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centralized systems [1, 2]. Unlike traditional ML, where 
data is aggregated in cloud servers, FL trains models directly 
on distributed edge devices, sharing only model updates 
instead of raw data. This approach enhances data privacy, 
reduces communication overhead, and is ideal for band-
width-constrained and latency-sensitive environments [3]. 
Edge Computing (EC) complements FL by extending cloud 
capabilities closer to data sources, reducing latency and 
bandwidth use while improving reliability [4]. EC enables 
real-time processing for IoT applications in healthcare, 
smart manufacturing, and UAVs [5]. However, managing 
massive IoT data under strict performance and availability 
constraints remains challenging. Space platforms, such as 
satellites and spacecraft, further amplify these challenges 
due to limited bandwidth and latency-critical operations. 
These systems must autonomously perform tasks like object 
detection, localization, and beamforming, which conven-
tional cloud architectures cannot efficiently support. To 
address this, we propose FEDGE—FEDerated Learning at 
the EDGE on Space Platforms Using DNN Architectures—
a framework combining FL and EC to achieve real-time, 
communication-efficient learning in space environments. 

1  Introduction

Federated Learning (FL) marks a paradigm shift in machine 
learning (ML), enabling decentralized model training that 
mitigates the privacy and communication limitations of 
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Abstract
We introduce FEDGE: FEDerated Learning at the EDGE, a framework designed for efficient AI deployment in resource-
constrained satellite constellations. FEDGE integrates federated learning with edge computing to address communication 
overhead and latency challenges in distributed space environments. The framework features a novel edge-enhanced ground 
station protocol that dynamically schedules model aggregation based on satellite-provided metadata, combined with local 
stochastic gradient descent training at satellite edge devices and gradient compression via quantization. Experimental 
validation on MNIST and EuroSAT datasets demonstrates the practical viability of the approach. On MNIST, FEDGE 
achieved 94.33% training accuracy with 0.21 loss and 90.05% test accuracy with 0.24 loss. On EuroSAT, the framework 
reached 93.47% training accuracy with 0.18 loss and 91.51% test accuracy with 0.21 loss. Gradient quantization reduces 
data exchange by up to 14× with approximately 4% impact on test loss. These results validate FEDGE as a communica-
tion-efficient solution for decentralized AI deployment in satellite systems, enabling autonomous spacecraft intelligence 
and addressing the unique constraints of space-based computing platforms.
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While future integration with AI-specific hardware such as 
ASICs is envisioned, this study remains hardware-agnostic 
and focuses on developing lightweight, communication-effi-
cient DNN architectures suitable for low-power, resource-
constrained systems.

2  Background study

Table  1 summarizes methods, datasets, and limitations, 
forming the foundation for FEDGE. While prior algorithms 
like FedAvg assume IID clients or need careful tuning, few 
studies jointly consider (i) intermittent client availability, 

Refs. Problem/focus Core method Datasets/setup Key findings and limitations
[6] Federated Averag-

ing (FedAvg) 
baseline

FedAvg 
(local SGD + 
averaging)

MNIST, EuroSAT (in 
their evaluation)

Minimized communication 
via local updates; comparable 
accuracy to centralized train-
ing on MNIST and EuroSAT 
with fewer rounds. Limitation: 
assumes IID client data; sensitive 
to hyperparameters

[7] Impact of non-IID 
data on FedAvg

Adaptive averag-
ing, learning rate 
adjustments

CIFAR-10, ImageNet 
(experiments on non-
IID splits)

Improved accuracy under 
non-IID via adaptive strategies; 
requires careful tuning; may not 
fully resolve severe heterogeneity

[8] Practical 
system-level FL 
considerations

System frame-
work: secure 
aggregation, cli-
ent availability

Large-scale mobile 
deployments (system 
design)

Addresses scalability, privacy 
(secure aggregation); focuses on 
systems, not directly on model 
accuracy. Limitation: system 
complexity and integration costs

[9] On-device lan-
guage modeling

FedAvg with 
RNNs for next-
word prediction

Mobile keyboard 
dataset (proprietary)

Comparable accuracy to central-
ized models; communication-effi-
cient. Limitation: RNN compute 
cost on-device; privacy preserved 
but compute expensive

