
RaY
Research at the University of York St John

For more information please contact RaY at
ray@yorksj.ac.uk

Siddalingappa, Rashmi ORCID logoORCID: https://orcid.org/0000-
0001-9786-8436, S, Deepa, I, Priya Stella Mary, P, Kalpana and B
A, Lakshmi (2025) FEDGE: FEDerated learning at the EDGE on
space platforms using deep neural network architectures.
International Journal of Information Technology.

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/13791/

The version presented here may differ from the published version or version of record. If

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.1007/s41870-025-03010-0

Research at York St John (RaY) is an institutional repository. It supports the principles of

open access by making the research outputs of the University available in digital form.

Copyright of the items stored in RaY reside with the authors and/or other copyright

owners. Users may access full text items free of charge, and may download a copy for

private study or non-commercial research. For further reuse terms, see licence terms

governing individual outputs. Institutional Repositories Policy Statement

https://www.yorksj.ac.uk/policies-and-documents/library/statement/
mailto:ray@yorksj.ac.uk

ORIGINAL RESEARCH

International Journal of Information Technology
https://doi.org/10.1007/s41870-025-03010-0

centralized systems [1, 2]. Unlike traditional ML, where
data is aggregated in cloud servers, FL trains models directly
on distributed edge devices, sharing only model updates
instead of raw data. This approach enhances data privacy,
reduces communication overhead, and is ideal for band-
width-constrained and latency-sensitive environments [3].
Edge Computing (EC) complements FL by extending cloud
capabilities closer to data sources, reducing latency and
bandwidth use while improving reliability [4]. EC enables
real-time processing for IoT applications in healthcare,
smart manufacturing, and UAVs [5]. However, managing
massive IoT data under strict performance and availability
constraints remains challenging. Space platforms, such as
satellites and spacecraft, further amplify these challenges
due to limited bandwidth and latency-critical operations.
These systems must autonomously perform tasks like object
detection, localization, and beamforming, which conven-
tional cloud architectures cannot efficiently support. To
address this, we propose FEDGE—FEDerated Learning at
the EDGE on Space Platforms Using DNN Architectures—
a framework combining FL and EC to achieve real-time,
communication-efficient learning in space environments.

1  Introduction

Federated Learning (FL) marks a paradigm shift in machine
learning (ML), enabling decentralized model training that
mitigates the privacy and communication limitations of

	
 Rashmi Siddalingappa
siddalingapparashmi@gmail.com

Deepa S
sdeepa369@gmail.com

Priya Stella Mary I
priya.stella@christuniversity.in

Kalpana P
kalpana.p@christuniversity.in

Lakshmi B A
lakshmishashidhar12@gmail.com

1	 Department of Computer and Data Science, York St John
University, London E14 2BA, UK

2	 Department of Computer Science, Christ University,
Bangalore, Karnataka 560073, India

3	 UST Global, Bangalore, India

Abstract
We introduce FEDGE: FEDerated Learning at the EDGE, a framework designed for efficient AI deployment in resource-
constrained satellite constellations. FEDGE integrates federated learning with edge computing to address communication
overhead and latency challenges in distributed space environments. The framework features a novel edge-enhanced ground
station protocol that dynamically schedules model aggregation based on satellite-provided metadata, combined with local
stochastic gradient descent training at satellite edge devices and gradient compression via quantization. Experimental
validation on MNIST and EuroSAT datasets demonstrates the practical viability of the approach. On MNIST, FEDGE
achieved 94.33% training accuracy with 0.21 loss and 90.05% test accuracy with 0.24 loss. On EuroSAT, the framework
reached 93.47% training accuracy with 0.18 loss and 91.51% test accuracy with 0.21 loss. Gradient quantization reduces
data exchange by up to 14× with approximately 4% impact on test loss. These results validate FEDGE as a communica-
tion-efficient solution for decentralized AI deployment in satellite systems, enabling autonomous spacecraft intelligence
and addressing the unique constraints of space-based computing platforms.

Keywords  Federated Learning, Edge Computing, Machine Learning, Internet-of-Things, Deep Neural Network
Architecture, Stochastic Gradient Descent

Received: 7 September 2025 / Accepted: 3 December 2025
© The Author(s) 2025

FEDGE: FEDerated learning at the EDGE on space platforms using deep
neural network architectures

Rashmi Siddalingappa1 · Deepa S2 · Priya Stella Mary I2 · Kalpana P2 · Lakshmi B A3

1 3

https://doi.org/10.1007/s41870-025-03010-0
https://orcid.org/0000-0001-9786-8436
http://crossmark.crossref.org/dialog/?doi=10.1007/s41870-025-03010-0&domain=pdf&date_stamp=2025-12-17

International Journal of Information Technology

While future integration with AI-specific hardware such as
ASICs is envisioned, this study remains hardware-agnostic
and focuses on developing lightweight, communication-effi-
cient DNN architectures suitable for low-power, resource-
constrained systems.

