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A B S T R A C T

The increasing sophistication and frequency of cyber threats have rendered conventional protection strategies 

inadequate. Artificial Intelligence (AI) is becoming central to modern cybersecurity, strengthening capabili­ 

ties in vulnerability assessment, malware detection, phishing prevention, intrusion detection, and deception 

technologies. Simultaneously, quantum computing introduces both challenges to classical cryptography and 

opportunities for new forms of quantum-enhanced defenses. This review integrates advances in AI, quantum 

methods, and ethical governance to provide an integrated perspective on the future of secure digital systems. It 

evaluates state-of-the-art AI models, including explainable frameworks and quantum-inspired approaches, such 

as Quantum Convolutional Neural Networks and Quantum Support Vector Machines, along with recent progress 

in post-quantum cryptography. Ethical concerns, particularly bias, transparency, privacy, and accountability, 

are examined as essential foundations for trustworthy cybersecurity design in system-on-chip and embedded AI 

environments. In addition to technical developments, this study considers regulatory frameworks, governance 

structures, and societal expectations, highlighting the need for responsible and adaptive approaches. A compara­ 

tive SWOT analysis outlines the strengths, limitations, and areas for cross-domain integration. Finally, a roadmap 

of future research directions is presented, aligning AI-driven defenses, quantum resilience, and ethical safeguards 

into flexible and reliable cybersecurity architectures. By linking the technological, ethical, and policy dimensions, 

this review offers a consolidated foundation to guide the evolution of cybersecurity in a globally connected era.

1 . Introduction

As digital technologies become deeply embedded in every aspect 

of modern life, the rapid increase in the frequency and complexity of 

cyber threats presents a growing challenge to global security and eco­ 

nomic resilience. Cyber threats surged by 72 % between 2021 and 2023, 

with global cybercrime costs expected to reach an unprecedented $10.5 

trillion annually by 2025, surpassing the GDP of many nations and ne­ 

cessitating massive investments in cybersecurity [1,2]. In 2023 alone, 

over 343 million individuals were affected by over 2365 major attacks 

targeting critical sectors such as healthcare, finance, and infrastructure 

[3–5]. The average global cost of a data breach climbed to $4.45 mil­ 

lion and $4.88 million in 2023 and 2024, respectively, with the United 

States bearing the highest costs at $5.09 million. Ransomware, phishing, 

and email-based malware responsible for 35 % of breaches continued to 

impact 94 % of organizations worldwide. Meanwhile, cyber insurance 

premiums in the U.S. spiked by 50 % in 2022, reflecting the mounting fi­ 

nancial strain on businesses [6,7]. With cybercrime growing at 15 % an­ 

nually and incidents projected to exceed 2.85 billion by 2025, the need 

for AI-driven and proactive cybersecurity strategies has become critical 

[8,9]. Fig. 1 illustrates the progression of global cybercrime costs and an­ 

nual growth rates. These data highlight the increasing sophistication and 

frequency of cyber threats, emphasizing the urgent need for advanced 

cybersecurity measures. Cybersecurity, a fundamental pillar of digital 

resilience, safeguards systems, networks, and data from digital threats, 
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Fig. 1. Trends in Global Cybercrime Costs, Annual Growth, and Reported Cyber Threat Incidents (2018–2025) [1]-[3].

unauthorized access, and damage. This ensures the integrity, confi­ 

dentiality, and availability of sensitive information while combating 

increasingly sophisticated cyber threats [10]. The COVID-19 pandemic 

accelerated this demand, driving rapid digitization across remote work, 

e-commerce, and virtual collaboration, and exposing new vulnerabilities 

for malicious actors to exploit [11,12]. Beyond traditional systems, cy­ 

bersecurity now encompasses emerging trends such as Industry 5.0, Web 

3.0, blockchain networks, and the Metaverse, which open new avenues 

for innovation while introducing unique risks. Technologies such as dig­ 

ital twins, which are virtual replicas of physical systems that facilitate 

real-time simulations of cyber threats, and zero-trust architecture, which 

operates on the principle of never trust and is always verified, have 

emerged as essential tools for mitigating cybersecurity risks [13,14]. The 

rise in digital currencies has further underscored the need for tighter cy­ 

bersecurity integration to secure sensitive transactions and prevent fraud 

[15]. AI has revolutionized cybersecurity by enabling systems to detect 

and respond to threats with unmatched speed and precision. Machine 

Learning (ML) analyzes vast datasets in real-time to identify anoma­ 

lies and breaches, while Deep Learning (DL) uncovers vulnerabilities in 

complex data such as malware behaviors and network traffic [16–18]. 

Natural Language Processing (NLP) strengthens defenses by identifying 

phishing attempts and social engineering attacks on emails, social me­ 

dia, and the dark web. Emerging quantum AI (QAI) models, such as 

quantum support vector machines (QSVM), enhance threat detection, 

vulnerability assessment, and incident response, offering unparalleled 

precision in addressing challenges like polymorphic malware and zero-

day vulnerabilities [19,20]. Explainable AI (XAI) and Understandable 

AI (UAI) address a key challenge in cybersecurity by making AI-driven 

decisions interpretable, ensuring trust in automated systems, and main­ 

taining adaptability to evolving threats [21]. The integration of cloud 

computing and AI has transformed cybersecurity by offering scalable 

real-time threat monitoring and response capabilities, which are critical 

for securing dynamic environments [22]. Together, these technologies 

enable cybersecurity frameworks to address challenges such as detecting 

unknown malware, mitigating zero-day vulnerabilities, and enhanc­ 

ing real-time incident responses. These advancements collectively form 

a robust multilayered defense framework capable of addressing the 

complexities of modern cyber threats. Quantum computing (QC) holds 

promise for mitigating challenges such as cracking advanced encryption 

and identifying sophisticated threats. This study explores how AI and 

Table 1 

Research questions addressed in this study.

No. Research question

1 How is AI, including XAI and UAI, transforming threat detection,

prevention, and incident response in cybersecurity? 

 

2 What roles do cloud computing, quantum computing, and digital

twins play in enhancing cybersecurity frameworks? 

 

3 What are the key challenges, limitations, and ethical issues in

deploying AI-driven cybersecurity solutions? 

 

4 How do AI-powered frameworks create adaptive defenses against

malware, zero-day vulnerabilities, and automate incident responses?

 

QC can enhance threat detection, automate vulnerability assessments, 

and improve incident response. By utilizing these technologies, cyberse­ 

curity systems can maintain resilience, adaptability, and preparedness 

to address the continuously evolving threat landscapes. Table 1 shows 

the research questions addressed in this study.

A more detailed analysis of prior work and how this review differs 

from existing efforts is presented in Section 2.

2 . Related work and theoretical foundations

This section presents a structured synthesis of the foundational re­ 

search underpinning the convergence of AI, QC, and ethical frameworks 

in the field of cybersecurity. While many prior studies have examined 

each domain in isolation, few have addressed their integration in a way 

that reflects both technical feasibility and socio-ethical implications. Our 

review addresses this gap by contextualizing the existing literature and 

aligning it with future-oriented cybersecurity design principles.

2.1 . AI in cybersecurity

The application of AI, particularly ML and DL, has been extensively 

studied in cybersecurity contexts, such as malware detection, phishing 

prevention, and intrusion detection systems. For instance, CNNs and 

SVMs have achieved high accuracy in classifying malware and malicious 

URLs, often exceeding 90 % on benchmark datasets [23,24]. Ensemble 

models and hybrid techniques, including autoencoders and GANs, have 

been applied to detect zero-day attacks and sophisticated anomalies 

in network traffic [25,26]. However, as discussed by [27], most prior 
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studies focused primarily on detection accuracy, often at the expense 

of explainability and adaptability. Moreover, current reviews typically 

overlook emerging integrations with quantum machine learning (QML) 

and regulatory compliance. A unified framework that embeds AI solu­ 

tions within scalable, explainable, and policy-compliant cybersecurity 

architectures is required.

2.2 . Quantum computing and post quantum security

Quantum computing introduces both disruptive threats and novel de­ 

fensive capabilities in cybersecurity. Studies such as [28,29] emphasize 

that traditional encryption schemes, such as RSA and ECC, are vulnera­ 

ble to quantum algorithms such as Shor’s and Grover’s. In August 2024, 

NIST finalized the first post-quantum cryptography standards ML-KEM 

for key encapsulation (FIPS 203), ML-DSA for lattice-based digital signa­ 

tures (FIPS 204), and SLH-DSA for stateless hash-based signatures (FIPS 

205) providing concrete migration targets for quantum-resilient archi­ 

tectures [30–33]. Recent surveys consolidate algorithmic choices and 

deployment trade-offs across sectors, offering guidance on implementa­ 

tion constraints and transition planning [34]. In parallel, QML models 

like QSVMs, VQCs, and QCNNs have emerged as promising tools for 

tasks like anomaly detection and classification under uncertainty [35]. 

Despite this potential, much of the existing literature is either theoret­ 

ical or fragmented. Many surveys on PQC and QML, such as that by 

Dam et al. [29], provide taxonomies or performance benchmarks but do 

not explore how quantum resilience can be coupled with explainability, 

governance, or AI-based threat mitigation pipelines.

2.3 . Ethical AI and governance in security systems

With the growing adoption of AI in safety-critical environments, 

ethical concerns such as bias, opacity, data misuse, and a lack of ac­ 

countability have gained prominence. Frameworks for XAI and UAI have 

been proposed to make opaque models interpretable. Methods such 

as SHAP, LIME, and attention visualization have been embedded into 

IDS and malware classifiers to enhance trust and transparency [36,37]. 

However, as Mittelstadt et al. [38] argue, many AI ethics frameworks are 

principle-based and lack actionable pathways for their integration into 

technical systems. Similarly, Ienca et al. [39] cautioned that ethics in 

digital systems must be operationalized through institutional, legal, and 

human rights frameworks. Recent work by Marchang et al. [40] pre­ 

sented a secure-by-design real-time IoMT architecture for e-health. It 

emphasizes encryption, key management, and reliable communication 

between wearable devices and central servers. This shows how ethi­ 

cal and privacy considerations can be built directly into system design, 

which is especially important when technology affects health and per­ 

sonal information. Without such integrated approaches, safeguards risk 

remaining fragmented rather than forming a consistent foundation for 

cybersecurity.

2.4 . Gap and contribution of this review

To the best of our knowledge, no prior review has holistically 

integrated the following dimensions.

• Classical and quantum AI models for proactive cybersecurity,

• Explainable, understandable, and ethically governed AI techniques,

• Regulatory frameworks such as GDPR, NIST, and ISO/IEC 27001,

• Design considerations for scalability, real-time operation, and trust­

worthiness.

This review fills this gap by offering a transdisciplinary synthesis that 

bridges algorithmic capability, quantum readiness, and ethical gover­ 

nance. Our analysis provides a foundation for the next generation of 

cybersecurity systems that are not only technically resilient but also 

trustworthy and aligned with human values.

Table 2 

Search queries used in various databases for the study.

Database Search query

Web of Science (((((TS=(Quantum Computing)) OR TS=(Quantum AI))) AND

TS=(Quantum Cryptography)) OR TS=(Cybersecurity)) OR 

TS=(Post quantum Security) 

 

Scopus TITLE-ABS-KEY ((“Quantum AI” OR “Quantum Computing” OR

“Quantum Cryptography”) AND (“Cybersecurity” OR “Intrusion 

Detection” OR “Post quantum Security”) ) AND (LIMIT-TO 

(DOCTYPE, “ar” ) OR LIMIT-TO (DOCTYPE, “cp” ) ) 

 

Google Scholar (in title:“Quantum AI” OR in title:“Quantum Computing” OR

“Quantum Cryptography”) AND (in title:“Cybersecurity” OR 

“Intrusion Detection” OR in title:“Post quantum Security”)

 

3 . Research methodology

This section outlines the comprehensive framework of this review, 

which investigates the transformative role of AI and its quantum ad­ 

vancements in cybersecurity. The methodology is based on the following 

five subsections to ensure rigor, reproducibility, and alignment with the 

review objectives.

3.1 . Defining the scope of the review

The objective of this review is to examine the evolution of AI tech­ 

niques from classical approaches to quantum methodologies to address 

complex cybersecurity challenges. This emphasizes their application in 

real-time threat detection, adaptive systems, and robust defense strate­ 

gies. The increasing frequency and sophistication of cyber threats have 

exposed the limitations of conventional defenses. This review highlights 

AI’s role in addressing these gaps and progress toward quantum-powered 

solutions. Studies targeting the challenges of critical infrastructure, 

IoT systems, and high-dimensional data analysis have been priori­ 

tized. This review begins with AI methodologies and then transitions 

to quantum-integrated approaches, reflecting a paradigm shift in cyber­ 

security innovation. Quantum advancements have potential; however, 

issues such as scalability, computational costs, and limited practical 

deployment remain key areas of exploration.

3.2 . Search strategy

To systematically identify, collect, and organize relevant studies for 

an exhaustive and unbiased review, we queried the Web of Science 

(WoS), Scopus, and Google Scholar using the query shown in Table 2.

The methodology included databases and sources such as IEEE 

Xplore, Web of Science, Elsevier, Springer, the ACM Digital Library, and 

Scopus. EndNote was employed for bibliographic management, whereas 

systematic tools such as Zotero ensured traceability and organization. 

Complementary strategies, such as backward and forward citation track­ 

ing and expert recommendations, ensured the inclusion of influential 

studies.

3.3 . Inclusion and exclusion criteria

A robust framework was established for selecting studies that aligned 

with the focus of the review and minimized bias. The inclusion criteria 

were studies applying AI in cybersecurity contexts, peer-reviewed arti­ 

cles, and systematic reviews emphasizing practical implementation. The 

exclusion criteria were theoretical studies without experimental valida­ 

tion or real-world application, articles unrelated to cybersecurity, and 

a lack of methodological rigor. Two reviewers independently screened 

the abstracts and full texts and resolved conflicts through consensus. The 

study selection process is summarized in the PRISMA flow diagram in 

Fig. 2, which details the records identified, screened, excluded, and in­ 

cluded. Specific examples of key studies and their contributions include 

AI-driven frameworks for phishing detection and QML applications for 

zero-day threat analyses.
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Fig. 2. Study selection process in PRISMA.

3.4 . Content analysis and reporting

To synthesize the findings from the included studies, their rele­ 

vance to the review objectives was emphasized. Narrative synthesis 

using thematic coding with NVivo was employed to uncover the role 

of AI and quantum computing in quantum cybersecurity. Performance 

metrics, such as accuracy and computational efficiency, were aggre­ 

gated using RevMan for the meta-analysis. Studies have been catego­ 

rized into classical AI methods and quantum techniques, respectively. 

Emerging trends, limitations, and future research directions are also 

discussed. Bar charts were created to illustrate the distribution of the 

literature.

3.5 . Bibliographic analysis

To provide a macroscopic view of the literature, we offer insights 

into trends and thematic distributions. Quantum-focused cybersecurity 

research has grown significantly post-2020, with major contributions 

from publishers such as IEEE, Elsevier, Springer, and ACM, each con­ 

tributing a notable share. Fig. 3 depicts the trends in publications and 

publishers throughout the years.

3.6 . Methodological framework illustration

To enhance the transparency and reproducibility of our review pro­ 

cess, Fig. 4 illustrates the methodological workflow adopted in this 

study. This framework follows a PRISMA-aligned protocol and links each 

research question to its corresponding analysis phase.

1. RQ1 and RQ4 guided the extraction and synthesis of AI and hy­

brid quantum-AI techniques across intrusion detection, malware 

classification, and adaptive response systems.

2. RQ2 framed the analysis of architectural integrations including 

digital twins, federated learning, and quantum resilience.

3. RQ3 guided the thematic coding of ethical, regulatory, and 

governance-related insights, particularly in bias mitigation, XAI, 

and FL-enhanced privacy. 

Fig. 3. Distribution of articles.
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Fig. 4. Methodological framework adopted for this review (aligned with PRISMA 

and thematic synthesis).

The inclusion of tools such as Zotero, NVivo, and RevMan facilitated nar­ 

rative synthesis, while quantitative elements (e.g., detection accuracy 

and false positive rates) were aggregated into structured comparison 

tables. The final structure enabled the alignment of review findings with 

future research and policy roadmaps.

Fig. 5 shows an article-structured framework that first describes 

AI-driven cybersecurity techniques and then applies them to threat 

detection and prevention. Quantum AI has been further explored, con­ 

sidering its ethical dilemmas and challenges. This section discusses the 

advantages and disadvantages of this technology, concluding with future 

directions for the development of AI and quantum AI in cybersecurity.

4 . AI-driven cybersecurity techniques

AI, particularly ML, has revolutionized cybersecurity by addressing 

the increasing complexity and sophistication of cyberattacks.

4.1 . ML and its applications in cybersecurity

ML, a subset of AI, has emerged as a cornerstone of cybersecu­ 

rity, transforming the manner in which organizations address evolving 

threats [17]. Unlike traditional rule-based security systems. ML employs 

data-driven approaches to analyze massive datasets, identify patterns, 

and predict potential threats in real time, offering adaptive and scalable 

defenses against sophisticated cyberattacks.

Supervised learning, which relies on labeled datasets, has demon­ 

strated exceptional efficacy in detecting known threats. Algorithms such 

as Support Vector Machines (SVMs) and Convolutional Neural Networks 

(CNNs) have achieved malware detection accuracies exceeding 92 % by 

identifying novel malware through file characteristic analysis [18,19]. 