[10] Non-IID 
robustness

FedDyn: 
dynamic regular-
ization for feder-
ated optimization

CIFAR variants and 
synthetic non-IID 
tests

Outperforms FedAvg in unbal-
anced/non-IID settings; needs 
tuning for regularizer strength

[11] Communica-
tion reduction 
techniques

Quantization and 
sparsification 
algorithms

Benchmarks (cite 
specifics)

Similar accuracy to FedAvg with 
lower communication; parameter 
settings crucial for trade-off

[12] Robustness to cli-
ent heterogeneity

FedProx: adds 
a proximal term 
to stabilize local 
updates

MNIST, FEMNIST, 
Sent140, The Com-
plete Works of Wil-
liam Shakespeare

Improves convergence in highly 
non-IID data; effective for 
heterogeneous devices; requires 
tuning of proximal parameter

[13] Asynchronous 
staleness-aware 
FL

FedAsync, Fed-
Buff: asynchro-
nous updates, 
buffer-based 
aggregation

CIFAR-10, speech 
tasks

Enables FL under intermittent 
connectivity (e.g., satellites); 
improves efficiency but accuracy 
degrades under high staleness

[14] Gradient compres-
sion methods

QSGD (quan-
tized gradi-
ents), Top-k 
sparsification

CIFAR-10, ImageNet Achieves up to 10× commu-
nication reduction with minor 
accuracy loss; adds complexity 
with error compensation

[15] Metadata-driven 
scheduling

Importance sam-
pling / metadata-
aware client 
selection

FEMNIST, Shake-
speare dataset

Prioritizes clients with high-value 
updates, reducing training time; 
requires metadata collection 
overhead

[16] Privacy and secure 
aggregation

Hybrid differ-
ential privacy + 
secure aggrega-
tion frameworks

Healthcare, financial 
FL

Improves privacy guarantees 
with low communication over-
head; trade-off in model accuracy 
due to DP noise

[17] Edge AI in 
constrained 
environments

Survey of edge 
inference/train-
ing techniques 
for IoT/satellite 
AI

Broad survey across 
edge/satellite/IoT

Highlights challenges of model 
compression, lightweight 
inference, and deployment in 
constrained environments

Table 1  Summary of related 
federated learning and edge-AI 
works. This table highlights the 
main problem, core method, 
datasets / experimental setup, key 
findings, and limitations
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(ii) metadata-driven aggregation scheduling, and (iii) quan-
tization/compression for constrained satellite links. FEDGE 
explicitly addresses this space, offering metadata-aware 
aggregation and edge-side gradient quantization to enhance 
algorithmic robustness under real-world edge-space 
constraints.

2.1  Objectives of FEDGE

The objective of FEDGE is to establish a robust and effi-
cient federated learning (FL) framework for edge-based AI 
applications. To minimize communication overhead from 
frequent parameter exchanges in conventional FL (e.g., 
FedAvg), FEDGE applies gradient compression with quan-
tization at edge devices, reducing cloud-edge dependency 
and improving network efficiency. To handle data heteroge-
neity under non-IID distributions, FEDGE employs dynamic 
scheduling at the central server using edge-provided meta-
data (e.g., training accuracy, data statistics) to adjust aggre-
gation strategies. For robustness and trustworthiness, it 
integrates secure aggregation protocols, supporting deploy-
ment in sensitive environments. In resource-constrained 
settings, FEDGE adopts lightweight models and efficient 
training algorithms to minimize computational load. The 
core innovation lies in an edge-enhanced ground station 
(GS) protocol that dynamically schedules model aggrega-
tion based on satellite metadata (e.g., training accuracy, 
round index), reducing communication costs and accommo-
dating intermittent connectivity. Local training is performed 
on satellite edge devices using stochastic gradient descent 
(SGD). In spacecraft applications, FEDGE enables real-
time image processing for object recognition and tracking, 
reducing reliance on ground control. For satellites, it sup-
ports beamforming optimization through agile beam adjust-
ment, providing high throughput in large-array systems. 
While long-term goals include ASIC-based AI hardware 
deployment, this study remains hardware-agnostic, focus-
ing on a foundational, ASIC-compatible FL framework. The 
proposed DNNs address critical computational tasks such 
as robotic control loops, intelligent data filtering, and high-
bandwidth satellite communication, with potential extension 
to AI hardware performance verification. The key applica-
tion scenarios of FEDGE include: (1) Multi-Legged Robotic 
Locomotion: DNNs manage complex feedback loops and 
MMA operations for agile navigation in dynamic environ-
ments. (2) Spacecraft Intelligence: Onboard DNNs enable 
real-time sensor data interpretation (object recognition, 
localization, tracking, segmentation), supporting autono-
mous decision-making. (3) Satellite Beamforming: DNNs 
control phased antenna arrays for agile, high-throughput 
beamforming, deriving phase and amplitude parameters 
more efficiently than traditional algorithms.

