wide range of patterns in the data, increasing confidence in
the results’ reliability.

2.5. Hyperparameter optimisation

To enhance the performance of the selected ML models, a systematic
hyperparameter optimisation process was conducted using grid search,
a widely accepted method for tuning ML models. Grid search exhaus-
tively evaluates a predefined set of hyperparameter combinations to
identify the configuration that maximises model performance, ensuring
a robust and reproducible optimisation process. The implementation
used the GridSearchCV function from the scikit-learn library in Python.

The hyperparameter grid for XGBoost included n_estimators (num-
ber of trees) with values of 100 and 200, max_depth (maximum depth of
each tree) with values of 3 and 5, learning_rate (step size shrinkage) with
values of 0.01 and 0.1, and subsample (fraction of samples used per tree)
with values of 0.8 and 1.0. This grid was selected to balance computa-
tional efficiency with the need to explore a range of configurations that
could influence model complexity and generalisation. The optimisation
process used a 3-fold cross-validation strategy with the weighted F1
score as the evaluation metric, prioritising balanced performance given
the dataset’s initial class imbalance, which SMOTE addressed. The grid
search identified the following optimal hyperparameters for the
XGBoost model: learning rate=0.1, max_depth=5, n_estimators=200,
and subsample=1.0. These parameters suggest a model with a moderate
learning rate to ensure stable convergence, a maximum depth of 5 to
control tree complexity and prevent overfitting, 200 estimators to cap-
ture sufficient patterns in the data, and full subsampling to utilise all
available data per tree. The optimised model was subsequently used for
training and evaluation, ensuring that the XGBoost predictions were
based on a configuration tailored to the dataset’s characteristics.

2.6. Explainability methodology

To enhance the interpretability of the XGBoost model, which was
identified as the primary model due to its superior predictive perfor-
mance, two state-of-the-art explainability techniques were employed:
SHapley Additive exPlanations (SHAP) and Local Interpretable Model-
agnostic Explanations (LIME). These methods were used to provide
both global and instance-level insights into the model’s predictions,
ensuring transparency and generalisability, which are critical for
healthcare applications where trust and understanding are paramount.

I. SHAP: SHAP, based on cooperative game theory, was used to
quantify each feature’s contribution to the model’s predictions [17]. The
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SHAP summary plot provides a global view of feature importance,
showing the average impact of each feature on the model’s output across
all instances in the dataset. This plot ranked the 10 selected features by
their mean absolute SHAP values, highlighting which factors (e.g.,
maternal education, infant health status) most strongly influenced KMC
adoption predictions. The summary plot also visualised the direction-
ality of feature effects, showing whether higher or lower feature values
were associated with increased likelihood of KMC adoption.

For instance-level interpretation, SHAP waterfall plots were gener-
ated for multiple randomly selected instances from the test set. These
plots decomposed individual predictions into contributions from each
feature, showing how the model arrived at a specific output for a given
child. By examining several waterfall plots, patterns in feature contri-
butions were identified, enabling an assessment of the model’s consis-
tency and generalisability across diverse cases. This approach ensured
transparency by providing clear, visual explanations of how specific
features drove predictions for individual instances, which is particularly
valuable for healthcare practitioners seeking to understand model de-
cisions in Sierra Leone’s healthcare system.

II. LIME: To complement SHAP’s explanations, LIME was employed
to provide local, model-agnostic interpretations [16]. LIME approxi-
mates the complex XGBoost model with a simpler, interpretable model
(e.g., linear regression) near a specific instance, highlighting the features
most influential for that prediction. LIME’s output was visualised as bar
plots, showing the relative importance of features for selected instances.
These plots enriched the SHAP analysis by offering an alternative
perspective on feature contributions, reinforcing the robustness of the
interpretability framework. By comparing LIME’s local explanations
with SHAP’s global and instance-level insights, the study ensured a
comprehensive understanding of the model’s behavior, addressing po-
tential limitations of any single explainability method [20].

