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ARTICLE INFO ABSTRACT

Keywords: The increasing sophistication and frequency of cyber threats have rendered conventional protection strategies
Cybersecurity inadequate. Artificial Intelligence (AI) is becoming central to modern cybersecurity, strengthening capabili-
Artificial Iﬂteuig‘ﬂ?ce ties in vulnerability assessment, malware detection, phishing prevention, intrusion detection, and deception
Quantum Computing technologies. Simultaneously, quantum computing introduces both challenges to classical cryptography and

Quantum Cybersecurity

Ethical Al opportunities for new forms of quantum-enhanced defenses. This review integrates advances in Al, quantum

methods, and ethical governance to provide an integrated perspective on the future of secure digital systems. It
evaluates state-of-the-art AI models, including explainable frameworks and quantum-inspired approaches, such
as Quantum Convolutional Neural Networks and Quantum Support Vector Machines, along with recent progress
in post-quantum cryptography. Ethical concerns, particularly bias, transparency, privacy, and accountability,
are examined as essential foundations for trustworthy cybersecurity design in system-on-chip and embedded AI
environments. In addition to technical developments, this study considers regulatory frameworks, governance
structures, and societal expectations, highlighting the need for responsible and adaptive approaches. A compara-
tive SWOT analysis outlines the strengths, limitations, and areas for cross-domain integration. Finally, a roadmap
of future research directions is presented, aligning Al-driven defenses, quantum resilience, and ethical safeguards
into flexible and reliable cybersecurity architectures. By linking the technological, ethical, and policy dimensions,
this review offers a consolidated foundation to guide the evolution of cybersecurity in a globally connected era.

1. Introduction States bearing the highest costs at $5.09 million. Ransomware, phishing,
and email-based malware responsible for 35 % of breaches continued to
impact 94 % of organizations worldwide. Meanwhile, cyber insurance
premiums in the U.S. spiked by 50 % in 2022, reflecting the mounting fi-
nancial strain on businesses [6,7]. With cybercrime growing at 15 % an-
nually and incidents projected to exceed 2.85 billion by 2025, the need
for Al-driven and proactive cybersecurity strategies has become critical
[8,9]. Fig. 1 illustrates the progression of global cybercrime costs and an-
nual growth rates. These data highlight the increasing sophistication and
frequency of cyber threats, emphasizing the urgent need for advanced
cybersecurity measures. Cybersecurity, a fundamental pillar of digital
resilience, safeguards systems, networks, and data from digital threats,

As digital technologies become deeply embedded in every aspect
of modern life, the rapid increase in the frequency and complexity of
cyber threats presents a growing challenge to global security and eco-
nomic resilience. Cyber threats surged by 72 % between 2021 and 2023,
with global cybercrime costs expected to reach an unprecedented $10.5
trillion annually by 2025, surpassing the GDP of many nations and ne-
cessitating massive investments in cybersecurity [1,2]. In 2023 alone,
over 343 million individuals were affected by over 2365 major attacks
targeting critical sectors such as healthcare, finance, and infrastructure
[3-5]. The average global cost of a data breach climbed to $4.45 mil-
lion and $4.88 million in 2023 and 2024, respectively, with the United
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Fig. 1. Trends in Global Cybercrime Costs, Annual Growth, and Reported Cyber Threat Incidents (2018-2025) [1]-[3].

unauthorized access, and damage. This ensures the integrity, confi-
dentiality, and availability of sensitive information while combating
increasingly sophisticated cyber threats [10]. The COVID-19 pandemic
accelerated this demand, driving rapid digitization across remote work,
e-commerce, and virtual collaboration, and exposing new vulnerabilities
for malicious actors to exploit [11,12]. Beyond traditional systems, cy-
bersecurity now encompasses emerging trends such as Industry 5.0, Web
3.0, blockchain networks, and the Metaverse, which open new avenues
for innovation while introducing unique risks. Technologies such as dig-
ital twins, which are virtual replicas of physical systems that facilitate
real-time simulations of cyber threats, and zero-trust architecture, which
operates on the principle of never trust and is always verified, have
emerged as essential tools for mitigating cybersecurity risks [13,14]. The
rise in digital currencies has further underscored the need for tighter cy-
bersecurity integration to secure sensitive transactions and prevent fraud
[15]. AI has revolutionized cybersecurity by enabling systems to detect
and respond to threats with unmatched speed and precision. Machine
Learning (ML) analyzes vast datasets in real-time to identify anoma-
lies and breaches, while Deep Learning (DL) uncovers vulnerabilities in
complex data such as malware behaviors and network traffic [16-18].
Natural Language Processing (NLP) strengthens defenses by identifying
phishing attempts and social engineering attacks on emails, social me-
dia, and the dark web. Emerging quantum AI (QAI) models, such as
quantum support vector machines (QSVM), enhance threat detection,
vulnerability assessment, and incident response, offering unparalleled
precision in addressing challenges like polymorphic malware and zero-
day vulnerabilities [19,20]. Explainable AI (XAI) and Understandable
Al (UAI) address a key challenge in cybersecurity by making Al-driven
decisions interpretable, ensuring trust in automated systems, and main-
taining adaptability to evolving threats [21]. The integration of cloud
computing and AI has transformed cybersecurity by offering scalable
real-time threat monitoring and response capabilities, which are critical
for securing dynamic environments [22]. Together, these technologies
enable cybersecurity frameworks to address challenges such as detecting
unknown malware, mitigating zero-day vulnerabilities, and enhanc-
ing real-time incident responses. These advancements collectively form
a robust multilayered defense framework capable of addressing the
complexities of modern cyber threats. Quantum computing (QC) holds
promise for mitigating challenges such as cracking advanced encryption
and identifying sophisticated threats. This study explores how AI and

Table 1
Research questions addressed in this study.
No. Research question
1 How is Al including XAI and UAI, transforming threat detection,
prevention, and incident response in cybersecurity?
2 What roles do cloud computing, quantum computing, and digital
twins play in enhancing cybersecurity frameworks?
3 What are the key challenges, limitations, and ethical issues in
deploying Al-driven cybersecurity solutions?
4 How do Al-powered frameworks create adaptive defenses against

malware, zero-day vulnerabilities, and automate incident responses?

QC can enhance threat detection, automate vulnerability assessments,
and improve incident response. By utilizing these technologies, cyberse-
curity systems can maintain resilience, adaptability, and preparedness
to address the continuously evolving threat landscapes. Table 1 shows
the research questions addressed in this study.

A more detailed analysis of prior work and how this review differs
from existing efforts is presented in Section 2.

2. Related work and theoretical foundations

This section presents a structured synthesis of the foundational re-
search underpinning the convergence of Al, QC, and ethical frameworks
in the field of cybersecurity. While many prior studies have examined
each domain in isolation, few have addressed their integration in a way
that reflects both technical feasibility and socio-ethical implications. Our
review addresses this gap by contextualizing the existing literature and
aligning it with future-oriented cybersecurity design principles.

2.1. Al 'in cybersecurity

The application of Al, particularly ML and DL, has been extensively
studied in cybersecurity contexts, such as malware detection, phishing
prevention, and intrusion detection systems. For instance, CNNs and
SVMs have achieved high accuracy in classifying malware and malicious
URLs, often exceeding 90 % on benchmark datasets [23,24]. Ensemble
models and hybrid techniques, including autoencoders and GANs, have
been applied to detect zero-day attacks and sophisticated anomalies
in network traffic [25,26]. However, as discussed by [27], most prior
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studies focused primarily on detection accuracy, often at the expense
of explainability and adaptability. Moreover, current reviews typically
overlook emerging integrations with quantum machine learning (QML)
and regulatory compliance. A unified framework that embeds Al solu-
tions within scalable, explainable, and policy-compliant cybersecurity
architectures is required.

2.2. Quantum computing and post quantum security

Quantum computing introduces both disruptive threats and novel de-
fensive capabilities in cybersecurity. Studies such as [28,29] emphasize
that traditional encryption schemes, such as RSA and ECC, are vulnera-
ble to quantum algorithms such as Shor’s and Grover’s. In August 2024,
NIST finalized the first post-quantum cryptography standards ML-KEM
for key encapsulation (FIPS 203), ML-DSA for lattice-based digital signa-
tures (FIPS 204), and SLH-DSA for stateless hash-based signatures (FIPS
205) providing concrete migration targets for quantum-resilient archi-
tectures [30-33]. Recent surveys consolidate algorithmic choices and
deployment trade-offs across sectors, offering guidance on implementa-
tion constraints and transition planning [34]. In parallel, QML models
like QSVMs, VQCs, and QCNNs have emerged as promising tools for
tasks like anomaly detection and classification under uncertainty [35].
Despite this potential, much of the existing literature is either theoret-
ical or fragmented. Many surveys on PQC and QML, such as that by
Dam et al. [29], provide taxonomies or performance benchmarks but do
not explore how quantum resilience can be coupled with explainability,
governance, or Al-based threat mitigation pipelines.

2.3. Ethical Al and governance in security systems

With the growing adoption of Al in safety-critical environments,
ethical concerns such as bias, opacity, data misuse, and a lack of ac-
countability have gained prominence. Frameworks for XAI and UAI have
been proposed to make opaque models interpretable. Methods such
as SHAP, LIME, and attention visualization have been embedded into
IDS and malware classifiers to enhance trust and transparency [36,37].
However, as Mittelstadt et al. [38] argue, many Al ethics frameworks are
principle-based and lack actionable pathways for their integration into
technical systems. Similarly, Ienca et al. [39] cautioned that ethics in
digital systems must be operationalized through institutional, legal, and
human rights frameworks. Recent work by Marchang et al. [40] pre-
sented a secure-by-design real-time IoMT architecture for e-health. It
emphasizes encryption, key management, and reliable communication
between wearable devices and central servers. This shows how ethi-
cal and privacy considerations can be built directly into system design,
which is especially important when technology affects health and per-
sonal information. Without such integrated approaches, safeguards risk
remaining fragmented rather than forming a consistent foundation for
cybersecurity.

2.4. Gap and contribution of this review

To the best of our knowledge, no prior review has holistically
integrated the following dimensions.

« Classical and quantum AI models for proactive cybersecurity,

« Explainable, understandable, and ethically governed Al techniques,

« Regulatory frameworks such as GDPR, NIST, and ISO/IEC 27001,

« Design considerations for scalability, real-time operation, and trust-
worthiness.

This review fills this gap by offering a transdisciplinary synthesis that
bridges algorithmic capability, quantum readiness, and ethical gover-
nance. Our analysis provides a foundation for the next generation of
cybersecurity systems that are not only technically resilient but also
trustworthy and aligned with human values.
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Table 2
Search queries used in various databases for the study.

Database Search query

Web of Science (((((TS = (Quantum Computing)) OR TS = (Quantum AI))) AND
TS =(Quantum Cryptography)) OR TS = (Cybersecurity)) OR

TS = (Post quantum Security)

Scopus TITLE-ABS-KEY ((“Quantum AI” OR “Quantum Computing” OR
“Quantum Cryptography”) AND (“Cybersecurity” OR “Intrusion
Detection” OR “Post quantum Security”) ) AND (LIMIT-TO
(DOCTYPE, “ar” ) OR LIMIT-TO (DOCTYPE, “cp” ) )

Google Scholar (in title:“Quantum AI” OR in title:“Quantum Computing” OR

“Quantum Cryptography”) AND (in title:“Cybersecurity” OR
“Intrusion Detection” OR in title:“Post quantum Security”)

3. Research methodology

This section outlines the comprehensive framework of this review,
which investigates the transformative role of Al and its quantum ad-
vancements in cybersecurity. The methodology is based on the following
five subsections to ensure rigor, reproducibility, and alignment with the
review objectives.

