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Abstract

We introduce FEDGE: FEDerated Learning at the EDGE, a framework designed for efficient Al deployment in resource-
constrained satellite constellations. FEDGE integrates federated learning with edge computing to address communication
overhead and latency challenges in distributed space environments. The framework features a novel edge-enhanced ground
station protocol that dynamically schedules model aggregation based on satellite-provided metadata, combined with local
stochastic gradient descent training at satellite edge devices and gradient compression via quantization. Experimental
validation on MNIST and EuroSAT datasets demonstrates the practical viability of the approach. On MNIST, FEDGE
achieved 94.33% training accuracy with 0.21 loss and 90.05% test accuracy with 0.24 loss. On EuroSAT, the framework
reached 93.47% training accuracy with 0.18 loss and 91.51% test accuracy with 0.21 loss. Gradient quantization reduces
data exchange by up to 14x with approximately 4% impact on test loss. These results validate FEDGE as a communica-
tion-efficient solution for decentralized Al deployment in satellite systems, enabling autonomous spacecraft intelligence

and addressing the unique constraints of space-based computing platforms.

Keywords Federated Learning, Edge Computing, Machine Learning, Internet-of-Things, Deep Neural Network

Architecture, Stochastic Gradient Descent

1 Introduction

Federated Learning (FL) marks a paradigm shift in machine
learning (ML), enabling decentralized model training that
mitigates the privacy and communication limitations of
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centralized systems [1, 2]. Unlike traditional ML, where
data is aggregated in cloud servers, FL trains models directly
on distributed edge devices, sharing only model updates
instead of raw data. This approach enhances data privacy,
reduces communication overhead, and is ideal for band-
width-constrained and latency-sensitive environments [3].
Edge Computing (EC) complements FL by extending cloud
capabilities closer to data sources, reducing latency and
bandwidth use while improving reliability [4]. EC enables
real-time processing for IoT applications in healthcare,
smart manufacturing, and UAVs [5]. However, managing
massive [oT data under strict performance and availability
constraints remains challenging. Space platforms, such as
satellites and spacecraft, further amplify these challenges
due to limited bandwidth and latency-critical operations.
These systems must autonomously perform tasks like object
detection, localization, and beamforming, which conven-
tional cloud architectures cannot efficiently support. To
address this, we propose FEDGE—FEDerated Learning at
the EDGE on Space Platforms Using DNN Architectures—
a framework combining FL and EC to achieve real-time,
communication-efficient learning in space environments.
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While future integration with Al-specific hardware such as

2 Background study

ASICs is envisioned, this study remains hardware-agnostic

and focuses on developing lightweight, communication-effi-
cient DNN architectures suitable for low-power, resource-

constrained systems.

Table 1 Summary of related
federated learning and edge-Al
works. This table highlights the
main problem, core method,
datasets / experimental setup, key
findings, and limitations
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Table 1 summarizes methods, datasets, and limitations,
forming the foundation for FEDGE. While prior algorithms
like FedAvg assume IID clients or need careful tuning, few
studies jointly consider (i) intermittent client availability,

Refs. Problem/focus Core method Datasets/setup Key findings and limitations
[6] Federated Averag- FedAvg MNIST, EuroSAT (in  Minimized communication
ing (FedAvg) (local SGD + their evaluation) via local updates; comparable
baseline averaging) accuracy to centralized train-
ing on MNIST and EuroSAT
with fewer rounds. Limitation:
assumes IID client data; sensitive
to hyperparameters
[7] Impact of non-IID  Adaptive averag- CIFAR-10, ImageNet Improved accuracy under
data on FedAvg ing, learning rate  (experiments on non- non-IID via adaptive strategies;
adjustments 11D splits) requires careful tuning; may not
fully resolve severe heterogeneity
[8] Practical System frame- Large-scale mobile Addresses scalability, privacy
system-level FL  work: secure deployments (system (secure aggregation); focuses on
considerations aggregation, cli- design) systems, not directly on model
ent availability accuracy. Limitation: system
complexity and integration costs
[9] On-device lan- FedAvg with Mobile keyboard Comparable accuracy to central-
guage modeling RNNs for next-  dataset (proprietary)  ized models; communication-effi-
word prediction cient. Limitation: RNN compute
cost on-device; privacy preserved
but compute expensive
[10]  Non-IID FedDyn: CIFAR variants and ~ Outperforms FedAvg in unbal-
robustness dynamic regular- synthetic non-1ID anced/non-IID settings; needs
ization for feder- tests tuning for regularizer strength
ated optimization
[11]  Communica- Quantization and Benchmarks (cite Similar accuracy to FedAvg with
tion reduction sparsification specifics) lower communication; parameter
techniques algorithms settings crucial for trade-off
[12]  Robustness to cli- FedProx: adds MNIST, FEMNIST,  Improves convergence in highly
ent heterogeneity  a proximal term  Sent140, The Com- non-1ID data; effective for
to stabilize local  plete Works of Wil-  heterogeneous devices; requires
updates liam Shakespeare tuning of proximal parameter
[13]  Asynchronous FedAsync, Fed- CIFAR-10, speech Enables FL under intermittent
staleness-aware Buff: asynchro-  tasks connectivity (e.g., satellites);