The combination of SHAP and LIME was chosen because it balances
global interpretability (via SHAP summary plots) with local, instance-
specific insights (via SHAP waterfall plots and LIME bar plots). This
dual approach enhances transparency, facilitates validation of the
model’s decision-making process, and builds trust among stakeholders,
such as healthcare providers and policymakers, by making the XGBoost
model’s predictions more interpretable and actionable in the context of
KMC adoption.

2.7. Evaluation method and metrics

To assess the performance of the machine learning models, a hold-
out evaluation method was used, with the dataset split into 70 % for
training and 30 % for testing. This approach was chosen over k-fold
cross-validation due to the relatively small dataset size and the need to
maintain a sufficiently large test set to evaluate model generalisation in
a real-world setting. Stratified sampling was applied during the split to
keep the same class distribution in both sets, addressing the class
imbalance handled by SMOTE during training. The 70-30 split ensured
that the training set was large enough to capture the underlying patterns
in the data, whilst the test set was sufficiently robust to provide reliable
performance estimates. All performance metrics, including accuracy,
precision, recall, F1 score, and ROC-AUC, were computed on the hold-
out test set to ensure that the reported results reflect the models’ abil-
ity to generalize to unseen data.

Model performance was evaluated using four metrics: accuracy,
precision, recall, and F1 score. These metrics were selected to provide a
comprehensive assessment of model performance, particularly in the
context of imbalanced healthcare data:

e Accuracy: Measures the proportion of correct predictions and pro-
vides an overall assessment of model performance.

e Precision: Quantifies the proportion of positive (KMC) predictions
that were correct, which is critical for minimising false positives in
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healthcare settings where incorrect KMC predictions could lead to
misallocated resources.

Recall: Measures the proportion of actual KMC cases correctly
identified, ensuring that the model captures as many true KMC cases
as possible, which is vital for maximising health outcomes.

F1 Score: The harmonic mean of precision and recall, providing a
balanced measure of model performance when class imbalance is a
concern.

These metrics collectively ensured a thorough evaluation of the
models’ ability to accurately and reliably predict KMC adoption, align-
ing with the needs of healthcare practitioners and policymakers in Sierra
Leone.

3. Results

This study presents the results of applying machine learning tech-
niques to predict KMC adoption among children born in Sierra Leone,
leveraging a dataset enriched through meticulous preprocessing and
feature selection. The results highlight the performance of multiple
models, the key features driving predictions, and the implications for
identifying children likely to receive KMC.

3.1. Identified features from forward-backward feature selection

The forward-backward feature selection technique identified 10 out
of the initial 22 features as the most influential predictors of KMC
adoption. These features, selected based on their contribution to model
performance, include: Delivery by Caesarean section, Type of birth,
Respondent currently working, Number of antenatal visits during
pregnancy, Place of delivery, Covered by health insurance, Region,
Women’s individual sample weight (6 decimals), Primary sampling unit,
and Sample strata for sample errors. This subset reflects a combination
of clinical, socio-economic, and demographic factors that collectively
shape KMC uptake.

The inclusion of Delivery by Caesarean section and Type of birth
underscores the role of obstetric practices in influencing KMC adoption,
potentially due to variations in postpartum care protocols. Socio-
economic indicators such as Respondent currently working and
covered by health insurance highlight the financial and logistical bar-
riers or enablers to KMC, suggesting that maternal employment status
and insurance coverage may facilitate access to healthcare resources
supportive of KMC. The Number of antenatal visits during pregnancy
and the Place of delivery emphasise the importance of prenatal care and
institutional delivery settings, which are critical for KMC implementa-
tion. Region, along with sampling-related variables (Women’s individ-
ual sample weight, Primary sampling unit, and Sample strata for sample
errors), accounts for geographical and statistical heterogeneity, ensuring
the model captures regional disparities and sampling biases inherent in
the dataset. These findings align with prior research on maternal and
child health, reinforcing the multidimensional nature of KMC adoption
and providing a robust feature set for subsequent modelling (Smith
et al., 2017).