Naïve Bayes classifiers are widely utilized in spam filtering, categoriz­ 

ing emails with precision rates exceeding 90 % [20]. Similarly, Decision 

Trees (DT) and Artificial Neural Networks (ANNs) classify network ac­ 

tivities as benign or malicious, achieving detection accuracies ranging 

from 88 % to 95 % [21,22]. In phishing detection, supervised mod­ 

els analyze URLs, reducing false positives and increasing recall rates 

to 93 %. Intrusion Detection Systems leverage anomaly detection and 

Fig. 5. Article flow diagram.

Principal Component Analysis (PCA) to identify deviations from nor­ 

mal behavior in cybersecurity [41] (Fig. 6). Despite their success, these 

methods depend heavily on large, high-quality labeled datasets, which 

is a significant limitation in real-world applications of these methods.

Unsupervised learning addresses scenarios with limited or no la­ 

beled data, focusing on anomaly detection and user behavior analysis. 

Algorithms such as k-means, DBSCAN, and hierarchical clustering have 

proven effective, achieving an accuracy of over 90 % in identifying 

network traffic deviations. Fig. 7 shows an intrusion detection system 

that leverages anomaly detection methods and PCA to analyze pat­ 

terns, classify behaviors, and flag irregularities that are indicative of 

potential cybersecurity threats [42,43]. Dimensionality reduction tech­ 

niques, such as PCA and t-distributed Stochastic Neighbor Embedding, 

enhance anomaly detection by simplifying high-dimensional data with­ 

out losing critical information [44,45]. These methods are particularly 

valuable for detecting insider threats and zero-day vulnerabilities, where 

traditional detection mechanisms often fail. For instance, clustering al­ 

gorithms applied to user behavior analysis have identified anomalous 

patterns linked to insider threats with remarkable precision [46].

Reinforcement learning (RL), on the other hand, introduces dy­ 

namic adaptability, enabling systems to learn optimal defense strategies 

through trial-and-error interactions within simulated environments. 

RL-based models, such as Deep Q-Networks (DQNs), have optimized 

automated incident responses, achieving malware detection rates of 

96 % while reducing response times by 30 % [47,48]. Game-theoretic 

RL approaches, which combine adversarial modeling with reinforce­ 

ment strategies, have demonstrated a 25 % improvement in resource 

allocation during Distributed Denial-of-Service (DDoS) attacks, thereby 

enhancing resilience in cyber-physical systems [49,50]. Despite their po­ 

tential, RL methods face challenges, such as high computational costs 

and sensitivity to hyperparameter tuning, underscoring the need for fur­ 

ther research and refinement. Although ML has significantly advanced 

cybersecurity, its challenges persist. Adversarial attacks exploit the vul­ 

nerabilities of ML models and generate polymorphic malware to avoid 

detection [51].

Algorithmic bias, data scarcity, and privacy concerns further 

complicate the deployment of ML in cybersecurity applications. To 
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Fig. 6. An Intrusion Detection System leveraging anomaly detection and Principal Component Analysis to identify deviations from normal behavior in cybersecu­ 

rity [41].

Fig. 7. Intrusion detection system and its technique.

address these challenges, researchers have proposed hybrid models 

that integrate supervised and unsupervised reinforcement learning ap­ 

proaches. For example, hybrid intrusion detection systems (IDS) that 

combine CNNs and k-means clustering have achieved 97 % accuracy in 

anomaly detection, showcasing the potential of multifaceted solutions 

[52]. Ethical considerations and regulatory compliance are critical for 

ensuring responsible AI implementation in cybersecurity [53,54].

The integration of ML into cybersecurity has marked a paradigm 

shift in threat detection, vulnerability assessments, and incident re­ 

sponses. Using supervised, unsupervised, and reinforcement learning 

techniques, ML-driven cybersecurity solutions promise enhanced re­ 

silience and adaptability, paving the way for robust defenses against 

an increasingly complex threat landscape. Despite its potential, AI in cy­ 

bersecurity presents challenges such as data quality, algorithmic bias, 

and privacy concerns. The dual-use nature of AI further complicates its 

role, as cybercriminals exploit AI for malicious purposes [14].

As organizations adopt AI-driven cybersecurity, ethical issues such as 

algorithmic bias and privacy remain critical [47]. Effective implementa­ 

tion requires ongoing refinement of algorithms, robust governance, and 

compliance with regulations [48,49]. The integration of AI in cyber­ 

security continues to evolve, promising enhanced defenses against the 

dynamic landscape of cyber threats while requiring vigilance to address 

its complexities [50]. Table 3 presents a comparative performance of the 

cybersecurity models using ML techniques.

4.2 . Deep learning applications in cybersecurity

DL, a key subset of AI and ML, is modeled based on the neu­ 

ral structure of the human brain. It processes extensive datasets us­ 

ing multilayered artificial neural networks, enabling the identification 

of intricate patterns. Among their architectures, Feedforward Neural 

Networks (FNNs) are fundamental for structured data, whereas CNNs 

excel in spatial pattern recognition, which is crucial for image-based 

malware detection [51]. Recurrent Neural Networks (RNNs) and Long 

Short-Term Memory networks (LSTMs) specialize in sequential data 

analysis, whereas transformers use attention mechanisms for superior 

performance in text, threat intelligence, and time-series data analysis. 

Fig. 8 shows the architecture model for predicting cybersecurity threats 

in IoT using DL [53,54]. In cybersecurity, DL has transformed the way 

organizations detect, analyze, and mitigate cyber threats. FNNs achieve 

80–90 % accuracy in anomaly detection tasks, proving effective in static 

datasets, but struggling with time-sensitive data [52]. CNNs have rev­ 

olutionized malware detection by converting executables into visual 

formats, achieving accuracy rates of up to 98 % for identifying malicious 

patterns [53]. RNNs and LSTMs, designed for sequential data, handle 

network traffic analysis and intrusion detection with 95–96 % accuracy, 

whereas Gated Recurrent Units (GRUs) offer computational efficiency in 

real-time monitoring, achieving 90–95 % accuracy in threat detection 

[54,55]. 

In addition, unsupervised models, such as autoencoders, detect 

anomalies by minimizing reconstruction errors, and [56] Generative 

Adversarial Networks (GANs) enhance robustness by synthesizing adver­ 

sarial data for training [57]. Recent advancements in transformer-based 

architectures have demonstrated remarkable performance in real-time 

threat intelligence and phishing detection, achieving accuracies of 

90–95 % in complex environments [54,58,59].

Despite these groundbreaking advancements, significant challenges 

remain in the application of DL to cybersecurity. High-performance 

models, such as CNNs and transformers, require substantial 
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Table 3 

Comparative performance table for cybersecurity models using ML techniques.

Ref. ML Method Techniques Application Area Key Strengths Results Limitations

[17,18] Supervised 

Learning

SVM Malware detection High accuracy in analyzing 

file characteristics

Malware detection accuracy >
92 %

Requires large labeled datasets

[17,18] CNNs Malware detection High precision in feature 

extraction

Malware detection accuracy >
92 %

Requires computational 

resources for large-scale 

training 

[20] NB Spam filtering Simple, efficient, high 

precision

Spam filtering precision > 90 % Assumes feature indedepen­

dence, limiting real-world 

applications 

[21,22] DT Network activity 

classification 

Easy interpretability Detection accuracy: 88–95 % Susceptible to over fitting

[21,22] ANNs Network activity 

classification

Learns complex patterns Detection accuracy: 88–95 % Requires significant computa­

tional resources and labeled 

data 

[41] SPD Phishing URL detection High recall rates Recall rates: 93 %; reduces false 

positives

Dependent on labeled phishing 

datasets

[42,43] Unsupervised 

Learning

k-Means Anomaly detection Effective for clustering >90 % accuracy in detecting 

network traffic deviations

Sensitive to outliers and initial 

centroid selection

[42,43] DBSCAN User behavior analysis Detects irregular patterns High precision in insider threat 

detection

High computational complexity 

for large datasets

[44] HC Zero-day vulnerability 

detection

Captures hierarchical data 

relationships

Effective in identifying anoma­

lous patterns linked to zero-day 

vulnerabilities

Lacks scalability for large-scale 

datasets

[44,45] PCA Dimensionality reduction 

for anomaly detection

Simplifies high-dimensional 

data

Enhanced detection accuracy; 

reduces false positives

May lose critical information 

during dimenmensionality 

reduction

[27] t-SNE Visualization of phishing 

attacks

Simplifies high-dimensional 

data

Effective clustering and 

anomaly detection

High computational cost; 

challenging hyperparameter 

tuning

[41,42] Reinforcement 

Learning

DQNs Automated incident 

response

Effective in high-

dimensional environments

Malware detection 96 % accu­

racy; response time reduction: 

30 %

High computational cost

[43,44] PG DDoS resilience Direct modeling of 

adversarial settings 

25 % improvement in resource 

allocation for DDoS resilience 

Unstable training; sensitive to 

hyperparameters 

[21,22] Q-Learning Adaptive security systems Simple, fast learning for 

smaller state spaces 

80–95 % threat reduction in 

adaptive access control 

Struggles with large 

state/action spaces 

[47,48] G-T RL Adversarial modeling Combines game theory with 

reinforcement strategies

Improves resilience in ad­ 

versarial cybersecurity 

environments

High complexity; requires 

accurate adversary modeling

computational resources, limiting their scalability in real-time 

applications, such as DDoS attack detection. Data preprocessing 

and quality control are critical bottlenecks because inconsistencies 

can degrade the model’s performance. Moreover, models require 

frequent retraining to adapt to the constantly evolving nature of cyber 

threats, such as polymorphic malware and zero-day vulnerabilities. 

Ethical concerns, including biases in training datasets and issues with 

interpretability, particularly in complex architectures such as GANs, 

hinder transparency and trust [57,60]. Furthermore, integrating DL 

solutions into legacy and industrial control systems (ICS) presents com­ 

patibility challenges, underscoring the need for adaptable and scalable 

frameworks [56,59]. Future research must focus on addressing these 

challenges by developing interpretable DL models, scalable solutions 

for real-time processing, and robust algorithms that adapt seamlessly to 

evolving cyberthreat landscapes. Innovations such as flexible FL (fFL) 

and hybrid DL models are promising directions for overcoming these 

barriers while maintaining the efficacy and reliability of cybersecurity 

systems [61,62]. Table 4 presents a comparative performance table for 

the cybersecurity models that use DL techniques. 

4.3 . NLP and its applications in cybersecurity

NLP has become an indispensable tool in cybersecurity, address­ 

ing a diverse range of threats, from phishing to dark web monitoring 

and social engineering attacks. As cyber threats increasingly leverage 

language-based vulnerabilities, NLP models enable robust detection, 

analysis, and mitigation strategies by extracting meaningful patterns 

from textual data. Recent advancements between 2020 and 2024 have 

significantly enhanced the role of NLP in cybersecurity, achieving 

remarkable accuracy rates and improving real-time threat intelligence.

Phishing detection remains a primary application of NLP, with 

transformer-based models such as BERT and RoBERTa demonstrat­ 

ing exceptional results. Recent studies have achieved 96 % accuracy 

in phishing detection across multilingual datasets by analyzing text-

based phishing indicators in emails and URLs. These approaches reduce 

false positives and improve scalability in global scenarios [63,64]. 

Phishing-related work combining GPT-3 and graph-based NLP tech­ 

niques achieved F1 scores of 92 %, demonstrating their effectiveness 

in countering nuanced social engineering attacks [65,66].

Dark Web monitoring has also benefited significantly from NLP ad­ 

vancements. Sentiment analysis and topic modeling were employed to 

identify and analyze high-risk conversations in dark web forums. Recent 

research has demonstrated an accuracy of 89 % in detecting malicious 

discussions using topic-based classifiers, thereby enabling proactive 

threat flagging. Sentiment-based classifiers further improve hostile con­ 

tent detection by more than 30 % by leveraging advanced transformer 

models [67–69]. Named Entity Recognition (NER) is another impact­ 

ful NLP application in cybersecurity. It facilitates the identification of 

critical entities, such as malware signatures and suspicious domains, 

from unstructured text data. Studies have reported recall and precision 

rates exceeding 90 % when extracting actionable insights from incident 

reports and malware descriptions. Embedding techniques such as GloVe 

and Word2Vec have enhanced the classification accuracy to over 93 % 

and streamlined threat identification [66,70,71].
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Fig. 8. Architecture model for cyber security threats prediction in IoT using DL [53].

Table 4 

Comparative performance table for cybersecurity models using DL techniques.

Ref. Model Primary use Accu (%) Strengths Limitations

[51] FNN Intrusion Detection 80–90 Simple architecture High computational resource demand; Requires extensive 

data preprocessing

[53] CNN Malware Detection 90–98 Spatial data analysis High computational resource demand; Requires extensive 

data preprocessing

[54] RNN Network Traffic Analysis 85–95 Temporal data processing High computational resource demand; Requires extensive 

data preprocessing

[56] LSTM Intrusion Detection 90–96 Long-term dependencies Needs frequent retraining to handle emerging threats

[53] GRU Real-Time Threat Detection 90–95 Efficient temporal processing Needs frequent retraining to handle emerging threats

[57] Autoencoder Anomaly Detection 85–92 Unsupervised learning Challenges in integrating with existing systems

[59] GAN Data Augmentation Varies Synthetic data generation Potential biases in model outputs due to data imbalances

[60] Transformer Threat Intelligence 90–95 Long-range dependencies Limited transparency of decision-making; High 

computational resource demand

Botnet detection on social media platforms has emerged as a critical 

area in which NLP analyzes linguistic behavior and interaction patterns 

to identify malicious entities. Sentiment-based botnet detection achieves 

90 % accuracy, enabling the early identification of coordinated bot ac­ 

tivities [52,53]. This capability addresses the growing prevalence of 

misinformation campaigns driven by automated bots. Fig. 9 illustrates 

the workflow for cyberattack detection using NLP, showcasing processes 

such as data gathering, preprocessing, vectorization, and classification, 

thus ensuring a structured approach to threat identification [72].

Advancements in multilingual NLP models have proven instrumental 

in addressing global cybersecurity challenges. Models such as multilin­ 

gual BERT have demonstrated an accuracy of over 92 % in detecting 

threats across languages, facilitating effective cross-border threat intel­ 

ligence [69]. This development aids organizations in optimizing their 

cybersecurity frameworks in diverse linguistic environments. The chal­ 

lenges posed by adversarial attacks on NLP models have also been 

studied extensively. Adversarial learning techniques, designed to expose 

and counter vulnerabilities in NLP-driven systems, improve robustness 
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Fig. 9. Workflow for cyberattack detection using NLP, showcasing processes such as data gathering, preprocessing, vectorization, and classification [72].

Table 5 

Applications and challenges in cybersecurity using NLP in AI techniques.

Ref. Application Method Outcomes Limitations

[63,64] Phishing Detection BERT, RoBERTa 95 %+ accuracy in phishing 

classification

False positives in multilingual scenarios; High 

computational demands

[67,68] Dark Web Threat Monitoring LDA, Word Embeddings 30 % improvement in 

identifying risks

Scalability issues with large datasets; 

Interpretability of topic modeling

[65,66] Social Engineering Detection GPT-3, XLNet 92 % F1 score in detection High resource demand for transformer models

[70,71] Insider Threat Detection BERT-based Sentiment Analysis 25 % sensitivity increase Bias in sentiment analysis models; Limited training 

data

[69,72] Malware Clustering Word2Vec, FastText 93 %+ accuracy in malware 

family clustering 

High dimensionality in embeddings; Challenges in 

updating models 

[64,73] Anomaly Detection Reinforcement Learning 90 % accuracy in anomaly 

detection

Slow adaptation to rapidly evolving threats

[72,74] Multilingual Threat

Detection

 Multilingual BERT, Machine

Translation

 High accuracy in multilingual

phishing detection

 Translation inaccuracies for low-resource

languages

 

[71,72] Spam and Bot Detection Ensemble Learning, Sentiment 

Analysis

91 % spam detection rate High false positive rate for nuanced content

[69,74] DNS Traffic Analysis Word Embeddings 94 % accuracy in detecting 

malicious DNS

Limited real-time performance; Requires extensive 

preprocessing

by up to 25 % in real-world scenarios [73,74]. These enhancements are 

crucial for securing systems against manipulative inputs in high-stakes 

domains, such as malware detection and fraud prevention.

Adaptive anomaly detection represents another frontier, where re­ 

inforcement learning combined with NLP techniques achieves 90 % 

accuracy in detecting anomalies from cybersecurity logs. These models 

dynamically adjust to evolving threats and provide organizations with 

powerful tools for real-time pattern monitoring [64,72,73].

Despite these successes, several challenges persist in integrating 

NLP into cybersecurity. The high demand for computational resources 

hinders scalability, particularly for transformer-based models. Ethical 

concerns, such as biases introduced during training, affect fairness 

and reliability. Furthermore, interpretability remains a critical limita­ 

tion because black-box NLP architectures often obscure decision-making 

processes. Addressing these issues through explainability, optimized ar­ 

chitectures, and ethical guidelines is vital to unlocking the full potential 

of NLP in cybersecurity.

This growing body of research underscores the transformative im­ 

pact of NLP in securing cyberspace and offering sophisticated solutions 

for phishing detection, dark web monitoring, botnet identification and 

anomaly detection. As cybersecurity threats evolve, NLP remains a 

cornerstone technology that drives innovation and resilience against 

digital adversaries. Table 5 shows the applications and challenges of 

cybersecurity using NLP in AI techniques.