3.1. Defining the scope of the review

The objective of this review is to examine the evolution of Al tech-
niques from classical approaches to quantum methodologies to address
complex cybersecurity challenges. This emphasizes their application in
real-time threat detection, adaptive systems, and robust defense strate-
gies. The increasing frequency and sophistication of cyber threats have
exposed the limitations of conventional defenses. This review highlights
Al's role in addressing these gaps and progress toward quantum-powered
solutions. Studies targeting the challenges of critical infrastructure,
IoT systems, and high-dimensional data analysis have been priori-
tized. This review begins with AI methodologies and then transitions
to quantum-integrated approaches, reflecting a paradigm shift in cyber-
security innovation. Quantum advancements have potential; however,
issues such as scalability, computational costs, and limited practical
deployment remain key areas of exploration.

3.2. Search strategy

To systematically identify, collect, and organize relevant studies for
an exhaustive and unbiased review, we queried the Web of Science
(WoS), Scopus, and Google Scholar using the query shown in Table 2.

The methodology included databases and sources such as IEEE
Xplore, Web of Science, Elsevier, Springer, the ACM Digital Library, and
Scopus. EndNote was employed for bibliographic management, whereas
systematic tools such as Zotero ensured traceability and organization.
Complementary strategies, such as backward and forward citation track-
ing and expert recommendations, ensured the inclusion of influential
studies.

3.3. Inclusion and exclusion criteria

A robust framework was established for selecting studies that aligned
with the focus of the review and minimized bias. The inclusion criteria
were studies applying Al in cybersecurity contexts, peer-reviewed arti-
cles, and systematic reviews emphasizing practical implementation. The
exclusion criteria were theoretical studies without experimental valida-
tion or real-world application, articles unrelated to cybersecurity, and
a lack of methodological rigor. Two reviewers independently screened
the abstracts and full texts and resolved conflicts through consensus. The
study selection process is summarized in the PRISMA flow diagram in
Fig. 2, which details the records identified, screened, excluded, and in-
cluded. Specific examples of key studies and their contributions include
Al-driven frameworks for phishing detection and QML applications for
zero-day threat analyses.
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Fig. 2. Study selection process in PRISMA.

3.4. Content analysis and reporting

To synthesize the findings from the included studies, their rele-
vance to the review objectives was emphasized. Narrative synthesis
using thematic coding with NVivo was employed to uncover the role
of Al and quantum computing in quantum cybersecurity. Performance
metrics, such as accuracy and computational efficiency, were aggre-
gated using RevMan for the meta-analysis. Studies have been catego-
rized into classical AI methods and quantum techniques, respectively.
Emerging trends, limitations, and future research directions are also
discussed. Bar charts were created to illustrate the distribution of the
literature.

3.5. Bibliographic analysis

To provide a macroscopic view of the literature, we offer insights
into trends and thematic distributions. Quantum-focused cybersecurity
research has grown significantly post-2020, with major contributions
from publishers such as IEEE, Elsevier, Springer, and ACM, each con-
tributing a notable share. Fig. 3 depicts the trends in publications and
publishers throughout the years.

3.6. Methodological framework illustration

To enhance the transparency and reproducibility of our review pro-
cess, Fig. 4 illustrates the methodological workflow adopted in this
study. This framework follows a PRISMA-aligned protocol and links each
research question to its corresponding analysis phase.

1. RQ1 and RQ4 guided the extraction and synthesis of Al and hy-
brid quantum-AI techniques across intrusion detection, malware
classification, and adaptive response systems.

2. RQ2 framed the analysis of architectural integrations including
digital twins, federated learning, and quantum resilience.

3. RQ3 guided the thematic coding of ethical, regulatory, and
governance-related insights, particularly in bias mitigation, XAI,
and FL-enhanced privacy.

—Ah
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Fig. 4. Methodological framework adopted for this review (aligned with PRISMA
and thematic synthesis).

The inclusion of tools such as Zotero, NVivo, and RevMan facilitated nar-
rative synthesis, while quantitative elements (e.g., detection accuracy
and false positive rates) were aggregated into structured comparison
tables. The final structure enabled the alignment of review findings with
future research and policy roadmaps.

Fig. 5 shows an article-structured framework that first describes
Al-driven cybersecurity techniques and then applies them to threat
detection and prevention. Quantum Al has been further explored, con-
sidering its ethical dilemmas and challenges. This section discusses the
advantages and disadvantages of this technology, concluding with future
directions for the development of Al and quantum Al in cybersecurity.

4. Al-driven cybersecurity techniques

Al particularly ML, has revolutionized cybersecurity by addressing
the increasing complexity and sophistication of cyberattacks.

4.1. ML and its applications in cybersecurity

ML, a subset of Al, has emerged as a cornerstone of cybersecu-
rity, transforming the manner in which organizations address evolving
threats [17]. Unlike traditional rule-based security systems. ML employs
data-driven approaches to analyze massive datasets, identify patterns,
and predict potential threats in real time, offering adaptive and scalable
defenses against sophisticated cyberattacks.

Supervised learning, which relies on labeled datasets, has demon-
strated exceptional efficacy in detecting known threats. Algorithms such
as Support Vector Machines (SVMs) and Convolutional Neural Networks
(CNNs) have achieved malware detection accuracies exceeding 92 % by
identifying novel malware through file characteristic analysis [18,19].
Naive Bayes classifiers are widely utilized in spam filtering, categoriz-
ing emails with precision rates exceeding 90 % [20]. Similarly, Decision
Trees (DT) and Artificial Neural Networks (ANNs) classify network ac-
tivities as benign or malicious, achieving detection accuracies ranging
from 88 % to 95 % [21,22]. In phishing detection, supervised mod-
els analyze URLs, reducing false positives and increasing recall rates
to 93 %. Intrusion Detection Systems leverage anomaly detection and

Computer Science Review 60 (2026) 100882
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Fig. 5. Article flow diagram.

Principal Component Analysis (PCA) to identify deviations from nor-
mal behavior in cybersecurity [41] (Fig. 6). Despite their success, these
methods depend heavily on large, high-quality labeled datasets, which
is a significant limitation in real-world applications of these methods.

Unsupervised learning addresses scenarios with limited or no la-
beled data, focusing on anomaly detection and user behavior analysis.
Algorithms such as k-means, DBSCAN, and hierarchical clustering have
proven effective, achieving an accuracy of over 90 % in identifying
network traffic deviations. Fig. 7 shows an intrusion detection system
that leverages anomaly detection methods and PCA to analyze pat-
terns, classify behaviors, and flag irregularities that are indicative of
potential cybersecurity threats [42,43]. Dimensionality reduction tech-
niques, such as PCA and t-distributed Stochastic Neighbor Embedding,
enhance anomaly detection by simplifying high-dimensional data with-
out losing critical information [44,45]. These methods are particularly
valuable for detecting insider threats and zero-day vulnerabilities, where
traditional detection mechanisms often fail. For instance, clustering al-
gorithms applied to user behavior analysis have identified anomalous
patterns linked to insider threats with remarkable precision [46].

Reinforcement learning (RL), on the other hand, introduces dy-
namic adaptability, enabling systems to learn optimal defense strategies
through trial-and-error interactions within simulated environments.
RL-based models, such as Deep Q-Networks (DQNs), have optimized
automated incident responses, achieving malware detection rates of
96 % while reducing response times by 30 % [47,48]. Game-theoretic
RL approaches, which combine adversarial modeling with reinforce-
ment strategies, have demonstrated a 25 % improvement in resource
allocation during Distributed Denial-of-Service (DDoS) attacks, thereby
enhancing resilience in cyber-physical systems [49,50]. Despite their po-
tential, RL methods face challenges, such as high computational costs
and sensitivity to hyperparameter tuning, underscoring the need for fur-
ther research and refinement. Although ML has significantly advanced
cybersecurity, its challenges persist. Adversarial attacks exploit the vul-
nerabilities of ML models and generate polymorphic malware to avoid
detection [51].

Algorithmic bias, data scarcity, and privacy concerns further
complicate the deployment of ML in cybersecurity applications. To
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address these challenges, researchers have proposed hybrid models
that integrate supervised and unsupervised reinforcement learning ap-
proaches. For example, hybrid intrusion detection systems (IDS) that
combine CNNs and k-means clustering have achieved 97 % accuracy in
anomaly detection, showcasing the potential of multifaceted solutions
[52]. Ethical considerations and regulatory compliance are critical for
ensuring responsible Al implementation in cybersecurity [53,54].

The integration of ML into cybersecurity has marked a paradigm
shift in threat detection, vulnerability assessments, and incident re-
sponses. Using supervised, unsupervised, and reinforcement learning
techniques, ML-driven cybersecurity solutions promise enhanced re-
silience and adaptability, paving the way for robust defenses against
an increasingly complex threat landscape. Despite its potential, Al in cy-
bersecurity presents challenges such as data quality, algorithmic bias,
and privacy concerns. The dual-use nature of Al further complicates its
role, as cybercriminals exploit Al for malicious purposes [14].

As organizations adopt Al-driven cybersecurity, ethical issues such as
algorithmic bias and privacy remain critical [47]. Effective implementa-
tion requires ongoing refinement of algorithms, robust governance, and
compliance with regulations [48,49]. The integration of Al in cyber-
security continues to evolve, promising enhanced defenses against the
dynamic landscape of cyber threats while requiring vigilance to address
its complexities [50]. Table 3 presents a comparative performance of the
cybersecurity models using ML techniques.

4.2. Deep learning applications in cybersecurity

DL, a key subset of AI and ML, is modeled based on the neu-
ral structure of the human brain. It processes extensive datasets us-
ing multilayered artificial neural networks, enabling the identification

of intricate patterns. Among their architectures, Feedforward Neural
Networks (FNNs) are fundamental for structured data, whereas CNNs
excel in spatial pattern recognition, which is crucial for image-based
malware detection [51]. Recurrent Neural Networks (RNNs) and Long
Short-Term Memory networks (LSTMs) specialize in sequential data
analysis, whereas transformers use attention mechanisms for superior
performance in text, threat intelligence, and time-series data analysis.
Fig. 8 shows the architecture model for predicting cybersecurity threats
in I[oT using DL [53,54]. In cybersecurity, DL has transformed the way
organizations detect, analyze, and mitigate cyber threats. FNNs achieve
80-90 % accuracy in anomaly detection tasks, proving effective in static
datasets, but struggling with time-sensitive data [52]. CNNs have rev-
olutionized malware detection by converting executables into visual
formats, achieving accuracy rates of up to 98 % for identifying malicious
patterns [53]. RNNs and LSTMs, designed for sequential data, handle
network traffic analysis and intrusion detection with 95-96 % accuracy,
whereas Gated Recurrent Units (GRUs) offer computational efficiency in
real-time monitoring, achieving 90-95 % accuracy in threat detection
[54,55].

In addition, unsupervised models, such as autoencoders, detect
anomalies by minimizing reconstruction errors, and [56] Generative
Adversarial Networks (GANs) enhance robustness by synthesizing adver-
sarial data for training [57]. Recent advancements in transformer-based
architectures have demonstrated remarkable performance in real-time
threat intelligence and phishing detection, achieving accuracies of
90-95 % in complex environments [54,58,59].