FL nous updates, improves efficiency but accuracy
buffer-based degrades under high staleness
aggregation

[14]  Gradient compres- QSGD (quan- CIFAR-10, ImageNet Achieves up to 10X commu-
sion methods tized gradi- nication reduction with minor
ents), Top-k accuracy loss; adds complexity
sparsification with error compensation
[15] Metadata-driven  Importance sam- FEMNIST, Shake- Prioritizes clients with high-value
scheduling pling / metadata- speare dataset updates, reducing training time;
aware client requires metadata collection
selection overhead
[16]  Privacy and secure Hybrid differ- Healthcare, financial — Improves privacy guarantees
aggregation ential privacy + FL with low communication over-
secure aggrega- head; trade-off in model accuracy
tion frameworks due to DP noise
[17] EdgeAlin Survey of edge  Broad survey across ~ Highlights challenges of model
constrained inference/train-  edge/satellite/IoT compression, lightweight
environments ing techniques inference, and deployment in
for IoT/satellite constrained environments
Al




International Journal of Information Technology

(i1) metadata-driven aggregation scheduling, and (iii) quan-
tization/compression for constrained satellite links. FEDGE
explicitly addresses this space, offering metadata-aware
aggregation and edge-side gradient quantization to enhance
algorithmic robustness under real-world edge-space
constraints.

2.1 Objectives of FEDGE

The objective of FEDGE is to establish a robust and effi-
cient federated learning (FL) framework for edge-based Al
applications. To minimize communication overhead from
frequent parameter exchanges in conventional FL (e.g.,
FedAvg), FEDGE applies gradient compression with quan-
tization at edge devices, reducing cloud-edge dependency
and improving network efficiency. To handle data heteroge-
neity under non-IID distributions, FEDGE employs dynamic
scheduling at the central server using edge-provided meta-
data (e.g., training accuracy, data statistics) to adjust aggre-
gation strategies. For robustness and trustworthiness, it
integrates secure aggregation protocols, supporting deploy-
ment in sensitive environments. In resource-constrained
settings, FEDGE adopts lightweight models and efficient
training algorithms to minimize computational load. The
core innovation lies in an edge-enhanced ground station
(GS) protocol that dynamically schedules model aggrega-
tion based on satellite metadata (e.g., training accuracy,
round index), reducing communication costs and accommo-
dating intermittent connectivity. Local training is performed
on satellite edge devices using stochastic gradient descent
(SGD). In spacecraft applications, FEDGE enables real-
time image processing for object recognition and tracking,
reducing reliance on ground control. For satellites, it sup-
ports beamforming optimization through agile beam adjust-
ment, providing high throughput in large-array systems.
While long-term goals include ASIC-based Al hardware
deployment, this study remains hardware-agnostic, focus-
ing on a foundational, ASIC-compatible FL framework. The
proposed DNNs address critical computational tasks such
as robotic control loops, intelligent data filtering, and high-
bandwidth satellite communication, with potential extension
to Al hardware performance verification. The key applica-
tion scenarios of FEDGE include: (1) Multi-Legged Robotic
Locomotion: DNNs manage complex feedback loops and
MMA operations for agile navigation in dynamic environ-
ments. (2) Spacecraft Intelligence: Onboard DNNs enable
real-time sensor data interpretation (object recognition,
localization, tracking, segmentation), supporting autono-
mous decision-making. (3) Satellite Beamforming: DNNs
control phased antenna arrays for agile, high-throughput
beamforming, deriving phase and amplitude parameters
more efficiently than traditional algorithms.