2  Background study

Table 1 summarizes methods, datasets, and limitations,
forming the foundation for FEDGE. While prior algorithms
like FedAvg assume IID clients or need careful tuning, few
studies jointly consider (i) intermittent client availability,

Refs. Problem/focus Core method Datasets/setup Key findings and limitations
[6] Federated Averag-

ing (FedAvg)
baseline

FedAvg
(local SGD +
averaging)

MNIST, EuroSAT (in
their evaluation)

Minimized communication
via local updates; comparable
accuracy to centralized train-
ing on MNIST and EuroSAT
with fewer rounds. Limitation:
assumes IID client data; sensitive
to hyperparameters

[7] Impact of non-IID
data on FedAvg

Adaptive averag-
ing, learning rate
adjustments

CIFAR-10, ImageNet
(experiments on non-
IID splits)

Improved accuracy under
non-IID via adaptive strategies;
requires careful tuning; may not
fully resolve severe heterogeneity

[8] Practical
system-level FL
considerations

System frame-
work: secure
aggregation, cli-
ent availability

Large-scale mobile
deployments (system
design)

Addresses scalability, privacy
(secure aggregation); focuses on
systems, not directly on model
accuracy. Limitation: system
complexity and integration costs

[9] On-device lan-
guage modeling

FedAvg with
RNNs for next-
word prediction

Mobile keyboard
dataset (proprietary)

Comparable accuracy to central-
ized models; communication-effi-
cient. Limitation: RNN compute
cost on-device; privacy preserved
but compute expensive

[10] Non-IID
robustness

FedDyn:
dynamic regular-
ization for feder-
ated optimization

CIFAR variants and
synthetic non-IID
tests

Outperforms FedAvg in unbal-
anced/non-IID settings; needs
tuning for regularizer strength

[11] Communica-
tion reduction
techniques

Quantization and
sparsification
algorithms

Benchmarks (cite
specifics)

Similar accuracy to FedAvg with
lower communication; parameter
settings crucial for trade-off

[12] Robustness to cli-
ent heterogeneity

FedProx: adds
a proximal term
to stabilize local
updates

MNIST, FEMNIST,
Sent140, The Com-
plete Works of Wil-
liam Shakespeare

Improves convergence in highly
non-IID data; effective for
heterogeneous devices; requires
tuning of proximal parameter

[13] Asynchronous
staleness-aware
FL

FedAsync, Fed-
Buff: asynchro-
nous updates,
buffer-based
aggregation

CIFAR-10, speech
tasks

Enables FL under intermittent
connectivity (e.g., satellites);
improves efficiency but accuracy
degrades under high staleness

[14] Gradient compres-
sion methods

QSGD (quan-
tized gradi-
ents), Top-k
sparsification

CIFAR-10, ImageNet Achieves up to 10× commu-
nication reduction with minor
accuracy loss; adds complexity
with error compensation

[15] Metadata-driven
scheduling

Importance sam-
pling / metadata-
aware client
selection

FEMNIST, Shake-
speare dataset

Prioritizes clients with high-value
updates, reducing training time;
requires metadata collection
overhead

[16] Privacy and secure
aggregation

Hybrid differ-
ential privacy +
secure aggrega-
tion frameworks

Healthcare, financial
FL

Improves privacy guarantees
with low communication over-
head; trade-off in model accuracy
due to DP noise

[17] Edge AI in
constrained
environments

Survey of edge
inference/train-
ing techniques
for IoT/satellite
AI

Broad survey across
edge/satellite/IoT

Highlights challenges of model
compression, lightweight
inference, and deployment in
constrained environments

Table 1  Summary of related
federated learning and edge-AI
works. This table highlights the
main problem, core method,
datasets / experimental setup, key
findings, and limitations

1 3

International Journal of Information Technology

(ii) metadata-driven aggregation scheduling, and (iii) quan-
tization/compression for constrained satellite links. FEDGE
explicitly addresses this space, offering metadata-aware
aggregation and edge-side gradient quantization to enhance
algorithmic robustness under real-world edge-space
constraints.

2.1  Objectives of FEDGE

The objective of FEDGE is to establish a robust and effi-
cient federated learning (FL) framework for edge-based AI
applications. To minimize communication overhead from
frequent parameter exchanges in conventional FL (e.g.,
FedAvg), FEDGE applies gradient compression with quan-
tization at edge devices, reducing cloud-edge dependency
and improving network efficiency. To handle data heteroge-
neity under non-IID distributions, FEDGE employs dynamic
scheduling at the central server using edge-provided meta-
data (e.g., training accuracy, data statistics) to adjust aggre-
gation strategies. For robustness and trustworthiness, it
integrates secure aggregation protocols, supporting deploy-
ment in sensitive environments. In resource-constrained
settings, FEDGE adopts lightweight models and efficient
training algorithms to minimize computational load. The
core innovation lies in an edge-enhanced ground station
(GS) protocol that dynamically schedules model aggrega-
tion based on satellite metadata (e.g., training accuracy,
round index), reducing communication costs and accommo-
dating intermittent connectivity. Local training is performed
on satellite edge devices using stochastic gradient descent
(SGD). In spacecraft applications, FEDGE enables real-
time image processing for object recognition and tracking,
reducing reliance on ground control. For satellites, it sup-
ports beamforming optimization through agile beam adjust-
ment, providing high throughput in large-array systems.
While long-term goals include ASIC-based AI hardware
deployment, this study remains hardware-agnostic, focus-
ing on a foundational, ASIC-compatible FL framework. The
proposed DNNs address critical computational tasks such
as robotic control loops, intelligent data filtering, and high-
bandwidth satellite communication, with potential extension
to AI hardware performance verification. The key applica-
tion scenarios of FEDGE include: (1) Multi-Legged Robotic
Locomotion: DNNs manage complex feedback loops and
MMA operations for agile navigation in dynamic environ-
ments. (2) Spacecraft Intelligence: Onboard DNNs enable
real-time sensor data interpretation (object recognition,
localization, tracking, segmentation), supporting autono-
mous decision-making. (3) Satellite Beamforming: DNNs
control phased antenna arrays for agile, high-throughput
beamforming, deriving phase and amplitude parameters
more efficiently than traditional algorithms.

3  Methodology

The FEDGE framework integrates data preparation, fed-
erated learning, and edge computing, as summarized in
Algorithm 1, covering the end-to-end process from data
collection to model deployment. It begins with data pre-
processing, followed by federated training with intermit-
tent connectivity simulation, dynamic aggregation, and
final deployment. Algorithm 2 (Ground Station procedure)
handles model aggregation in Step 7, Algorithm 3 (Satel-
lite Edge Computing) performs local training in Step 6, and
Algorithm 4 (Stopping Criteria) determines training termi-
nation in Step 9.