Despite these groundbreaking advancements, significant challenges
remain in the application of DL to cybersecurity. High-performance
models, such as CNNs and transformers, require substantial
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Table 3
Comparative performance table for cybersecurity models using ML techniques.
Ref. ML Method Techniques Application Area Key Strengths Results Limitations
[17,18] Supervised SVM Malware detection High accuracy in analyzing Malware detection accuracy > Requires large labeled datasets
Learning file characteristics 92 %
[17,18] CNNs Malware detection High precision in feature Malware detection accuracy > Requires computational
extraction 92 % resources for large-scale
training
[20] NB Spam filtering Simple, efficient, high Spam filtering precision > 90 % Assumes feature indedepen-
precision dence, limiting real-world
applications
[21,22] DT Network activity Easy interpretability Detection accuracy: 88-95 % Susceptible to over fitting
classification
[21,22] ANNs Network activity Learns complex patterns Detection accuracy: 88-95 % Requires significant computa-
classification tional resources and labeled
data
[41] SPD Phishing URL detection High recall rates Recall rates: 93 %); reduces false Dependent on labeled phishing
positives datasets
[42,43] Unsupervised k-Means Anomaly detection Effective for clustering >90 % accuracy in detecting Sensitive to outliers and initial
Learning network traffic deviations centroid selection
[42,43] DBSCAN User behavior analysis Detects irregular patterns High precision in insider threat High computational complexity
detection for large datasets
[44] HC Zero-day vulnerability Captures hierarchical data Effective in identifying anoma- Lacks scalability for large-scale
detection relationships lous patterns linked to zero-day datasets
vulnerabilities
[44,45] PCA Dimensionality reduction Simplifies high-dimensional Enhanced detection accuracy; May lose critical information
for anomaly detection data reduces false positives during dimenmensionality
reduction
[27] t-SNE Visualization of phishing Simplifies high-dimensional Effective clustering and High computational cost;
attacks data anomaly detection challenging hyperparameter
tuning
[41,42] Reinforcement DQNs Automated incident Effective in high- Malware detection 96 % accu- High computational cost
Learning response dimensional environments racy; response time reduction:
30 %
[43,44] PG DDoS resilience Direct modeling of 25 % improvement in resource Unstable training; sensitive to
adversarial settings allocation for DDoS resilience hyperparameters
[21,22] Q-Learning Adaptive security systems Simple, fast learning for 80-95 % threat reduction in Struggles with large
smaller state spaces adaptive access control state/action spaces
[47,48] G-T RL Adversarial modeling Combines game theory with Improves resilience in ad- High complexity; requires

reinforcement strategies

versarial cybersecurity

accurate adversary modeling

environments

computational resources, limiting their scalability in real-time
applications, such as DDoS attack detection. Data preprocessing
and quality control are critical bottlenecks because inconsistencies
can degrade the model’s performance. Moreover, models require
frequent retraining to adapt to the constantly evolving nature of cyber
threats, such as polymorphic malware and zero-day vulnerabilities.
Ethical concerns, including biases in training datasets and issues with
interpretability, particularly in complex architectures such as GANs,
hinder transparency and trust [57,60]. Furthermore, integrating DL
solutions into legacy and industrial control systems (ICS) presents com-
patibility challenges, underscoring the need for adaptable and scalable
frameworks [56,59]. Future research must focus on addressing these
challenges by developing interpretable DL models, scalable solutions
for real-time processing, and robust algorithms that adapt seamlessly to
evolving cyberthreat landscapes. Innovations such as flexible FL (fFL)
and hybrid DL models are promising directions for overcoming these
barriers while maintaining the efficacy and reliability of cybersecurity
systems [61,62]. Table 4 presents a comparative performance table for
the cybersecurity models that use DL techniques.

4.3. NLP and its applications in cybersecurity

NLP has become an indispensable tool in cybersecurity, address-
ing a diverse range of threats, from phishing to dark web monitoring
and social engineering attacks. As cyber threats increasingly leverage
language-based vulnerabilities, NLP models enable robust detection,
analysis, and mitigation strategies by extracting meaningful patterns

from textual data. Recent advancements between 2020 and 2024 have
significantly enhanced the role of NLP in cybersecurity, achieving
remarkable accuracy rates and improving real-time threat intelligence.

Phishing detection remains a primary application of NLP, with
transformer-based models such as BERT and RoBERTa demonstrat-
ing exceptional results. Recent studies have achieved 96 % accuracy
in phishing detection across multilingual datasets by analyzing text-
based phishing indicators in emails and URLs. These approaches reduce
false positives and improve scalability in global scenarios [63,64].
Phishing-related work combining GPT-3 and graph-based NLP tech-
niques achieved F1 scores of 92 %, demonstrating their effectiveness
in countering nuanced social engineering attacks [65,66].

Dark Web monitoring has also benefited significantly from NLP ad-
vancements. Sentiment analysis and topic modeling were employed to
identify and analyze high-risk conversations in dark web forums. Recent
research has demonstrated an accuracy of 89 % in detecting malicious
discussions using topic-based classifiers, thereby enabling proactive
threat flagging. Sentiment-based classifiers further improve hostile con-
tent detection by more than 30 % by leveraging advanced transformer
models [67-69]. Named Entity Recognition (NER) is another impact-
ful NLP application in cybersecurity. It facilitates the identification of
critical entities, such as malware signatures and suspicious domains,
from unstructured text data. Studies have reported recall and precision
rates exceeding 90 % when extracting actionable insights from incident
reports and malware descriptions. Embedding techniques such as GloVe
and Word2Vec have enhanced the classification accuracy to over 93 %
and streamlined threat identification [66,70,71].
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Table 4
Comparative performance table for cybersecurity models using DL techniques.
Ref. Model Primary use Accu (%) Strengths Limitations
[51] FNN Intrusion Detection 80-90 Simple architecture High computational resource demand; Requires extensive
data preprocessing
[53] CNN Malware Detection 90-98 Spatial data analysis High computational resource demand; Requires extensive
data preprocessing
[54] RNN Network Traffic Analysis 85-95 Temporal data processing High computational resource demand; Requires extensive
data preprocessing
[56] LSTM Intrusion Detection 90-96 Long-term dependencies Needs frequent retraining to handle emerging threats
[53] GRU Real-Time Threat Detection 90-95 Efficient temporal processing Needs frequent retraining to handle emerging threats
[57] Autoencoder Anomaly Detection 85-92 Unsupervised learning Challenges in integrating with existing systems
[59] GAN Data Augmentation Varies Synthetic data generation Potential biases in model outputs due to data imbalances
[60] Transformer Threat Intelligence 90-95 Long-range dependencies Limited transparency of decision-making; High

computational resource demand

Botnet detection on social media platforms has emerged as a critical
area in which NLP analyzes linguistic behavior and interaction patterns
to identify malicious entities. Sentiment-based botnet detection achieves
90 % accuracy, enabling the early identification of coordinated bot ac-
tivities [52,53]. This capability addresses the growing prevalence of
misinformation campaigns driven by automated bots. Fig. 9 illustrates
the workflow for cyberattack detection using NLP, showcasing processes
such as data gathering, preprocessing, vectorization, and classification,
thus ensuring a structured approach to threat identification [72].

Advancements in multilingual NLP models have proven instrumental
in addressing global cybersecurity challenges. Models such as multilin-
gual BERT have demonstrated an accuracy of over 92 % in detecting
threats across languages, facilitating effective cross-border threat intel-
ligence [69]. This development aids organizations in optimizing their
cybersecurity frameworks in diverse linguistic environments. The chal-
lenges posed by adversarial attacks on NLP models have also been
studied extensively. Adversarial learning techniques, designed to expose
and counter vulnerabilities in NLP-driven systems, improve robustness
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Table 5
Applications and challenges in cybersecurity using NLP in Al techniques.
Ref. Application Method Outcomes Limitations
[63,64] Phishing Detection BERT, RoBERTa 95 %+ accuracy in phishing False positives in multilingual scenarios; High
classification computational demands
[67,68] Dark Web Threat Monitoring LDA, Word Embeddings 30 % improvement in Scalability issues with large datasets;
identifying risks Interpretability of topic modeling
[65,66] Social Engineering Detection GPT-3, XLNet 92 % F1 score in detection High resource demand for transformer models
[70,71] Insider Threat Detection BERT-based Sentiment Analysis 25 % sensitivity increase Bias in sentiment analysis models; Limited training
data
[69,72] Malware Clustering Word2Vec, FastText 93 %+ accuracy in malware High dimensionality in embeddings; Challenges in
family clustering updating models
[64,73] Anomaly Detection Reinforcement Learning 90 % accuracy in anomaly Slow adaptation to rapidly evolving threats
detection
[72,74] Multilingual Threat Multilingual BERT, Machine High accuracy in multilingual Translation inaccuracies for low-resource
Detection Translation phishing detection languages
[71,72] Spam and Bot Detection Ensemble Learning, Sentiment 91 % spam detection rate High false positive rate for nuanced content
Analysis
[69,74] DNS Traffic Analysis Word Embeddings 94 % accuracy in detecting Limited real-time performance; Requires extensive

malicious DNS

preprocessing

by up to 25 % in real-world scenarios [73,74]. These enhancements are
crucial for securing systems against manipulative inputs in high-stakes
domains, such as malware detection and fraud prevention.

Adaptive anomaly detection represents another frontier, where re-
inforcement learning combined with NLP techniques achieves 90 %
accuracy in detecting anomalies from cybersecurity logs. These models
dynamically adjust to evolving threats and provide organizations with
powerful tools for real-time pattern monitoring [64,72,73].

Despite these successes, several challenges persist in integrating
NLP into cybersecurity. The high demand for computational resources
hinders scalability, particularly for transformer-based models. Ethical
concerns, such as biases introduced during training, affect fairness
and reliability. Furthermore, interpretability remains a critical limita-
tion because black-box NLP architectures often obscure decision-making
processes. Addressing these issues through explainability, optimized ar-
chitectures, and ethical guidelines is vital to unlocking the full potential
of NLP in cybersecurity.

This growing body of research underscores the transformative im-
pact of NLP in securing cyberspace and offering sophisticated solutions
for phishing detection, dark web monitoring, botnet identification and
anomaly detection. As cybersecurity threats evolve, NLP remains a
cornerstone technology that drives innovation and resilience against
digital adversaries. Table 5 shows the applications and challenges of
cybersecurity using NLP in Al techniques.

4.4. UAI and XAI in cybersecurity

Fig. 10 shows the understanding process as UAI focuses on simpli-
fying Al outputs, making them accessible and interpretable even for
non-experts, fostering improved decision-making in Security Operations

Centers (SOCs) [75] and illustrating how the process of understanding
flows. In contrast, XAl provides actionable insights into the how and why
of Al predictions, allowing analysts to trust and validate automated rec-
ommendations. XAI is designed to make AI systems interpretable and
transparent, thereby addressing the black box nature of traditional Al
By providing clear explanations for its outputs, XAI builds trust and en-
sures that decisions are understandable, especially in critical domains
such as cybersecurity, where insight into Al-driven recommendations is
essential. In cybersecurity, XAl enhances threat detection and response
by providing interpretable insights into complex datasets, such as net-
work traffic, user behavior, and system logs. Unlike standard Al, which
may flag threats without context, XAl explains why a threat is identified,
thereby aiding analysts in understanding anomalies and attack vectors.

It also streamlines workflows by prioritizing incidents and summariz-
ing vast security reports, enabling quicker and more informed decision-
making in Security Operations Centers (SOCs). Moreover, XAl excels at
analyzing unstructured data, such as dark web forums and threat in-
telligence feeds, uncovering emerging vulnerabilities, and facilitating
proactive defense strategies.