3 Methodology

The FEDGE framework integrates data preparation, fed-
erated learning, and edge computing, as summarized in
Algorithm 1, covering the end-to-end process from data
collection to model deployment. It begins with data pre-
processing, followed by federated training with intermit-
tent connectivity simulation, dynamic aggregation, and
final deployment. Algorithm 2 (Ground Station procedure)
handles model aggregation in Step 7, Algorithm 3 (Satel-
lite Edge Computing) performs local training in Step 6, and
Algorithm 4 (Stopping Criteria) determines training termi-
nation in Step 9.

FEDGE enables collaborative training between satellites
(clients) and the ground station (GS), ensuring data privacy
and minimizing communication costs. The GS maintains a
global model (w;) and coordinates synchronization using
metadata, including training accuracy and round index. Sat-
ellites train locally with stochastic gradient descent (SGD),
compute gradients, and send updates to the GS for aggrega-
tion. The GS procedure initializes the global model wy and
round index ¢ = 0. Step 1: Satellites upload gradients (gy),
round indices (%4,%), and metadata (metay) to the GS buffer
B;, along with staleness values s, = i, — 14 . Step 2: If
the scheduler condition a; = 1 is met, the GS updates the
global model and increments the round counter. Step 3: The
updated model is broadcast to connected satellites. The sat-
ellite procedure starts by receiving w; and i, from the GS.
Local data Dy, are preprocessed (normalization and aug-
mentation), and the local model is initialized with the global
model. Each satellite performs £ SGD steps with learning
rate 77, compresses the trained model via quantization, com-
putes the gradient gy, (difference between trained and initial
models), and transmits it with metadata to the GS. Stopping
criteria are handled as described in Algorithm 4.

3.1 Edge computing

As computing advances, services are shifting from cen-
tralized cloud servers to distributed edge devices such as
smartphones, wearables, and IoT sensors. Massive data
generation at the edge makes cloud-based processing inef-
ficient due to latency, bandwidth limits, and security risks.
Edge computing overcomes these challenges through local-
ized processing, reducing cloud dependency and improv-
ing response time, security, and bandwidth efficiency [18].
Unlike traditional cloud systems, where edge devices only
consume data, edge computing enables them to act as both
data producers and processors, leveraging distributed com-
puting to enhance performance, reduce network congestion,
and improve scalability. This architecture supports seamless
integration with 5 G and Al-driven analytics. The latency of
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Algorithm 1 Complete FEDGE
methodology workflow

(<2 S B S UR R

-3

10
11
12
13
14
15
16
17
18

Input: Distributed datasets {Dy}, initial model wy
Output: Final model wgpa
Step 1: Data collection and initialization
Collect raw data from satellite edge devices (imagery, sensor readings).
Initialize global model wy at the Ground Station (GS).
Set hyperparameters: learning rate 7, local epochs E, compression factor, number of clients
N.
Step 2: Data preprocessing at edge devices
for cach client k € {1,...,N} do
Preprocess local dataset Dy, (normalization, augmentation, resizing to model input size)
Store preprocessed data locally
end for
Step 3: Simulate non-IID distributions
Generate client partitions via Dirichlet sampling: (9 ~ Dirichlet(36)
Assign samples to each client according to 7(¥
Step 4: Federated training initialization
Broadcast initial model wg to all satellites
Set round counter r «+ 0 and maximum rounds Ryax
while r < Rpax and stopping criteria not met do
r—r+1
Step 5: Simulate intermittent connectivity
Generate binary availability mask (Bernoulli drop probability p)

Step 6: Local training at satellites (see Alg. 2)
Perform local training on Dy, (SGD for E epochs)

Compress local updates and upload (gx, ig,x, metag) to GS

GS receives updates, applies scheduler, aggregates and (if triggered) updates w

20

21

22 Determine active client set C,

23

24 for each active client k € C, do

25

26

27 end for

28 Step 7: Model aggregation at GS (see Alg. 1)
29

30 Broadcast updated (w,i,) to clients
31 Step 8: Model evaluation

32

Evaluate global model on validation/test data and log metrics (loss, accuracy, precision,
recall, F1)

33 Step 9: Check stopping criteria

34 if any stopping condition is satisfied then
35 break

36 end if

37 end while

38 Step 10: Final model deployment

39
40
41
42

43
44

Wfinal <— W

Deploy wgna to satellites for inference

Step 11: Performance analysis

Generate ROC/PR curves and analyze communication efficiency and computational com-
plexity

Compare FEDGE with baseline FL. methods

return wegpa)

conventional cloud-based systems is characterized as shown

in Egs. (1) and (2).