FEDGE enables collaborative training between satellites
(clients) and the ground station (GS), ensuring data privacy
and minimizing communication costs. The GS maintains a
global model (wi) and coordinates synchronization using
metadata, including training accuracy and round index. Sat-
ellites train locally with stochastic gradient descent (SGD),
compute gradients, and send updates to the GS for aggrega-
tion. The GS procedure initializes the global model w0 and
round index i = 0. Step 1: Satellites upload gradients (gk),
round indices (ig,k), and metadata (metak) to the GS buffer
Bi, along with staleness values sk = ig − ig,k. Step 2: If
the scheduler condition ai = 1 is met, the GS updates the
global model and increments the round counter. Step 3: The
updated model is broadcast to connected satellites. The sat-
ellite procedure starts by receiving wi and ig from the GS.
Local data Dk are preprocessed (normalization and aug-
mentation), and the local model is initialized with the global
model. Each satellite performs E SGD steps with learning
rate η, compresses the trained model via quantization, com-
putes the gradient gk (difference between trained and initial
models), and transmits it with metadata to the GS. Stopping
criteria are handled as described in Algorithm 4.

3.1  Edge computing

As computing advances, services are shifting from cen-
tralized cloud servers to distributed edge devices such as
smartphones, wearables, and IoT sensors. Massive data
generation at the edge makes cloud-based processing inef-
ficient due to latency, bandwidth limits, and security risks.
Edge computing overcomes these challenges through local-
ized processing, reducing cloud dependency and improv-
ing response time, security, and bandwidth efficiency [18].
Unlike traditional cloud systems, where edge devices only
consume data, edge computing enables them to act as both
data producers and processors, leveraging distributed com-
puting to enhance performance, reduce network congestion,
and improve scalability. This architecture supports seamless
integration with 5 G and AI-driven analytics. The latency of

1 3

International Journal of Information Technology

where De is local edge processing time.

3.2  Federated learning (FL)

Federated learning is a distributed ML paradigm that trains
models on many devices without sharing the data. FL is cru-
cial for privacy-sensitive applications like space communi-
cations, healthcare and finance and so on [19]. Instead of
transmitting entire datasets to a central server, FL enables
local training on edge devices, such as smartphones and

conventional cloud-based systems is characterized as shown
in Eqs. (1) and (2).

D = Dc + Dt + Dp� (1)

where: Dc is computational delay in the cloud, Dt is trans-
mission delay, Dp is processing delay at the edge. In edge
computing, local processing reduces delay:

Dedge = Dp + De� (2)

1 Input: Distributed datasets {Dk}, initial model w0
2 Output: Final model wfinal
3 Step 1: Data collection and initialization
4 Collect raw data from satellite edge devices (imagery, sensor readings).
5 Initialize global model w0 at the Ground Station (GS).
6 Set hyperparameters: learning rate η, local epochs E, compression factor, number of clients

N .
7 Step 2: Data preprocessing at edge devices
8 for each client k ∈ {1, . . . , N} do
9 Preprocess local dataset Dk (normalization, augmentation, resizing to model input size)

10 Store preprocessed data locally
11 end for
12 Step 3: Simulate non-IID distributions
13 Generate client partitions via Dirichlet sampling: π(i) ∼ Dirichlet(βθ)
14 Assign samples to each client according to π(i)

15 Step 4: Federated training initialization
16 Broadcast initial model w0 to all satellites
17 Set round counter r ← 0 and maximum rounds Rmax
18 while r < Rmax and stopping criteria not met do
19 r ← r + 1
20 Step 5: Simulate intermittent connectivity
21 Generate binary availability mask (Bernoulli drop probability p)
22 Determine active client set Cr

23 Step 6: Local training at satellites (see Alg. 2)
24 for each active client k ∈ Cr do
25 Perform local training on Dk (SGD for E epochs)
26 Compress local updates and upload (gk, ig,k,metak) to GS
27 end for
28 Step 7: Model aggregation at GS (see Alg. 1)
29 GS receives updates, applies scheduler, aggregates and (if triggered) updates w
30 Broadcast updated (w, ig) to clients
31 Step 8: Model evaluation
32 Evaluate global model on validation/test data and log metrics (loss, accuracy, precision,

recall, F1)
33 Step 9: Check stopping criteria
34 if any stopping condition is satisfied then
35 break
36 end if
37 end while
38 Step 10: Final model deployment
39 wfinal ← w
40 Deploy wfinal to satellites for inference
41 Step 11: Performance analysis
42 Generate ROC/PR curves and analyze communication efficiency and computational com-

plexity
43 Compare FEDGE with baseline FL methods
44 return wfinal

Algorithm 1  Complete FEDGE
methodology workflow

1 3

International Journal of Information Technology

L(W) = 1
ni

ni∑
j=1

ℓ(W, xj , yj)� (4)

where ℓ(W, xj , yj) is the sample loss (xj , yj).
FL follows three main steps: (1) Globle model initializa-

tion: The initial model is sent to all devices. (2) Localized
training: Clients train on their private data. (3) Model update
and aggregation: The server gathers updates and refines the
model.