3.2. Performance of machine learning models

The predictive performance of the five machine learning models:
KNN, LR, SVM with RBF kernel, RF, and XGBoost, was evaluated using a
70-30 hold-out split, with metrics including accuracy, precision, recall,
F1-score, and ROC-AUC. The results are summarised in Table 1.

KNN achieved an accuracy of 0.61, a precision of 0.70, a recall of
0.60, an F1-score of 0.65, and an ROC-AUC of 0.66, indicating moderate
performance and suggesting limitations in capturing the dataset’s
complex patterns. This outcome likely stems from KNN’s reliance on
local data structures, which may not generalise effectively given the
heterogeneity introduced by regional and socio-economic factors,
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setting a baseline for comparison with more advanced models.

Transitioning to LR, the model achieved 0.68 in accuracy, 0.68 in
precision, 0.88 in recall, 0.77 in Fl-score, and 0.6285 in ROC-AUC,
demonstrating a strong recall and sensitivity in identifying KMC cases.
However, this high recall comes with a trade-off: lower precision and
ROC-AUC suggest an increase in false positives, a limitation attributable
to the model’s linear assumptions that may not fully capture the non-
linear dynamics in the data. This performance bridges to the SVM
with RBF kernel, which yielded an accuracy of 0.67, precision of 0.71,
recall of 0.76, Fl-score of 0.73, and ROC-AUC of 0.6949, reflecting a
balanced capability to model non-linear relationships. Despite this
improvement over LR, SVM’s overall efficacy remains below that of
ensemble methods, indicating that whilst it addresses some complexity,
it lacks the comprehensive robustness needed for optimal prediction.

The superior performance of ensemble techniques becomes evident
with Random Forest, which achieved an accuracy of 0.72, precision of
0.75, recall of 0.80, Fl-score of 0.78, and ROC-AUC of 0.7689, under-
scoring the strength of its approach in capturing feature interactions and
mitigating overfitting. This robust performance naturally led to
XGBoost, which achieved an accuracy of 0.72, precision of 0.75, recall of
0.81, Fl-score of 0.78, and ROC-AUC of 0.7685, with its optimised
hyperparameters derived from grid search contributing to its stability
and recall performance. The ensemble models, Random Forest and
XGBoost, thus outperformed KNN, LR, and SVM, achieving the highest
accuracy (0.72) and Fl-scores (0.78), alongside competitive ROC-AUC
values (0.7689 and 0.7685, respectively), reflecting their adeptness at
handling the imbalanced dataset post-SMOTE.

The high recall values across the models, particularly for LR (0.88)
and XGBoost (0.81), are particularly significant, indicating a strong
capability to identify true KMC cases, a critical factor in healthcare
settings where missing eligible children could lead to adverse outcomes.
This strength in recall links the models’ practical utility, with XGBoost’s
slight edge over Random Forest, despite their similar metrics, likely due
to its optimised hyperparameters and regularisation, which enhance its
adaptability to the dataset’s characteristics. Collectively, these results
position ensemble methods, especially XGBoost, as highly suitable for
predicting KMC adoption, laying a reliable foundation for deeper
interpretability through SHAP and LIME, which can further elucidate
the feature contributions and support clinical decision-making in this
context.

3.3. Implications for prediction of KMC adoption

The results have significant implications for predicting which chil-
dren are placed on their mother’s chest and bare skin after birth, a
cornerstone of KMC that promotes early bonding and reduces neonatal
mortality. The high recall of XGBoost (0.81) and Random Forest (0.80)
indicates that these models can effectively identify a large proportion of
children eligible for KMC, enabling targeted interventions in Sierra Le-
one’s resource-constrained healthcare system. The identified features,
such as the Number of antenatal visits and the Place of delivery, suggest
that enhancing prenatal care and institutional delivery infrastructure
could increase KMC uptake, particularly in regions with lower baseline
rates. The socio-economic factors (e.g., health insurance coverage, cur-
rent employment) highlight the need for policy interventions to address

Table 1

Performance Evaluation of ML models for Prediction of KMC.
Model Accuracy  Precision  Recall F1- ROC-

Score AUC
K-Nearest 0.61 0.70 0.60 0.65 0.66
Neighbors

Logistic Regression 0.68 0.68 0.88 0.77 0.6285
SVM (RBF Kernel) 0.67 0.71 0.76 0.73 0.6949
Random Forest 0.72 0.75 0.80 0.78 0.7689
XGBoost 0.72 0.75 0.81 0.78 0.7685
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financial barriers, ensuring that KMC remains accessible regardless of
maternal employment or insurance status.