4.4 . UAI and XAI in cybersecurity

Fig. 10 shows the understanding process as UAI focuses on simpli­ 

fying AI outputs, making them accessible and interpretable even for 

non-experts, fostering improved decision-making in Security Operations 

Centers (SOCs) [75] and illustrating how the process of understanding 

flows. In contrast, XAI provides actionable insights into the how and why 

of AI predictions, allowing analysts to trust and validate automated rec­ 

ommendations. XAI is designed to make AI systems interpretable and 

transparent, thereby addressing the black box nature of traditional AI. 

By providing clear explanations for its outputs, XAI builds trust and en­ 

sures that decisions are understandable, especially in critical domains 

such as cybersecurity, where insight into AI-driven recommendations is 

essential. In cybersecurity, XAI enhances threat detection and response 

by providing interpretable insights into complex datasets, such as net­ 

work traffic, user behavior, and system logs. Unlike standard AI, which 

may flag threats without context, XAI explains why a threat is identified, 

thereby aiding analysts in understanding anomalies and attack vectors.

It also streamlines workflows by prioritizing incidents and summariz­ 

ing vast security reports, enabling quicker and more informed decision-

making in Security Operations Centers (SOCs). Moreover, XAI excels at 

analyzing unstructured data, such as dark web forums and threat in­ 

telligence feeds, uncovering emerging vulnerabilities, and facilitating 

proactive defense strategies.

In cybersecurity, where decisions directly impact organizational re­ 

silience, these technologies play complementary roles by bridging the 

gap between automation and human oversight to enable rapid responses 

to threats.

The application of XAI methods, such as SHapley Additive 

Explanations (SHAP) and Local Interpretable Model-Agnostic 

Explanations (LIME), have demonstrated impressive results in en­ 

hancing interpretability. For example, SHAP identifies critical features 

influencing IDS outputs, achieving a 25 % reduction in false positives 

by pinpointing attributes such as packet size and IP addresses. Fig. 11 
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Fig. 10. Understanding process of UAI [75].
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Fig. 11. XAI and their trends in cybersecuriety [76].

highlights the XAI trends in cybersecurity, showcasing its growing role 

in improving threat detection. For example, SHAP identifies critical 

features influencing IDS outputs, achieving a 25 % reduction in false 

positives by pinpointing attributes such as packet size and IP addresses. 

Security companies employing LIME in phishing detection tools have 

achieved a 93 % detection rate for identifying phishing attacks by 

evaluating the inherent features of an email, such as sender details, 

URLs integrated into the content, and message intent. SHAP-based 

interpretability techniques have been applied to Security Information 

and Event Management (SIEM) platforms, such as Splunk and IBM 

QRadar, to rate anomaly severity and enhance SOC analyst response 

times by 40 % [76,77]. By combining these XAI techniques, security 

teams can increase AI explainability and trust in automated defense, 

enabling regulatory compliance and ethical AI decision-making.

Integrating XAI applications into cybersecurity is crucial for enhanc­ 

ing transparency and decision-making. Fig. 12 illustrates the application 

of XAI techniques in cybersecurity workflows, highlighting their roles 

in intrusion detection, malware analysis and phishing prevention. 

Visualization techniques, such as relevance heatmaps and attention 

mechanisms, further enhance XAI’s role of XAI by highlighting essen­ 

tial regions in network logs and user activity data that contribute to 

anomaly detection [78,79].

Rule-based methods, including decision trees and rule extraction 

techniques, are integral to achieving explainability in cybersecurity 

systems. Decision trees generate clear and interpretable rules for iden­ 

tifying anomalies in system logs, as demonstrated by Kim et al., where 

the precision rates exceeded 92 % for intrusion detection frameworks 

[80]. Kurniadi et al. simplified deep neural network outputs through 
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Fig. 12. Applications of XAI in Cybersecurity.

rule extraction and aligned model predictions with cybersecurity poli­ 

cies to improve malware detection accuracy [81]. Surrogate models, 

such as decision-tree-based simplifications of complex IDS outputs, 

have also proven effective in making DL models interpretable without 

compromising the detection rates [82].

Counterfactual explanation techniques have emerged as critical tools 

for exploring the predictive behavior of AI systems. Perturbation-based 

methods generate alternative scenarios to understand prediction shifts, 

such as distinguishing between legitimate and fraudulent activities 

in fraud detection systems [83]. Counterfactual sets further facilitate 

user behavior analytics by adjusting security thresholds and identifying 

suspicious anomalies with accuracy rates exceeding 90 % [84].

In addition, text-based explanation models play an increasingly im­ 

portant role in cybersecurity, particularly in phishing detection and 

threat analysis. For instance, sequence-to-sequence models provide con­ 

textual explanations for phishing attempts by analyzing textual patterns 

in phishing emails, achieving up to 95 % classification accuracy [85]. 

Similarly, topic modeling techniques such as LDA have been employed 

in threat reports to uncover emerging attack vectors and inform proac­ 

tive defense strategies [86]. Autoencoders with explainability layers also 

contribute to identifying deviations in user behavior, thereby further en­ 

hancing anomaly detection systems in real-time environments [87,88]. 

Overall, by combining UAI’s focus on simplicity with XAI’s advanced 

techniques, cybersecurity systems can achieve unprecedented clarity 

and trustworthiness. Feature attribution methods, such as SHAP, and 

visual aids, such as heatmaps, ensure that AI-driven security frame­ 

works are both effective and transparent. This dual approach allows 

organizations to proactively detect threats, respond decisively, and build 

confidence in AI-based security systems as cyber threats evolve. Table 6 

lists the XAI techniques used in cybersecurity.

4.5 . Introduction to QC in cybersecurity

QC is based on two fundamental principles: superposition and en­ 

tanglement. Superposition allows quantum bits (qubits) to represent 

multiple states simultaneously, thereby enabling parallel computations 

that significantly exceed the capabilities of classical binary systems. 

Entanglement creates deep correlations between qubits, allowing com­ 

plex operations to be performed efficiently. In cybersecurity, these 

properties facilitate faster threat detection, high-dimensional data pro­ 

cessing, and more accurate anomaly identification, thereby transforming 

the capabilities of ML models.

Traditional AI approaches, including SVMs, Neural Networks 

(NNs), and Boltzmann Machines (BMs), have limitations in handling 

large-scale, real-time data due to their sequential processing and high 

computational costs. Quantum-enhanced ML techniques, such as QSM, 

Quantum Neural Networks (QNNs), and Quantum Boltzmann Machines 

(QBMs), overcome these challenges by leveraging quantum properties 

for speed, scalability, and accuracy [89–91].

The latest developments in quantum computing have placed it in a 

position where it can significantly transform the field of cybersecurity. 

Microsoft’s Majorana 1 chip, a scalable topological quantum processor 

with one million qubits, has considerable potential for achieving fault 

tolerance. Topological qubits are superior to conventional qubits be­ 

cause they have higher reliability and reduced error rates, making them 

ideal for large-scale quantum applications. The Majorana 1 chip features 

a self-correcting topological superconductor, a new material that stabi­ 

lizes Majorana particles and enables self-correcting qubits with built-in 

error correction. While traditional qubits are usually said to balance a 

pencil on their tips, Majorana qubits are more like self-stabilizing devices 

that actively resist environmental interference.

In contrast, Google’s Willow chip implements a more conventional 

approach that employs a superconducting qubit architecture that utilizes 

Josephson junctions and quantum error-correcting codes to preserve 

quantum coherence [92]. Although high-fidelity operations with quan­ 

tum supremacy milestones have been achieved with Willow, it suffers 

from significant constraints, as it requires constant error correction, 

which becomes more difficult on larger scales. To circumvent these is­ 

sues, Microsoft’s topological qubits attempt to attain hardware-based 

error mitigation, and therefore maximize the elimination of detrimental 

redundancy. Compared with current supercomputers, a 1 million qubit 

quantum computer would compute a million times faster, with profound 

implications for cryptography, drug research, and weather forecasting. 

Although mass deployment is still distant, breakthroughs in topological 

qubits (Majorana 1) and quantum error correction (Willow) signal the 

need for post-quantum cryptography (PQC) to safeguard digital security 

against future quantum attacks.

In QML–IDS, quantum preprocessing is combined with classical ma­ 

chine learning to increase the detection of cybersecurity insider threats. 

As illustrated in Fig. 13, the preprocessing of classical information com­ 

prises several steps: quantum state mapping and circuit transportation. 

The noise in the circuit is reduced, and quantum operations are opti­ 

mized for real-world applications during circuit transportation. Qs and 

kernel methods were used to categorize the high-dimensional threats. 
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Table 6 

XAI techniques in cybersecurity.

Ref. AI technique Description Application Benefits Impact

[75,77] SHAP Highlights feature importance using co­ 

operative game theory to interpret model 

predictions.

Intrusion Detection 

Systems

Enhanced Trust Reduces false positives by

25 %

 

[77,78] LIME Provides localized explanations by approx­ 

imating model behavior around specific 

inputs.

Phishing detection & 

authorization systems

Reduced False Positives Improved email filtering and

decision-making accuracy

 

[80,83] LRP Decomposes neural network predictions 

into layer-specific contributions of input 

features. 

Malware Analysis Real-Time Threat Insight Speeds up malware detection

analysis by 30 % 

 

[80,81] ABH Leverages attention mechanisms to prior­ 

itize critical data points contributing to 

model decisions. 

Network anomaly 

detection systems

Adaptability to Attacks Enables real-time anomaly

detection with focused 

attention 

 

[80,85] Rule-Based Decision

Trees

 Generates interpretable rules for anomaly 

detection by simplifying model outputs.

Log analysis cybersecurity 

framework

Enhanced Trust Achieves 92 % precision in

anomaly detection 

 

[81,84] Rule Extraction Simplifies DL predictions into explicit rules 

for malware detection.

Malware detection systems Regulatory Compliance Aligns predictions with

cybersecurity policies

 

[82,83] Counterfactual

Explanations

 Generates alternative scenarios to explore

prediction behavior and explain anomalies.

 Fraud detection and user

analytics

 Adaptability to Attacks Achieves 90 % accuracy in

fraud detection adjustments 

 

[82,85] Surrogate Models Simplifies complex models by approximat­ 

ing behavior using interpretable substitutes 

like decision trees. 

Intrusion Detection 

Systems

Regulatory Compliance Provides transparent audits

without accuracy loss 

 

[85,87] Auto-encoders with

Explainability

 Highlights unusual patterns through 

reconstruction error analysis in user 

behaviors.

Anomaly detection in

cybersecurity logs

 Real-Time Threat Insight Improves anomaly

understanding

 

[76,86] Topic Modeling (LDA) Identifies key trends and topics in textual 

data for threat reports.

Threat intelligence and 

incident reporting

Enhanced Trust Identifies emerging

cyberattack vectors

effectively

 

 

[85,88] Sequence-to-Sequence 

Models

Generates contextual explanations for

textual threats such as phishing emails.

 Phishing detection in

textual systems

 Reduced False Positives Achieves over 95 % phishing

classification accuracy

 

[76,83] Perturbation-Based 

Methods

Examines prediction shifts by introducing 

modified input features under adversarial 

settings.

Anomaly detection and

anomaly identification

 Adaptability to Attacks Enhances model robustness

against adversarial attacks

 

[77,79] Attention Heatmaps Visualizes critical attention regions of data 

influencing predictions.

Behavioral analysis for

insider threats

 Threat Insight Speeds up real-time threat

analysis by 35 %
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Fig. 13. Operational flowchart of Quantum ML-IDS [90].

Qs and the QCNN-based QSVM Qs enhance real-time anomaly detection. 

Some studies have shown that QSVM can achieve high classification ac­ 

curacy with a QSVC QS of 92 % on the NSL KDD dataset. This level of 

accuracy is higher than that of the classical SVM, with an accuracy of 

87 % [90]. The classification of post-processing involves the assessment 

of network alerts and ensures that a correct classification is performed. 

This allows QML IDS to perform better than traditional systems.

Therefore, future cybersecurity strategies must prioritize quantum-

resistant encryption to protect sensitive data from quantum decryption 

threats. Additionally, hybrid quantum-classical security models that 

integrate quantum AI while maintaining the robustness of classical 

cryptography are essential. Quantum threat simulations can further 

enhance cyber defense by leveraging AI-driven quantum models to 

predict and mitigate emerging threats. As quantum computing ad­ 

vances, immediate research into fault tolerance, secure frameworks, 

and adversarial quantum risks is crucial for ensuring a resilient cy­ 

bersecurity landscape. Table 7 compares classical and QAI techniques, 

showcasing their advancements and contributions to the field of 

cybersecurity.

As shown in Table 7, the QSVM demonstrates a clear enhancement 

over classical SVMs by utilizing quantum kernels to map data into ex­ 

ponentially higher-dimensional feature spaces. This quantum property 

improves classification boundaries, enabling the QSVM to achieve 30 % 

greater accuracy in malware detection tasks, where classical SVMs of­ 

ten struggle [89,91]. The disparities between the QAE with One-Class 

SVM and QAE with Quantum Random Forests, as shown in Fig. 14 illus­ 

trate the efficacy of quantum feature reduction. The QAE increases class 

separability while compressing high-dimensional cybersecurity data to 

improve anomaly detection. In the first framework, QAE enables the 

QSVM to classify cyberthreat patterns more adeptly than the classical 
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Table 7 

Comparison of classical and quantum techniques in cybersecurity.

Technique Classical Approach Quantum Approach Key Equation Quantum Advantages

SVM Uses kernel functions to map data

into higher-dimensional spaces for 

classification. 

 QSVM leverages quantum kernels for 

efficient, high-dimensional feature 

mapping. 
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Improves malware detection by 

30 % and handles overlapping 

classes efficiently [89,91,93]. 

NN Sequential weight updates via

backpropagation. 

 QNN exploits quantum states for 

parallel optimization of weights.
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Reduces training time by 40 % 

while achieving 95 % anomaly 

detection accuracy [90,94,95]. 

BM Classical probabilistic models

use iterative sampling for pattern 

recognition. 

 QBMs leverage quantum tunneling to 

accelerate their convergence.
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Achieves 25 % faster conver­ 

gence for predicting cyberattack 

trends [96,97]. 

DT Uses entropy-based splitting for

decision making.

 Quantum DT enhances entropy mea­ 

sures for faster and more accurate rule 

generation.
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Achieves 92 % precision in 

anomaly detection with re­ 

duced computational overhead 

[98,99]. 

KNN Computes the distances between data

points for classification in the feature 

space. 

 Quantum KNN employs ampli­ 

tude encoding for faster distance 

computations. 
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Enables real-time anomaly clas­ 

sification in high-dimensional 

datasets [99,100]. 

RF Classical random forests are used as

decision trees in classification. 

 QF integrates quantum-enhanced 

decision analysis for optimization.
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  Quantum: 
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Provides faster classification 

with more robust decision 

boundaries [101,102]. 

ML-IDS Traditional IDS systems require manual

tuning and feature extraction.

 QML-IDS automates the detection using 

quantum-enhanced anomaly detection 

models.

)𝑋 𝑃Classical: ( | 𝑃 𝑦| ) = (𝑋 𝑦 𝑃 (𝑦)
𝑃 (𝑋)

 Quantum: 

𝑃𝑄 (𝑦|𝑋) = |⟨𝜓(𝑦)|𝑈 (𝜃)|𝜙(𝑋)⟩|2 
Improves detection accuracy 

by 20 % while reducing false 

positives [93,94].

Fig. 14. Comparative figures showcasing QSVM’s ability to efficiently resolve overlapping classes showcase two frameworks: (a) Quantum Autoencoders (QAE) 

combined with a one-class SVM and (b) QAE integrated with quantum random forests for network traffic anomaly detection [93].

SVM, which means that the QSVM can identify a greater number of 

patterns.

In the second, more advanced framework, intrusion detection is re­ 

fined in real-world scenarios using data-encoded QAE and improved 

decision boundaries within Quantum Random Forests. These QAE for­ 

est models show heightened performance in intrusion detection systems 

through greater accuracy in identifying diverse patterns of attacks 

compared to classical QAE models [93].

By reducing the dimensionality using PCA and encoding the inputs 

into quantum states, these frameworks achieve superior anomaly clas­ 

sification. Quantum forests (QF) leverage quantum-enhanced random 

trees to optimize decision-making and scale efficiently for high-volume 
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Fig. 15. Quantum comparison in DL models [100,101,103].

cybersecurity data [91,93,95]. Similarly, QNNs use quantum states 

to enable the parallel processing of weights during optimization, sig­ 

nificantly reducing the training time by 40 % while maintaining 

95 % detection accuracy in anomaly identification tasks [96,97]. This 

makes QNNs highly suitable for adaptive intrusion detection systems 

in which real-time threat responses are critical. On the probabilistic 

side, Quantum Boltzmann Machines (QBMs) leverage quantum tunnel­ 

ing to explore energy states efficiently and achieve faster convergence 

when predicting attack trends and forecasting vulnerabilities [98]. Other 

quantum-enhanced models include Quantum Decision Trees (QDTs), 

which integrate quantum entropy measures to improve rule generation 

and decision-making precision to 92 % in large-scale anomaly detection 

frameworks [100,104]. Quantum K-Nearest Neighbors (QKNN) meth­ 

ods accelerate distance calculations using amplitude encoding, achiev­ 

ing efficient real-time classification of anomalies in high-dimensional 

cybersecurity spaces [100,103].