In cybersecurity, where decisions directly impact organizational re-
silience, these technologies play complementary roles by bridging the
gap between automation and human oversight to enable rapid responses
to threats.

The application of XAI methods, such as SHapley Additive
Explanations (SHAP) and Local Interpretable Model-Agnostic
Explanations (LIME), have demonstrated impressive results in en-
hancing interpretability. For example, SHAP identifies critical features
influencing IDS outputs, achieving a 25 % reduction in false positives
by pinpointing attributes such as packet size and IP addresses. Fig. 11
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highlights the XAI trends in cybersecurity, showcasing its growing role Integrating XAI applications into cybersecurity is crucial for enhanc-
in improving threat detection. For example, SHAP identifies critical ing transparency and decision-making. Fig. 12 illustrates the application
features influencing IDS outputs, achieving a 25 % reduction in false of XAI techniques in cybersecurity workflows, highlighting their roles
positives by pinpointing attributes such as packet size and IP addresses. in intrusion detection, malware analysis and phishing prevention.
Security companies employing LIME in phishing detection tools have Visualization techniques, such as relevance heatmaps and attention
achieved a 93 % detection rate for identifying phishing attacks by mechanisms, further enhance XAI’s role of XAI by highlighting essen-
evaluating the inherent features of an email, such as sender details, tial regions in network logs and user activity data that contribute to
URLs integrated into the content, and message intent. SHAP-based anomaly detection [78,79].
interpretability techniques have been applied to Security Information Rule-based methods, including decision trees and rule extraction
and Event Management (SIEM) platforms, such as Splunk and IBM techniques, are integral to achieving explainability in cybersecurity
QRadar, to rate anomaly severity and enhance SOC analyst response systems. Decision trees generate clear and interpretable rules for iden-
times by 40 % [76,77]. By combining these XAI techniques, security tifying anomalies in system logs, as demonstrated by Kim et al., where
teams can increase Al explainability and trust in automated defense, the precision rates exceeded 92 % for intrusion detection frameworks
enabling regulatory compliance and ethical AI decision-making. [80]. Kurniadi et al. simplified deep neural network outputs through

10
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rule extraction and aligned model predictions with cybersecurity poli-
cies to improve malware detection accuracy [81]. Surrogate models,
such as decision-tree-based simplifications of complex IDS outputs,
have also proven effective in making DL models interpretable without
compromising the detection rates [82].

Counterfactual explanation techniques have emerged as critical tools
for exploring the predictive behavior of Al systems. Perturbation-based
methods generate alternative scenarios to understand prediction shifts,
such as distinguishing between legitimate and fraudulent activities
in fraud detection systems [83]. Counterfactual sets further facilitate
user behavior analytics by adjusting security thresholds and identifying
suspicious anomalies with accuracy rates exceeding 90 % [84].

In addition, text-based explanation models play an increasingly im-
portant role in cybersecurity, particularly in phishing detection and
threat analysis. For instance, sequence-to-sequence models provide con-
textual explanations for phishing attempts by analyzing textual patterns
in phishing emails, achieving up to 95 % classification accuracy [85].
Similarly, topic modeling techniques such as LDA have been employed
in threat reports to uncover emerging attack vectors and inform proac-
tive defense strategies [86]. Autoencoders with explainability layers also
contribute to identifying deviations in user behavior, thereby further en-
hancing anomaly detection systems in real-time environments [87,88].
Overall, by combining UAI’s focus on simplicity with XAI’s advanced
techniques, cybersecurity systems can achieve unprecedented clarity
and trustworthiness. Feature attribution methods, such as SHAP, and
visual aids, such as heatmaps, ensure that Al-driven security frame-
works are both effective and transparent. This dual approach allows
organizations to proactively detect threats, respond decisively, and build
confidence in Al-based security systems as cyber threats evolve. Table 6
lists the XAI techniques used in cybersecurity.

4.5. Introduction to QC in cybersecurity

QC is based on two fundamental principles: superposition and en-
tanglement. Superposition allows quantum bits (qubits) to represent
multiple states simultaneously, thereby enabling parallel computations
that significantly exceed the capabilities of classical binary systems.
Entanglement creates deep correlations between qubits, allowing com-
plex operations to be performed efficiently. In cybersecurity, these
properties facilitate faster threat detection, high-dimensional data pro-
cessing, and more accurate anomaly identification, thereby transforming
the capabilities of ML models.
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Traditional AI approaches, including SVMs, Neural Networks
(NNs), and Boltzmann Machines (BMs), have limitations in handling
large-scale, real-time data due to their sequential processing and high
computational costs. Quantum-enhanced ML techniques, such as QSM,
Quantum Neural Networks (QNNs), and Quantum Boltzmann Machines
(QBMs), overcome these challenges by leveraging quantum properties
for speed, scalability, and accuracy [89-91].

The latest developments in quantum computing have placed it in a
position where it can significantly transform the field of cybersecurity.
Microsoft’s Majorana 1 chip, a scalable topological quantum processor
with one million qubits, has considerable potential for achieving fault
tolerance. Topological qubits are superior to conventional qubits be-
cause they have higher reliability and reduced error rates, making them
ideal for large-scale quantum applications. The Majorana 1 chip features
a self-correcting topological superconductor, a new material that stabi-
lizes Majorana particles and enables self-correcting qubits with built-in
error correction. While traditional qubits are usually said to balance a
pencil on their tips, Majorana qubits are more like self-stabilizing devices
that actively resist environmental interference.

In contrast, Google’s Willow chip implements a more conventional
approach that employs a superconducting qubit architecture that utilizes
Josephson junctions and quantum error-correcting codes to preserve
quantum coherence [92]. Although high-fidelity operations with quan-
tum supremacy milestones have been achieved with Willow, it suffers
from significant constraints, as it requires constant error correction,
which becomes more difficult on larger scales. To circumvent these is-
sues, Microsoft’s topological qubits attempt to attain hardware-based
error mitigation, and therefore maximize the elimination of detrimental
redundancy. Compared with current supercomputers, a 1 million qubit
quantum computer would compute a million times faster, with profound
implications for cryptography, drug research, and weather forecasting.
Although mass deployment is still distant, breakthroughs in topological
qubits (Majorana 1) and quantum error correction (Willow) signal the
need for post-quantum cryptography (PQC) to safeguard digital security
against future quantum attacks.

In QML-IDS, quantum preprocessing is combined with classical ma-
chine learning to increase the detection of cybersecurity insider threats.
As illustrated in Fig. 13, the preprocessing of classical information com-
prises several steps: quantum state mapping and circuit transportation.
The noise in the circuit is reduced, and quantum operations are opti-
mized for real-world applications during circuit transportation. Qs and
kernel methods were used to categorize the high-dimensional threats.
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Ref. Al technique Description Application Benefits Impact

[75,771] SHAP Highlights feature importance using co- Intrusion Detection Enhanced Trust Reduces false positives by
operative game theory to interpret model Systems 25 %
predictions.

[77,78] LIME Provides localized explanations by approx- Phishing detection & Reduced False Positives Improved email filtering and
imating model behavior around specific authorization systems decision-making accuracy
inputs.

[80,83] LRP Decomposes neural network predictions Malware Analysis Real-Time Threat Insight Speeds up malware detection
into layer-specific contributions of input analysis by 30 %
features.

[80,81] ABH Leverages attention mechanisms to prior- Network anomaly Adaptability to Attacks Enables real-time anomaly
itize critical data points contributing to detection systems detection with focused
model decisions. attention

[80,85] Rule-Based Decision Generates interpretable rules for anomaly Log analysis cybersecurity Enhanced Trust Achieves 92 % precision in

Trees detection by simplifying model outputs. framework anomaly detection

[81,84] Rule Extraction Simplifies DL predictions into explicit rules Malware detection systems Regulatory Compliance Aligns predictions with
for malware detection. cybersecurity policies

[82,83] Counterfactual Generates alternative scenarios to explore Fraud detection and user Adaptability to Attacks Achieves 90 % accuracy in

Explanations prediction behavior and explain anomalies. analytics fraud detection adjustments

[82,85] Surrogate Models Simplifies complex models by approximat- Intrusion Detection Regulatory Compliance Provides transparent audits
ing behavior using interpretable substitutes Systems without accuracy loss
like decision trees.

[85,871] Auto-encoders with Highlights unusual patterns through Anomaly detection in Real-Time Threat Insight Improves anomaly

Explainability reconstruction error analysis in user cybersecurity logs understanding
behaviors.

[76,86] Topic Modeling (LDA) Identifies key trends and topics in textual Threat intelligence and Enhanced Trust Identifies emerging
data for threat reports. incident reporting cyberattack vectors

effectively

[85,88] Sequence-to-Sequence Generates contextual explanations for Phishing detection in Reduced False Positives Achieves over 95 % phishing

Models textual threats such as phishing emails. textual systems classification accuracy

[76,83] Perturbation-Based Examines prediction shifts by introducing Anomaly detection and Adaptability to Attacks Enhances model robustness

Methods modified input features under adversarial anomaly identification against adversarial attacks
settings.

[77,79] Attention Heatmaps Visualizes critical attention regions of data Behavioral analysis for Threat Insight Speeds up real-time threat

influencing predictions.
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Qs and the QCNN-based QSVM Qs enhance real-time anomaly detection.
Some studies have shown that QSVM can achieve high classification ac-
curacy with a QSVC QS of 92 % on the NSL KDD dataset. This level of
accuracy is higher than that of the classical SVM, with an accuracy of
87 % [90]. The classification of post-processing involves the assessment
of network alerts and ensures that a correct classification is performed.
This allows QML IDS to perform better than traditional systems.
Therefore, future cybersecurity strategies must prioritize quantum-
resistant encryption to protect sensitive data from quantum decryption
threats. Additionally, hybrid quantum-classical security models that
integrate quantum AI while maintaining the robustness of classical
cryptography are essential. Quantum threat simulations can further
enhance cyber defense by leveraging Al-driven quantum models to
predict and mitigate emerging threats. As quantum computing ad-
vances, immediate research into fault tolerance, secure frameworks,
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and adversarial quantum risks is crucial for ensuring a resilient cy-
bersecurity landscape. Table 7 compares classical and QAI techniques,
showcasing their advancements and contributions to the field of
cybersecurity.