The regional variability captured by region and sampling variables
underscores the importance of localised strategies, allowing healthcare
providers to prioritise high-need areas. The strong performance of
XGBoost, combined with SHAP and LIME interpretations, offers a
transparent framework for clinicians to understand which features (e.g.,
Caesarean delivery, antenatal visits) drive predictions, facilitating
informed decision-making at the point of care. However, the moderate
precision (0.75 for XGBoost) suggests a risk of false positives, with some
children incorrectly flagged for KMC. This trade-off is acceptable in this
context, given the low-risk nature of KMC and the priority of maximising
recall to ensure no eligible child is missed. Future research could explore
threshold tuning or cost-sensitive learning to further balance precision
and recall. Overall, these findings provide an actionable tool for
healthcare policymakers and practitioners to enhance KMC adoption,
potentially reducing neonatal morbidity and mortality in Sierra Leone.

3.4. LIME interpretation for prediction of KMC

LIME (Local Interpretable Model-agnostic Explanations) was
employed to generate instance-level explanations of the model’s pre-
dictions. Six representative cases were plotted, including both high-
confidence and ambiguous outputs. Each LIME plot showed how spe-
cific features contributed positively or negatively toward the predicted
class. Features such as "Covered by health insurance" and "Delivery by
caesarean section" frequently contributed negatively to predictions for
Class 0, thereby favouring Class 1. In contrast, "Region", "Sample strata
for sample errors", and, occasionally, "Primary sampling unit" contrib-
uted positively to Class 0. The direction and strength of these contri-
butions varied across instances, emphasising the model’s decision-
making’s contextual nature.

For high-confidence predictions (e.g., 93 % for Class 0 in Fig. 1A), a
small number of dominant features pushed heavily in one direction. For
borderline cases (e.g., 56 % for Class 0 in Fig. 1B), the plots revealed an
approximate balance between supporting and opposing features, indi-
cating indecision or data ambiguity. This pattern demonstrates how
LIME can reveal not just what the model relies on, but also where it may
be unsure.

The interpretability of the XGBoost model’s predictions for Kangaroo
Mother Care (KMC) adoption is further elucidated through SHAP
waterfall plots in Fig. 2, which collectively showcase multiple instances
from the test set. These plots provide a detailed, instance-level decom-
position of feature contributions, offering a transparent view of how
individual predictions are derived and enhancing the generalisability
and trustworthiness of the model for neonatal care decision-making in
Sierra Leone.

SHAP (SHapley Additive exPlanations) was applied to augment LIME
by providing both global feature importance and local instance-specific
breakdowns. The SHAP summary plot revealed significant global pre-
dictors, notably "Place of delivery", "Sample strata for sample errors",
and "Women’s individual sample weight". These features showed high
average SHAP values, reflecting a strong overall influence across the
dataset.

SHAP waterfall plots for selected instances reinforced the interpret-
ability provided by LIME. In confident predictions, SHAP values showed
aligned contributions that firmly pushed the output toward Class 1,
whereas in uncertain or misclassified instances, opposing forces from
different features were nearly equal. For example, in one misclassified
instance (true Class 0, predicted Class 1), SHAP clearly showed that a
cluster of positive contributions overwhelmed weaker negative contri-
butions, explaining the model’s misstep.

Unlike LIME, SHAP’s additive explanation framework quantitatively
decomposes the model’s output from a baseline prediction. This offers a
more precise, probabilistic view of how each feature shifts the output,
which is especially useful for understanding borderline predictions or
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Fig. 1. LIME explanations for six individual predictions, showing key feature contributions to class 0 and class 1 decisions.
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Fig. 1. (continued).

edge cases.