IoT sensors, and periodically aggregates model updates on
a central or edge server. The global model aggregation is
shown in Eqs. (3) and (4):

Wt+1 =
Cn∑
i=1

ni

Cn
W i

t � (3)

where: Cn is the total clients, ni represents data points at
client i, W i

t is the local model at time t. Each client opti-
mizes its local model using:

1 Criterion 1: Fixed Number of Global Rounds Stop after a predefined number N .
2 Criterion 2: Convergence of Global Model Stop if ∆ = |L(wi+1) − L(wi)| ≤ ε.
3 Criterion 3: Target Accuracy Achieved Stop if Accuracyglobal ≥ Taccuracy.
4 Criterion 4: Communication Budget Exhausted Stop if Ctotal ≥ Bbudget.
5 Criterion 5: Energy Constraints Stop if Etotal ≥ Emax.
6 Criterion 6: No Significant Model Updates Stop if ‖gk‖ ≤ τ, ∀k ∈ C.
7 Criterion 7: Time Constraints Stop if telapsed ≥ Tmax.

Algorithm 4  Stopping criteria for
FEDGE framework

1 Input: Global model w0, local dataset Dk

2 repeat
3 Step 1: Receive Updates
4 Receive (wi, ig) from GS
5 Step 2: Edge Processing
6 Preprocess raw data from Dk (e.g., normalization, augmentation)
7 Step 3: Local Training
8 wk

0 ← wi

9 for j = 0 to E − 1 do
10 wk

j+1 ← wk
j − η∇f(wk

j , Xk
j)

11 end for
12 Step 4: Gradient Compression and Upload
13 wk

E ← Compress(wk
E)

14 gk ← wk
E − wk

0
15 Transmit (gk, ig, k,metak) to GS
16 until Stopping criterion is met

Algorithm 3  Satellite edge
computing and federated learning
procedure

1 Input: Initial model w0
2 Initialization: i = 0, ig = 0, B0 = ∅, R0 = ∅
3 repeat
4 Step 1: Receive Updates
5 for each k ∈ Ci (satellite connected to GS) do
6 Receive (gk, ig,k,metak)
7 Bi ← Bi ∪ {(gk, sk)}, where sk = ig − ig,k

8 Ri ← Ri ∪ {k}
9 end for

10 Step 2: Scheduler Decision
11 if ai = 1 then
12 Perform model update: wi+1 ← ServerUpdate(wi, Bi)
13 ig ← ig + 1
14 Bi+1 ← ∅, Ri+1 ← ∅
15 end if
16 Step 3: Broadcast Updates
17 Transmit (wi+1, ig) to satellites in Ci

18 i ← i + 1
19 until Stopping criterion is met

Algorithm 2  Edge-enhanced
ground station procedure

1 3

International Journal of Information Technology

3.4  Metrics

We conducted experiments using two benchmark datasets:
MNIST and EuroSAT. (1) MNIST: The MNIST dataset con-
sists of 70,000 grayscale images of handwritten digits (0–9),
with 60,000 images for training and 10,000 for testing. Each
image is 28x28 pixels in size. Due to its relatively small
size and simplicity, MNIST is considered a great testbed for
validating the basic functionality of machine learning algo-
rithms [21]. (2) EuroSAT: The EuroSAT dataset contains
60,000 color images divided into 10 classes [22]. There
are 50,000 training images and 10,000 testing images, with
each image being 32 × 32 pixels in size. EuroSAT is more
challenging than MNIST as it contains color channels and
more complex object variations, thus, this will provide an
in-depth understanding of how the FEDGE algorithm would
handle real-world image data

We use a loss function to estimate the deviation between
the predicted and true class label. The FEDGE model
employs the sparse categorical cross-entropy loss function
for multi-class classification problems [20]. Minimizing
cross-entropy encourages the model to assign high prob-
abilities to the correct classes and low probabilities to the
incorrect classes. For an individual data point, the sparse
categorical cross-entropy loss is calculated as follows (refer
Eq. (7)):

L = − log(p)� (7)

where p is the predicted probability of the correct class.
Stochastic Gradient Descent (SGD) is an optimization

algorithm that is used in the training phase so that the loss
function is minimized by the model. To do so, the model
tunes parameters such as weights and bias [23]. In a tradi-
tional gradient descent algorithm, the weights are computed
for the entire dataset, but in SGD, these gradients are cal-
culated for a single data point at each iteration, thus mak-
ing it extremely useful for large datasets. The mathematical
expression is as follows (refer Eq. (8)):

θt+1 = θt − η∇Q(θt; x(i), y(i))� (8)

where θ represents the model parameters, η is the learning
rate and ∇Q(θt; x(i), y(i)) is the loss function gradient eval-
uated in the training example ith.

We use precision, recall and F1 score metrics to assess
the quality of classification performed by FEDGE algorithm
[24]. Precision: Precision measures the proportion of cor-
rectly predicted positive instances out of all instances pre-
dicted as positive. Recall (Sensitivity): Recall, also known
as sensitivity or true positive rate, represents the proportion
of correctly identified positive samples out of all actual

3.3  Deep neural networks (DNNs)

DL employs Artificial Neural Networks (ANNs) with sev-
eral hidden layers to understand hierarchical structures. A
typical DNN neuron processes input features using weighted
summation followed by an activation function (Eq. 5):

y = f

(
N∑

i=1
wixi + b

)
� (5)

where: xi represents input features, wi denotes weights, b
is the bias term, f(·) is an activation function (e.g., ReLU,
Sigmoid, Softmax). Training involves minimizing a loss
function L using backpropagation and gradient descent (Eq.
6):

W = W − γ
∂L

∂W
� (6)

where γ is the learning rate. Common architectures include
Multilayer Perceptrons (MLPs), Convolutional Neural Net-
works (CNNs), and Recurrent Neural Networks (RNNs)
[20]. Traditional deep learning (DL) models require central-
ized data in cloud servers for training, posing challenges
including high communication costs from transmitting
massive datasets and data privacy concerns due to legal
and ethical constraints on sensitive information transfer. FL
addresses these limitations through distributed DNN train-
ing at edge/remote nodes [3], sharing only model param-
eters (gradients) rather than raw data. Table 2 presents the
architecture of the DNN model, including input shape, layer
configurations (e.g. Conv2D, MaxPooling2D), dense layers,
and optimization settings.