As shown in Table 7, the QSVM demonstrates a clear enhancement
over classical SVMs by utilizing quantum kernels to map data into ex-
ponentially higher-dimensional feature spaces. This quantum property
improves classification boundaries, enabling the QSVM to achieve 30 %
greater accuracy in malware detection tasks, where classical SVMs of-
ten struggle [89,91]. The disparities between the QAE with One-Class
SVM and QAE with Quantum Random Forests, as shown in Fig. 14 illus-
trate the efficacy of quantum feature reduction. The QAE increases class
separability while compressing high-dimensional cybersecurity data to
improve anomaly detection. In the first framework, QAE enables the
QSVM to classify cyberthreat patterns more adeptly than the classical
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Technique  Classical Approach Quantum Approach Key Equation Quantum Advantages
SVM Uses kernel functions to map data QSVM leverages quantum kernels for Classical: f(x) = sign (X (a;y,K(x;, x))) Improves malware detection by
into higher-dimensional spaces for efficient, high-dimensional feature Quantum: K(x;,x;) = [{¢(x;)[¢(x ,))lz 30 % and handles overlapping
classification. mapping. classes efficiently [89,91,93].
NN Sequential weight updates via QNN exploits quantum states for Classical: h; = o (Y (w;x,) +b j) V= Reduces training time by 40 %
backpropagation. parallel optimization of weights. o (T ih)+ ¢;) Quantum: [Woupu) = while achieving 95 % anomaly
UO)|Winpue) detection accuracy [90,94,95].
BM Classical probabilistic models QBMs leverage quantum tunneling to Classical: E(v, h) = — ¥ (a;v;) — X(b;h;) — Achieves 25 % faster conver-
use iterative sampling for pattern accelerate their convergence. Y(w;;h;) Quantum: H = Y (h;07) + gence for predicting cyberattack
recognition. PACAL ) trends [96,97].
DT Uses entropy-based splitting for Quantum DT enhances entropy mea- Classical: 1G = H(D) — ), (% H (D,)) Achieves 92 % precision in
decision making. sures for faster and more accurate rule Quantum: [Wyecision) = 2(¢;1(x;))) anomaly detection with re-
generation. duced computational overhead
[98,99].
KNN Computes the distances between data Quantum KNN employs ampli- Classical: d(x,x;) = 1/ X (x; = x;; ) Enables real-time anomaly clas-
points for classification in the feature tude encoding for faster distance Quantum: dy(x,x,) = 1 — [(w()ly(x)) 2 sification in high-dimensional
space. computations. datasets [99,100].
RF Classical random forests are used as QF integrates quantum-enhanced Classical: § = % Y f,(x) Quantum: Provides faster classification
decision trees in classification. decision analysis for optimization. Wiorest) = 2(¢ 1wy (%)) with more robust decision
boundaries [101,102].
ML-IDS Traditional IDS systems require manual QML-IDS automates the detection using Classical: P(y|X) = % Quantum: Improves detection accuracy

tuning and feature extraction.

quantum-enhanced anomaly detection
models.

Po(y1X) = Ky WIU@)¢(X))

by 20 % while reducing false
positives [93,94].

Dimensionality

Network traffic reduction via PCA => input to B
flow number of Qubits [¢:)
information available (4) Quantum

Encode

states

Quantum Encode

0
.

Encoder 'E' ‘

One-class SVM

(a) Framework 1: Union of QAE and one-class SVM.

Encode

states

Quantum Random Forest

Quantum Encoder
a)

B

gy

Dimensionality
Network traffic reduction via PCA => input to
flow number of Qubits
information available (4) Quantum Ot

[N

|

Encoder 'E'

|

[

PR |

[ aversging

(b) Framework 2: Union of QAE and quantum random forest.

Dimensionality
reduction via PCA =>
number of Qubits
available (4)

Network traffic
flow
information

o) &

Encode

Quantum Encoder

input to
Quantum
states

7

= L

Encoder

=

- Normal

L

> Normal

L Anomaly

Fig. 14. Comparative figures showcasing QSVM’s ability to efficiently resolve overlapping classes showcase two frameworks: (a) Quantum Autoencoders (QAE)
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SVM, which means that the QSVM can identify a greater number of
patterns.

In the second, more advanced framework, intrusion detection is re-
fined in real-world scenarios using data-encoded QAE and improved
decision boundaries within Quantum Random Forests. These QAE for-
est models show heightened performance in intrusion detection systems
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through greater accuracy in identifying diverse patterns of attacks
compared to classical QAE models [93].

By reducing the dimensionality using PCA and encoding the inputs
into quantum states, these frameworks achieve superior anomaly clas-
sification. Quantum forests (QF) leverage quantum-enhanced random
trees to optimize decision-making and scale efficiently for high-volume
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cybersecurity data [91,93,95]. Similarly, QNNs use quantum states
to enable the parallel processing of weights during optimization, sig-
nificantly reducing the training time by 40 % while maintaining
95 % detection accuracy in anomaly identification tasks [96,97]. This
makes QNNs highly suitable for adaptive intrusion detection systems
in which real-time threat responses are critical. On the probabilistic
side, Quantum Boltzmann Machines (QBMs) leverage quantum tunnel-
ing to explore energy states efficiently and achieve faster convergence
when predicting attack trends and forecasting vulnerabilities [98]. Other
quantum-enhanced models include Quantum Decision Trees (QDTs),
which integrate quantum entropy measures to improve rule generation
and decision-making precision to 92 % in large-scale anomaly detection
frameworks [100,104]. Quantum K-Nearest Neighbors (QKNN) meth-
ods accelerate distance calculations using amplitude encoding, achiev-
ing efficient real-time classification of anomalies in high-dimensional
cybersecurity spaces [100,103].

In QDL, QCNNs and Quantum Autoencoders optimize feature extrac-
tion for malware detection and anomaly identification. Studies have
reported that malware classification accuracy reaches 98 % with re-
duced computational costs compared with their classical counterparts
[101,105]. In Fig. 15, we compare quantum convolutional neural net-
works (QCNN), quantum ResNet (QResNet), and quanvolutional neural
networks (QuanNN). The QCNN superposition layers significantly im-
prove feature extraction in malware classification, leading to higher
accuracy and economic efficiency in terms of computational resources.
Unlike classical CNNs with rigid set filters, QCNNs proactively respond
to data complexity by modifying their parameters, which improves their
performance in competitive situations. In addition, the incorporation of
quantum encoding in QResNet significantly improves its deep learning
capabilities, enhancing its performance by 40 % and maintaining an
acceptable workload performance. Such quantum supremacy leads to
more powerful malware recognition, faster training convergence, and
better defense against new cyber-attacks [102]. Meanwhile, quantum-
enhanced NLP models apply sequence-to-sequence techniques and topic
modeling for phishing detection and threat intelligence extraction,
achieving 95 % accuracy in identifying phishing emails and analyz-
ing dark web data [106-108]. Despite these benefits, challenges persist
in fully realizing the potential of quantum-Al. Hardware limitations,
such as the scarcity of stable and error-free qubits, remain a bottle-
neck for practical implementation. Noisy quantum systems introduce
errors that require advances in quantum error correction and noise re-
duction techniques. Additionally, the need for hybrid quantum-classical
systems to integrate quantum algorithms with existing infrastructure
adds complexity to the deployment. Research on scalable quantum
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hardware, algorithm optimization, and robust hybrid frameworks is ac-
tively addressing these challenges. As quantum technology matures, its
integration into cybersecurity redefines the landscape, enabling organi-
zations to proactively counter emerging threats with unmatched speed,
precision, and efficiency [107-109]. Table 8 presents a comparative
analysis of the Al techniques used in cybersecurity applications.

5. Al-driven cybersecurity applications

Al has significantly revolutionized cybersecurity by enhancing the
automation, accuracy, and scalability of the detection, prevention, and
response to evolving cyber threats. By leveraging ML, DL, and behav-
ioral analysis, Al addresses the critical areas of threat detection and
prevention, vulnerability assessment, and incident response, ensuring
that organizations remain resilient to sophisticated attacks.

5.1. Threat detection and prevention

Al-driven IDS have achieved remarkable accuracy improvements
while reducing false positives. Studies have reported that a decision-
tree-based IDS achieves a detection accuracy of 95 % with only 2 %
false positives [110], whereas neural networks demonstrate robust-
ness by dynamically adapting to real-time network changes [111].
Reinforcement learning models further optimize detection efficiency by
learning from evolving attack patterns and improving response accuracy
[112]. Malware detection benefits immensely from Al techniques that
integrate static and dynamic analyses. CNNs have achieved a malware
detection accuracy of 98 %, outperforming traditional signature-based
methods [113]. Hybrid models combining static and dynamic analy-
ses reduce false positives by 30 % and improve the detection rates for
zero-day malware [114]. Al-enhanced sandboxes for behavioral analy-
sis demonstrated a detection accuracy of 97 %, enabling organizations
to efficiently identify malware variants [115]. Al-based NLP and image
recognition techniques have demonstrated significant advancements in
phishing detection. For instance, an RNN model analyzing textual and
URL patterns achieved a 97 % detection accuracy with reduced false
positives [116]. Furthermore, image-based phishing detection, which
analyzes website logos and page structures, achieves a 99 % detection
rate [117], thereby surpassing the limitations of traditional methods.
Bot detection and mitigation are critical for protecting systems from
automated attacks. ML models analyzing IP behavior and interaction
patterns have achieved a detection accuracy of 95 % with a false posi-
tive rate of 3 % [118]. In addition, behavioral analysis techniques can
effectively identify bot networks by detecting anomalies in large-scale
traffic patterns [119].

Data exfiltration detection relies on AI models that monitor the user’s
behavior and access patterns. Studies have shown that Al-based anomaly
detection reduces data breaches by 40 % [120], whereas pattern recog-
nition models achieve a detection accuracy of 94 %, ensuring the timely
identification of abnormal data transfer activities [121].

Al-enabled passwordless authentication systems leverage biomet-
ric techniques, such as facial recognition and fingerprint scanning, to
achieve a verification accuracy of 99 % [122]. Behavioral biometrics,
which analyze user interaction patterns, further enhance authentication
security by reducing susceptibility to brute-force attacks [123].

Behavior-based threat analysis plays a crucial role in identifying de-
viations in user behavior that are indicative of malicious activity. Al
models have achieved 85 % detection accuracy while maintaining false-
positive rates below 5 % [124]. Reinforcement learning further strength-
ens these models by continuously adapting to new threat behaviors,
thereby improving the detection rate to 92 % [125].

5.2. Vulnerability assessment

Automated vulnerability scanning powered by Al significantly en-
hances precision and reduces the number of false positives. DL-based
scanners have achieved an accuracy of 85 %, reducing false positives
by 20 % [126]. Popular tools, such as Nessus and Qualys, integrate
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Comparative analysis of Al techniques for cybersecurity applications with performance metrics and dataset information.

Ref. Application Technique used Accuracy False-Positive Rate Dataset used Comp. time
[109] Intrusion Detection Decision Trees 95 % 2% KDDCup99 0.5s per detection
Systems
[111] Neural Networks (Real-Time High Not specified NSL-KDD 1.2s per event
Adaptation)
[112] Malware Detection Convolutional Neural High Not specified Mallmg Dataset 3s per sample
Networks
[113] Phishing Detection Hybrid Static-Dynamic 97 % Reduced by 30 % VirusShare 1s per hybrid analysis
Analysis
[114] Recurrent Neural Networks 97 % Reduced by 20 % PhishTank 0.8s per URL
[115] Bot Detection Image Recognition (Logos & 99 % Reduced by 15 % Custom Dataset (Images) 1.5s per image
Layouts)
[116] Pattern Recognition High Minimal Alexa Traffic Data 1s per real-time detection
[118] Data Exfiltration Anomaly Detection 94 % Low CERT Insider Threat 3.8s per anomaly
Detection Dataset
[119] Pattern Recognition & 94 % Low Custom User Access Logs 1.8s per detection
Tracking
[120] Passwordless Biometric Authentication 94 % Not specified Real-World Biometric 1.5s per analysis
Authentication Data
[121] Behavioral Biometrics Not specified Not specified Custom User Interaction 1.5s per analysis
Data
[122] Behavioral-Based Anomaly Detection 85 % Not specified Custom Behavioral 2s per evaluation
Threat Analysis Dataset
[123] Reinforcement Learning 92 % Not specified Simulated Behavioral 1.5s learning cycles
Data
[124] Spam and Malicious NLP 96 % Not specified Enron Email Dataset 1s per email
Content Detection
[125] NLP for Malicious Content in 94 % Not specified Twitter Social Media 1.2s per post

Social Media

Dataset

Al algorithms to optimize detection and patch prioritization [127]. Al-
augmented penetration testing automates complex attack simulations
to uncover vulnerabilities with minimal human intervention. Research
indicates that Al-enhanced penetration testing increases the vulnerabil-
ity coverage by 40 % while uncovering previously hidden flaws [128].
Graph-based AI techniques simplify penetration testing workflows, en-
abling security teams to efficiently identify and address vulnerabilities
[129]. Predictive vulnerability management uses Al models to forecast
vulnerability exploitability, enabling organizations to prioritize criti-
cal patches. ML-driven predictive tools reduce breaches by 50 % [130]
and decrease mitigation time by 30 % [131], transforming vulnerabil-
ity management into a proactive defense strategy. Al-powered threat
simulation and attack-path mapping help organizations visualize the at-
tack pathways and improve patch deployment. Studies have reported a
35 % improvement in threat visibility and a 25 % reduction in patch
application times using Al-driven simulation tools [132,133]. These
advancements enable organizations to efficiently prioritize mitigation
efforts. In IoT vulnerability detection, AI systems identify firmware
anomalies and zero-day exploits with a 70 % higher accuracy than tradi-
tional methods [134]. ML models reduce false positives by 15 %, thereby
improving the security of connected IoT devices [135]. AI also enhances
social engineering detection by analyzing user behavior to identify
susceptibility to phishing attacks. Behavioral threat analysis reduces
successful phishing attempts by 60 % [136], whereas Al-based train-
ing systems significantly improve user awareness and responses [137].
Al-driven application security testing combines static and dynamic code
analysis to effectively identify complex vulnerabilities. DL-based tools
improved the detection accuracy by 20 % and halved the scanning time
compared with traditional approaches [138,139].