In QDL, QCNNs and Quantum Autoencoders optimize feature extrac­ 

tion for malware detection and anomaly identification. Studies have 

reported that malware classification accuracy reaches 98 % with re­ 

duced computational costs compared with their classical counterparts 

[101,105]. In Fig. 15, we compare quantum convolutional neural net­ 

works (QCNN), quantum ResNet (QResNet), and quanvolutional neural 

networks (QuanNN). The QCNN superposition layers significantly im­ 

prove feature extraction in malware classification, leading to higher 

accuracy and economic efficiency in terms of computational resources. 

Unlike classical CNNs with rigid set filters, QCNNs proactively respond 

to data complexity by modifying their parameters, which improves their 

performance in competitive situations. In addition, the incorporation of 

quantum encoding in QResNet significantly improves its deep learning 

capabilities, enhancing its performance by 40 % and maintaining an 

acceptable workload performance. Such quantum supremacy leads to 

more powerful malware recognition, faster training convergence, and 

better defense against new cyber-attacks [102]. Meanwhile, quantum-

enhanced NLP models apply sequence-to-sequence techniques and topic 

modeling for phishing detection and threat intelligence extraction, 

achieving 95 % accuracy in identifying phishing emails and analyz­ 

ing dark web data [106–108]. Despite these benefits, challenges persist 

in fully realizing the potential of quantum-AI. Hardware limitations, 

such as the scarcity of stable and error-free qubits, remain a bottle­ 

neck for practical implementation. Noisy quantum systems introduce 

errors that require advances in quantum error correction and noise re­ 

duction techniques. Additionally, the need for hybrid quantum-classical 

systems to integrate quantum algorithms with existing infrastructure 

adds complexity to the deployment. Research on scalable quantum 

hardware, algorithm optimization, and robust hybrid frameworks is ac­ 

tively addressing these challenges. As quantum technology matures, its 

integration into cybersecurity redefines the landscape, enabling organi­ 

zations to proactively counter emerging threats with unmatched speed, 

precision, and efficiency [107–109]. Table 8 presents a comparative 

analysis of the AI techniques used in cybersecurity applications.

5 . AI-driven cybersecurity applications

AI has significantly revolutionized cybersecurity by enhancing the 

automation, accuracy, and scalability of the detection, prevention, and 

response to evolving cyber threats. By leveraging ML, DL, and behav­ 

ioral analysis, AI addresses the critical areas of threat detection and 

prevention, vulnerability assessment, and incident response, ensuring 

that organizations remain resilient to sophisticated attacks.

5.1 . Threat detection and prevention

AI-driven IDS have achieved remarkable accuracy improvements 

while reducing false positives. Studies have reported that a decision-

tree-based IDS achieves a detection accuracy of 95 % with only 2 % 

false positives [110], whereas neural networks demonstrate robust­ 

ness by dynamically adapting to real-time network changes [111]. 

Reinforcement learning models further optimize detection efficiency by 

learning from evolving attack patterns and improving response accuracy 

[112]. Malware detection benefits immensely from AI techniques that 

integrate static and dynamic analyses. CNNs have achieved a malware 

detection accuracy of 98 %, outperforming traditional signature-based 

methods [113]. Hybrid models combining static and dynamic analy­ 

ses reduce false positives by 30 % and improve the detection rates for 

zero-day malware [114]. AI-enhanced sandboxes for behavioral analy­ 

sis demonstrated a detection accuracy of 97 %, enabling organizations 

to efficiently identify malware variants [115]. AI-based NLP and image 

recognition techniques have demonstrated significant advancements in 

phishing detection. For instance, an RNN model analyzing textual and 

URL patterns achieved a 97 % detection accuracy with reduced false 

positives [116]. Furthermore, image-based phishing detection, which 

analyzes website logos and page structures, achieves a 99 % detection 

rate [117], thereby surpassing the limitations of traditional methods. 

Bot detection and mitigation are critical for protecting systems from 

automated attacks. ML models analyzing IP behavior and interaction 

patterns have achieved a detection accuracy of 95 % with a false posi­ 

tive rate of 3 % [118]. In addition, behavioral analysis techniques can 

effectively identify bot networks by detecting anomalies in large-scale 

traffic patterns [119].

Data exfiltration detection relies on AI models that monitor the user’s 

behavior and access patterns. Studies have shown that AI-based anomaly 

detection reduces data breaches by 40 % [120], whereas pattern recog­ 

nition models achieve a detection accuracy of 94 %, ensuring the timely 

identification of abnormal data transfer activities [121].

AI-enabled passwordless authentication systems leverage biomet­ 

ric techniques, such as facial recognition and fingerprint scanning, to 

achieve a verification accuracy of 99 % [122]. Behavioral biometrics, 

which analyze user interaction patterns, further enhance authentication 

security by reducing susceptibility to brute-force attacks [123].

Behavior-based threat analysis plays a crucial role in identifying de­ 

viations in user behavior that are indicative of malicious activity. AI 

models have achieved 85 % detection accuracy while maintaining false-

positive rates below 5 % [124]. Reinforcement learning further strength­ 

ens these models by continuously adapting to new threat behaviors, 

thereby improving the detection rate to 92 % [125].

5.2 . Vulnerability assessment

Automated vulnerability scanning powered by AI significantly en­ 

hances precision and reduces the number of false positives. dl-based 

scanners have achieved an accuracy of 85 %, reducing false positives 

by 20 % [126]. Popular tools, such as Nessus and Qualys, integrate 
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Table 8 

Comparative analysis of AI techniques for cybersecurity applications with performance metrics and dataset information.

Ref. Application Technique used Accuracy False-Positive Rate Dataset used Comp. time

[109] Intrusion Detection

Systems

 Decision Trees 95 % 2 % KDDCup99 0.5s per detection

[111] Neural Networks (Real-Time 

Adaptation) 

High Not specified NSL-KDD 1.2s per event 

[112] Malware Detection Convolutional Neural 

Networks 

High Not specified MalImg Dataset 3s per sample 

[113] Phishing Detection Hybrid Static-Dynamic 

Analysis

97 % Reduced by 30 % VirusShare 1s per hybrid analysis

[114] Recurrent Neural Networks 97 % Reduced by 20 % PhishTank 0.8s per URL

[115] Bot Detection Image Recognition (Logos &

Layouts) 

 99 % Reduced by 15 % Custom Dataset (Images) 1.5s per image

[116] Pattern Recognition High Minimal Alexa Traffic Data 1s per real-time detection

[118] Data Exfiltration

Detection

 Anomaly Detection 94 % Low CERT Insider Threat

Dataset

 3.8s per anomaly

[119] Pattern Recognition & 

Tracking

94 % Low Custom User Access Logs 1.8s per detection

[120] Passwordless 

Authentication

Biometric Authentication 94 % Not specified Real-World Biometric

Data

 1.5s per analysis

[121] Behavioral Biometrics Not specified Not specified Custom User Interaction 

Data

1.5s per analysis

[122] Behavioral- Based  

Threat Analysis

Anomaly Detection 85 % Not specified Custom Behavioral

Dataset 

 2s per evaluation

[123] Reinforcement Learning 92 % Not specified Simulated Behavioral 

Data

1.5s learning cycles

[124] Spam and Malicious

Content Detection

 NLP 96 % Not specified Enron Email Dataset 1s per email

[125] NLP for Malicious Content in

Social Media

 94 % Not specified Twitter Social Media

Dataset

 1.2s per post

AI algorithms to optimize detection and patch prioritization [127]. AI-

augmented penetration testing automates complex attack simulations 

to uncover vulnerabilities with minimal human intervention. Research 

indicates that AI-enhanced penetration testing increases the vulnerabil­ 

ity coverage by 40 % while uncovering previously hidden flaws [128]. 

Graph-based AI techniques simplify penetration testing workflows, en­ 

abling security teams to efficiently identify and address vulnerabilities 

[129]. Predictive vulnerability management uses AI models to forecast 

vulnerability exploitability, enabling organizations to prioritize criti­ 

cal patches. ML-driven predictive tools reduce breaches by 50 % [130] 

and decrease mitigation time by 30 % [131], transforming vulnerabil­ 

ity management into a proactive defense strategy. AI-powered threat 

simulation and attack-path mapping help organizations visualize the at­ 

tack pathways and improve patch deployment. Studies have reported a 

35 % improvement in threat visibility and a 25 % reduction in patch 

application times using AI-driven simulation tools [132,133]. These 

advancements enable organizations to efficiently prioritize mitigation 

efforts. In IoT vulnerability detection, AI systems identify firmware 

anomalies and zero-day exploits with a 70 % higher accuracy than tradi­ 

tional methods [134]. ML models reduce false positives by 15 %, thereby 

improving the security of connected IoT devices [135]. AI also enhances 

social engineering detection by analyzing user behavior to identify 

susceptibility to phishing attacks. Behavioral threat analysis reduces 

successful phishing attempts by 60 % [136], whereas AI-based train­ 

ing systems significantly improve user awareness and responses [137]. 

AI-driven application security testing combines static and dynamic code 

analysis to effectively identify complex vulnerabilities. dl-based tools 

improved the detection accuracy by 20 % and halved the scanning time 

compared with traditional approaches [138,139].

5.3 . Incident response

AI automates incident response tasks, thereby improving the effi­ 

ciency of threat containment, malware removal and system recovery. 

Neural networks have achieved a 95 % success rate in automating mal­ 

ware removal processes [140]. Similarly, AI-powered recovery tools 

restore critical systems with 98 % accuracy, minimizing downtime and 

accelerating recovery [141]. These advancements reduce the incident 

containment time by 80 %, thereby ensuring timely threat mitigation 

[142]. 

AI enhances Security Orchestration, Automation, and Response 

(SOAR) platforms by streamlining workflows and automating alert pri­ 

oritization. Studies have shown that AI-based prioritization algorithms 

reduce false positives by 25 % [143], whereas DL models achieve a 92 % 

classification accuracy for alerts, significantly improving analyst pro­ 

ductivity [144]. AI-powered SOAR systems automate 70 % of incident 

response tasks, reducing response times by 60 % [145].

Threat hunting and investigation benefit from AI-driven automation, 

improving the detection of novel threats by 30 % [146]. ML tools that 

analyze logs and traffic have reduced manual investigative efforts by 

40 % [147]. Additionally, automated root cause analysis tools enhance 

accuracy by 35 %, providing actionable insights to strengthen defense 

strategies [148].

AI also streamlines incident documentation and reporting processes, 

reducing documentation times by 50 %, while ensuring compliance 

and accuracy [149]. AI-facilitated post-incident analysis tools improve 

preparedness by identifying strategy gaps and enhancing playbook 

effectiveness [150].

5.4 . Benchmark comparison with state-of-the-art

To reinforce confidence in the proposed integrated view of AI- and 

quantum-enabled cybersecurity, we synthesize recent experimental re­ 

sults from representative state-of-the-art studies across intrusion detec­ 

tion, malware detection, phishing classification, and incident response. 

In addition, recent quantum-assisted IDS prototypes have reported com­ 

petitive results; for example, a scientific report study using quantum out­ 

lier analysis achieved 99.87 % DDoS detection accuracy on benchmark 

traffic, while noting dataset sensitivity and current hybrid hardware 

constraints [151]. Table 9 summarizes the reported datasets, model fam­ 

ilies, and headline metrics (e.g., accuracy, F1-score, and false positive 

rate). The comparison shows that deep learning and ensemble meth­ 

ods often exceed 95 % accuracy on established benchmarks, whereas 

explainable models reduce false positives with modest trade-offs in re­ 

call. Quantum-enhanced approaches have reported promising results on 

small and structured datasets, although large-scale validations remain 
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Table 9 

Comparative overview of AI, hybrid, and quantum techniques in cybersecurity.

Ref. Technique Application domain Model type Strengths Limitations

[153] Convolutional Neural 

Networks

Malware classification, 

ransomware detection

Deep Learning High accuracy with raw feature

learning; effective for image-like 

binary representations

 Data hungry; limited inter­ 

pretability

[154] Random Forest + SHAP Phishing and fraud

detection 

 Hybrid XAI Feature-level transparency; robust

against overfitting 

 Sensitive to data imbalance; bias

propagation 

 

[155] Support Vector Machines Intrusion detection,

anomaly detection

 Classical ML Strong performance on smaller

datasets; interpretable margins

 Scalability issues with large data;

requires feature engineering

 

[152] Federated Learning IoT and healthcare IDS Distributed Learning Privacy-preserving; decentralized 

training

High communication cost; 

vulnerable to poisoning attacks

[156] Autoencoder / GAN-based

IDS 

 Novel attack detection Deep Generative Models Good for zero-day and anomaly

detection; learns hidden patterns 

 Prone to mode collapse; training

instability 

 

[157] Quantum Neural Networks Quantum intrusion

detection

 Quantum ML Potential exponential speedup;

handles high-dimensional data

 Early stage, lacks hardware

scalability

 

[158] Post quantum Cryptography

(Lattice, Code-based) 

 Secure communication Cryptographic Algorithms Resistant to quantum attacks;

backed by NIST efforts 

 Computationally intensive;

deployment challenges 

 

[159] Digital Twins + AI Cyber-Physical System 

security

Simulation + AI Enables predictive monitoring;

real-time threat simulation

 High deployment complexity; 

resource intensive

[160] Blockchain + AI integration Secure data provenance, 

IoT

Hybrid Decentralized 

Systems

Immutable logs; improves trust 

and transparency

Latency and scalability issues; 

energy costs

[161] Explainable AI (SHAP, LIME, 

Counterfactuals)

Trust in IDS and phishing

classifiers

 Model-Agnostic Improves interpretability and ac­

countability; regulatory alignment 

(GDPR/AI Act)

Performance explainability

trade-off

 

limited. This evidence supports the need for scalable, interpretable, 

and quantum-resilient designs that can transition from benchmarks 

to real-world settings. Consistent results have been reported for FL-

based IDS in IoT environments [152] and hybrid QSVM prototypes in 

cyber-physical settings [94], reinforcing the viability of our deployment-

first recommendations. These comparisons motivate the design choices 

and research directions discussed next, including the integration of 

explainability, privacy-preserving training, and quantum resilience in 

operational settings.

6 . Ethical considerations and challenges

We adopt a working definition of ethical AI consistent with cur­ 

rent alignment literature, emphasizing the RICE objectives (Robustness, 

Interpretability, Controllability, and Ethicality) as operational goals for 

trustworthy, auditable security systems [162,163]. We use quantum 

resilience to denote cryptographic and system-level readiness for ad­ 

versaries with large-scale quantum capability, consistent with recently 

finalized NIST PQC standards [30–32]. AI-driven cybersecurity sys­ 

tems have revolutionized the threat detection and response. However, 

their deployment raises critical ethical concerns, including bias in algo­ 

rithms, adversarial attacks, privacy risks, and the need for explainability. 

Addressing these issues is vital for ensuring the ethical, secure, and 

effective integration of AI into cybersecurity.

6.1 . Bias in AI algorithms

Bias in AI arises when models are trained on imbalanced or non-

representative datasets, leading to discriminatory outcomes. For in­ 

stance, IDS trained on biased data showed a 28 % increase in false posi­ 

tives [164]. Similarly, facial recognition systems exhibited a misidenti­ 

fication rate of 34 % for women of color compared with 1 % for white 

males, demonstrating algorithmic bias [165]. Addressing this requires 

fairness-aware training methods, which have been shown to reduce bias 

by up to 35 % [166].

6.2 . Adversarial attacks

Adversarial attacks focus on mitigating the need to follow strict pro­ 

tocols when using AI frameworks and instead alter the input provided 

to bypass models. Using adversarial perturbations as an example, it can 

be noted that the performance metrics of malware detection systems 

decrease by 50 %. A similar case is that of AI-based spam filters, whose 

performance is breached with the use of phishing emails with a 93 % suc­ 

cess rate [167]. Similarly, AI-powered spam filters were bypassed with 

a 93 % success rate using carefully crafted emails [168]. Fig. 16 illus­ 

trates the adversarial perturbations applied to an image of a stop sign, 

which is part of an AI system that was created to ensure an excellent 

defense against such abuse. These measures include adversarial train­ 

ing, model-hardening processes, and anomaly recognition to increase 

the resistance of AI to cyberattacks. In addition, GANs can help provide 

additional protection by identifying and removing adversarial inputs as 

they emerge.

6.3 . Privacy concerns

AI systems require the collection of massive amounts of data, which 

puts privacy at risk. According to a study conducted in an industry in 

2024, 68 % reported that privacy infringement is one of the greatest 

challenges they face while deploying AI. A specific case of a security 

breach was noted in 2023 when the private information of six million 

users across multiple borders was revealed due to poor security mea­ 

sures fueled by AI [169]. However, some privacy-preserving AI methods, 

such as Federated Learning (FL), differential privacy, and homomorphic 

encryption, can mitigate privacy risks by up to 40 % without com­ 

promising AI performance [170]. To ensure optimal security, hybrid 

frameworks combining human expertise and AI have been implemented 

to protect privacy and defend against destructive cyber threats. Privacy-

enhancing technologies (PETs) must be deployed in conjunction with 

global regulations [171].