Table 2  DNN model parameters
Parameter Value
Input shape (32, 32, 3)
Number of convolutional layers 2
Conv2D filters (Layer 1) 32
Conv2D kernel size (Layer 1) (3, 3)
Conv2D activation (Layer 1) ReLU
MaxPooling2D pool size (Layer 1) (2, 2)
Conv2D filters (Layer 2) 64
Conv2D kernel size (Layer 2) (3, 3)
Conv2D activation (Layer 2) ReLU
MaxPooling2D pool size (Layer 2) (2, 2)
Dense layer size 10
Dense layer activation Softmax
Optimizer SGD
Learning rate 0.01
Loss function Sparse categorical crossentropy
Metrics Accuracy

1 3

International Journal of Information Technology

practical challenges such as data bias, limited sample size,
and uneven class representation.

4.1  Simulating label-skewed/non-IID distributions
via Dirichlet sampling

Dirichlet sampling is a widely used approach for generat-
ing heterogeneous label proportions across clients. Let
L = {ℓ1, ℓ2, . . . , ℓK} denote the global label set, with
K = 10 for MNIST and EuroSAT. The global class distri-
bution λ = [λ1, . . . , λK] represents the fraction of samples
per class. For each client j, local label proportions ϕ(j) are
drawn from a Dirichlet distribution:

ϕ(j) ∼ Dir(γλ), ∀j ∈ {1, . . . , N}� (12)

The concentration parameter γ controls the similar-
ity between local and global distributions. A high γ (e.g.,
106) produces nearly IID partitions, while a low γ (e.g., 0.1)
yields highly skewed, label-sparse datasets. As shown in
Fig. 1, smaller γ values cause clients to hold samples from
only a few classes, whereas larger values ensure balanced
data.

For experiments, the MNIST dataset and EuroSAT data-
set are partitioned using this mechanism. We employ the
RGB subset of EuroSAT (3-band images) to align with
standard vision benchmarks, leveraging its natural vari-
ability in terrain, lighting, and seasonal features to evaluate
the robustness of FEDGE under heterogeneous, real-world
conditions.

4.2  Client-specific data generation using feature-
space clustering

To simulate heterogeneous client data distributions, we
employ feature-space clustering based on pretrained deep
neural embeddings. Images from datasets such as MNIST
and EuroSAT are passed through a pretrained ResNet18 to
extract high-dimensional feature vectors, which are then

positive samples. F1-score: The F1-score is the harmonic
mean of precision and recall, providing a balanced measure
of the model’s performance. Higher scores in all of these
metrics indicate a well-performing classifier, while dis-
parities between classes can highlight classification imbal-
ances. The precision (refer Eq. 9), recall (refer Eq. 10), and
F1-score (refer Eq. 11) are calculated using the following
formulas:

Precision = TP

TP + FP
� (9)

Recall = TP

TP + FN
� (10)

F1-score = 2 × Precision × Recall
Precision + Recall

� (11)

where: TP = True Positives (correctly predicted positive
instances) ; FP = False Positives (incorrectly predicted posi-
tive instances) ; FN = False Negatives (incorrectly predicted
negative instances)

4  Data simulation and client partitioning

In federated learning (FL), data is typically distributed
across multiple clients in a non-identical and unbalanced
manner, known as non-IID (non–independent and identi-
cally distributed) data. To accurately evaluate the robust-
ness and scalability of the proposed FEDGE framework,
it is essential to emulate this heterogeneity in controlled
experimental settings. This section describes the method-
ology adopted to simulate realistic data distributions and
partition datasets across satellite clients. Following the data
simulation, a client partitioning strategy is implemented to
assign specific subsets of the dataset to individual satellite
nodes. Each client thus holds a localized dataset that reflects

Fig. 1  Class distribution across N = 10 clients generated using Dirichlet sampling. High concentration (α = 106) yields balanced partitions,
while low concentration (α = 0.1) produces highly skewed, label-sparse datasets, demonstrating increasing non-IIDness

1 3

International Journal of Information Technology

to emulate asynchronous participation. Each round, clients
are independently included with probability 1 − p, effec-
tively modeling real-world conditions where clients may be
offline, delayed, or out of range, as in satellite and remote
edge networks. This setup reproduces temporal staleness
and dynamic participation typical of real federated systems.

5  Results and discussions

Figure 3 illustrates the generalization capability of FEDGE,
showing test loss and accuracy across ten clients over ten
communication rounds. The test loss (left plot) decreases
from 0.3515 in Round 1 to 0.2630 by Round 3 and sta-
bilizes afterwards. Test accuracy (right plot) rises from
0.8987 to 0.92–0.93. Despite some client-specific varia-
tions, the upward trend confirms effective global model
generalization.

Testing on the EuroSAT dataset, which presents complex
aerial and satellite imagery, shows that FEDGE achieves a
test accuracy of approximately 91% with a test loss of 0.6
(Fig. 4), confirming strong generalization in challenging
scenarios.

Figure 5 shows ROC and Precision-Recall (PR) curves
for the digit classification model. The ROC plots True Posi-
tive Rate versus False Positive Rate (AUC-ROC indicates
class separability), and the PR curve reflects positive iden-
tification performance on imbalanced datasets. For the ten-
class EuroSAT dataset, performance was evaluated over ten
rounds using a one-vs-rest strategy with one-hot labels and
softmax outputs. Curves are shown for three representative
classes (0, 3, 7) across early (Round 1), mid (Round 5), and

projected to two dimensions using t-SNE for visualization
of semantic groupings (Fig. 2). Let C denote the set of clus-
ters in this feature space, with each cluster c ∈ C represent-
ing semantically similar samples.