3  Methodology

The FEDGE framework integrates data preparation, fed-
erated learning, and edge computing, as summarized in 
Algorithm  1, covering the end-to-end process from data 
collection to model deployment. It begins with data pre-
processing, followed by federated training with intermit-
tent connectivity simulation, dynamic aggregation, and 
final deployment. Algorithm 2 (Ground Station procedure) 
handles model aggregation in Step 7, Algorithm 3 (Satel-
lite Edge Computing) performs local training in Step 6, and 
Algorithm 4 (Stopping Criteria) determines training termi-
nation in Step 9.

FEDGE enables collaborative training between satellites 
(clients) and the ground station (GS), ensuring data privacy 
and minimizing communication costs. The GS maintains a 
global model (wi) and coordinates synchronization using 
metadata, including training accuracy and round index. Sat-
ellites train locally with stochastic gradient descent (SGD), 
compute gradients, and send updates to the GS for aggrega-
tion. The GS procedure initializes the global model w0 and 
round index i = 0. Step 1: Satellites upload gradients (gk), 
round indices (ig,k), and metadata (metak) to the GS buffer 
Bi, along with staleness values sk = ig − ig,k. Step 2: If 
the scheduler condition ai = 1 is met, the GS updates the 
global model and increments the round counter. Step 3: The 
updated model is broadcast to connected satellites. The sat-
ellite procedure starts by receiving wi and ig  from the GS. 
Local data Dk are preprocessed (normalization and aug-
mentation), and the local model is initialized with the global 
model. Each satellite performs E SGD steps with learning 
rate η, compresses the trained model via quantization, com-
putes the gradient gk (difference between trained and initial 
models), and transmits it with metadata to the GS. Stopping 
criteria are handled as described in Algorithm 4.

3.1  Edge computing

As computing advances, services are shifting from cen-
tralized cloud servers to distributed edge devices such as 
smartphones, wearables, and IoT sensors. Massive data 
generation at the edge makes cloud-based processing inef-
ficient due to latency, bandwidth limits, and security risks. 
Edge computing overcomes these challenges through local-
ized processing, reducing cloud dependency and improv-
ing response time, security, and bandwidth efficiency [18]. 
Unlike traditional cloud systems, where edge devices only 
consume data, edge computing enables them to act as both 
data producers and processors, leveraging distributed com-
puting to enhance performance, reduce network congestion, 
and improve scalability. This architecture supports seamless 
integration with 5 G and AI-driven analytics. The latency of 
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where De is local edge processing time.

3.2  Federated learning (FL)

Federated learning is a distributed ML paradigm that trains 
models on many devices without sharing the data. FL is cru-
cial for privacy-sensitive applications like space communi-
cations, healthcare and finance and so on [19]. Instead of 
transmitting entire datasets to a central server, FL enables 
local training on edge devices, such as smartphones and 

conventional cloud-based systems is characterized as shown 
in Eqs. (1) and (2).

D = Dc + Dt + Dp� (1)

where: Dc is computational delay in the cloud, Dt is trans-
mission delay, Dp is processing delay at the edge. In edge 
computing, local processing reduces delay:

Dedge = Dp + De� (2)

1 Input: Distributed datasets {Dk}, initial model w0
2 Output: Final model wfinal
3 Step 1: Data collection and initialization
4 Collect raw data from satellite edge devices (imagery, sensor readings).
5 Initialize global model w0 at the Ground Station (GS).
6 Set hyperparameters: learning rate η, local epochs E, compression factor, number of clients

N .
7 Step 2: Data preprocessing at edge devices
8 for each client k ∈ {1, . . . , N} do
9 Preprocess local dataset Dk (normalization, augmentation, resizing to model input size)