6.4 . Explainability and trust in AI security systems

One of the greatest hurdles in AI cybersecurity is the lack of trans­ 

parency and explainability in AI-powered security decision-making 

processes. Many AI models operate as black boxes, making it difficult for 

analysts to understand the reasons behind the generation of a security 

alert. In a survey conducted among cybersecurity professionals, 73 % 

reported that they preferred XAI models because these allowed better 

decision validation and accountability [172]. Fig. 17 illustrates the FL 

and XAI frameworks for cybersecurity, which integrate black-box and 

interpretable models. Using XAI techniques such as SHAP, LIME, and 

saliency maps improves transparency and trust by 30 % and reduces in­ 

cident response times by 18 % [173]. Other approaches, such as causal 

inference models and rule-based AI, are being developed to improve the 

correlation opacity in cybersecurity. Causal inference models with AI 
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Fig. 16. An example of adversarial noise applied to a stop sign, leading to misclassification as a speed limit sign. This demonstrates how subtle perturbations can 

deceive AI models, highlighting the need for adversarial defenses [168,169].
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Fig. 17. FL with XAI for Cybersecurity: Combining interpretable and black-box models with SHAP, LIME, and saliency maps for transparent decision-making. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tools and rule-based AI systems help to increase transparency in cyber­ 

security. Other visualization tools, such as heatmaps, decision trees, and 

AI attention mechanisms, explain what happens in AI security, making 

security decisions sharper, clearer, accountable, and reliable. Therefore, 

understanding trust in AI-enhanced cybersecurity solutions requires reg­ 

ulatory support, compliance with ethical AI criteria, and monitoring of 

AI functions to ensure they do not produce absurd outcomes. As AI tech­ 

nologies improve, these ethical challenges must be considered if public 

trust in effective AI-powered cybersecurity solutions is to be retained.

6.5 . Standards-aligned ethical guardrails

To make ethics actionable in security contexts, we align RICE ob­ 

jectives with established governance instruments. For IDS and phishing 

detection in regulated sectors, auditability and risk controls follow 

the NIST AI RMF 1.0 functions (Map-Measure-Manage-Govern) and 

ISO/IEC 42,001 requirements on AI management systems (policy, 

risk assessment, controls). For models that process personal data 

(for example, FL-based telemetry), we apply GDPR principles (pur­ 

pose limitation, data minimization) and the EU AI Act duties for 

high-risk systems as they are phased in. For system-level migra­ 

tion to post-quantum security, we mapped crypto choices to NIST 

FIPS 203/204 (ML-KEM and ML-DSA) to ensure that the signature 

and key-encapsulation paths remain compliant during the transition. 

Table 10 summarizes how representative cybersecurity use cases can 

be aligned with ethical controls and mapped to recognised standards 

and guidelines, ensuring that principles are translated into actionable 

safeguards.
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Table 10 

Alignment of cybersecurity use cases with ethical controls and standards.

Use case Ethical control Relevant standard/guideline

AI-driven Intrusion Detection Auditability, transparency in decision-making IEEE Ethically Aligned Design; ACM Code of Ethics 

Federated Learning for IoT and healthcare Data minimization, privacy preservation, bias mitigation GDPR principles; EU AI Act requirements for high-risk systems 

System-on-Chip security monitoring Risk assessment, accountability, fairness-aware algorithms ISO/IEC 42001:2023 AI Management Systems 

Post-Quantum Cryptography deployment Resilience against quantum attacks, secure key management NIST FIPS 203 (ML-KEM), FIPS 204 (ML-DSA)

Fig. 18. FFL Workflow for Decentralized Threat Analysis. FFL enables model training across devices while preserving data privacy [178].

7 . Emerging trends in AI-driven cybersecurity

AI-driven cybersecurity is at the forefront of digital innovation 

and offers transformative solutions to counter evolving cyber threats. 

Emerging trends such as FL, XAI, and quantum-resilient frameworks 

form the foundation for building adaptive, secure, and transparent 

security systems. FL has revolutionized privacy-preserving threat de­ 

tection by enabling decentralized model training across multiple de­ 

vices to ensure data protection. Industries such as healthcare, finance, 

and IoT ecosystems have already reported a 15 % boost in detection 

efficiency while maintaining regulatory compliance [174,175]. For in­ 

stance, Google’s federated malware detection model has demonstrated 

substantial improvements in identifying threats without sharing sensi­ 

tive raw data, thereby enhancing both efficiency and privacy [176]. 

As security demands intensify, FL will continue to underpin scal­ 

able and secure cybersecurity infrastructures, offering resilience against 

modern cyber risks [177]. Fig. 18 provides an overview of the FL 

protocol workflow, demonstrating its ability to deliver a decentral­ 

ized threat analysis while preserving data integrity [178]. XAI has 

emerged as a solution to the growing demand for transparency and 

trustworthiness in AI-driven cybersecurity systems. By enabling inter­ 

pretable decision-making, XAI provides insights into threat detection 

processes, reduces false positives, and improves incident response ef­ 

ficiency by 20–30 % [179,180]. When integrated into SOAR (Security 

Orchestration, Automation, and Response) platforms, XAI significantly 

streamlines workflows and accelerates threat mitigation by clarifying 

flagged anomalies and decisions [181,182].

For example, XAI-enabled models provide real-time explanations 

of detection outcomes and foster trust among the security analysts. 

They also highlight the XAI output and its ability to enhance the in­ 

terpretability and improve confidence in AI-driven threat classification 

results. Digital Twin technology has emerged as a promising inno­ 

vation in the field of cybersecurity, offering predictive counter-cyber 

threat measures along with real-time simulations of IT infrastructure 

and networks. Replicating the digital space of an organization enables 

security personnel to evaluate self-driven security system responses, pre­ 

dict system weaknesses, and fine-tune extemporaneous reaction plans 

without interfering with the actual system. Automatic surveillance, 

anomaly spotting, and simulated scenario-based threat identification 

and response actions undertaken by digital twins result in remarkable 

improvements in cyber resilience toward perpetually mutating cyber 

threats.

QC introduces unprecedented and complex challenges in cybersecu­ 

rity. With rapid advances in quantum systems, PQC has become a vital 

defense mechanism against quantum-enabled decryption attacks and 

for safeguarding sensitive data [183–185]. Emerging frameworks, such 

as lattice-based encryption, have demonstrated exceptional resilience 

to quantum threats, which is a critical milestone in quantum-resistant 

cybersecurity [186,187]. However, the transition to PQC protocols re­ 

quires global collaboration, comprehensive testing, and integration of 

quantum-safe standards to protect against future threats. QAI, which 

combines QC and AI, has groundbreaking potential in cybersecurity. 

Quantum-enhanced models, such as QSVMs and QNNs, have reduced 

detection times by 30 % and improved threat identification accuracy 

by 25 % [188,189]. By leveraging quantum capabilities, these models 

can process massive datasets in real time, enabling the prediction and 

prevention of zero-day vulnerabilities and advanced persistent threat 

(APT) issues that often evade traditional detection systems [190,191]. 

However, significant hurdles remain, including quantum hardware con­ 

straints, quantum state noise, and the need for seamless integration of 

hybrid quantum-classical frameworks [192,193]. Continued research on 

Computer Science Review 60 (2026) 100882 

18 



M. Khawar, S. Khalid, M.U. Rehman et al.

Table 11 

Emerging trends in AI-driven cybersecurity and their roles.

Ref. Trend Description Applications Key outcomes

[174–176,178] FL Decentralized training of AI models 

while preserving privacy. 

Enhancing intrusion detection 

systems in healthcare and IoT. 

Improved privacy-preserving 

threat detection. 

[179–182] XAI AI systems that provide transparency 

and interpretability. 

Real-time threat analysis and 

improved incident responses. 

Increased trust and reduced 

operational errors. 

[183,184,186,187] Quantum-Resistant AI AI integrated with post quantum 

cryptography techniques. 

Implementation of lattice-based 

encryption frameworks. 

Secure data transmission in 

quantum scenarios. 

[180–182] AI-Driven SOAR Systems AI-powered platforms that automate 

workflows and prioritize alerts.

Automated decision-making and 

incident response optimization. 

Faster and more efficient incident 

handling is achieved. 

[183,185–187] Post quantum 

Cryptography 

Cryptographic protocols resistant to 

quantum decryption.

Deployment of quantum-safe 

encryption protocols. 

Resilience against future quantum 

threats. 

[188–191] Quantum AI Quantum-enhanced AI for real-time 

threat detection.

Improved threat identification 

and APT mitigation. 

Enhanced prediction accuracy for 

complex threats. 

[179,180,189,190] AI-Enhanced Threat

Hunting

 ML-driven analysis of patterns to detect

threats proactively.

 Automation of logs and network 

traffic analyses.

Improved early threat detection, 

risk reduction

quantum resilience and hardware optimization is critical to unlocking 

the full potential of QAI-driven cybersecurity.

Despite these advancements, several gaps remain in the existing 

literature. The development of standardized, scalable, and quantum-

safe cryptographic protocols and the enhancement of explainable 

QAI systems are key priorities [194,195]. Ethical challenges, such 

as ensuring data privacy, mitigating algorithmic bias, and build­ 

ing trust in AI systems, must also be addressed to ensure fairness 

and accountability [196,197]. Adversarial vulnerability is a signif­ 

icant challenge. For example, adversarial perturbations have been 

shown to significantly reduce malware detection rates and bypass AI-

powered filters, thereby exposing critical weaknesses in current systems 

[167]. 

Issues in mitigating zero-day attacks remain alarming, as attackers 

utilize an unknown vacuum until developers can address it. Self-learning 

models developed for AI threat mitigation systems are powered by pre­ 

dictive anomaly detection capabilities to uncover identifications that 

suspiciously resemble indicators of zero-day exploitation. Security sys­ 

tems built on deep learning models can be trained using a combination 

of attack patterns, comprehensive threat intelligence, and real-time de­ 

fenses. Consequently, this approach significantly reduces the response 

time thresholds while concurrently diminishing the impact of zero-day 

attacks.

AI-driven cybersecurity will play an important role in shaping 

the future of cyber resilience by enabling predictive defense systems, 

real-time automation, and quantum-resilient frameworks. Organizations 

must embrace AI-driven security automation, actionable threat intelli­ 

gence, and quantum-safe standards to remain ahead of their adversaries. 

Collaboration among researchers, policymakers, and industry stake­ 

holders is essential for unlocking AI’s transformative potential. These 

efforts will result in adaptive and intelligent cybersecurity solutions that 

can safeguard the digital ecosystem against both classical and quan­ 

tum cyber threats. Table 11 shows the emerging trends in AI-driven 

cybersecurity and their roles.

AI-driven cybersecurity will play an important role in shaping the fu­ 

ture of cyber resilience by enabling predictive defense systems, real-time 

automation, and quantum-resilient frameworks. Organizations must em­ 

brace AI-driven security automation, actionable threat intelligence, and 

quantum-safe standards to remain ahead of adversaries. The ability to 

navigate emerging trends, such as quantum-resistant frameworks and 

XAI, will define the future of cybersecurity, ensuring that sensitive data 

remains protected in a quantum-powered world [198]. Collaboration 

among researchers, policymakers, and industry stakeholders is essential 

for unlocking AI’s transformative potential. These efforts will result in 

adaptive and intelligent cybersecurity solutions capable of safeguarding 

the digital ecosystem against both classical and quantum-powered cyber 

threats.

8 . Discussion

AI, including XAI and UAI, has revolutionized cybersecurity by en­ 

abling enhanced threat detection, prevention, and real-time incident 

response. By leveraging advanced ML and DL techniques, AI systems can 

detect anomalies with over 95 % accuracy, mitigate zero-day vulnera­ 

bilities, and dynamically respond to evolving threats. Cloud computing 

provides scalable solutions for real-time monitoring and incident man­ 

agement, whereas QC introduces unparalleled precision in handling 

high-dimensional data and advanced encryption challenges. For in­ 

stance, the QSVM and QNN reduced the detection times by 30 % and 

improved the accuracy by 25 %. Digital twins, which are virtual repli­ 

cas of systems, offer predictive insights into vulnerabilities, thereby 

enabling preemptive action. However, deploying AI-driven cyberse­ 

curity solutions faces critical challenges, including algorithmic bias, 

privacy concerns, and adversarial threats that exploit AI vulnerabili­ 

ties. Moreover, the computational intensity and complexity of these 

systems necessitate continuous innovation to ensure scalability and eth­ 

ical deployment. Despite these hurdles, AI-powered frameworks have 

demonstrated their capacity to create adaptive, multilayered defenses, 

automate incident responses, and enhance organizational resilience 

against the growing sophistication of cyber threats (Figs. 19 and 20).

Despite the significant advancements in AI-driven cybersecurity, sev­ 

eral critical challenges persist that hinder its widespread adoption and 

optimization . The computational intensity of AI models, particularly 

transformer- and quantum-based architectures, poses a significant chal­ 

lenge for scalability and real-time deployment. These models require 

substantial processing power and resources, making them less viable in 

distributed or resource-constrained environments, such as edge comput­ 

ing and IoT systems. AI systems often face issues related to algorithmic 

bias, which can result from imbalanced or non-representative training 

datasets, potentially leading to discriminatory outcomes. Furthermore, 

the vast amount of data required for training raises concerns regard­ 

ing privacy and data security issues. Adversarial attacks that exploit AI 

vulnerabilities exacerbate these challenges, highlighting the need for 

fairness-aware AI training and robust privacy-preserving frameworks. 

Although quantum computing offers groundbreaking opportunities in 

cybersecurity, its practical implementation is hindered by hardware in­ 

stability, noise in quantum states, and the complexity of integrating 

hybrid quantum-classical systems. These limitations prevent quantum AI 

from achieving its full potential in real-world applications. Ensuring that 

complex AI models, such as GANs and transformers, are interpretable 

remains a significant hurdle. Although XAI has made strides in provid­ 

ing transparency, the challenge lies in simplifying the decision-making 

processes of highly intricate models, without compromising their perfor­ 

mance. This lack of interpretability can impede trust and the adoption of 

critical cybersecurity operations. These challenges underscore the need 
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Fig. 19. Comparison of Classical AI Components Across Key Attributes.

for continued research and innovation in areas such as computational 

efficiency, ethical AI design, scalable quantum systems, and advanced 

explainability techniques. Addressing these obstacles is important to en­ 

sure that AI-driven cybersecurity solutions remain robust, adaptive, and 

trustworthy in the face of evolving cyber threats.

9 . SWOT analysis of the proposed framework 

9.1 . Synthesis of prevalent techniques

Building on the comparative overview in Table 9, it is evident 

that classical ML excels in interpretability and simplicity but often 

lacks robustness at scale. Deep learning methods achieve superior ac­ 

curacy but remain vulnerable to adversarial perturbations and are 

resource-intensive. Hybrid XAI approaches provide a trade-off between 

performance and transparency, whereas quantum-oriented techniques, 

although still nascent, show promise for future resilience against post-

quantum threats. This synthesis contextualizes the subsequent SWOT 

analysis by mapping the strengths and limitations of existing paradigms 

against our proposed integration. Taken together, these observations 

motivate a hybrid, deployment-aware view of quantum and classical 

components; the subsequent SWOT analysis and Section 10 translate this 

view into operational implications and near-term priorities.

9.2 . SWOT of the proposed framework

1. Strengths: The framework integrates AI, hybrid, and quantum 

techniques cohesively across intrusion detection, malware classi­ 

fication, and cryptographic resilience (Sections 4–7). By incorpo­ 

rating interpretable AI (e.g., SHAP, LIME) and privacy-preserving 

methods, such as federated learning, it balances performance with 

explainability and trustworthiness. As summarized in Table 9, 

this approach demonstrates adaptability across diverse applica­ 

tion domains, enhancing both technical robustness and ethical 

compliance.

2. Weaknesses: Despite promising results, the framework inherits 

certain limitations, including the high computational demands 

of deep generative models and quantum algorithms, as well as 

communication overhead in federated learning. Its reliance on 

large-scale, labeled datasets constrains scalability in underrep­ 

resented sectors, while hardware readiness for quantum models 

remains limited (Sections 5 and 6).

3. Opportunities: The integration of AI with post-quantum cryptog­

raphy and quantum-enhanced intrusion detection opens opportu­ 

nities to address future security challenges beyond the capacity 

of classical systems. In addition, emerging paradigms such as 
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Fig. 20. Comparison of Quantum AI Components Across Key Attributes.

digital twins, adaptive threat hunting, and strengthened ethical 

governance (Section 10) position the framework as a foundation 

for resilient, transparent, and regulation-aligned cybersecurity 

solutions for the future.

4. Threats: The rapid evolution of adversarial attacks, includ­

ing deepfake malware and data poisoning, poses long-term 

risks. Regulatory uncertainties surrounding AI governance and 

data-sharing frameworks may further delay its deployment. 

Moreover, dependence on the timelines of quantum hardware 

commercialization introduces external risks, as delays could hin­ 

der the practical realization of the proposed quantum–AI integra­ 

tions.

In addition to the narrative discussion, Table 12 presents a com­ 

pact view of the SWOT dimensions and highlights where integration 

opportunities emerge across the reviewed techniques (Fig. 21).

9.3 . Implications

The above analysis underscores the priorities outlined in Section 10, 

particularly the need for resource-efficient, privacy-preserving, and 

quantum-resilient deployments that maintain a balance between per­ 

formance, transparency, and governance.

10 . Future direction

The future of AI-driven cybersecurity lies in addressing pressing chal­ 

lenges while leveraging emerging technologies to ensure scalability, 

ethical compliance, and operational efficiency. For instance, a hybrid 

deployment could combine federated, explainable IDS at the edge with 

ML-KEM/ML-DSA-protected telemetry and a QML-assisted anomaly fil­ 

ter for high-volume DDoS streams, aligning security-by-design with 

decentralized trust requirements [30,31,151]. Recent studies offer com­ 

plementary perspectives that reinforce and contextualize this roadmap. 