5.3. Incident response

Al automates incident response tasks, thereby improving the effi-
ciency of threat containment, malware removal and system recovery.
Neural networks have achieved a 95 % success rate in automating mal-
ware removal processes [140]. Similarly, Al-powered recovery tools
restore critical systems with 98 % accuracy, minimizing downtime and
accelerating recovery [141]. These advancements reduce the incident
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containment time by 80 %, thereby ensuring timely threat mitigation
[142].

Al enhances Security Orchestration, Automation, and Response
(SOAR) platforms by streamlining workflows and automating alert pri-
oritization. Studies have shown that Al-based prioritization algorithms
reduce false positives by 25 % [143], whereas DL models achieve a 92 %
classification accuracy for alerts, significantly improving analyst pro-
ductivity [144]. Al-powered SOAR systems automate 70 % of incident
response tasks, reducing response times by 60 % [145].

Threat hunting and investigation benefit from Al-driven automation,
improving the detection of novel threats by 30 % [146]. ML tools that
analyze logs and traffic have reduced manual investigative efforts by
40 % [147]. Additionally, automated root cause analysis tools enhance
accuracy by 35 %, providing actionable insights to strengthen defense
strategies [148].

Al also streamlines incident documentation and reporting processes,
reducing documentation times by 50 %, while ensuring compliance
and accuracy [149]. Al-facilitated post-incident analysis tools improve
preparedness by identifying strategy gaps and enhancing playbook
effectiveness [150].

5.4. Benchmark comparison with state-of-the-art

To reinforce confidence in the proposed integrated view of Al- and
quantum-enabled cybersecurity, we synthesize recent experimental re-
sults from representative state-of-the-art studies across intrusion detec-
tion, malware detection, phishing classification, and incident response.
In addition, recent quantum-assisted IDS prototypes have reported com-
petitive results; for example, a scientific report study using quantum out-
lier analysis achieved 99.87 % DDoS detection accuracy on benchmark
traffic, while noting dataset sensitivity and current hybrid hardware
constraints [151]. Table 9 summarizes the reported datasets, model fam-
ilies, and headline metrics (e.g., accuracy, Fl-score, and false positive
rate). The comparison shows that deep learning and ensemble meth-
ods often exceed 95 % accuracy on established benchmarks, whereas
explainable models reduce false positives with modest trade-offs in re-
call. Quantum-enhanced approaches have reported promising results on
small and structured datasets, although large-scale validations remain
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Ref. Technique Application domain Model type Strengths Limitations
[153] Convolutional Neural Malware classification, Deep Learning High accuracy with raw feature Data hungry; limited inter-
Networks ransomware detection learning; effective for image-like pretability
binary representations
[154] Random Forest + SHAP Phishing and fraud Hybrid XAI Feature-level transparency; robust Sensitive to data imbalance; bias
detection against overfitting propagation
[155] Support Vector Machines Intrusion detection, Classical ML Strong performance on smaller Scalability issues with large data;
anomaly detection datasets; interpretable margins requires feature engineering
[152] Federated Learning IoT and healthcare IDS Distributed Learning Privacy-preserving; decentralized High communication cost;
training vulnerable to poisoning attacks
[156] Autoencoder / GAN-based Novel attack detection Deep Generative Models Good for zero-day and anomaly Prone to mode collapse; training
IDS detection; learns hidden patterns instability
[157] Quantum Neural Networks Quantum intrusion Quantum ML Potential exponential speedup; Early stage, lacks hardware
detection handles high-dimensional data scalability
[158] Post quantum Cryptography Secure communication Cryptographic Algorithms Resistant to quantum attacks; Computationally intensive;
(Lattice, Code-based) backed by NIST efforts deployment challenges
[159] Digital Twins + Al Cyber-Physical System Simulation + Al Enables predictive monitoring; High deployment complexity;
security real-time threat simulation resource intensive
[160] Blockchain + Al integration Secure data provenance, Hybrid Decentralized Immutable logs; improves trust Latency and scalability issues;
IoT Systems and transparency energy costs
[161] Explainable Al (SHAP, LIME, Trust in IDS and phishing Model-Agnostic Improves interpretability and ac- Performance explainability

Counterfactuals)

classifiers

countability; regulatory alignment

trade-off

(GDPR/AI Act)

limited. This evidence supports the need for scalable, interpretable,
and quantum-resilient designs that can transition from benchmarks
to real-world settings. Consistent results have been reported for FL-
based IDS in IoT environments [152] and hybrid QSVM prototypes in
cyber-physical settings [94], reinforcing the viability of our deployment-
first recommendations. These comparisons motivate the design choices
and research directions discussed next, including the integration of
explainability, privacy-preserving training, and quantum resilience in
operational settings.

6. Ethical considerations and challenges

We adopt a working definition of ethical AI consistent with cur-
rent alignment literature, emphasizing the RICE objectives (Robustness,
Interpretability, Controllability, and Ethicality) as operational goals for
trustworthy, auditable security systems [162,163]. We use quantum
resilience to denote cryptographic and system-level readiness for ad-
versaries with large-scale quantum capability, consistent with recently
finalized NIST PQC standards [30-32]. Al-driven cybersecurity sys-
tems have revolutionized the threat detection and response. However,
their deployment raises critical ethical concerns, including bias in algo-
rithms, adversarial attacks, privacy risks, and the need for explainability.
Addressing these issues is vital for ensuring the ethical, secure, and
effective integration of Al into cybersecurity.

6.1. Bias in Al algorithms

Bias in Al arises when models are trained on imbalanced or non-
representative datasets, leading to discriminatory outcomes. For in-
stance, IDS trained on biased data showed a 28 % increase in false posi-
tives [164]. Similarly, facial recognition systems exhibited a misidenti-
fication rate of 34 % for women of color compared with 1 % for white
males, demonstrating algorithmic bias [165]. Addressing this requires
fairness-aware training methods, which have been shown to reduce bias
by up to 35 % [166].

6.2. Adversarial attacks

Adversarial attacks focus on mitigating the need to follow strict pro-
tocols when using Al frameworks and instead alter the input provided
to bypass models. Using adversarial perturbations as an example, it can
be noted that the performance metrics of malware detection systems
decrease by 50 %. A similar case is that of Al-based spam filters, whose
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performance is breached with the use of phishing emails with a 93 % suc-
cess rate [167]. Similarly, Al-powered spam filters were bypassed with
a 93 % success rate using carefully crafted emails [168]. Fig. 16 illus-
trates the adversarial perturbations applied to an image of a stop sign,
which is part of an Al system that was created to ensure an excellent
defense against such abuse. These measures include adversarial train-
ing, model-hardening processes, and anomaly recognition to increase
the resistance of Al to cyberattacks. In addition, GANs can help provide
additional protection by identifying and removing adversarial inputs as
they emerge.

6.3. Privacy concerns

Al systems require the collection of massive amounts of data, which
puts privacy at risk. According to a study conducted in an industry in
2024, 68 % reported that privacy infringement is one of the greatest
challenges they face while deploying Al A specific case of a security
breach was noted in 2023 when the private information of six million
users across multiple borders was revealed due to poor security mea-
sures fueled by AI [169]. However, some privacy-preserving Al methods,
such as Federated Learning (FL), differential privacy, and homomorphic
encryption, can mitigate privacy risks by up to 40 % without com-
promising Al performance [170]. To ensure optimal security, hybrid
frameworks combining human expertise and Al have been implemented
to protect privacy and defend against destructive cyber threats. Privacy-
enhancing technologies (PETs) must be deployed in conjunction with
global regulations [171].

6.4. Explainability and trust in Al security systems

One of the greatest hurdles in Al cybersecurity is the lack of trans-
parency and explainability in Al-powered security decision-making
processes. Many Al models operate as black boxes, making it difficult for
analysts to understand the reasons behind the generation of a security
alert. In a survey conducted among cybersecurity professionals, 73 %
reported that they preferred XAI models because these allowed better
decision validation and accountability [172]. Fig. 17 illustrates the FL
and XAI frameworks for cybersecurity, which integrate black-box and
interpretable models. Using XAI techniques such as SHAP, LIME, and
saliency maps improves transparency and trust by 30 % and reduces in-
cident response times by 18 % [173]. Other approaches, such as causal
inference models and rule-based Al are being developed to improve the
correlation opacity in cybersecurity. Causal inference models with AI
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Fig. 16. An example of adversarial noise applied to a stop sign, leading to misclassification as a speed limit sign. This demonstrates how subtle perturbations can

deceive AI models, highlighting the need for adversarial defenses [168,169].
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Fig. 17. FL with XAI for Cybersecurity: Combining interpretable and black-box models with SHAP, LIME, and saliency maps for transparent decision-making. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tools and rule-based Al systems help to increase transparency in cyber-
security. Other visualization tools, such as heatmaps, decision trees, and
Al attention mechanisms, explain what happens in Al security, making
security decisions sharper, clearer, accountable, and reliable. Therefore,
understanding trust in Al-enhanced cybersecurity solutions requires reg-
ulatory support, compliance with ethical Al criteria, and monitoring of
Al functions to ensure they do not produce absurd outcomes. As Al tech-
nologies improve, these ethical challenges must be considered if public
trust in effective Al-powered cybersecurity solutions is to be retained.

6.5. Standards-aligned ethical guardrails

To make ethics actionable in security contexts, we align RICE ob-
jectives with established governance instruments. For IDS and phishing
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detection in regulated sectors, auditability and risk controls follow
the NIST AI RMF 1.0 functions (Map-Measure-Manage-Govern) and
ISO/IEC 42,001 requirements on Al management systems (policy,
risk assessment, controls). For models that process personal data
(for example, FL-based telemetry), we apply GDPR principles (pur-
pose limitation, data minimization) and the EU AI Act duties for
high-risk systems as they are phased in. For system-level migra-
tion to post-quantum security, we mapped crypto choices to NIST
FIPS 203/204 (ML-KEM and ML-DSA) to ensure that the signature
and key-encapsulation paths remain compliant during the transition.
Table 10 summarizes how representative cybersecurity use cases can
be aligned with ethical controls and mapped to recognised standards
and guidelines, ensuring that principles are translated into actionable
safeguards.