D=D.+D;+D,

where D, is local edge processing time.

3.2 Federated learning (FL)
(D
Federated learning is a distributed ML paradigm that trains

where: D, is computational delay in the cloud, D, is trans-
mission delay, D, is processing delay at the edge. In edge
computing, local processing reduces delay:

Dedge = Dp + D, (2)

@ Springer

models on many devices without sharing the data. FL is cru-
cial for privacy-sensitive applications like space communi-
cations, healthcare and finance and so on [19]. Instead of
transmitting entire datasets to a central server, FL enables
local training on edge devices, such as smartphones and
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Algorithm 2 Edge-enhanced

- 1 Input: Initial model wq
ground station procedure

3 repeat

2 Initialization: i =0, i; =0, By =0, Ry =0

4 Step 1: Receive Updates

end for

© o N o u

for each k € C; (satellite connected to GS) do
Receive (g, igk, metay)
B; — B; U {(gk,sk)}, where s =iy — g1

10 Step 2: Scheduler Decision

11 if a; = 1 then

12 Perform model update: w;;1 < ServerUpdate(w;, B;)
13 1g +— g+ 1

14 Biv1 — 0, Riz1 <0

15 end if

16 Step 3: Broadcast Updates

17 Transmit (wj1,14) to satellites in C;

18 i—i+1

—

9 until Stopping criterion is met

Algorithm 3 Satellite edge
computing and federated learning

repeat
procedure P

Input: Global model wy, local dataset Dy,

Step 1: Receive Updates

Receive (wy, ig) from GS

Preprocess raw data from Dy (e.g., normalization, augmentation)
Step 3: Local Training

1
2
3
4
5 Step 2: Edge Processing
6
7
8
9

w’&' — W;

for j=0to £ —1do
10 wh, | — wk -V fwh, XF)

J+1 J Jr

11 end for
12 Step 4: Gradient Compression and Upload
13 wh « Compress(wh)
gy wh —wf

15 Transmit (g, ig, k, metay) to GS
16 until Stopping criterion is met

Algorithm 4 Stopping criteria for
FEDGE framework

W N =

-~ o

Criterion 1: Fixed Number of Global Rounds Stop after a predefined number N.
Criterion 2: Convergence of Global Model Stop if A = |L(wit1) — L(w;)] <e.
Criterion 3: Target Accuracy Achieved Stop if Accuracyglobal > Thaccuracy-
Criterion 4: Communication Budget Exhausted Stop if Ciotal > Bhudget-
Criterion 5: Energy Constraints Stop if Fiotal > Fmax-

Criterion 6: No Significant Model Updates Stop if ||gx|| < 7, Vk € C.

Criterion 7: Time Constraints Stop if elapsed > Tmax-

IoT sensors, and periodically aggregates model updates on
a central or edge server. The global model aggregation is
shown in Egs. (3) and (4):

n

Cn
n; i
Wi = Z ?Wt (3)
i=1

where: C,, is the total clients, n; represents data points at
client i, W} is the local model at time ¢ Each client opti-
mizes its local model using:

Uz

1
(2 ]:1

where £(W, z,y;) is the sample loss (x;, y;).

FL follows three main steps: (1) Globle model initializa-
tion: The initial model is sent to all devices. (2) Localized
training: Clients train on their private data. (3) Model update
and aggregation: The server gathers updates and refines the
model.

@ Springer
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3.3 Deep neural networks (DNNs)

DL employs Artificial Neural Networks (ANNs) with sev-
eral hidden layers to understand hierarchical structures. A
typical DNN neuron processes input features using weighted
summation followed by an activation function (Eq. 5):

N
y=1f (Z w;T; + b) (5)
i—1

where: z; represents input features, w; denotes weights, b
is the bias term, f(-) is an activation function (e.g., ReLU,
Sigmoid, Softmax). Training involves minimizing a loss
function L using backpropagation and gradient descent (Eq.
6):

oL
W:W—WW (6)

where 7 is the learning rate. Common architectures include
Multilayer Perceptrons (MLPs), Convolutional Neural Net-
works (CNNs), and Recurrent Neural Networks (RNNs)
[20]. Traditional deep learning (DL) models require central-
ized data in cloud servers for training, posing challenges
including high communication costs from transmitting
massive datasets and data privacy concerns due to legal
and ethical constraints on sensitive information transfer. FL
addresses these limitations through distributed DNN train-
ing at edge/remote nodes [3], sharing only model param-
eters (gradients) rather than raw data. Table 2 presents the
architecture of the DNN model, including input shape, layer
configurations (e.g. Conv2D, MaxPooling2D), dense layers,
and optimization settings.