Work on Digital Security by Design (DSbD) argues for security embedded 

as a product default and design principle, emphasizing secure-by-default 

configurations, radical transparency, and advanced encryption (includ­ 

ing homomorphic and quantum) [199]. Our directions on ethical AI and 

privacy (Section 10.2) operationalize these principles via fairness-aware 

learning, federated learning, and explainability, thereby aligning gov­ 

ernance aims with implementable pipelines. Likewise, the integrated 

cybersecurity perspective combining AI, blockchain, and cloud [200] 
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Table 12 

SWOT summary of the proposed AI-driven cybersecurity framework.

Aspect Key points Integration opportunities

Strengths Integration of AI, hybrid, and quantum techniques across intrusion detection, 

malware classification, and cryptographic resilience; use of XAI and federated 

learning for transparency and privacy. 

Layered defense that combines edge analytics, centralized orchestration, 

and quantum-ready cryptography for critical infrastructure.

Weaknesses High computational and communication cost for deep models, FL, and quantum 

routines; dependence on large labeled datasets; NISQ-era hardware limitations. 

Research on model compression, adaptive offloading, and hardware-aware 

design to keep costs manageable in real deployments. 

Opportunities Integration of AI with post-quantum cryptography, digital twins, adaptive threat 

hunting, and stronger ethical governance. 

Building end-to-end pipelines where PQC, QML, and XAI are combined 

with DevSecOps and policy frameworks for critical sectors. 

Threats Rapid evolution of adversarial attacks and poisoning strategies; regulatory 

uncertainty; dependency on quantum hardware timelines.

Continuous red teaming, regulatory monitoring, and staged migration 

plans that maintain secure fallbacks during technology transitions.

Fig. 21. SWOT analysis of the proposed AI-driven cybersecurity framework.

Table 13 

Research directions and their descriptions.

Research direction Description

Scalable AI for Real-Time Applications A major future direction is the development of resource-efficient AI models capable of seamlessly functioning in real-time, 

distributed, and edge-computing environments. Techniques such as model pruning, knowledge distillation, and FL should be prior

itized to optimize the scalability. This will enable AI systems to handle resource-constrained environments, such as IoT and smart 

cities, without compromising detection accuracy. The challenges include achieving high precision with reduced computational and 

energy requirements. 

­ 

Ethical AI and Privacy Preservation Ensuring fairness and data privacy in AI-driven cybersecurity systems are critical. Future research should focus on designing 

fairness-aware algorithms and employing privacy-preserving techniques, such as FL and differential privacy, to mitigate algo­ 

rithmic bias and protect sensitive data. These approaches foster trust in AI systems while addressing ethical concerns. Overcoming 

diverse dataset representation issues and safeguarding against adversarial attacks remain key challenges in this field. 

Advancing Quantum AI for Cybersecurity Quantum computing offers unparalleled opportunities to tackle complex cybersecurity challenges, such as high-dimensional data

processing and post-quantum encryption. Research must focus on stabilizing qubit technology, minimizing quantum noise, and 

developing hybrid quantum-classical algorithms for practical cybersecurity solutions. These advancements will enable the real

time detection of advanced persistent threats and secure communication systems. However, challenges such as limited qubit 

availability, scalability, and integration with classical systems must be addressed.

 

-

underscores decentralized trust and adaptive defenses; our focus on 

resource-efficient edge AI (Section 10.1) and quantum-resilient methods 

(Section 10.3) extends this integration with post-quantum readiness and 

hybrid quantum–AI detection methods. Together, these links situate our 

framework within a convergent trajectory toward holistic, future-proof 

cybersecurity. Three major areas were identified as key focus points.

10.1 . Resource-efficient AI for edge and distributed environments

A critical direction for future work is the development of resource-

efficient AI models that can be run in real-time distributed and edge 

computing settings without significant compromises in their predictive 

performance. This is particularly important for resource-constrained 

ecosystems, such as IoT networks and smart city infrastructures. 

Techniques such as model pruning, knowledge distillation, and FL 

should be prioritized to enhance their scalability and energy effi­ 

ciency. These strategies aim to enable AI systems to achieve high 

detection accuracy without the limitations of computation or power 

consumption. However, finding a balance between high precision and 

minimal resource usage remains a challenge that requires further 

innovation.
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Fig. 22. Future directions for AI-driven cybersecurity.

Fig. 23. Key time horizons defined for the future research roadmap.

10.2 . Ethical AI and data privacy

Trust in AI-driven cybersecurity systems can only be achieved if 

fairness is maintained and data privacy is ensured. Future research 

should focus on the development of fairness-aware algorithms and the 

feasibility of using techniques such as FL and differential privacy in 

privacy-preserving mechanisms. This will help avoid algorithmic biases 

and maintain sensitive user data security, thereby addressing ethical and 

regulatory concerns. In addition, providing solutions to the vectors of 

representation and adversarial vulnerabilities is key to inclusive and se­ 

cure systems. These solutions are part of the process of building a more 

transparent and equitable AI framework that can navigate the evolving 

landscape of cybersecurity threats.

10.3 . Advancing quantum computing for cybersecurity applications

Quantum computing is a frontier technology that provides trans­ 

formative capabilities, including high-dimensional data processing and 

post-quantum encryption. Research should focus on stabilizing qubit 

technologies, reducing quantum noise, and developing hybrid quantum-

classical algorithms that can be practically used to solve cyberse­ 

curity problems in the future. The real-time detection of advanced 

persistent threats and the development of secure communication sys­ 

tems are within the scope of these advancements. However, chal­ 

lenges such as limited qubit availability, scalability, and integration 

with classical systems must be overcome to unlock the full poten­ 

tial of quantum technologies for real-world cybersecurity applications. 

Table 13 lists the research directions and their descriptions, respec­ 

tively. In practice, these capabilities are most effective when staged 

through hybrid pipelines that reserve quantum subroutines for targeted 

sub-tasks and revert to classical controls under NISQ-era constraints 

(Fig. 22).

Fig. 23 shows the time horizons (e.g., Short-term, Mid-term, Long-

term) for the roadmap for future research.
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11 . Conclusion

The rapid evolution of cyber threats requires a fundamental shift in 

how security is designed and implemented, with AI-driven approaches 

now forming a cornerstone of modern cyber defense. This review 

examines the transformative role of AI across multiple domains, in­ 

cluding malware detection, phishing prevention, intrusion response, 

and anomaly analysis, while also highlighting the growing potential 

of quantum-enhanced techniques such as QCNNs and QSVMs. These 

technologies promise greater accuracy and scalability, but their real-

world deployment remains constrained by hardware limitations, noise 

resilience, and integration challenges.

At the same time, ethical and governance issues must be addressed. 

Algorithmic bias, transparency, and data privacy remain central to build­ 

ing trust in AI-enabled security systems. Explainable AI, fairness-aware 

algorithms, and privacy-preserving models represent practical path­ 

ways for ensuring accountability in complex environments such as IoT 

networks and smart cities.

Looking forward, future research must focus on resource-efficient, 

transparent, and ethically aligned AI models that can operate effectively 

in both classical and quantum-driven environments. Such advances will 

strengthen encryption, improve resilience against emerging threats, and 

extend protection to resource-constrained systems.

In conclusion, this study emphasizes the need for coordinated ef­ 

forts among researchers, policymakers, and industry stakeholders. By 

combining innovation with responsibility, AI and quantum computing 

can shape a cybersecurity ecosystem that is adaptive, trustworthy, and 

resilient in the face of rapidly evolving digital challenges.

Declaration of competing interest

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 

the work reported in this paper.

Acknowledgement

The authors extend their appreciation to the Deanship of Research 

and Graduate Studies at King Khalid University for funding this 

work through the Large Group Projectgs1 under grant number 

(RGP2/245/46).

Data availability

No data was used for the research described in the article. 

References

[1] Cybersecurity Ventures, Cybercrime to cost the world $8 trillion annually in 2023, 

Cybersecurity Ventures, 2023. https://cybersecurityventures.com/cybercrime-to-

cost-the-world-8-trillion-annually-in-2023/. 

[2] T. Council, 10.5 trillion reasons why we need a united response to cyber 

risk, Forbes Technology Council, Feb 2023. https://www.forbes.com/councils/ 

forbestechcouncil/2023/02/22/105-trillion-reasons-why-we-need-a-united-

response-to-cyber-risk/. 

[3] IBM Security, Cost of a data breach report 2023, Ponemon Institute, 2023. https: 

//www.IBM.com/reports/data-breach. 

[4] NortonLifeLock, 2023 predictions, NortonLifeLock Blog, 2023. https://us.norton.

com/blog/emerging-threats/2023-predictions. 

[5] M. Patel, et al., Security issues and solutions in IOT networks, Int. J. Comput. Sci. 

Inf. Secur. 12 (2024) 60–78.

[6] J. Farley, 2022 Cyber insurance market report, 2022, https://www.ajg.com/news-

and-insights/2022-cyber-insurance-market-report/ (accessed: 2025-Jan-19). 

[7] Cybersecurity Ventures, Cybercrime damage costs, 2023, https://

cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/ Online 

(accessed 2-Feb-2025). 

[8] CFO Magazine, Cybersecurity challenges in 2023, 2023, https://www. 

cfo.com/news/cfo-cybersecurity-strategies-how-to-protect-against-the-rising-

storm/654643/ Online (accessed 15-Dec-2024). 

[9] S. Kumar, S. Neduncheliyan, A Study on IDS for Smart Cities, Springer, Link, 2024.

[10] E. Kocyigit, et al., Genetic algorithms for phishing detection feature optimization, 

Appl. Sci. 14 (14) (2024) 6081.

[11] H. Naeem, F. Ullah, M.R. Naeem, S. Khalid, D. Vasan, Malware Detection in 

Industrial Internet of Things Based on Hybrid Image Visualization and Deep 

Learning Model, Ad Hoc Networks, Elsevier, 2020.

[12] S. Ahmad, et al., Deep learning models for cloud, edge, fog, and IOT computing 

paradigms: survey, recent advances, and future directions, Comput. Sci. Rev. 49 

(2023) 40, https://doi.org/10.1016/j.cosrev.2023.100568

[13] A. Hazra, et al., Fog Computing for next-generation internet of things: fundamen­ 

tal, state-of-the-art and research challenges, Comput. Sci. Rev. 48 (2023) 100549, 

https://doi.org/10.1016/j.cosrev.2023.100549

[14] M. Shahin, M. Maghanaki, A. Hosseinzadeh, F.F. Chen, Advancing network security 

in industrial IOT: a deep dive into ai-enabled intrusion detection systems, Adv. Eng. 

Inform. 60 (2024) 102685, https://doi.org/10.1016/j.aei.2024.102685

[15] J.K. Wong, M.H. Fong, Defending against adversarial attacks in ML based cyberse­ 

curity systems, Comput. Secur. 100 (2024) 32–41.

[16] T. Kotsiopoulos, et al., Machine learning and deep learning in smart manufacturing: 

the smart grid paradigm, Comput. Sci. Rev. 40 (2021) 100341, https://doi.org/10. 

1016/j.cosrev.2020.100341

[17] K. Shaukat, S. Luo, V. Varadharajan, I.A. Hameed, S. Chen, D. Liu, J. Li, 

Performance comparison and current challenges of using ML techniques in cyber­ 

security, Energies 13 (10) (2020) 2509.

[18] I. Makris, et al., A comprehensive survey of federated intrusion detectionsystems: 

techniques, challenges and solutions, Comput. Sci. Rev. 56 (2025) 100717.

[19] T. Berghout, M. Benbouzid, S.M. Muyeen, ML for cybersecurity in smart grids: a 

comprehensive review-based study on methods, solutions, and prospects, Int. J. 

Crit. Infrastruct. Prot. 39 (2022) 100547.

[20] J.K. Wong, M.H. Fong, Defending against adversarial attacks in ML based cyberse­ 

curity systems, Comput. & Secur. 100 (2024) 32–41.

[21] C. Ventures, Cybercrime Damage Costs, Cybersecurity Ventures, 2023.

[22] M. Ahmed, T. Khan, A. Rahman, Using Dbscan for density-based anomaly detection 

in network traffic, IEEE Access 9 (2021) 41.

[23] J. Li, J. He, W. Li, W. Fang, G. Yang, T. Li, Syndroid: an adaptive enhanced Android 

malware classification method based on ctgan-svm, Comput. Secur. 137 (2024) 

103604.

[24] Y. Liu, H. Fan, J. Zhao, J. Zhang, X. Yin, Efficient and generalized image-based 

CNN algorithm for multi-class malware detection, IEEE Access (2024).

[25] M.U. Rehman, M. Zita, M. Abrar, M. Kazim, S. Khalid, Zero-day attack detection 

system using autoencoders and isolation forest: an unsupervised machine learn­ 

ing approach, in: International Conference on Neural Computing for Advanced 

Applications, Springer, 2025, pp. 245–258.

[26] V.S. Rao, R. Balakrishna, Y.A.B. El-Ebiary, P. Thapar, K.A. Saravanan, S.R. Godla, 

AI driven anomaly detection in network traffic using hybrid Cnn-Gan, J. Adv. Inf. 

Technol. 15 (7) (2024) 886–895.

[27] N. Mohamed, Current trends in AI and ML for cybersecurity: a state-of-the-art 

survey, Cogent Eng. 10 (2) (2023) 2272358.

[28] C. Ravi, Quantum Computing and Cybersecurity: Systematic Review of Algorithms, 

Challenges, and Emerging Solutions, Springer Nature Singapore, Singapore, 2025, 

pp. 407–440.

[29] D.-T. Dam, T.-H. Tran, V.-P. Hoang, C.-K. Pham, T.-T. Hoang, A survey of post-

quantum cryptography: start of a new race, Cryptography 7 (3) (2023) 40.

[30] FIPS 203, Module-Lattice-Based Key-Encapsulation Mechanism Standard, Tech. 

Rep., National Institute of Standards and Technology, 2024, https://doi.org/10. 

6028/NIST.FIPS.203. https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf. 

[31] FIPS 204, Module-Lattice-Based Digital Signature Standard, Tech. Rep., National 

Institute of Standards and Technology, 2024, https://doi.org/10.6028/NIST.FIPS.

204. https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf. 

[32] FIPS 205, Stateless Hash-Based Digital Signature Standard, Tech. Rep., National 

Institute of Standards and Technology, 2024, https://doi.org/10.6028/NIST.FIPS.

205. https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.205.pdf. 

[33] NIST, NIST releases first 3 finalized post-quantum encryption standards, news 

release (updated 2025-02-04) (2024. https://www.nist.gov/news-events/news/ 

2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards. 

[34] D.-T. Dam, T.-H. Tran, V.-P. Hoang, C.-K. Pham, T.-T. Hoang, A survey of post-

quantum cryptography: start of a new race, Cryptography 7 (3) (2023) 40, https: 

//doi.org/10.3390/cryptography7030040

[35] A. Kukliansky, M. Orescanin, C. Bollmann, T. Huffmire, Network anomaly detec­ 

tion using quantum neural networks on noisy quantum computers, IEEE Trans. 

Quantum Eng. 5 (2024) 1–11.

[36] S. Wali, Y.A. Farrukh, I. Khan, Explainable AI and random forest based reliable 

intrusion detection system, Comput. Secur. (2025) 104542.

[37] B. Sharma, L. Sharma, C. Lal, S. Roy, Explainable artificial intelligence for intrusion 

detection in IOT networks: a deep learning based approach, Expert Syst. Appl. 238 

(2024) 121751.

[38] B. Mittelstadt, Principles alone cannot guarantee ethical AI, Nat. Mach. Intell. 1 

(11) (2019) 501–507.

[39] M. Ienca, R. Andorno, Towards new human rights in the age of Neuroscience and 

neurotechnology, Life Sci. Soc. Policy 13 (1) (2017) 5.

[40] J. Marchang, J. McDonald, S. Keishing, K. Zoughalian, R. Mawanda, C. Delhon-

Bugard, N. Bouillet, B. Sanders, Secure-by-design real-time internet of medical 

things architecture: E-health population monitoring (rtpm), Telecom 5 (3) (2024) 

609–631, https://doi.org/10.3390/telecom5030031

[41] T. Berghout, M. Benbouzid, S.M. Muyeen, Machine learning for cyersecurity in 

smart grids: a comprehensive review-based study on methods, solutions, and 

prospects, Int. J. Crit. Infrastruct. Prot. 38 (2022) 100547.

[42] S. Patel, R. Johnson, Visualization of phishing attacks in cybersecurity using t-sne 

clustering, Comput. Secur. 42 (2023) 104–117.