M. Khawar, S. Khalid, M.U. Rehman et al.

Table 10
Alignment of cybersecurity use cases with ethical controls and standards.

Computer Science Review 60 (2026) 100882

Use case Ethical control

Relevant standard/guideline

Al-driven Intrusion Detection

Federated Learning for IoT and healthcare
System-on-Chip security monitoring
Post-Quantum Cryptography deployment

Auditability, transparency in decision-making

Data minimization, privacy preservation, bias mitigation
Risk assessment, accountability, fairness-aware algorithms
Resilience against quantum attacks, secure key management

IEEE Ethically Aligned Design; ACM Code of Ethics

GDPR principles; EU AI Act requirements for high-risk systems
ISO/IEC 42001:2023 AI Management Systems

NIST FIPS 203 (ML-KEM), FIPS 204 (ML-DSA)
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Fig. 18. FFL Workflow for Decentralized Threat Analysis. FFL enables model training across devices while preserving data privacy [178].

7. Emerging trends in Al-driven cybersecurity

Al-driven cybersecurity is at the forefront of digital innovation
and offers transformative solutions to counter evolving cyber threats.
Emerging trends such as FL, XAI, and quantum-resilient frameworks
form the foundation for building adaptive, secure, and transparent
security systems. FL has revolutionized privacy-preserving threat de-
tection by enabling decentralized model training across multiple de-
vices to ensure data protection. Industries such as healthcare, finance,
and IoT ecosystems have already reported a 15 % boost in detection
efficiency while maintaining regulatory compliance [174,175]. For in-
stance, Google’s federated malware detection model has demonstrated
substantial improvements in identifying threats without sharing sensi-
tive raw data, thereby enhancing both efficiency and privacy [176].
As security demands intensify, FL will continue to underpin scal-
able and secure cybersecurity infrastructures, offering resilience against
modern cyber risks [177]. Fig. 18 provides an overview of the FL
protocol workflow, demonstrating its ability to deliver a decentral-
ized threat analysis while preserving data integrity [178]. XAI has
emerged as a solution to the growing demand for transparency and
trustworthiness in Al-driven cybersecurity systems. By enabling inter-
pretable decision-making, XAI provides insights into threat detection
processes, reduces false positives, and improves incident response ef-
ficiency by 20-30 % [179,180]. When integrated into SOAR (Security
Orchestration, Automation, and Response) platforms, XAI significantly
streamlines workflows and accelerates threat mitigation by clarifying
flagged anomalies and decisions [181,182].

For example, XAl-enabled models provide real-time explanations
of detection outcomes and foster trust among the security analysts.
They also highlight the XAI output and its ability to enhance the in-
terpretability and improve confidence in Al-driven threat classification
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results. Digital Twin technology has emerged as a promising inno-
vation in the field of cybersecurity, offering predictive counter-cyber
threat measures along with real-time simulations of IT infrastructure
and networks. Replicating the digital space of an organization enables
security personnel to evaluate self-driven security system responses, pre-
dict system weaknesses, and fine-tune extemporaneous reaction plans
without interfering with the actual system. Automatic surveillance,
anomaly spotting, and simulated scenario-based threat identification
and response actions undertaken by digital twins result in remarkable
improvements in cyber resilience toward perpetually mutating cyber
threats.

QC introduces unprecedented and complex challenges in cybersecu-
rity. With rapid advances in quantum systems, PQC has become a vital
defense mechanism against quantum-enabled decryption attacks and
for safeguarding sensitive data [183-185]. Emerging frameworks, such
as lattice-based encryption, have demonstrated exceptional resilience
to quantum threats, which is a critical milestone in quantum-resistant
cybersecurity [186,187]. However, the transition to PQC protocols re-
quires global collaboration, comprehensive testing, and integration of
quantum-safe standards to protect against future threats. QAI, which
combines QC and AI, has groundbreaking potential in cybersecurity.
Quantum-enhanced models, such as QSVMs and QNNs, have reduced
detection times by 30 % and improved threat identification accuracy
by 25 % [188,189]. By leveraging quantum capabilities, these models
can process massive datasets in real time, enabling the prediction and
prevention of zero-day vulnerabilities and advanced persistent threat
(APT) issues that often evade traditional detection systems [190,191].
However, significant hurdles remain, including quantum hardware con-
straints, quantum state noise, and the need for seamless integration of
hybrid quantum-classical frameworks [192,193]. Continued research on
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Ref. Trend Description Applications Key outcomes

[174-176,178] FL Decentralized training of Al models Enhancing intrusion detection Improved privacy-preserving
while preserving privacy. systems in healthcare and IoT. threat detection.

[179-182] XAI Al systems that provide transparency Real-time threat analysis and Increased trust and reduced

[183,184,186,187]
[180-182]
[183,185-187]
[188-191]

[179,180,189,190]

Quantum-Resistant Al
Al-Driven SOAR Systems
Post quantum
Cryptography

Quantum Al

Al-Enhanced Threat
Hunting

and interpretability.

Al integrated with post quantum
cryptography techniques.
Al-powered platforms that automate
workflows and prioritize alerts.
Cryptographic protocols resistant to
quantum decryption.
Quantum-enhanced Al for real-time
threat detection.

ML-driven analysis of patterns to detect

threats proactively.

improved incident responses.
Implementation of lattice-based
encryption frameworks.
Automated decision-making and
incident response optimization.
Deployment of quantum-safe
encryption protocols.

Improved threat identification
and APT mitigation.
Automation of logs and network
traffic analyses.

operational errors.

Secure data transmission in
quantum scenarios.

Faster and more efficient incident
handling is achieved.

Resilience against future quantum
threats.

Enhanced prediction accuracy for
complex threats.

Improved early threat detection,
risk reduction

quantum resilience and hardware optimization is critical to unlocking
the full potential of QAI-driven cybersecurity.

Despite these advancements, several gaps remain in the existing
literature. The development of standardized, scalable, and quantum-
safe cryptographic protocols and the enhancement of explainable
QAI systems are key priorities [194,195]. Ethical challenges, such
as ensuring data privacy, mitigating algorithmic bias, and build-
ing trust in Al systems, must also be addressed to ensure fairness
and accountability [196,197]. Adversarial vulnerability is a signif-
icant challenge. For example, adversarial perturbations have been
shown to significantly reduce malware detection rates and bypass Al-
powered filters, thereby exposing critical weaknesses in current systems
[167].

Issues in mitigating zero-day attacks remain alarming, as attackers
utilize an unknown vacuum until developers can address it. Self-learning
models developed for Al threat mitigation systems are powered by pre-
dictive anomaly detection capabilities to uncover identifications that
suspiciously resemble indicators of zero-day exploitation. Security sys-
tems built on deep learning models can be trained using a combination
of attack patterns, comprehensive threat intelligence, and real-time de-
fenses. Consequently, this approach significantly reduces the response
time thresholds while concurrently diminishing the impact of zero-day
attacks.

Al-driven cybersecurity will play an important role in shaping
the future of cyber resilience by enabling predictive defense systems,
real-time automation, and quantum-resilient frameworks. Organizations
must embrace Al-driven security automation, actionable threat intelli-
gence, and quantum-safe standards to remain ahead of their adversaries.
Collaboration among researchers, policymakers, and industry stake-
holders is essential for unlocking Al’s transformative potential. These
efforts will result in adaptive and intelligent cybersecurity solutions that
can safeguard the digital ecosystem against both classical and quan-
tum cyber threats. Table 11 shows the emerging trends in Al-driven
cybersecurity and their roles.

Al-driven cybersecurity will play an important role in shaping the fu-
ture of cyber resilience by enabling predictive defense systems, real-time
automation, and quantum-resilient frameworks. Organizations must em-
brace Al-driven security automation, actionable threat intelligence, and
quantum-safe standards to remain ahead of adversaries. The ability to
navigate emerging trends, such as quantum-resistant frameworks and
XA, will define the future of cybersecurity, ensuring that sensitive data
remains protected in a quantum-powered world [198]. Collaboration
among researchers, policymakers, and industry stakeholders is essential
for unlocking Al’s transformative potential. These efforts will result in
adaptive and intelligent cybersecurity solutions capable of safeguarding
the digital ecosystem against both classical and quantum-powered cyber
threats.
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8. Discussion

Al including XAI and UAI, has revolutionized cybersecurity by en-
abling enhanced threat detection, prevention, and real-time incident
response. By leveraging advanced ML and DL techniques, Al systems can
detect anomalies with over 95 % accuracy, mitigate zero-day vulnera-
bilities, and dynamically respond to evolving threats. Cloud computing
provides scalable solutions for real-time monitoring and incident man-
agement, whereas QC introduces unparalleled precision in handling
high-dimensional data and advanced encryption challenges. For in-
stance, the QSVM and QNN reduced the detection times by 30 % and
improved the accuracy by 25 %. Digital twins, which are virtual repli-
cas of systems, offer predictive insights into vulnerabilities, thereby
enabling preemptive action. However, deploying Al-driven cyberse-
curity solutions faces critical challenges, including algorithmic bias,
privacy concerns, and adversarial threats that exploit Al vulnerabili-
ties. Moreover, the computational intensity and complexity of these
systems necessitate continuous innovation to ensure scalability and eth-
ical deployment. Despite these hurdles, Al-powered frameworks have
demonstrated their capacity to create adaptive, multilayered defenses,
automate incident responses, and enhance organizational resilience
against the growing sophistication of cyber threats (Figs. 19 and 20).

Despite the significant advancements in Al-driven cybersecurity, sev-
eral critical challenges persist that hinder its widespread adoption and
optimization . The computational intensity of Al models, particularly
transformer- and quantum-based architectures, poses a significant chal-
lenge for scalability and real-time deployment. These models require
substantial processing power and resources, making them less viable in
distributed or resource-constrained environments, such as edge comput-
ing and IoT systems. Al systems often face issues related to algorithmic
bias, which can result from imbalanced or non-representative training
datasets, potentially leading to discriminatory outcomes. Furthermore,
the vast amount of data required for training raises concerns regard-
ing privacy and data security issues. Adversarial attacks that exploit Al
vulnerabilities exacerbate these challenges, highlighting the need for
fairness-aware Al training and robust privacy-preserving frameworks.
Although quantum computing offers groundbreaking opportunities in
cybersecurity, its practical implementation is hindered by hardware in-
stability, noise in quantum states, and the complexity of integrating
hybrid quantum-classical systems. These limitations prevent quantum Al
from achieving its full potential in real-world applications. Ensuring that
complex Al models, such as GANs and transformers, are interpretable
remains a significant hurdle. Although XAI has made strides in provid-
ing transparency, the challenge lies in simplifying the decision-making
processes of highly intricate models, without compromising their perfor-
mance. This lack of interpretability can impede trust and the adoption of
critical cybersecurity operations. These challenges underscore the need
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for continued research and innovation in areas such as computational
efficiency, ethical Al design, scalable quantum systems, and advanced
explainability techniques. Addressing these obstacles is important to en-
sure that Al-driven cybersecurity solutions remain robust, adaptive, and
trustworthy in the face of evolving cyber threats.

9. SWOT analysis of the proposed framework
9.1. Synthesis of prevalent techniques

Building on the comparative overview in Table 9, it is evident
that classical ML excels in interpretability and simplicity but often
lacks robustness at scale. Deep learning methods achieve superior ac-
curacy but remain vulnerable to adversarial perturbations and are
resource-intensive. Hybrid XAI approaches provide a trade-off between
performance and transparency, whereas quantum-oriented techniques,
although still nascent, show promise for future resilience against post-
quantum threats. This synthesis contextualizes the subsequent SWOT
analysis by mapping the strengths and limitations of existing paradigms
against our proposed integration. Taken together, these observations
motivate a hybrid, deployment-aware view of quantum and classical
components; the subsequent SWOT analysis and Section 10 translate this
view into operational implications and near-term priorities.