We define a global cluster proportion vector θ and sam-
ple a client-specific allocation vector π(i) from a Dirichlet
distribution:

π(i) ∼ Dirichlet(βθ), ∀i ∈ {1, 2, . . . , N}� (13)

The concentration parameter β controls heterogeneity —
smaller values yield more skewed (non-IID) client datasets,
while larger values create near-uniform distributions. Each
client receives data sampled according to π(i), ensuring con-
trolled variability in local feature distributions. This cluster-
driven allocation mimics real-world personalization among
edge devices or satellites, where local data differs due to
geography or sensor specialization, thus providing a realis-
tic evaluation of FEDGE under distributional heterogeneity.

4.3  Simulating edge-space conditions: intermittent
connectivity and staleness

To capture the challenges of federated learning in edge and
space-based environments, we simulate intermittent cli-
ent availability caused by connectivity disruptions, limited
bandwidth, or out-of-range conditions (e.g., satellite cli-
ents). In each communication round, a binary availability
mask is generated using a Bernoulli distribution with a pre-
defined drop probability p (e.g., 30%). A value of 1 repre-
sents an active client, while 0 indicates an unavailable or
stale one. This mask is applied before model aggregation

Fig. 2  t-SNE visualization of feature clusters from pretrained embeddings. Each cluster groups semantically related samples used for client-
specific data allocation via Dirichlet sampling, where β controls the degree of non-IIDness

1 3

International Journal of Information Technology

data exchange by ∼14× (170,552 → 12,182 bytes) with
only a ∼5% accuracy drop and a slight loss increase (∼0.2),
achieving a practical trade-off for real-time deep learning in
resource-constrained edge environments . The performance
of the proposed FEDGE is compared with the state-of-the-
art works and tabulated in (Table 3).

5.1  Algorithm complexity analysis

The computational time and memory requirements of the
FEDGE algorithm are analyzed using asymptotic notations.
Time complexity, expressed in Big O notation, indicates the

late (Round 10) rounds. Increasing areas under both curves
indicate improved discrimination and calibration, with later
rounds showing higher TPR and precision at lower FPR and
higher recall.

Figure 6 illustrates FEDGE performance with and with-
out gradient quantization on EuroSAT. Quantization reduces
gradient precision for transmission from edge devices to
the central server, using uniform or non-uniform methods,
significantly lowering network latency [25]. The left sub-
plot shows global test accuracy over rounds for quantized
(blue) versus full-precision (red) gradients, and the right
subplot shows corresponding loss. Quantization reduces

Fig. 4  Test loss and accuracy across clients
on EuroSAT. Left: test loss (lower is bet-
ter). Right: test accuracy (higher is better)

Fig. 3  Test loss and accuracy across clients
on MNIST. Left: test loss (lower is better).
Right: test accuracy (higher is better)

1 3

International Journal of Information Technology

Ssync = O(n · m) + O(k) ≈ O(n · m).� (15)

5.1.2  Edge-based FL algorithm

For the Edge-based FL algorithm, the time complexity
consists of receiving the global model from the GS, O(k),
preprocessing the local dataset of size dk, O(dk), training
the local model with E epochs, O(E · dk), and uploading
gradients, O(m). Therefore, the overall time complexity is
(refer Eq. 16)

Tsat = O(k) + O(dk) + O(E · dk) + O(m) = O(E · dk),� (16)

with E epochs and local dataset size dk.
The space complexity includes storing the global model

O(k), the local dataset O(dk), and the gradients O(m). As
dk typically dominates, the total space complexity simpli-
fies to (refer Eq. (17))

Ssat = O(k) + O(dk) + O(m) ≈ O(dk).� (17)

algorithm’s execution time as a function of input size (e.g.,
O(n) for linear, O(n2) for quadratic growth), while space
complexity reflects the memory required to store inputs and
intermediate data [28].

5.1.1  Global model synchronization algorithm

The time complexity is computed in three steps. First, the
Ground Station (GS) receives updates from n satellites,
which takes O(n). Second, the GS checks the condition
ai = 1 to decide whether to update the model, taking O(1).
Third, the GS broadcasts the updated global model to all
satellites, again O(n). Thus, a single synchronization round
has (refer Eq. (14))

Tsync = O(n) + O(1) + O(n) = O(n),� (14)

showing that synchronization time scales linearly with the
number of satellites.

The space complexity includes storing gradients and
metadata from all satellites, O(n · m), and maintaining the
global model, O(k). Since k ≪ n · m, the total space com-
plexity simplifies to (refer Eq. (15))

Fig. 6  Gradient quantization for compress-
ing data

Fig. 5  ROC and precision-recall curves for EuroSAT dataset

1 3

International Journal of Information Technology

training despite interruptions, they may lead to inconsistent
models. Adaptive learning rates, dynamic aggregation, and
staleness-aware gradient methods could improve stability
and convergence. (iii) Resource-constrained optimization
is critical. Although ASIC integration is acknowledged, this
study focuses on simulations. Future work should explore
lightweight architectures, gradient sparsification, compres-
sion, and efficient training for feasible deployment on sat-
ellites and edge devices. (iv) Security and privacy require
stronger guarantees. Beyond inherent FL protections,
mechanisms such as differential privacy or homomorphic
encryption should be incorporated. Real-world deployment
will also need to handle communication delays, intermittent
connectivity, and dynamic topologies. (v) Finally, FEDGE
could support advanced training paradigms, including real-
time fine-tuning of pre-trained LLMs on space-generated
data, enabling applications such as autonomous anomaly
detection, predictive maintenance, and intelligent resource
allocation. FEDGE could also foster collaborative research
across distributed spacecraft datasets, accelerating discov-
ery and providing new insights into space environments.