Computer Science Review 60 (2026) 100882 

24 

https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/
https://cybersecurityventures.com/cybercrime-to-cost-the-world-8-trillion-annually-in-2023/
https://www.forbes.com/councils/forbestechcouncil/2023/02/22/105-trillion-reasons-why-we-need-a-united-response-to-cyber-risk/
https://www.forbes.com/councils/forbestechcouncil/2023/02/22/105-trillion-reasons-why-we-need-a-united-response-to-cyber-risk/
https://www.forbes.com/councils/forbestechcouncil/2023/02/22/105-trillion-reasons-why-we-need-a-united-response-to-cyber-risk/
https://www.IBM.com/reports/data-breach
https://www.IBM.com/reports/data-breach
https://us.norton.com/blog/emerging-threats/2023-predictions
https://us.norton.com/blog/emerging-threats/2023-predictions
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0025
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0025
https://www.ajg.com/news-and-insights/2022-cyber-insurance-market-report/
https://www.ajg.com/news-and-insights/2022-cyber-insurance-market-report/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016/
https://www.cfo.com/news/cfo-cybersecurity-strategies-how-to-protect-against-the-rising-storm/654643/
https://www.cfo.com/news/cfo-cybersecurity-strategies-how-to-protect-against-the-rising-storm/654643/
https://www.cfo.com/news/cfo-cybersecurity-strategies-how-to-protect-against-the-rising-storm/654643/
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0045
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0050
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0050
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0055
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0055
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0055
https://doi.org/10.1016/j.cosrev.2023.100568
https://doi.org/10.1016/j.cosrev.2023.100549
https://doi.org/10.1016/j.aei.2024.102685
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0075
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0075
https://doi.org/10.1016/j.cosrev.2020.100341
https://doi.org/10.1016/j.cosrev.2020.100341
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0085
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0085
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0085
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0090
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0090
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0095
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0095
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0095
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0100
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0100
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0105
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0110
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0110
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0115
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0115
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0115
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0120
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0120
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0125
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0130
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0130
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0130
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0135
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0135
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0140
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0140
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0140
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0145
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0145
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.203
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.203.pdf
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.FIPS.204
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.204.pdf
https://doi.org/10.6028/NIST.FIPS.205
https://doi.org/10.6028/NIST.FIPS.205
https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.205.pdf
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://www.nist.gov/news-events/news/2024/08/nist-releases-first-3-finalized-post-quantum-encryption-standards
https://doi.org/10.3390/cryptography7030040
https://doi.org/10.3390/cryptography7030040
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0175
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0175
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0175
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0180
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0180
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0185
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0185
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0185
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0190
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0190
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0195
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0195
https://doi.org/10.3390/telecom5030031
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0205
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0205
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0205
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0210
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0210


M. Khawar, S. Khalid, M.U. Rehman et al.

[43] Y. Xu, L. Zhao, X. Fang, Real-time k-means clustering for anomaly detection in 

smart city networks, IEEE Trans. Smart Cities 12 (1) (2023) 85–94.

[44] R. Kumar, P. Kumar, R. Tripathi, G.P. Gupta, S. Garg, M.M. Hassan, A distributed in­ 

trusion detection system to detect ddos attacks in blockchain enabled IOT network, 

J. Parallel Distrib. Comput. 164 (2022) 55–68, elsevier.

[45] J. Chen, L. Zhao, M. Singh, Q-learning for real-time firewall adaptation in cyber 

defense, IEEE Trans. Cybersecurity 15 (1) (2023) 32–42.

[46] S. Kim, K. Lee, Dynamic cyber defense using reinforcement learning, J. Netw. 

Comput. Appl. 155 (2024) 1025–1038.

[47] T. Brown, et al., Game theory in cybersecurity: modeling attacker-defender scenar­ 

ios, in: Computers & Security, Vol. 113, Elsevier, 2023, pp. 234–245.

[48] R. Singh, H. Kumar, P. Mehta, Policy gradient methods for ddos defense strategy 

optimization, Int. J. Inf. Secur. 21 (2) (2024) 134–144.

[49] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, Application of Deep 

Reinforcement Learning to Intrusion Detection for Supervised Problems, Expert 

Systems with Applications, vol. 141, Elsevier, 2020, pp. 112963.

[50] M. Ozkan-Ozay, E. Akin, Ö. aslan, S. Kosunalp, T. Iliev, I. Stoyanov, I. Beloev, 

A comprehensive survey: evaluating the efficiency of artificial intelligence and 

machine learning techniques on cyber security solutions, IEEE Access (2024).

[51] S. Tiwari, et al., Deep learning in cybersecurity, IEEE Access 12 (2024) 42.

[52] L. Chen, T. Li, Z. Xu, Dark web threat monitoring using LDA, ACM Trans. Priv. 

Secur. 25 (2) (2023) 120–135.

[53] H. Zeng, W. Zhao, Y. Liu, Sentiment analysis for dark web forums, Cybersecurity 

in Dark Web Research 14 (1) (2022) 98–110.

[54] D. Adhikari, et al., Recent advances in anomaly detection in internet of things: 

status, challenges, and perspectives, Comput. Sci. Rev. 54 (2024) 100665, https: 

//doi.org/10.1016/j.cosrev.2024.100665

[55] M. Habib, A. Bashir, J. Shin, Deep learning for social engineering threats, IEEE 

Access 11 (2023) 21543–21557.

[56] T. Nguyen, P. Chen, K. Le, ML techniques in phishing detection: acomparative 

study, J. Cybersecur. Res. 9 (2) (2023) 135–150.

[57] Chen et al, Autoencoders in Anomaly Detection, Springer, Link, 2020.

[58] Ali et al, GANs for Adversarial Training, ACM Digital Library, 2023.

[59] Zhang et al, Transformer Models in Cybersecurity, IEEE Access, 2022.

[60] A. Brown, S. Green, Federated Learning for cybersecurity in IOT, in: Computers & 

Security, Vol. 117, Elsevier, 2023, pp. 1022–1035.

[61] D. White, E. Collins, N. Patel, Adversarial reinforcement learning in cybersecurity: 

threats and solutions, IEEE Secur. & Priv. 17 (5) (2019) 32–39.

[62] M. Alkawaz, H. Zhang, F. Wang, Phishing detection using bert-based models, IEEE 

Trans. Cybersecurity 17 (1) (2023) 100–112.

[63] S. Park, et al., Ethical challenges in AI for cybersecurity, Springer J. AI Ethics 12 

(2024) 567–580.

[64] K. Kumar, N. Sharma, P. Gupta, Transformer models for phishing detection in 

multilingual datasets, in: Computers & Security, Vol. 123, Elsevier, 2023, pp. 

200–214.

[65] G. Lavanya, H. Patel, R. Joshi, Hostile content detection in dark web forums using 

NLP, IEEE Access 12 (2024) 34560–34578.

[66] G. Lavanya, S. Patel, Social engineering detection using gpt-3 and graph analysis, 

J. Cybersecurity Adv. 9 (2) (2023) 215235.

[67] L. Perez, E. Brown, Multilingual NLP models for phishing detection, J. AI Secur. 20 

(1) (2024) 90–105.

[68] B. Zhang, F. Lee, M. Nguyen, Dark web monitoring using NLP and sentiment 

analysis, Springer J. Cybersecurity Res. 16 (4) (2023) 95–110.

[69] L. Perez, E. Brown, Multilingual NLP models for threat intelligence, in: S. C. A. 

Vol.(Ed.), 19, No, 2024, pp. 215–230.

[70] T. Nguyen, P. Chen, K. Le, Named entity recognition in cybersecurity threat 

detection, J. Netw. Secur. 15 (2023) 90–105.

[71] L. Patel, R. Singh, M. Raza, Text embedding techniques for malware classification, 

ACM Digital Library 16 (3) (2023) 78–92.

[72] J.E. Coyac-Torres, G. Sidorov, E. Aguirre-Anaya, G. Hernández-Oregón, 

Cyberattack detection in social network messages based on convolutional 

neural networks and NLP techniques, Mach. Learn. Knowl. Extr. 5 (3) (2023) 

1132–1148.

[73] R. Martin, T. Taylor, Adversarial attacks on NLP models in cyberse-curity applica­ 

tions, in: Computers & Security, Vol. 118, Elsevier, 2023, pp. 180–195.

[74] H. Wei, X. Zhu, M. Luo, Reinforcement learning for adaptive anomaly detection in 

cybersecurity logs, IEEE Access 12 (2023) 13570–13585.

[75] H. Abbass, K. Crockett, J. Garibaldi, A. Gegov, U. Kaymak, J.M.C. Sousa, Editorial: 

from explainable AI (XAI) to understandable AI (UAI), IEEE Trans. on AI 5 (9) 

(2024) 4310–4314, https://doi.org/10.1109/TAI.2024.3439048

[76] Z. Zhang, H. Al Hamadi, E. Damiani, C.Y. Yeun, F. Taher, Explainable artificial 

intelligence applications in cyber security: state-of-the-art in research, IEEE Access 

10 (2022) 93104–93139.

[77] A. Gupta, et al., Human-in-the-loop understandable AI for fraud detection, in: 

Computers & Security, Vol. 112, Elsevier, 2023, pp. 345–357.

[78] A. Kumar, et al., Shap-based explainability for IDS in cybersecurity, IEEE Trans. on 

Cybersecurity 10 (5) (2025) 1234–1245, 202144.

[79] R. Rastogi, S. Kumar, Using lime for phishing detection, IEEE Trans. Inf. Forensics 

Secur. 17 (2022) 765–778.

[80] J. Smith, K. Lee, Lrp in malware analysis, IEEE J. Malware Detect. 8 (3) (2021) 

45–50.

[81] J. Pang, et al., Surrogate models for explainable IDS, IEEE Trans. Dependable 

Secure Comput. 18 (4) (2020) 1728–1736.

[82] L. Zhu, et al., Attention-based models for network anomaly detection, IEEE Trans. 

Neural Netw. Learn. Syst. 32 (10) (2021) 4658–4669.

[83] S. Aghaei, A. Nourian, Relevance heatmaps for anomaly detection in cybersecurity, 

IEEE Trans. Netw. Serv. Manag. 19 (2022) 200–212.

[84] V. Bhatt, et al., Perturbation-based counterfactuals in fraud detection, IEEE Access 

9 (2021) 18753–18764.

[85] Y. Chen, et al., Sequence-to-sequence models for threat explanation, IEEE Trans. 

Inf. Forensics Secur. 17 (2022) 1089–1100.

[86] P. Mohan, K. Ramalingam, Topic modeling for cyber threat identification, IEEE 

Trans. Big Data 8 (3) (2022) 634–645.

[87] L. Wei, et al., Clustering-based anomaly detection in cybersecurity, IEEE Trans. 

Netw. Serv. Manag. 18 (2) (2021) 1127, 1139.

[88] J. Lee, K. Hu, Explainable autoencoders for user behavior anomaly detection, IEEE 

Trans. Neural Netw. Learn. Syst. 31 (11) (2020) 4681–4692.

[89] M. Schuld, F. Petruccione, Implementing a quantum support vector machine, 

Quantum Inf. Process. 16 (262) (2023) 45.

[90] D. Abreu, C.E. Rothenberg, Qml-ids: quantum ML intrusion detection system, IEEE 

Quantum Journal (2024).

[91] S. Rajasegarar, L. Pan, M. Hdaib, Quantum Deep Learning-Based Anomaly 

Detection for Enhanced Network Security, Quantum Machine Intelligence, 2024.

[92] S. Samad, Microsoft just built a quantum chip unlike anything before, [Online] 

(Feb. 2024. https://www.capacitymedia.com/article/microsoft-just-built-a-

quantum-chip-unlike-anything-before. 

[93] J. Ford, Applications of Quantum Support Vector Machines in Intrusion Detection 

Systems, IEEE Transactions on Quantum Engineering, 2024.

[94] T. Cultice, M.S.H. Onim, A. Giani, Anomaly Detection for Real-World Cyber-

Physical Security Using Quantum Hybrid Support Vector Machines, IEEE 

Transactions on Quantum Engineering, 2024.

[95] R. Hargrave, X. Zhao, A quantum approach to cybersecurity: enhancing network 

monitoring and threat mitigation, J. Quantum Comput. Secur. (2024).

[96] J. Zhao, S. Yang, Exploring quantum boltzmann machines for predictive cyberat­ 

tack detection, Quantum Inf. Secur. 22 (5) (2024) 1289–1301.

[97] L. Wang, T. Kim, QBMs for Cyberattack Prediction, Springer, Quantum Machine 

Intelligence, 2024.

[98] A. Tiwari, K. Gupta, Quantum decision trees for intrusion detection, in: Computers 

& Security, Vol. 123, Elsevier, 2023, pp. 56–67.

[99] J. Zhang, S. Lee, Quantum entropy for decision trees, J. Quantum Comput. 18 

(2024).

[100] C. Liu, R. Pan, Quantum KNN for malware detection, IEEE Quantum J. (2023).

[101] X. Gao, W. Zhou, Quantum Autoencoders for Malware Analysis, Springer Neural 

Processing Letters, 2024, p. 46.

[102] T. White, K. Zhao, Quantum NLP for cyber threat detection, J. Cyber Intell. (2024).

[103] Z. Liu, M. Gupta, Quantum Deep Learning for Advanced Threat Detection, IEEE 

Transactions on Cybersecurity, 2024.

[104] F. Chen, H. Lu, Quantum Neural Networks in Cybersecurity, Elsevier, AI Advances, 

2023.

[105] J. Smith, H. Brown, Quantum NLP in Phishing Detection, IEEE Transactions on 

Neural Networks, 2023.

[106] D. Wang, Challenges in Hybrid Quantum-Classical Systems, Springer, Quantum 

Reports, 2024.

[107] L. O’Brien, Scalable Quantum Algorithms for Cybersecurity, IEEE Quantum 

Engineering, 2024.

[108] MIT and Research Team, Realizing hybrid quantum systems for threat detection, 

in: MIT Symposium on Quantum Computing, 2024, 2024.

[109] J. Doe, A. Smith, Ai-based decision tree algorithms for IDS, J. Cybersecur. 12 (3) 

(2023) 123–135.

[110] X. Liu, B. Chen, Neural networks in real-time IDS, Comput. Netw. 115 (2022) 

49–61.

[111] R. Johnson, V. Patel, Reinforcement learning in intrusion detection, IEEE Secur. J. 

10 (5) (2021) 455–467.

[112] T. Nguyen, C. Brown, CNN for advanced malware detection, Cybersecurity Sci. 

Rev. 14 (5) (2021) 110–125.

[113] Y. Zhao, H. Wang, Hybrid AI in malware detection, Sec. Intell. 8 (7) (2020) 77–89.

[114] A. Gupta, AI sandboxes for malware behavior analysis, in: E. C. A. Vol. (Ed.), 21, 

Elsevier, 2023, pp. 223–240.

[115] R. Patel, K. Williams, RNN for phishing detection, Int. J. AI Cybersecurity 18 (1) 

(2023) 45–56.

[116] M. Green, S. Lee, Image-based phishing detection, Digit. Forensics J. 11 (4) (2021) 

303–315.

[117] L. Jones, R. Brown, AI in bot detection, Sec. Inform. 15 (9) (2023) 197–210.

[118] X. Wang, L. Zhang, Behavioral analysis for real-time bot detection, in: S. A. I. C. 

Vol. (Ed.), 19, No, 2022, pp. 131–144.

[119] J. Zhu, F. Li, J. Chen, A survey of blockchain, artificial intelligence, and edge com­ 

puting for web 3.0, Comput. Sci. Rev. 54 (2024) 100667, https://doi.org/10.1016/ 

j.cosrev.2024.100667

[120] P. Rodriguez, V. Patel, Pattern recognition in data exfiltration detection, IEEE 

Trans. Cybersecurity 17 (8) (2022) 89–102.

[121] J. Smith, A. Taylor, Ai-enabled biometric authentication systems, AI Adv. in Secur. 

10 (2023) 134–149.

[122] K. White, T. Zhao, Behavioral biometrics for passwordless authentication, ACM 

Sec. Comput. 15 (6) (2023) 276–290.

[123] P. Liu, W. Chen, Ai-driven behavioral threat analysis, Cyber Threat Intell. J. 16 (4) 

(2023) 185–198.

[124] H. Yang, J. Zhou, Reinforcement learning in behavioral threat monitoring, IEEE 

Forensic Systems 20 (9) (2022) 301–316.

[125] N. Gupta, D. Roy, Deep learning for SPAM and content detection, Email Secur. Q. 

7 (4) (2023) 56–74.

Computer Science Review 60 (2026) 100882 

25 

http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0215
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0215
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0220
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0220
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0220
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0225
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0225
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0230
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0230
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0235
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0235
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0240
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0240
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0245
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0245
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0245
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0250
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0250
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0250
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0255
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0260
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0260
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0265
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0265
https://doi.org/10.1016/j.cosrev.2024.100665
https://doi.org/10.1016/j.cosrev.2024.100665
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0275
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0275
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0280
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0280
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0285
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0290
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0295
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0300
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0300
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0305
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0305
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0310
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0310
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0315
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0315
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0320
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0320
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0320
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0325
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0325
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0330
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0330
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0335
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0335
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0340
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0340
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0345
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0345
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0350
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0350
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0355
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0355
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0360
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0360
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0360
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0360
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0365
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0365
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0370
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0370
https://doi.org/10.1109/TAI.2024.3439048
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0380
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0380
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0380
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0385
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0385
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0390
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0390
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0395
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0395
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0400
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0405
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0405
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0410
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0410
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0415
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0415
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0420
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0420
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0425
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0425
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0430
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0430
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0435
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0435
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0440
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0440
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0445
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0445
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0450
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0450
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0455
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0455
https://www.capacitymedia.com/article/microsoft-just-built-a-quantum-chip-unlike-anything-before
https://www.capacitymedia.com/article/microsoft-just-built-a-quantum-chip-unlike-anything-before
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0465
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0465
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0470
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0470
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0470
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0475
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0475
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0480
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0480
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0485
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0485
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0490
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0490
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0495
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0495
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0500
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0505
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0505
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0510
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0515
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0515
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0520
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0520
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0525
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0525
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0530
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0530
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0535
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0535
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0540
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0540
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0545
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0545
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0550
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0550
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0555
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0555
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0560
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0560
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0565
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0570
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0570
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0575
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0575
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0580
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0580
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0585
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0590
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0590
https://doi.org/10.1016/j.cosrev.2024.100667
https://doi.org/10.1016/j.cosrev.2024.100667
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0600
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0600
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0605
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0605
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0610
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0610
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0615
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0615
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0620
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0620
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0625
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0625


M. Khawar, S. Khalid, M.U. Rehman et al.

[126] S. O’Brien, R. King, AI tools in Nessus and Qualys vulnerability scanners, J. Softw. 