The global interpretability of the XGBoost model’s predictions for
Kangaroo Mother Care (KMC) adoption is comprehensively illustrated in
the SHAP summary plot shown in Fig. 3. This plot provides an overview
of feature importance across the dataset, ranking the 10 selected fea-
tures by their mean absolute SHAP values and indicating their direction
of impact, offering valuable insights into the key drivers of KMC adop-
tion in the Sierra Leone context.

The comparative analysis of feature contributions to the XGBoost
model’s predictions for KMC adoption is presented in Table 2, which
synthesises the insights from LIME and SHAP. Table 2 evaluates the
presence and impact of the 10 selected features, spanning clinical, socio-
economic, and sampling-related variables across both methods, and
assesses the degree of interpretability agreement to provide a robust
framework for understanding the drivers of KMC adoption in Sierra
Leone.

Whilst both LIME and SHAP aim to enhance model transparency,
they do so using fundamentally different approaches. LIME creates local
surrogate models based on perturbed samples, whereas SHAP relies on
Shapley values from cooperative game theory, ensuring consistency and
additivity.

Across the selected cases, both methods identified consistent key
features, including health insurance coverage, caesarean delivery, and
region. These features were repeatedly implicated in predictions for
Class 1 or Class 0, regardless of the explanation method. However, SHAP
tended to capture more granular variation in contribution magnitudes,
whilst LIME provided intuitive visual groupings of how features
contributed to specific predictions.

In terms of complementarity, LIME is particularly useful for
explaining specific decisions to non-technical stakeholders, whereas
SHAP is better suited for detailed audits or feature attribution analysis.

Their alignment on the most impactful features enhances confidence in
the interpretability outputs, whilst their differences underscore the
importance of using multiple explanation tools for robust model
evaluation.

4. Discussion

This study represents the first systematic application of ML tech-
niques combined with explainable Al to predict KMC adoption in Sierra
Leone, providing novel insights into the factors that influence this crit-
ical neonatal intervention. The superior performance of ensemble
methods, particularly XGBoost with 72 % accuracy and 81 % recall,
aligns with recent findings in maternal health prediction studies. Kha-
didos et al. [12] demonstrated that ensemble machine learning frame-
works achieved similar performance levels when predicting maternal
health risks during pregnancy, suggesting that ensemble approaches
offer robust solutions for complex healthcare prediction tasks.

The effectiveness of machine learning approaches in predicting
maternal and neonatal health outcomes has been consistently demon-
strated across multiple domains. Rezaei et al. [33] successfully
employed linear regression models to predict emergency cesarean sec-
tions among nulliparous women, achieving an impressive AUC of 0.86,
accuracy of 0.82, and recall of 0.85. Their study identified advanced
maternal age, diabetes, preeclampsia, and doula support as key pre-
dictors, factors that resonate with our finding that delivery character-
istics and maternal health conditions significantly influence KMC
adoption. Similarly, Taeidi et al. [34] demonstrated that Deep Learning
models could predict intrauterine growth restriction with an AUROC of
0.91, highlighting drug addiction, previous history of intrauterine
growth restriction, chronic hypertension, and preeclampsia as weighted
factors. This parallels our identification of delivery method and
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maternal health status as critical KMC predictors.

Furthermore, Safarzadeh et al. [37] used machine learning to predict
skin-to-skin contact implementation, with their Deep Learning model
achieving an AUROC of 0.81, similar to our XGBoost performance. They
identified doula support, neonatal weight, gestational age, and

SHAP waterfall Plots for Class @:

Instance 1 (Class 0):
==-3.15
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attending childbirth classes as critical predictors, reinforcing our find-
ings on the importance of prenatal care and support systems. Roozbeh
et al. [35] successfully predicted non-reassuring fetal heart patterns
using Random Forest classification, achieving an AUROC of 0.77, whilst
Banaei et al. [36] predicted episiotomy risk using linear regression,
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Fig. 2. SHAP summary plot and waterfall plots for selected instances, illustrating global feature importance and local prediction breakdowns.
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Fig. 2. (continued).

achieving an AUC of 0.85. These studies collectively demonstrate that
ML models with AUCs between 0.70 and 0.90 are effective for clinical
prediction tasks in maternal and neonatal healthcare, placing our
XGBoost model’s AUROC (0.7685) within the established range of
acceptable clinical utility.