Table 2 DNN model parameters

Parameter Value
Input shape (32,32,3)
Number of convolutional layers 2

Conv2D filters (Layer 1) 32
Conv2D kernel size (Layer 1) 3,3)
Conv2D activation (Layer 1) ReLU

MaxPooling2D pool size (Layer 1) (2, 2)
Conv2D filters (Layer 2) 64

Conv2D kernel size (Layer 2) 3,3)
Conv2D activation (Layer 2) ReLU
MaxPooling2D pool size (Layer 2) (2, 2)

Dense layer size 10
Dense layer activation Softmax
Optimizer SGD
Learning rate 0.01

Loss function Sparse categorical crossentropy

Metrics Accuracy

@ Springer

3.4 Metrics

We conducted experiments using two benchmark datasets:
MNIST and EuroSAT. (1) MNIST: The MNIST dataset con-
sists of 70,000 grayscale images of handwritten digits (0-9),
with 60,000 images for training and 10,000 for testing. Each
image is 28x28 pixels in size. Due to its relatively small
size and simplicity, MNIST is considered a great testbed for
validating the basic functionality of machine learning algo-
rithms [21]. (2) EuroSAT: The EuroSAT dataset contains
60,000 color images divided into 10 classes [22]. There
are 50,000 training images and 10,000 testing images, with
each image being 32 x 32 pixels in size. EuroSAT is more
challenging than MNIST as it contains color channels and
more complex object variations, thus, this will provide an
in-depth understanding of how the FEDGE algorithm would
handle real-world image data

We use a loss function to estimate the deviation between
the predicted and true class label. The FEDGE model
employs the sparse categorical cross-entropy loss function
for multi-class classification problems [20]. Minimizing
cross-entropy encourages the model to assign high prob-
abilities to the correct classes and low probabilities to the
incorrect classes. For an individual data point, the sparse
categorical cross-entropy loss is calculated as follows (refer

Eq. (7)):

L = —log(p) ()

where p is the predicted probability of the correct class.

Stochastic Gradient Descent (SGD) is an optimization
algorithm that is used in the training phase so that the loss
function is minimized by the model. To do so, the model
tunes parameters such as weights and bias [23]. In a tradi-
tional gradient descent algorithm, the weights are computed
for the entire dataset, but in SGD, these gradients are cal-
culated for a single data point at each iteration, thus mak-
ing it extremely useful for large datasets. The mathematical
expression is as follows (refer Eq. (8)):

Ori1 = 0, — NV Q(0r; 2D, yM) (®)

where 6 represents the model parameters, 7 is the learning
rate and VQ(6;; 2, y()) is the loss function gradient eval-
uated in the training example i'".

We use precision, recall and F1 score metrics to assess
the quality of classification performed by FEDGE algorithm
[24]. Precision: Precision measures the proportion of cor-
rectly predicted positive instances out of all instances pre-
dicted as positive. Recall (Sensitivity): Recall, also known
as sensitivity or true positive rate, represents the proportion
of correctly identified positive samples out of all actual
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positive samples. Fl-score: The Fl-score is the harmonic
mean of precision and recall, providing a balanced measure
of the model’s performance. Higher scores in all of these
metrics indicate a well-performing classifier, while dis-
parities between classes can highlight classification imbal-
ances. The precision (refer Eq. 9), recall (refer Eq. 10), and
Fl-score (refer Eq. 11) are calculated using the following
formulas:

TP
Precision — — ~ 1
recision TP+ FP ©
TP
l= ———
Reca TP+ PN (10)
Flscore — 2 x Precision x Recall (11)

Precision + Recall

where: TP = True Positives (correctly predicted positive
instances) ; FP = False Positives (incorrectly predicted posi-
tive instances) ; FN = False Negatives (incorrectly predicted
negative instances)

4 Data simulation and client partitioning

In federated learning (FL), data is typically distributed
across multiple clients in a non-identical and unbalanced
manner, known as non-IID (non—independent and identi-
cally distributed) data. To accurately evaluate the robust-
ness and scalability of the proposed FEDGE framework,
it is essential to emulate this heterogeneity in controlled
experimental settings. This section describes the method-
ology adopted to simulate realistic data distributions and
partition datasets across satellite clients. Following the data
simulation, a client partitioning strategy is implemented to
assign specific subsets of the dataset to individual satellite
nodes. Each client thus holds a localized dataset that reflects

practical challenges such as data bias, limited sample size,
and uneven class representation.