10 Store preprocessed data locally
11 end for
12 Step 3: Simulate non-IID distributions
13 Generate client partitions via Dirichlet sampling: π(i) ∼ Dirichlet(βθ)
14 Assign samples to each client according to π(i)

15 Step 4: Federated training initialization
16 Broadcast initial model w0 to all satellites
17 Set round counter r ← 0 and maximum rounds Rmax
18 while r < Rmax and stopping criteria not met do
19 r ← r + 1
20 Step 5: Simulate intermittent connectivity
21 Generate binary availability mask (Bernoulli drop probability p)
22 Determine active client set Cr

23 Step 6: Local training at satellites (see Alg. 2)
24 for each active client k ∈ Cr do
25 Perform local training on Dk (SGD for E epochs)
26 Compress local updates and upload (gk, ig,k,metak) to GS
27 end for
28 Step 7: Model aggregation at GS (see Alg. 1)
29 GS receives updates, applies scheduler, aggregates and (if triggered) updates w
30 Broadcast updated (w, ig) to clients
31 Step 8: Model evaluation
32 Evaluate global model on validation/test data and log metrics (loss, accuracy, precision,

recall, F1)
33 Step 9: Check stopping criteria
34 if any stopping condition is satisfied then
35 break
36 end if
37 end while
38 Step 10: Final model deployment
39 wfinal ← w
40 Deploy wfinal to satellites for inference
41 Step 11: Performance analysis
42 Generate ROC/PR curves and analyze communication efficiency and computational com-

plexity
43 Compare FEDGE with baseline FL methods
44 return wfinal

Algorithm 1  Complete FEDGE 
methodology workflow
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L(W ) = 1
ni

ni∑
j=1

ℓ(W, xj , yj)� (4)

where ℓ(W, xj , yj) is the sample loss (xj , yj).
FL follows three main steps: (1) Globle model initializa-

tion: The initial model is sent to all devices. (2) Localized 
training: Clients train on their private data. (3) Model update 
and aggregation: The server gathers updates and refines the 
model.

IoT sensors, and periodically aggregates model updates on 
a central or edge server. The global model aggregation is 
shown in Eqs. (3) and (4):

Wt+1 =
Cn∑
i=1

ni

Cn
W i

t � (3)

where: Cn is the total clients, ni represents data points at 
client i, W i

t  is the local model at time t. Each client opti-
mizes its local model using:

1 Criterion 1: Fixed Number of Global Rounds Stop after a predefined number N .
2 Criterion 2: Convergence of Global Model Stop if ∆ = |L(wi+1) − L(wi)| ≤ ε.
3 Criterion 3: Target Accuracy Achieved Stop if Accuracyglobal ≥ Taccuracy.
4 Criterion 4: Communication Budget Exhausted Stop if Ctotal ≥ Bbudget.
5 Criterion 5: Energy Constraints Stop if Etotal ≥ Emax.
6 Criterion 6: No Significant Model Updates Stop if ‖gk‖ ≤ τ, ∀k ∈ C.
7 Criterion 7: Time Constraints Stop if telapsed ≥ Tmax.

Algorithm 4  Stopping criteria for 
FEDGE framework
 

1 Input: Global model w0, local dataset Dk

2 repeat
3 Step 1: Receive Updates
4 Receive (wi, ig) from GS
5 Step 2: Edge Processing
6 Preprocess raw data from Dk (e.g., normalization, augmentation)
7 Step 3: Local Training
8 wk

0 ← wi

9 for j = 0 to E − 1 do
10 wk

j+1 ← wk
j − η∇f(wk

j , Xk
j )

11 end for
12 Step 4: Gradient Compression and Upload
13 wk

E ← Compress(wk
E)

14 gk ← wk
E − wk

0
15 Transmit (gk, ig, k,metak) to GS
16 until Stopping criterion is met

Algorithm 3  Satellite edge 
computing and federated learning 
procedure

 

1 Input: Initial model w0
2 Initialization: i = 0, ig = 0, B0 = ∅, R0 = ∅
3 repeat
4 Step 1: Receive Updates
5 for each k ∈ Ci (satellite connected to GS) do
6 Receive (gk, ig,k,metak)
7 Bi ← Bi ∪ {(gk, sk)}, where sk = ig − ig,k