Predictive features identified in this study, such as delivery method,
antenatal care utilisation, socio-economic status, and regional factors,
are consistent with broader literature on KMC implementation barriers
and enablers [21]. The recent OMWaNA trial in Uganda highlighted the
importance of delivery characteristics and healthcare system factors in
KMC implementation, though their focus was on clinical stabilisation

rather than adoption prediction [22]. Our findings extend this under-
standing by quantifying the relative importance of different factors
using ML approaches. Multi-country analyses have identified three
pathways to KMC scale-up: champion-led, project-initiated, and health
systems-designed, with socio-economic and delivery characteristics
featuring prominently across all pathways [6]. Socio-economic status is
particularly profound, as women’s empowerment strategies have been
identified as a key determinant of neonatal mortality [23].

The application of SHAP and LIME explainability techniques in our
study addresses a critical gap in healthcare Al applications, where model
transparency is essential for clinical acceptance. Recent systematic
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Table 2
Comparison of LIME and SHAP interpretability outputs across shared features.
Feature LIME Presence SHAP Presence Interpretation
Agreement

Covered by health Frequent (Class High impact Yes
insurance 1 driver) (Class 1)

Delivery by Frequent (Class High impact Yes
caesarean section 1 driver) (Class 1)

Region Frequent (Class High impact Yes

0 driver) (Class 0)

Primary sampling Frequent High impact Partial
unit (mixed) (mixed)

Sample strata for Frequent High impact Partial
sample errors (mixed) (mixed)

Women’s Frequent Moderate, Partial
individual (mixed) instance-
sample weight dependent

Place of delivery Occasional Top contributor Yes

Respondent Occasional Low but Yes
currently consistent
working

Number of Occasional Low, variable Yes
antenatal visits

Type of birth Consistent, Low impact Yes

small effect

reviews emphasise that SHAP and LIME frameworks have become
popular interpretive tools for healthcare applications, providing both
local and global insights that enhance model transparency and trust
[18]. Our comparative analysis, which shows agreement between LIME
and SHAP on key features (health insurance, caesarean delivery,
regional factors), strengthens confidence in the interpretability of the
outputs. However, Salih et al. [20] showed that SHAP and LIME can be
affected by adopted ML models and feature collinearity, necessitating
careful interpretation of their outputs, which supports our decision to
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use both methods complementarily.

The moderate precision (75 %) and high recall (81 %) in our XGBoost
model reflect an essential trade-off in healthcare prediction tasks.
Similar patterns have been observed in other pregnancy outcome pre-
diction studies, where achieving high sensitivity for identifying at-risk
cases often comes at the cost of increased false positives [10]. Henry
[24] found that predicting newborn birth outcomes with ML achieved
comparable performance metrics, with precision-recall trade-offs being
common in maternal health applications. In the context of KMC pre-
diction, this trade-off is clinically acceptable given the low-risk nature of
the intervention and the critical importance of identifying all eligible
infants.

The regional disparities captured in our model align with known
challenges in Sierra Leone’s healthcare system. Recent studies have
identified significant barriers to KMC implementation in sub-Saharan
Africa, including healthcare provider knowledge gaps, infrastructure
limitations, and challenges in policy implementation [21,25]. Tumu-
kunde et al. [26] found that implementation barriers and facilitators for
KMC in Uganda varied significantly by region and healthcare facility
type, supporting our finding that place of delivery and regional factors
are strong predictors. The WHO’s updated Global Position Paper and
Implementation Strategy [27] emphasises the need for health facility
administrators and programme managers to focus on system change for
KMC implementation, directly supporting our model’s emphasis on
institutional and policy factors.