4.1 Simulating label-skewed/non-IID distributions
via Dirichlet sampling

Dirichlet sampling is a widely used approach for generat-
ing heterogeneous label proportions across clients. Let
L={l,0s,..., Lk} denote the global label set, with
K =10 for MNIST and EuroSAT. The global class distri-
bution A = [A1,..., Ax] represents the fraction of samples
per class. For each client j, local label proportions ¢(/) are
drawn from a Dirichlet distribution:

¢ ~ Dir(yA), Vje{l,...,N} (12)
The concentration parameter < controls the similar-
ity between local and global distributions. A high v (e.g.,
10%) produces nearly IID partitions, while a low v (e.g., 0.1)
yields highly skewed, label-sparse datasets. As shown in
Fig. 1, smaller y values cause clients to hold samples from
only a few classes, whereas larger values ensure balanced
data.

For experiments, the MNIST dataset and EuroSAT data-
set are partitioned using this mechanism. We employ the
RGB subset of EuroSAT (3-band images) to align with
standard vision benchmarks, leveraging its natural vari-
ability in terrain, lighting, and seasonal features to evaluate
the robustness of FEDGE under heterogeneous, real-world
conditions.

4.2 Client-specific data generation using feature-
space clustering

To simulate heterogeneous client data distributions, we
employ feature-space clustering based on pretrained deep
neural embeddings. Images from datasets such as MNIST
and EuroSAT are passed through a pretrained ResNet18 to
extract high-dimensional feature vectors, which are then

Dirichlet-Generated Non-IID Class Distribution Across Clients

a=1000000.0 a=1000.0

a=10

E N W s v o N ® ©

E N W s v oo N ® o
H N W s w8 N ® o

00 02 04 06 08 10 00 02 04 06 08 10
Class Ratio Class Ratio

00 02 04 06 08 10 02 04 06 08
Class Ratio Class Ratio

Fig. 1 Class distribution across N = 10 clients generated using Dirichlet sampling. High concentration (v = 10°) yields balanced partitions,
while low concentration (o = 0.1) produces highly skewed, label-sparse datasets, demonstrating increasing non-IIDness

@ Springer



International Journal of Information Technology

projected to two dimensions using t-SNE for visualization
of semantic groupings (Fig. 2). Let C denote the set of clus-
ters in this feature space, with each cluster ¢ € C represent-
ing semantically similar samples.

We define a global cluster proportion vector 6 and sam-
ple a client-specific allocation vector 7w(¥) from a Dirichlet
distribution:

7 ~ Dirichlet(30), Vie {1,2,...,N} (13)
The concentration parameter /3 controls heterogeneity —
smaller values yield more skewed (non-IID) client datasets,
while larger values create near-uniform distributions. Each
client receives data sampled according to 7 ("), ensuring con-
trolled variability in local feature distributions. This cluster-
driven allocation mimics real-world personalization among
edge devices or satellites, where local data differs due to
geography or sensor specialization, thus providing a realis-
tic evaluation of FEDGE under distributional heterogeneity.

4.3 Simulating edge-space conditions: intermittent
connectivity and staleness

To capture the challenges of federated learning in edge and
space-based environments, we simulate intermittent cli-
ent availability caused by connectivity disruptions, limited
bandwidth, or out-of-range conditions (e.g., satellite cli-
ents). In each communication round, a binary availability
mask is generated using a Bernoulli distribution with a pre-
defined drop probability p (e.g., 30%). A value of 1 repre-
sents an active client, while 0 indicates an unavailable or
stale one. This mask is applied before model aggregation

t-SNE Visualization of MNIST

dass

CENOUEWN O

to emulate asynchronous participation. Each round, clients
are independently included with probability 1 — p, effec-
tively modeling real-world conditions where clients may be
offline, delayed, or out of range, as in satellite and remote
edge networks. This setup reproduces temporal staleness
and dynamic participation typical of real federated systems.