Secur. 19 (2022) 149–165.

[127] A. Singh, L. Khurana, Ai-augmented penetration testing, in: A. I. Springer (Ed.), 

Security Research, Vol. 22, 2, 48, 2023, pp. 201–218.

[128] H. Li, K. Zhang, Graph-based AI in network penetration, ACM Cyber Res. J. 18 (3) 

(2022) 67–82.

[129] C. Torres, D. Kim, Predictive vulnerability management using ML, Secur. Priv. Adv. 

20 (5) (2023) 213–228.

[130] S. Ahmed, J. Green, AI for proactive risk management, J. Netw. Secur. 25 (2023) 

156–172.

[131] T. Anderson, V. Patel, AI threat simulations for attack mapping, IEEE Threat Res. 

J. 15 (7) (2023) 90–108.

[132] P. Nguyen, Y. Zhao, Ai-powered attack graphs for threat mitigation, in: A. I. Elsevier 

(Ed.), Security Advances, vol. 23, 2022, pp. 45–58.

[133] X. Liang, Y. Xu, A novel framework to identify cybersecurity challenges and op­ 

portunities for organizational digital transformation in the cloud, Comput. Secur. 

151 (2025) 104339, https://doi.org/10.1016/j.cose.2025.104339

[134] D. Patel, L. Gupta, ML for IOT firmware analysis, IEEE IoT Cybersecurity Review 

14 (6) (2022) 212–225.

[135] T. Brown, K. Singh, AI in social engineering detection, ACM Soc. Threat J. 10 (2) 

(2023) 34–48.

[136] R. Lee, P. Green, Behavioral threat analysis in social engineering, Cybersecurity 

Awareness Research 15 (2023) 101–117.

[137] L. Smith, Q. Zhou, AI in static and dynamic code analysis, J. Appl. Secur. 17 (8) 

(2023) 231–244.

[138] H. Wei, S. Kim, AI for complex code vulnerability detection, Cybersecurity Res. 

Lett. 18 (2022) 156–169.

[139] A. Rodriguez, T. Kumar, AI for malware removal in incident response, J. AI 

Cybersecurity 12 (4) (2022) 201–213.

[140] J. Ford, M. Lee, AI recovery tools for incident response, Digit. Threat Intell. 21 

(2023) 89–102.

[141] F. Zhang, M. Liu, AI in automated recovery tools, IEEE Trans. Secur. Syst. 22 (3) 

(2023) 341–355.

[142] J. Kim, H. Chen, Deep learning in threat hunting, Springer J. Cyber Investig. 24 

(6) (2023) 201–220.

[143] G. Liu, S. Rahim, AI for threat documentation and incident analysis, ACM Forensics 

Q. 19 (2) (2023) 78–90.

[144] Y. Wang, S. White, Ai-based correlation of security logs, J. AI Secur. 21 (2022) 

67–80.

[145] N. Patel, T. Lee, AI for regulatory compliance in incident management, 

Cybersecurity Regul. J. 18 (5) (2023) 123–136.

[146] R. Parker, Y. Singh, Ai-enhanced threat triage in Soar, IEEE SOAR Intell. 16 (7) 

(2023) 289–304.

[147] P. Zhou, T. Green, AI for root cause analysis in incident response, in: E. C. I. Vol. 

(Ed.), 20, No, 2022, pp. 56–72.

[148] D. Allen, R. Patel, Intelligent AI reporting tools for post-incident analysis, J. Threat 

Intell. 19 (3) (2023) 245–261.

[149] M. Torres, K. Rahman, AI for security playbook Automation, IEEE Trans. Secur. 

Autom. 22 (1) (2023) 123–140.

[150] X. Liu, B. Chen, Neural network adaptations in real-time intrusion detection, 

Comput. Netw. 115 (2022) 49–61.

[151] T.H. Kim, S. Madhavi, Quantum intrusion detection system using outlier analysis, 

Sci. Rep. 14 (2024) 27114, https://doi.org/10.1038/s41598-024-78389-0

[152] M. Abd Elaziz, I.A. Fares, A. Dahou, M. Shrahili, Federated learning framework for 

IOT intrusion detection using TAB transformer and nature-inspired hyperparam­ 

eter optimization, Front. Big Data 8 (2025) https://doi.org/10.3389/fdata.2025. 

1526480

[153] M. Ashawa, N. Owoh, S. Hosseinzadeh, J. Osamor, Enhanced image-based mal­ 

ware classification using transformer-based convolutional neural networks (CNNS), 

Electronics 13 (20) (2024) 4081.

[154] K.M.M. Uddin, N. Biswas, S.T. Rikta, M. Nur-A-Alam, R. Mostafiz, Explainable 

machine learning for phishing site detection: a high-efficiency approach using 

boosting models and SHAP, The Journal of Engineering 2025 (1) (2025) e70110.

[155] A. Al-Saleh, A balanced communication-avoiding support vector machine decision 

tree method for smart intrusion detection systems, Sci. Rep. 13 (1) (2023) 9083.

[156] W. Lim, K.S.C. Yong, B.T. Lau, C.C.L. Tan, Future of generative adversarial net­ 

works (GAN) for anomaly detection in network security: a review, Comput. Secur. 

139 (2024) 103733, https://doi.org/10.1016/j.cose.2024.103733

[157] S. Sridevi, B. Indira, S. Geetha, et al., Unified hybrid quantum classical neural 

network framework for detecting distributed denial of service and Android mobile 

malware attacks, EPJ Quantum Technol. 12 (2025) 77, https://doi.org/10.1140/ 

epjqt/s40507-025-00380-z

[158] M.A. GonzÁlez de la Torre, L.H. Encinas, J.I.S. Garciá, Structural analysis of code-

based algorithms of the NIST post-quantum call, Log. J. IGPL (2024) https://doi. 

org/10.1093/jigpal/jzae071

[159] M. Omaei, Ã. Mogollón-Gutiérrez, J. Sancho, A review of digital twins and their 

application in cybersecurity based on artificial intelligence, Artif. Intell. Rev. 57 

(2024) 201, https://doi.org/10.1007/s10462-024-10805-3

[160] M. Shawkat, A. El-Desoky, Z.H. Ali, Blockchain and federated learning based on 

aggregation techniques for industrial IOT: a contemporary survey, Peer-to-Peer 

Netw. Appl. 18 (2025) 192, https://doi.org/10.1007/s12083-025-01991-0

[161] B. Borketey, Real-time fraud detection using machine learning, J. Data Anal. Inf. 

Process. 12 (2024) 189–209, https://doi.org/10.4236/jdaip.2024.122011

[162] B. Li, P. Qi, B. Liu, S. Di, J. Liu, J. Pei, J. Yi, B. Zhou, Trustworthy AI: from principles 

to practices, ACM Comput. Surv. 55 (9) (2023) 1–46, https://doi.org/10.1145/ 

3555803

[163] J. Ji, et al., AI alignment: a comprehensive survey, 2023. https://alignmentsurvey. 

com/uploads/AI-Alignment-A-Comprehensive-Survey.pdf., comprehensive survey 

of RICE objectives and alignment methods. 

[164] J. Buolamwini, T. Gebru, Gender shades: intersectional accuracy disparities in 

commercial AI systems, J. AI Ethics 14 (3) (2021) 25–35.

[165] M. Hardt, E. Price, N. Srebro, Fairness through awareness, in: Proceedings of 

NeurIPS, 12(2), 2020, pp. 25–38.

[166] C. Szegedy, W. Zaremba, I. Sutskever, Intriguing properties of neural networks in 

malware detection, Secur. Mach. Intell. 16 (4) (2022) 66–78.

[167] N. Carlini, D. Wagner, Adversarial examples in ML, IEEE Trans. Cybersecurity 9 

(1) (2021) 23–32.

[168] J. Smith, V. Patel, Privacy risks in ai-based cybersecurity applications, J. Priv. 

Technol. 11 (3) (2024) 45–67.

[169] R. Williams, S. Lee, Case study on AI privacy breaches, Digit. Priv. J. 8 (2) (2024) 

35–50.

[170] M. Abadi, M. Andersen, Federated learning for privacy preservation, Adv. Secure 

AI 18 (6) (2023) 77–91.

[171] M.T. Ribeiro, S. Singh, C. Guestrin, Why should i trust you? explaining the predic­ 

tions of any classifier, in: Proceedings of ACM Conference on AI Interpretability, 

15(5), 2022, pp. 92–108.

[172] I. Qabajeh, F. Thabtah, F. Chiclana, A recent review of conventional vs.automated 

cybersecurity anti-phishing techniques, Comput. Sci. Rev. 29 (2018) 44–55, https: 

//doi.org/10.1016/j.cosrev.2018.05.003

[173] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. 

Kohno, D. Song, Robust physical-world attacks on deep learning visual classifica­ 

tion, in: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 

2018, 2018.

[174] K. Sharma, A. Gupta, Privacy-preserving federated learning for cybersecurity, IEEE 

J. Data Prot. 20 (2024) 301–318.

[175] T. Liu, et al., Federated learning for real-time threat detection, Comput. Secur. 105 

(2024) 45–62.

[176] S. Wang, et al., Decentralized learning for secure data analysis, Springer J. AI Syst. 

13 (2024) 90–110.

[177] H. Liu, et al., Explainable AI in cybersecurity: models, techniques, and challenges, 

IEEE Access 12 (2024) 12345–12358.

[178] S. White, et al., Integrating AI and quantum computing for cybersecurity resilience, 

IEEE J. Emerg. Technol. 25 (5) (2024) 234–248.

[179] M. Kumar, et al., The role of explainable AI in enhancing cybersecurity, Sec. Priv. 

6 (2024) 51.

[180] M. Ur Rehman, M. Abrar, S. Khalid, M. Kazim, V.K. Singh, Metaheuristically en­ 

hanced ann-based intrusion detection system with explainable AI integration, in: 

2025 International Joint Conference on Neural Networks (IJCNN), 2025, pp. 1–8, 

https://doi.org/10.1109/IJCNN64981.2025.11229287

[181] J. Lee, et al., XAI for network traffic analysis, IEEE Trans. Cybersecurity 18 (2024) 

78–90.

[182] Y. Zhang, et al., Post-quantum cryptography: protecting data against quantum 

attacks, J. Cryptogr. Eng. 11 (2024) 52–68.

[183] T. Zhao, et al., Quantum-resistant algorithms for cybersecurity, IEEE Quantum 

Journal 15 (2024) 78–92.

[184] L. Smith, et al., The future of secure quantum cryptography, in: S. Q. S. Vol. (Ed.), 

9, Springer, 2023, pp. 100–120.

[185] R. Williams, et al., Transitioning to post-quantum encryption protocols, Comput. 

Secur. 105 (2024) 234–248.

[186] K. Lee, et al., Lattice-based cryptographic techniques, J. Quantum Secur. 6 (2024) 

200–215.

[187] M. Patel, et al., Multivariate algorithms in post-quantum security, IEEE Trans. 

Cryptogr. 18 (2024) 130–145.

[188] B. Wang, et al., Quantum neural networks for threat detection, IEEE Trans. 

Quantum Syst. 9 (2024) 45–58.

[189] S. Kim, et al., Applications of quantum boltzmann machines in cybersecurity, IEEE 

Access 19 (2024) 234–249.

[190] J. Park, et al., Quantum-enhanced malware detection, Int. J. Quantum AI 3 (2024) 

52.

[191] K. Sharma, et al., Hybrid quantum-classical systems for security, J. Quantum Syst. 

11 (2024) 150–165.

[192] A. Gupta, et al., Quantum threat intelligence systems, IEEE Quantum J. 7 (2024) 

210–223.

[193] H. Zhao, et al., Challenges and solutions in quantum-safe cryptography, Springer 

Cybersecurity Journal 25 (2024) 89–103.

[194] F. Torres, et al., Quantum threat resilience in cloud security, IEEE Syst. J. 18 (2024) 

150–162.

[195] P. Li, et al., Ethical considerations in quantum AI development, J. AI Ethics 12 

(2024) 234–247.

[196] C. Zhang, et al., Explainability challenges in quantum-enhanced systems, IEEE 

Quantum AI J. 6 (2024) 98–115.

[197] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. 

Kiddon, J. Konečnỳ, S. Mazzocchi, B. McMahan, et al., Towards federated learning 

at scale: system design, Proc. Mach. Learn. Syst. 1 (2019) 374–388.

[198] P. Brown, A. Miller, Ai-driven cyber defense: a path towards quantum resilient 

systems, in: S. C. R. Vol. (Ed.), 22, Springer, 2024, pp. 301–319.

[199] L. Palmarini, et al., Digital security by design, Palgrave Commun. (2024) https: 

//doi.org/10.1057/s41284-024-00435-3

[200] P. Radanliev, Integrated cybersecurity for Metaverse systems operating with arti­ 

ficial intelligence, blockchains, and cloud computing, Front. Blockchain 7 (2024) 

1359130, https://doi.org/10.3389/fbloc.2024.1359130

Computer Science Review 60 (2026) 100882 

26 

http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0630
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0630
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0635
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0635
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0640
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0640
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0645
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0645
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0650
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0650
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0655
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0655
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0660
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0660
https://doi.org/10.1016/j.cose.2025.104339
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0670
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0670
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0675
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0675
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0680
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0680
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0685
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0685
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0690
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0690
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0695
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0695
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0700
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0700
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0705
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0705
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0710
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0710
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0715
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0715
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0720
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0720
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0725
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0725
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0730
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0730
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0735
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0735
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0740
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0740
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0745
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0745
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0750
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0750
https://doi.org/10.1038/s41598-024-78389-0
https://doi.org/10.3389/fdata.2025.1526480
https://doi.org/10.3389/fdata.2025.1526480
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0765
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0765
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0765
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0770
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0770
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0770
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0775
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0775
https://doi.org/10.1016/j.cose.2024.103733
https://doi.org/10.1140/epjqt/s40507-025-00380-z
https://doi.org/10.1140/epjqt/s40507-025-00380-z
https://doi.org/10.1093/jigpal/jzae071
https://doi.org/10.1093/jigpal/jzae071
https://doi.org/10.1007/s10462-024-10805-3
https://doi.org/10.1007/s12083-025-01991-0
https://doi.org/10.4236/jdaip.2024.122011
https://doi.org/10.1145/3555803
https://doi.org/10.1145/3555803
https://alignmentsurvey.com/uploads/AI-Alignment-A-Comprehensive-Survey.pdf
https://alignmentsurvey.com/uploads/AI-Alignment-A-Comprehensive-Survey.pdf
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0820
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0820
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0825
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0825
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0830
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0830
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0835
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0835
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0840
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0840
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0845
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0845
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0850
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0850
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0855
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0855
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0855
https://doi.org/10.1016/j.cosrev.2018.05.003
https://doi.org/10.1016/j.cosrev.2018.05.003
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0865
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0865
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0865
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0865
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0870
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0870
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0875
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0875
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0880
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0880
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0885
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0885
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0890
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0890
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0895
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0895
https://doi.org/10.1109/IJCNN64981.2025.11229287
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0905
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0905
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0910
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0910
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0915
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0915
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0920
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0920
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0925
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0925
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0930
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0930
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0935
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0935
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0940
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0940
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0945
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0945
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0950
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0950
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0955
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0955
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0960
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0960
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0965
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0965
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0970
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0970
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0975
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0975
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0980
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0980
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0985
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0985
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0985
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0990
http://refhub.elsevier.com/S1574-0137(25)00158-3/sbr0990
https://doi.org/10.1057/s41284-024-00435-3
https://doi.org/10.1057/s41284-024-00435-3
https://doi.org/10.3389/fbloc.2024.1359130

	Shaping the future of cybersecurity: The convergence of AI, quantum computing, and ethical frameworks for a secure digital era
	1 Introduction
	2 Related work and theoretical foundations
	2.1 AI in cybersecurity
	2.2 Quantum computing and post quantum security
	2.3 Ethical AI and governance in security systems
	2.4 Gap and contribution of this review

	3 Research methodology
	3.1 Defining the scope of the review
	3.2 Search strategy
	3.3 Inclusion and exclusion criteria
	3.4 Content analysis and reporting
	3.5 Bibliographic analysis
	3.6 Methodological framework illustration

	4 AI-driven cybersecurity techniques
	4.1 ML and its applications in cybersecurity
	4.2 Deep learning applications in cybersecurity
	4.3 NLP and its applications in cybersecurity
	4.4 UAI and XAI in cybersecurity
	4.5 Introduction to QC in cybersecurity

	5 AI-driven cybersecurity applications
	5.1 Threat detection and prevention
	5.2 Vulnerability assessment
	5.3 Incident response
	5.4 Benchmark comparison with state-of-the-art

	6 Ethical considerations and challenges
	6.1 Bias in AI algorithms
	6.2 Adversarial attacks
	6.3 Privacy concerns
	6.4 Explainability and trust in AI security systems
	6.5 Standards-aligned ethical guardrails

	7 Emerging trends in AI-driven cybersecurity
	8 Discussion
	9 SWOT analysis of the proposed framework
	9.1 Synthesis of prevalent techniques
	9.2 SWOT of the proposed framework
	9.3 Implications

	10 Future direction
	10.1 Resource-efficient AI for edge and distributed environments
	10.2 Ethical AI and data privacy
	10.3 Advancing quantum computing for cybersecurity applications

	11 Conclusion
	Declaration of competing interest
	Acknowledgement
	Data availability
	References