T XAl
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Fig. 19. Comparison of Classical AI Components Across Key Attributes.
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9.2. SWOT of the proposed framework

1. Strengths: The framework integrates Al, hybrid, and quantum
techniques cohesively across intrusion detection, malware classi-
fication, and cryptographic resilience (Sections 4-7). By incorpo-
rating interpretable Al (e.g., SHAP, LIME) and privacy-preserving
methods, such as federated learning, it balances performance with
explainability and trustworthiness. As summarized in Table 9,
this approach demonstrates adaptability across diverse applica-
tion domains, enhancing both technical robustness and ethical
compliance.

2. Weaknesses: Despite promising results, the framework inherits
certain limitations, including the high computational demands
of deep generative models and quantum algorithms, as well as
communication overhead in federated learning. Its reliance on
large-scale, labeled datasets constrains scalability in underrep-
resented sectors, while hardware readiness for quantum models
remains limited (Sections 5 and 6).

3. Opportunities: The integration of AI with post-quantum cryptog-
raphy and quantum-enhanced intrusion detection opens opportu-
nities to address future security challenges beyond the capacity
of classical systems. In addition, emerging paradigms such as
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Fig. 20. Comparison of Quantum AI Components Across Key Attributes.

digital twins, adaptive threat hunting, and strengthened ethical
governance (Section 10) position the framework as a foundation
for resilient, transparent, and regulation-aligned cybersecurity
solutions for the future.

4. Threats: The rapid evolution of adversarial attacks, includ-
ing deepfake malware and data poisoning, poses long-term
risks. Regulatory uncertainties surrounding Al governance and
data-sharing frameworks may further delay its deployment.
Moreover, dependence on the timelines of quantum hardware
commercialization introduces external risks, as delays could hin-
der the practical realization of the proposed quantum-AlI integra-
tions.

In addition to the narrative discussion, Table 12 presents a com-
pact view of the SWOT dimensions and highlights where integration
opportunities emerge across the reviewed techniques (Fig. 21).

9.3. Implications

The above analysis underscores the priorities outlined in Section 10,
particularly the need for resource-efficient, privacy-preserving, and

quantum-resilient deployments that maintain a balance between per-
formance, transparency, and governance.

10. Future direction

The future of Al-driven cybersecurity lies in addressing pressing chal-
lenges while leveraging emerging technologies to ensure scalability,
ethical compliance, and operational efficiency. For instance, a hybrid
deployment could combine federated, explainable IDS at the edge with
ML-KEM/ML-DSA-protected telemetry and a QML-assisted anomaly fil-
ter for high-volume DDoS streams, aligning security-by-design with
decentralized trust requirements [30,31,151]. Recent studies offer com-
plementary perspectives that reinforce and contextualize this roadmap.
Work on Digital Security by Design (DSbD) argues for security embedded
as a product default and design principle, emphasizing secure-by-default
configurations, radical transparency, and advanced encryption (includ-
ing homomorphic and quantum) [199]. Our directions on ethical Al and
privacy (Section 10.2) operationalize these principles via fairness-aware
learning, federated learning, and explainability, thereby aligning gov-
ernance aims with implementable pipelines. Likewise, the integrated
cybersecurity perspective combining AlI, blockchain, and cloud [200]
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Table 12
SWOT summary of the proposed Al-driven cybersecurity framework.
Aspect Key points Integration opportunities
Strengths Integration of Al, hybrid, and quantum techniques across intrusion detection, Layered defense that combines edge analytics, centralized orchestration,
malware classification, and cryptographic resilience; use of XAI and federated and quantum-ready cryptography for critical infrastructure.
learning for transparency and privacy.
Weaknesses High computational and communication cost for deep models, FL, and quantum Research on model compression, adaptive offloading, and hardware-aware
routines; dependence on large labeled datasets; NISQ-era hardware limitations. design to keep costs manageable in real deployments.
Opportunities Integration of Al with post-quantum cryptography, digital twins, adaptive threat Building end-to-end pipelines where PQC, QML, and XAI are combined
hunting, and stronger ethical governance. with DevSecOps and policy frameworks for critical sectors.
Threats Rapid evolution of adversarial attacks and poisoning strategies; regulatory Continuous red teaming, regulatory monitoring, and staged migration
uncertainty; dependency on quantum hardware timelines. plans that maintain secure fallbacks during technology transitions.
‘Coh.eSiVe integration of Al, _H|gh computational and
hybrid, and quantum techniques communication demands
-Strong adaptability across -Dependency on large labeled
intrusion detection, malware, datasets
cryptography -Quantum models limited by
-Balance of performance, hardware readiness
explainability, and privacy
-Post-quantum cryptography -Evolving adversarial and
and quantum-enhanced IDS poisoning attacks
_D|g|ta| twins for Cyber. -Uncertain global Al/data
physical resilience regulations
-Ethical governance -Dependency on quantum
alignment with Al regulations hardware commercialization
timelines
Fig. 21. SWOT analysis of the proposed Al-driven cybersecurity framework.
Table 13

Research directions and their descriptions.

Research direction Description

Scalable Al for Real-Time Applications

A major future direction is the development of resource-efficient AI models capable of seamlessly functioning in real-time,
distributed, and edge-computing environments. Techniques such as model pruning, knowledge distillation, and FL should be prior-
itized to optimize the scalability. This will enable Al systems to handle resource-constrained environments, such as IoT and smart
cities, without compromising detection accuracy. The challenges include achieving high precision with reduced computational and

energy requirements.
Ethical Al and Privacy Preservation

Ensuring fairness and data privacy in Al-driven cybersecurity systems are critical. Future research should focus on designing

fairness-aware algorithms and employing privacy-preserving techniques, such as FL and differential privacy, to mitigate algo-
rithmic bias and protect sensitive data. These approaches foster trust in Al systems while addressing ethical concerns. Overcoming
diverse dataset representation issues and safeguarding against adversarial attacks remain key challenges in this field.

Advancing Quantum Al for Cybersecurity

Quantum computing offers unparalleled opportunities to tackle complex cybersecurity challenges, such as high-dimensional data

processing and post-quantum encryption. Research must focus on stabilizing qubit technology, minimizing quantum noise, and
developing hybrid quantum-classical algorithms for practical cybersecurity solutions. These advancements will enable the real-
time detection of advanced persistent threats and secure communication systems. However, challenges such as limited qubit
availability, scalability, and integration with classical systems must be addressed.

underscores decentralized trust and adaptive defenses; our focus on
resource-efficient edge Al (Section 10.1) and quantum-resilient methods
(Section 10.3) extends this integration with post-quantum readiness and
hybrid quantum-AI detection methods. Together, these links situate our
framework within a convergent trajectory toward holistic, future-proof
cybersecurity. Three major areas were identified as key focus points.

10.1. Resource-efficient Al for edge and distributed environments

A critical direction for future work is the development of resource-
efficient Al models that can be run in real-time distributed and edge

22

computing settings without significant compromises in their predictive
performance. This is particularly important for resource-constrained
ecosystems, such as [oT networks and smart city infrastructures.
Techniques such as model pruning, knowledge distillation, and FL
should be prioritized to enhance their scalability and energy effi-
ciency. These strategies aim to enable Al systems to achieve high
detection accuracy without the limitations of computation or power
consumption. However, finding a balance between high precision and
minimal resource usage remains a challenge that requires further
innovation.
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Fig. 22. Future directions for Al-driven cybersecurity.
Midterm Term |
Wider roll out of post-quantum cryptography in
critical infrastructure, deeper integration of
digital twins and adaptive threat hunting in SOC
workflows, and operationalization of ethics and
governance frameworks (GDPR, EU Al Act,
ISO/IEC 42001, NIST Al RMF) in security
pipelines.
1-3 years 3--7 years 7+ years
| Short Term | Long Term

Hardening current deployments with scalable

ML and XAl for intrusion detection and SOAR,

pilot deployments of federated learning in loT

and healthcare, and initial adoption of NIST

PQC algorithms for key management and
secure channels.

Integration of mature quantum machine
learning components into security operations
for selected high value tasks, combined with

robust classical fall-back paths, continuous red
teaming, and updated governance to reflect

advances in quantum hardware and Al
capabilities.

Fig. 23. Key time horizons defined for the future research roadmap.

10.2. Ethical Al and data privacy

Trust in Al-driven cybersecurity systems can only be achieved if
fairness is maintained and data privacy is ensured. Future research
should focus on the development of fairness-aware algorithms and the
feasibility of using techniques such as FL and differential privacy in
privacy-preserving mechanisms. This will help avoid algorithmic biases
and maintain sensitive user data security, thereby addressing ethical and
regulatory concerns. In addition, providing solutions to the vectors of
representation and adversarial vulnerabilities is key to inclusive and se-
cure systems. These solutions are part of the process of building a more
transparent and equitable AI framework that can navigate the evolving
landscape of cybersecurity threats.

10.3. Advancing quantum computing for cybersecurity applications

Quantum computing is a frontier technology that provides trans-
formative capabilities, including high-dimensional data processing and

23

post-quantum encryption. Research should focus on stabilizing qubit
technologies, reducing quantum noise, and developing hybrid quantum-
classical algorithms that can be practically used to solve cyberse-
curity problems in the future. The real-time detection of advanced
persistent threats and the development of secure communication sys-
tems are within the scope of these advancements. However, chal-
lenges such as limited qubit availability, scalability, and integration
with classical systems must be overcome to unlock the full poten-
tial of quantum technologies for real-world cybersecurity applications.
Table 13 lists the research directions and their descriptions, respec-
tively. In practice, these capabilities are most effective when staged
through hybrid pipelines that reserve quantum subroutines for targeted
sub-tasks and revert to classical controls under NISQ-era constraints
(Fig. 22).

Fig. 23 shows the time horizons (e.g., Short-term, Mid-term, Long-
term) for the roadmap for future research.
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11. Conclusion

The rapid evolution of cyber threats requires a fundamental shift in
how security is designed and implemented, with Al-driven approaches
now forming a cornerstone of modern cyber defense. This review
examines the transformative role of Al across multiple domains, in-
cluding malware detection, phishing prevention, intrusion response,
and anomaly analysis, while also highlighting the growing potential
of quantum-enhanced techniques such as QCNNs and QSVMs. These
technologies promise greater accuracy and scalability, but their real-
world deployment remains constrained by hardware limitations, noise
resilience, and integration challenges.

At the same time, ethical and governance issues must be addressed.
Algorithmic bias, transparency, and data privacy remain central to build-
ing trust in Al-enabled security systems. Explainable Al, fairness-aware
algorithms, and privacy-preserving models represent practical path-
ways for ensuring accountability in complex environments such as IoT
networks and smart cities.

Looking forward, future research must focus on resource-efficient,
transparent, and ethically aligned AI models that can operate effectively
in both classical and quantum-driven environments. Such advances will
strengthen encryption, improve resilience against emerging threats, and
extend protection to resource-constrained systems.

In conclusion, this study emphasizes the need for coordinated ef-
forts among researchers, policymakers, and industry stakeholders. By
combining innovation with responsibility, Al and quantum computing
can shape a cybersecurity ecosystem that is adaptive, trustworthy, and
resilient in the face of rapidly evolving digital challenges.
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