6  Conclusion

This research proposes FEDGE, a federated learning
architecture for efficient and robust DNN deployment in
resource-constrained edge environments, particularly sat-
ellite networks, with potential AI ASIC integration for
enhanced performance. Key enhancements include on-
satellite data pre-processing and gradient compression,
reducing computational load on the ground station and
optimizing bandwidth usage. Gradient compression tech-
niques, such as sparsification or quantization, minimize
communication overhead, enabling more frequent model
updates in bandwidth-limited scenarios. Metadata sharing
and a dynamic scheduler allow satellites to transmit infor-
mation (e.g., training accuracy, data statistics) to the ground
station, guiding aggregation decisions and prioritizing high-
quality updates, thereby improving convergence speed and
resource efficiency. FEDGE also supports scalability by
handling distributed preprocessing and training at the edge,
enabling robust federated learning across complex, distrib-
uted environments. This design aligns with the trend of
leveraging satellite-edge computing for in-orbit ML training
on massive, distributed datasets. Addressing the challenges
outlined in the discussion can further enhance FEDGE’s
performance, robustness, and security, paving the way for
applications in satellite observation systems, LiDAR scan-
ning, autonomous vehicle networks, and embedded systems.

Data availability  The datasets used in this study are 1) the MNIST
database of handwritten data and 2) EuroSAT, labeled tiny images,

5.2  Discussions

This study introduces FEDGE, a federated learning frame-
work for real-time DNN deployment in edge environments
with limited connectivity, such as satellite networks. The
architecture leverages on-device processing and gradi-
ent compression to reduce communication overhead while
maintaining high accuracy, demonstrating scalability, resil-
ience to disconnections, and suitability for satellite-based
federated learning applications.
Challenges and future scope: (i) Enhancing the scheduler
in Algorithm 1 is a key area for improvement. Dynamically
adjusting the ai condition based on network status, satel-
lite resources, and model performance could optimize effi-
ciency and communication costs. Addressing non-IID data
across satellites is also essential; techniques such as stan-
dardization, normalization, or domain adaptation in edge
processing (Step 2 of Algorithm 2) could improve perfor-
mance. (ii) Model staleness and synchronization remain
challenges. While asynchronous updates help maintain

Table 3  Performance comparison of FEDGE with state-of-the-art fed-
erated learning frameworks
Method Dataset Accu-

racy
(%)

Loss Key features

FedProx [12] FEMNIST 78–80 1.1–1.3 Handles
system
heterogeneity

FedAsync [13] CIFAR-10 78–80 – Asynchronous
aggregation

Optimal Client
Sampling [15]

CIFAR-10 92–95
(val.)

0.15–
0.25

Optimized
client selec-
tion strategy

Hybrid
privacy-preserving

MNIST ∼90 – Privacy pres-
ervation with
differential
privacy

FL [16] Nursery
(UCI)

∼80
(F1)

FedNova [26] CIFAR-10 82–85 0.45–
0.55

Normalized
averaging for
heterogeneous
local updates

SCAFFOLD [27] FEMNIST 81–83 0.8–1.0 Variance
reduction
via control
variates

FEDGE (Ours) MNIST 94.33
(train)

0.21
(train)

Edge-
enhanced
GS protocol
gradient com-
pression (14
× reduction)
satellite meta-
data-driven
scheduling
resource-
constrained
deployment

90.05
(test)

0.24
(test)

EuroSAT 93.47
(train)

0.18
(train)

91.51
(test)

0.21
(test)

1 3

International Journal of Information Technology

9.	 Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augen-
stein S, Eichner H, Kiddon C, Ramage D (2018) Federated learn-
ing for mobile keyboard prediction. arXiv:1811.03604

10.	 Jin C, Chen X, Gu Y, Li Q (2023) Feddyn: a dynamic and efficient
federated distillation approach on recommender system. In: 2022
IEEE 28th The International Conference on Parallel and Distrib-
uted Systems (ICPADS). IEEE, 786–793

11.	 Ghosh A, Song Q, Gupta P, Khudanpur S (2020) Communication-
efficient federated learning with quantization and sparsification.
arXiv:2003.13218

12.	 Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning:
challenges, methods, and future directions. IEEE Signal Process
Mag 37(3):50–60

13.	 Xie C, Koyejo S, Gupta I (2019) Asynchronous federated optimi-
zation. arXiv:1903.03934

14.	 Alistarh D, Grubic D, Li J, Tomioka R, Vojnovic M (2017)
Qsgd: communication-efficient sgd via gradient quantization.
In: Advances in neural information processing systems, pp
1709–1720

15.	 Chen W, Horvath S, Richtarik P (2020) Optimal client sampling
for federated learning. arXiv:2010.13723

16.	 Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R,
Zhou Y (2019) A hybrid approach to privacy-preserving federated
learning. In: Proceeding of 12th ACM workshop Artificial Intel-
ligence Security, pp 1–11

17.	 Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intel-
ligence: paving the last mile of artificial intelligence with edge
computing. Proc IEEE 107(8):1738–1762

18.	 El-Sayed H, Sankar S, Prasad M, Puthal D, Gupta A, Mohanty M,
Lin C-T (2017) Edge of things: the big picture on the integration
of edge, IoT and the cloud in a distributed computing environ-
ment. IEEE Access 6:1706–1717

19.	 Xu J, Glicksberg BS, Su C, Walker P, Bian J, Wang F (2021) Fed-
erated learning for healthcare informatics. J Healthcare Inf Res
5:1–19

20.	 Goodfellow I (2016) Deep learning
21.	 LeCun Y, Cortes C, Burges CJ (2010) Mnist handwritten digit

database. ATT Labs. Available: ​h​t​t​p​:​​​/​​/​y​a​n​​n​.​l​​e​c​u​​​n​.​c​​​o​m​/​​e​x​​​d​b​/​m​n​i​s​t
2