Compared to traditional risk assessment approaches, our ML
framework offers several advantages. Mapari et al. [11] highlighted AI's
potential to revolutionise maternal health by enhancing care and
accessibility, particularly in resource-constrained settings where clinical
expertise may be limited. Hossain et al. [14] demonstrated that medical
cyber-physical systems using machine learning could effectively predict
maternal health risks in developing countries, achieving accuracy
comparable to that of our study. Our results corroborate these findings
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whilst extending them to the specific context of KMC adoption
prediction.

The practical implications of our findings extend beyond prediction
accuracy to inform targeted intervention strategies. Togunwa et al. [13]
emphasised that machine learning applications in maternal and fetal
health must be translated into actionable clinical insights. Our model
could be integrated into existing healthcare information systems to
provide real-time KMC adoption risk assessment. The explainable Al
component addresses the critical need for transparency in clinical de-
cision support systems, as healthcare professionals require Al applica-
tions to be transparent about their decision-making processes to gain
trust.

Recent work by Islam et al. [10] in their systematic review of ma-
chine learning for pregnancy outcome prediction found that studies
achieving 70-82 % classification accuracy were considered satisfactory
for clinical decision support, positioning our results within established
performance benchmarks. However, they also noted that most studies
lacked external validation and implementation assessment, highlighting
important directions for future research.

The ensemble methods’ superior performance in our study is
consistent with recent comparative analyses. Mashrafi et al. [28] found
that ensemble methods such as Random Forest and XGBoost consistently
outperformed traditional statistical methods when predicting maternal
risk levels using nationwide datasets. Their emphasis on the importance
of feature selection and model interpretability aligns with our method-
ological approach. Recent systematic reviews have also highlighted that
ensemble methods achieve superior performance in healthcare predic-
tion tasks compared to individual algorithms [10].

However, our study’s focus on Sierra Leone limits direct general-
isability to other contexts, though the methodological framework could
be adapted for different settings. Recent narrative reviews emphasise
that ML models in maternal and fetal health often require adaptation to
local healthcare contexts and populations [10,13]. Future research
should explore the transferability of our approach to other Sub-Saharan
African countries with similar healthcare challenges, whilst accounting
for context-specific factors.

4.1. Strategies to enhance model accuracy

While the XGBoost model achieved a satisfactory accuracy of 72 %
and a high recall of 81 %, there is room to further improve its predictive
performance. Potential strategies include threshold calibration to opti-
mize the balance between precision and recall, addressing the moderate
precision (75 %) observed in our results. Incorporating additional fea-
tures not captured in the current dataset, such as cultural beliefs, family
support systems, and healthcare provider attitudes, could provide a
more comprehensive understanding of KMC adoption factors. Further-
more, leveraging more advanced ensemble techniques or deep learning
models, if computational resources permit, may capture complex pat-
terns in larger or more diverse datasets. Increasing the dataset size
through multi-center studies or collaborations could also improve model
generalization. Finally, cost-sensitive learning approaches could be
explored to further address the precision-recall trade-off, prioritizing the
identification of true KMC cases in resource-constrained settings.

The internal and external validity of our findings are critical con-
siderations for their practical application. Internally, the robustness of
our methodology is supported by stratified train-test splitting, SMOTE
for class imbalance, hyperparameter optimization via grid search, and
the use of multiple performance metrics (accuracy, precision, recall, F1-
score, ROC-AUC) to evaluate model performance comprehensively.
These steps ensure that the model captures underlying data patterns
reliably. Externally, the generalizability of our results is limited by the
focus on Sierra Leone’s healthcare system and facility-based deliveries,
which may not fully represent rural or home births. Future research
should prioritize external validation in diverse Sub-Saharan African
contexts to assess the transferability of our predictive framework,
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adapting it to local healthcare systems and populations as needed.
4.2. Limitations

Several limitations must be acknowledged in interpreting these
findings. First, the cross-sectional nature of the data limits our ability to
establish causal relationships between predictive features and KMC
adoption. Whilst machine learning models can identify associations and
patterns, they cannot definitively prove that interventions targeting
identified factors will improve KMC uptake without prospective vali-
dation studies.