5 Results and discussions

Figure 3 illustrates the generalization capability of FEDGE,
showing test loss and accuracy across ten clients over ten
communication rounds. The test loss (left plot) decreases
from 0.3515 in Round 1 to 0.2630 by Round 3 and sta-
bilizes afterwards. Test accuracy (right plot) rises from
0.8987 to 0.92-0.93. Despite some client-specific varia-
tions, the upward trend confirms effective global model
generalization.

Testing on the EuroSAT dataset, which presents complex
aerial and satellite imagery, shows that FEDGE achieves a
test accuracy of approximately 91% with a test loss of 0.6
(Fig. 4), confirming strong generalization in challenging
scenarios.

Figure 5 shows ROC and Precision-Recall (PR) curves
for the digit classification model. The ROC plots True Posi-
tive Rate versus False Positive Rate (AUC-ROC indicates
class separability), and the PR curve reflects positive iden-
tification performance on imbalanced datasets. For the ten-
class EuroSAT dataset, performance was evaluated over ten
rounds using a one-vs-rest strategy with one-hot labels and
softmax outputs. Curves are shown for three representative
classes (0, 3, 7) across early (Round 1), mid (Round 5), and

t-SNE Visualization of EuroSAT Features

Fig. 2 t-SNE visualization of feature clusters from pretrained embeddings. Each cluster groups semantically related samples used for client-
specific data allocation via Dirichlet sampling, where 3 controls the degree of non-IIDness
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late (Round 10) rounds. Increasing areas under both curves  data exchange by ~14x (170,552 — 12,182 bytes) with

indicate improved discrimination and calibration, with later ~ only a ~5% accuracy drop and a slight loss increase (~0.2),

rounds showing higher TPR and precision at lower FPR and  achieving a practical trade-off for real-time deep learning in

higher recall. resource-constrained edge environments . The performance
Figure 6 illustrates FEDGE performance with and with-  of the proposed FEDGE is compared with the state-of-the-

out gradient quantization on EuroSAT. Quantization reduces  art works and tabulated in (Table 3).

gradient precision for transmission from edge devices to

the central server, using uniform or non-uniform methods, 5.1 Algorithm complexity analysis

significantly lowering network latency [25]. The left sub-

plot shows global test accuracy over rounds for quantized = The computational time and memory requirements of the

(blue) versus full-precision (red) gradients, and the right =~ FEDGE algorithm are analyzed using asymptotic notations.

subplot shows corresponding loss. Quantization reduces  Time complexity, expressed in Big O notation, indicates the
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Multiclass ROC Curves (Selected Classes)

Multiclass Precision-Recall Curves (Selected Classes)
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algorithm’s execution time as a function of input size (e.g.,
O(n) for linear, O(n?) for quadratic growth), while space
complexity reflects the memory required to store inputs and
intermediate data [28].

5.1.1 Global model synchronization algorithm

The time complexity is computed in three steps. First, the
Ground Station (GS) receives updates from n satellites,
which takes O(n). Second, the GS checks the condition
a; = 1 to decide whether to update the model, taking O(1).
Third, the GS broadcasts the updated global model to all
satellites, again O(n). Thus, a single synchronization round
has (refer Eq. (14))

showing that synchronization time scales linearly with the
number of satellites.

The space complexity includes storing gradients and
metadata from all satellites, O(n - m), and maintaining the
global model, O(k). Since k < n - m, the total space com-
plexity simplifies to (refer Eq. (15))

@ Springer

5.1.2 Edge-based FL algorithm

For the Edge-based FL algorithm, the time complexity
consists of receiving the global model from the GS, O(k),
preprocessing the local dataset of size dj, O(dy), training
the local model with F epochs, O(FE - d), and uploading
gradients, O(m). Therefore, the overall time complexity is
(refer Eq. 16)

Tow = O(K) + O(dy) + O(E - dy) + O(m) = O(E-di).  (16)
with E epochs and local dataset size dj.