8 Ri ← Ri ∪ {k}
9 end for

10 Step 2: Scheduler Decision
11 if ai = 1 then
12 Perform model update: wi+1 ← ServerUpdate(wi, Bi)
13 ig ← ig + 1
14 Bi+1 ← ∅, Ri+1 ← ∅
15 end if
16 Step 3: Broadcast Updates
17 Transmit (wi+1, ig) to satellites in Ci

18 i ← i + 1
19 until Stopping criterion is met

Algorithm 2  Edge-enhanced 
ground station procedure
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3.4  Metrics

We conducted experiments using two benchmark datasets: 
MNIST and EuroSAT. (1) MNIST: The MNIST dataset con-
sists of 70,000 grayscale images of handwritten digits (0–9), 
with 60,000 images for training and 10,000 for testing. Each 
image is 28x28 pixels in size. Due to its relatively small 
size and simplicity, MNIST is considered a great testbed for 
validating the basic functionality of machine learning algo-
rithms [21]. (2) EuroSAT: The EuroSAT dataset contains 
60,000 color images divided into 10 classes [22]. There 
are 50,000 training images and 10,000 testing images, with 
each image being 32 × 32 pixels in size. EuroSAT is more 
challenging than MNIST as it contains color channels and 
more complex object variations, thus, this will provide an 
in-depth understanding of how the FEDGE algorithm would 
handle real-world image data

We use a loss function to estimate the deviation between 
the predicted and true class label. The FEDGE model 
employs the sparse categorical cross-entropy loss function 
for multi-class classification problems [20]. Minimizing 
cross-entropy encourages the model to assign high prob-
abilities to the correct classes and low probabilities to the 
incorrect classes. For an individual data point, the sparse 
categorical cross-entropy loss is calculated as follows (refer 
Eq. (7)):

L = − log(p)� (7)

where p is the predicted probability of the correct class.
Stochastic Gradient Descent (SGD) is an optimization 

algorithm that is used in the training phase so that the loss 
function is minimized by the model. To do so, the model 
tunes parameters such as weights and bias [23]. In a tradi-
tional gradient descent algorithm, the weights are computed 
for the entire dataset, but in SGD, these gradients are cal-
culated for a single data point at each iteration, thus mak-
ing it extremely useful for large datasets. The mathematical 
expression is as follows (refer Eq. (8)):

θt+1 = θt − η∇Q(θt; x(i), y(i))� (8)

where θ represents the model parameters, η is the learning 
rate and ∇Q(θt; x(i), y(i)) is the loss function gradient eval-
uated in the training example ith.

We use precision, recall and F1 score metrics to assess 
the quality of classification performed by FEDGE algorithm 
[24]. Precision: Precision measures the proportion of cor-
rectly predicted positive instances out of all instances pre-
dicted as positive. Recall (Sensitivity): Recall, also known 
as sensitivity or true positive rate, represents the proportion 
of correctly identified positive samples out of all actual 

3.3  Deep neural networks (DNNs)

DL employs Artificial Neural Networks (ANNs) with sev-
eral hidden layers to understand hierarchical structures. A 
typical DNN neuron processes input features using weighted 
summation followed by an activation function (Eq. 5):

y = f

(
N∑

i=1
wixi + b

)
� (5)

where: xi represents input features, wi denotes weights, b 
is the bias term, f(·) is an activation function (e.g., ReLU, 
Sigmoid, Softmax). Training involves minimizing a loss 
function L using backpropagation and gradient descent (Eq. 
6):

W = W − γ
∂L

∂W
� (6)

where γ is the learning rate. Common architectures include 
Multilayer Perceptrons (MLPs), Convolutional Neural Net-
works (CNNs), and Recurrent Neural Networks (RNNs) 
[20]. Traditional deep learning (DL) models require central-
ized data in cloud servers for training, posing challenges 
including high communication costs from transmitting 
massive datasets and data privacy concerns due to legal 
and ethical constraints on sensitive information transfer. FL 
addresses these limitations through distributed DNN train-
ing at edge/remote nodes [3], sharing only model param-
eters (gradients) rather than raw data. Table 2 presents the 
architecture of the DNN model, including input shape, layer 
configurations (e.g. Conv2D, MaxPooling2D), dense layers, 
and optimization settings.