Second, the dataset size, whilst adequate for machine learning ap-
plications, may limit the generalisability of findings to the broader Si-
erra Leonean population. The sample may not fully represent rural or
hard-to-reach populations where KMC adoption patterns could differ
significantly. Additionally, the dataset’s focus on facility-based de-
liveries may introduce selection bias, as home births and deliveries in
smaller health facilities are potentially underrepresented.

Third, the feature selection process, whilst systematic, may have
excluded relevant variables that could influence KMC adoption.
Important factors such as cultural beliefs, family support systems,
healthcare provider attitudes, and facility-specific policies were not
captured in the available dataset. These unmeasured confounders could
influence both the predictive accuracy and the interpretability of the
models.

Fourth, the temporal context of data collection may affect the rele-
vance of findings to current practice. Healthcare systems, policies, and
KMC implementation strategies evolve, and models trained on historical
data may not accurately reflect current adoption patterns.

Fifth, the explainability techniques (SHAP and LIME), whilst
providing valuable insights, have known limitations including sensi-
tivity to model choice and feature correlations. The interpretations
should be considered as approximate explanations rather than definitive
causal explanations of model behaviour.

Sixth, the SMOTE technique used to address class imbalance, whilst
improving model performance on minority classes, may introduce syn-
thetic data points that do not reflect real-world scenarios. This could
affect the model’s performance when applied to new, unseen data.

Additionally, the temporal context of data collection may affect the
relevance of findings to current practice, as healthcare systems and KMC
implementation strategies evolve. Models trained on historical data may
not fully reflect contemporary adoption patterns. Finally, while our
model identifies factors associated with KMC adoption, it does not
provide evidence that targeting these factors through specific in-
terventions will improve outcomes. Prospective implementation studies
are needed to validate the clinical utility of the predictive framework
and ensure its alignment with real-world healthcare needs.

Finally, the study’s focus on prediction rather than intervention
limits its immediate clinical utility. Whilst the model identifies factors
associated with KMC adoption, it does not provide evidence that tar-
geting these factors through specific interventions will improve out-
comes. Prospective implementation studies would be needed to validate
the clinical utility of the predictive framework.

5. Conclusion

This study demonstrates that combining machine learning with
explainable Al effectively predicts KMC adoption in Sierra Leone. We
employed five ML classifiers (KNN, LR, SVM, RF, and XGBoost) on a
nationally representative dataset of 7737 births, using forward-
backward feature selection to identify 10 key predictors from 22
candidate variables. XGBoost achieved the strongest performance with
72 % accuracy, 75 % precision, 81 % recall, an F1-score of 0.78, and an
ROC-AUC of 0.7685. SHAP and LIME explainability analyses consis-
tently identified delivery characteristics (caesarean section, place of
delivery), socio-economic factors (maternal employment, health
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insurance coverage), and prenatal care utilization (antenatal visits) as
the primary drivers of KMC adoption.

The high recall (81 %) makes this model particularly suitable for
screening applications in resource-constrained healthcare settings,
ensuring that most eligible infants are identified for KMC counselling
and support. The identified modifiable factors, especially antenatal care
attendance, health insurance access, and institutional delivery, provide
actionable targets for policy interventions aimed at improving KMC
uptake rates. The explainable Al framework enhances clinical accep-
tance by making model predictions transparent and interpretable to
healthcare providers and policymakers.

We recommend prospective validation of this predictive model in
clinical settings, integration into existing health information systems for
real-time decision support, and the development of targeted in-
terventions to address the identified predictors. Future research should
explore threshold calibration to optimise the precision-recall balance,
assess the model’s transferability to other Sub-Saharan African contexts,
and evaluate the impact of model-guided interventions on actual KMC
adoption rates and neonatal health outcomes.
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