The space complexity includes storing the global model
O(k), the local dataset O(dy), and the gradients O(m). As
dy, typically dominates, the total space complexity simpli-
fies to (refer Eq. (17))

Ssat = O(k) + O(di) + O(m) ~ O(dk). (17)
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Table 3 Performance comparison of FEDGE with state-of-the-art fed-
erated learning frameworks

Method Dataset Accu- Loss  Key features
racy
(%)

FedProx [12] FEMNIST  78-80 1.1-1.3 Handles
system
heterogeneity

FedAsync [13] CIFAR-10  78-80 — Asynchronous
aggregation

Optimal Client CIFAR-10 92-95 0.15- Optimized

Sampling [15] (val.) 0.25 client selec-
tion strategy

Hybrid MNIST ~90 - Privacy pres-

privacy-preserving ervation with

FL[16] Nursery ~80 differential

(UCI) (F1) privacy

FedNova [26] CIFAR-10 82-85 0.45— Normalized

0.55 averaging for
heterogeneous
local updates

SCAFFOLD [27] FEMNIST  81-83 0.8-1.0 Variance
reduction
via control
variates

FEDGE (Ours) MNIST 9433  0.21 Edge-

(train) (train) enhanced
90.05 0.24  GS protocol
(test)  (test) gradignt com-
EuroSAT 9347 0.18  Pression (14
(train) (train) X reduction)
9151 021 satellite meta-

data-driven
scheduling
resource-
constrained
deployment

(test)  (test)

5.2 Discussions

This study introduces FEDGE, a federated learning frame-
work for real-time DNN deployment in edge environments
with limited connectivity, such as satellite networks. The
architecture leverages on-device processing and gradi-
ent compression to reduce communication overhead while
maintaining high accuracy, demonstrating scalability, resil-
ience to disconnections, and suitability for satellite-based
federated learning applications.

Challenges and future scope: (i) Enhancing the scheduler
in Algorithm 1 is a key area for improvement. Dynamically
adjusting the a; condition based on network status, satel-
lite resources, and model performance could optimize effi-
ciency and communication costs. Addressing non-IID data
across satellites is also essential; techniques such as stan-
dardization, normalization, or domain adaptation in edge
processing (Step 2 of Algorithm 2) could improve perfor-
mance. (i) Model staleness and synchronization remain
challenges. While asynchronous updates help maintain

training despite interruptions, they may lead to inconsistent
models. Adaptive learning rates, dynamic aggregation, and
staleness-aware gradient methods could improve stability
and convergence. (iii) Resource-constrained optimization
is critical. Although ASIC integration is acknowledged, this
study focuses on simulations. Future work should explore
lightweight architectures, gradient sparsification, compres-
sion, and efficient training for feasible deployment on sat-
ellites and edge devices. (iv) Security and privacy require
stronger guarantees. Beyond inherent FL protections,
mechanisms such as differential privacy or homomorphic
encryption should be incorporated. Real-world deployment
will also need to handle communication delays, intermittent
connectivity, and dynamic topologies. (v) Finally, FEDGE
could support advanced training paradigms, including real-
time fine-tuning of pre-trained LLMs on space-generated
data, enabling applications such as autonomous anomaly
detection, predictive maintenance, and intelligent resource
allocation. FEDGE could also foster collaborative research
across distributed spacecraft datasets, accelerating discov-
ery and providing new insights into space environments.

6 Conclusion

This research proposes FEDGE, a federated learning
architecture for efficient and robust DNN deployment in
resource-constrained edge environments, particularly sat-
ellite networks, with potential AI ASIC integration for
enhanced performance. Key enhancements include on-
satellite data pre-processing and gradient compression,
reducing computational load on the ground station and
optimizing bandwidth usage. Gradient compression tech-
niques, such as sparsification or quantization, minimize
communication overhead, enabling more frequent model
updates in bandwidth-limited scenarios. Metadata sharing
and a dynamic scheduler allow satellites to transmit infor-
mation (e.g., training accuracy, data statistics) to the ground
station, guiding aggregation decisions and prioritizing high-
quality updates, thereby improving convergence speed and
resource efficiency. FEDGE also supports scalability by
handling distributed preprocessing and training at the edge,
enabling robust federated learning across complex, distrib-
uted environments. This design aligns with the trend of
leveraging satellite-edge computing for in-orbit ML training
on massive, distributed datasets. Addressing the challenges
outlined in the discussion can further enhance FEDGE’s
performance, robustness, and security, paving the way for
applications in satellite observation systems, LIDAR scan-
ning, autonomous vehicle networks, and embedded systems.

Data availability The datasets used in this study are 1) the MNIST
database of handwritten data and 2) EuroSAT, labeled tiny images,
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are freely available online at https://archive.ics.uci.edu/dataset/683/m
nist+database+of+handwritten+digits [21], and https://github.com/ph
elber/eurosat [22]. The trained model developed in this study can be
shared upon reasonable request. Interested researchers may contact the
corresponding author via email for access to the model and related
resources.
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