22.	 Helber P, Bischke B, Dengel A, Borth D(2019) Eurosat: a novel
dataset and deep learning benchmark for land use and land cover
classification. IEEE J Sel Top Appl Earth Obs Remote Sens

23.	 Sun R-Y (2020) Optimization for deep learning: an overview. J
Oper Res Soc China 8(2):249–294

24.	 Powers DM (2011) Evaluation: from precision, recall and f-mea-
sure to roc, informedness, markedness and correlation. J Mach
Learn Technol 2(1):37–63

25.	 Gray RM, Neuhoff DL (1998) Quantization. IEEE Trans Inf The-
ory 44(6):2325–2383

26.	 Wang J, Liu Q, Liang H, Joshi G, Poor HV (2020) Tackling the
objective inconsistency problem in heterogeneous federated opti-
mization. Adv Neural Inf Proc Syst 33:7611–7623

27.	 Karimireddy SP, Kale S, Mohri M, Reddi S, Stich S, Suresh AT
(2020) Scaffold: stochastic controlled averaging for federated
learning. In: The International Conference on Machine Learning.
PMLR, pp 5132–5143

28.	 Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduc-
tion to algorithms. MIT press

are freely available online at ​h​t​t​p​​s​:​/​​/​a​r​c​​h​i​​v​e​.​​i​c​s​.​​u​c​i​​.​e​d​​u​/​d​​a​t​a​​s​e​t​/​​6​8​​3​/​m​
n​i​s​t​+​d​a​t​a​b​a​s​e​+​o​f​+​h​a​n​d​w​r​i​t​t​e​n​+​d​i​g​i​t​s [21], and ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​p​​h​
e​l​​b​e​r​​/​e​u​r​o​s​a​t [22]. The trained model developed in this study can be
shared upon reasonable request. Interested researchers may contact the
corresponding author via email for access to the model and related
resources.

Declarations

Conflict of interest  The authors declare no conflict of interest for the
present research study.

Open Access  This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit ​h​t​t​p​​:​/​/​​c​r​e​a​​t​i​​v​e​c​​o​m​m​o​​n​s​.​​o​
r​g​​/​l​i​c​e​n​s​e​s​/​b​y​/​4​.​0​/.

References

1.	 Sanjay C, Jahnavi K, Karanth S et al (2024) A secured deep
learning based smart home automation system. Int J Inf Technol
16(8):5239–5245

2.	 Kagi S, M A, Kousalya CG et al (2025) Federated deep reinforce-
ment learning (fdrl) framework using pelican optimization (po) to
achieve sustainable energy in IoT-integrated wireless networks.
Int J Inf Technol ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​1​​0​0​7​​/​s​4​​1​8​7​0​-​0​2​5​-​0​2​7​5​2​-​1
(received: 14 April 2025; Accepted: 21 Sep 2025; Published: 24
Oct 2025)

3.	 Bonawitz K, Eichner H, Grieskamp W, Harchaoui Z, Krieger
H, Nardi I, Rahman R, Tran K, Wegner K, Simpson K (2019)
Towards federated learning at scale: system design. In: Proceed-
ing of 2019 ACM SIGSAC Conf Cloud Comput Sec Workshop,
pp 1–16

4.	 Srivastava V, Lamba V, Mathada VS, Bulla C, Gupta N, Veera-
manikandan P et al (2025) An IoT-based framework employing
fuzzy logic and federated learning for decentralized decision-
making. Int J Inf Tech 1–7

5.	 Chouhan B, Pai R, Pandey B (2025) Edge computing based emu-
lator design for low-latency IoT health monitoring system. Int J
Inf Tech 1–11

6.	 Sun T, Li D, Wang B (2022) Decentralized federated averaging.
IEEE Trans Pattern Anal Mach Intell 45(4):4289–4301

7.	 Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Feder-
ated learning with non-iid data. arXiv:1806.00582

8.	 Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB,
Patel S, Ramage D, Segal A, Seth K (2017) Practical secure
aggregation for privacy-preserving machine learning. In: Pro-
ceeding of ACM SIGSAC Conference on Computer Communi-
cations Section 2017, pp 1175–1191

1 3

http://arxiv.org/abs/1811.03604
http://arxiv.org/abs/2003.13218
http://arxiv.org/abs/1903.03934
http://arxiv.org/abs/2010.13723
http://yann.lecun.com/exdb/mnist
https://archive.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
https://archive.ics.uci.edu/dataset/683/mnist+database+of+handwritten+digits
https://github.com/phelber/eurosat
https://github.com/phelber/eurosat
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s41870-025-02752-1
http://arxiv.org/abs/1806.00582

	﻿FEDGE: FEDerated learning at the EDGE on space platforms using deep neural network architectures
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Background study
	﻿2.1﻿ ﻿Objectives of FEDGE

	﻿3﻿ ﻿Methodology
	﻿3.1﻿ ﻿Edge computing
	﻿3.2﻿ ﻿Federated learning (FL)
	﻿3.3﻿ ﻿Deep neural networks (DNNs)
	﻿3.4﻿ ﻿Metrics

	﻿4﻿ ﻿Data simulation and client partitioning
	﻿4.1﻿ ﻿Simulating label-skewed/non-IID distributions via Dirichlet sampling
	﻿4.2﻿ ﻿Client-specific data generation using feature-space clustering
	﻿4.3﻿ ﻿Simulating edge-space conditions: intermittent connectivity and staleness

	﻿5﻿ ﻿Results and discussions
	﻿5.1﻿ ﻿Algorithm complexity analysis
	﻿5.1.1﻿ ﻿Global model synchronization algorithm
	﻿5.1.2﻿ ﻿Edge-based FL algorithm

	﻿5.2﻿ ﻿Discussions
	﻿6﻿ ﻿Conclusion
	﻿References