Table 2  DNN model parameters
Parameter Value
Input shape (32, 32, 3)
Number of convolutional layers 2
Conv2D filters (Layer 1) 32
Conv2D kernel size (Layer 1) (3, 3)
Conv2D activation (Layer 1) ReLU
MaxPooling2D pool size (Layer 1) (2, 2)
Conv2D filters (Layer 2) 64
Conv2D kernel size (Layer 2) (3, 3)
Conv2D activation (Layer 2) ReLU
MaxPooling2D pool size (Layer 2) (2, 2)
Dense layer size 10
Dense layer activation Softmax
Optimizer SGD
Learning rate 0.01
Loss function Sparse categorical crossentropy
Metrics Accuracy
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practical challenges such as data bias, limited sample size, 
and uneven class representation.

4.1  Simulating label-skewed/non-IID distributions 
via Dirichlet sampling

Dirichlet sampling is a widely used approach for generat-
ing heterogeneous label proportions across clients. Let 
L = {ℓ1, ℓ2, . . . , ℓK} denote the global label set, with 
K = 10 for MNIST and EuroSAT. The global class distri-
bution λ = [λ1, . . . , λK ] represents the fraction of samples 
per class. For each client j, local label proportions ϕ(j) are 
drawn from a Dirichlet distribution:

ϕ(j) ∼ Dir(γλ), ∀j ∈ {1, . . . , N}� (12)

The concentration parameter γ controls the similar-
ity between local and global distributions. A high γ (e.g., 
106) produces nearly IID partitions, while a low γ (e.g., 0.1) 
yields highly skewed, label-sparse datasets. As shown in 
Fig. 1, smaller γ values cause clients to hold samples from 
only a few classes, whereas larger values ensure balanced 
data.

For experiments, the MNIST dataset and EuroSAT data-
set are partitioned using this mechanism. We employ the 
RGB subset of EuroSAT (3-band images) to align with 
standard vision benchmarks, leveraging its natural vari-
ability in terrain, lighting, and seasonal features to evaluate 
the robustness of FEDGE under heterogeneous, real-world 
conditions.

4.2  Client-specific data generation using feature-
space clustering

To simulate heterogeneous client data distributions, we 
employ feature-space clustering based on pretrained deep 
neural embeddings. Images from datasets such as MNIST 
and EuroSAT are passed through a pretrained ResNet18 to 
extract high-dimensional feature vectors, which are then 

positive samples. F1-score: The F1-score is the harmonic 
mean of precision and recall, providing a balanced measure 
of the model’s performance. Higher scores in all of these 
metrics indicate a well-performing classifier, while dis-
parities between classes can highlight classification imbal-
ances. The precision (refer Eq. 9), recall (refer Eq. 10), and 
F1-score (refer Eq. 11) are calculated using the following 
formulas:

Precision = TP

TP + FP
� (9)

Recall = TP

TP + FN
� (10)

F1-score = 2 × Precision × Recall
Precision + Recall

� (11)

where: TP = True Positives (correctly predicted positive 
instances) ; FP = False Positives (incorrectly predicted posi-
tive instances) ; FN = False Negatives (incorrectly predicted 
negative instances)

4  Data simulation and client partitioning

In federated learning (FL), data is typically distributed 
across multiple clients in a non-identical and unbalanced 
manner, known as non-IID (non–independent and identi-
cally distributed) data. To accurately evaluate the robust-
ness and scalability of the proposed FEDGE framework, 
it is essential to emulate this heterogeneity in controlled 
experimental settings. This section describes the method-
ology adopted to simulate realistic data distributions and 
partition datasets across satellite clients. Following the data 
simulation, a client partitioning strategy is implemented to 
assign specific subsets of the dataset to individual satellite 
nodes. Each client thus holds a localized dataset that reflects 

Fig. 1  Class distribution across N = 10 clients generated using Dirichlet sampling. High concentration (α = 106) yields balanced partitions, 
while low concentration (α = 0.1) produces highly skewed, label-sparse datasets, demonstrating increasing non-IIDness
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to emulate asynchronous participation. Each round, clients 
are independently included with probability 1 − p, effec-
tively modeling real-world conditions where clients may be 
offline, delayed, or out of range, as in satellite and remote 
edge networks. This setup reproduces temporal staleness 
and dynamic participation typical of real federated systems.

5  Results and discussions

Figure 3 illustrates the generalization capability of FEDGE, 
showing test loss and accuracy across ten clients over ten 
communication rounds. The test loss (left plot) decreases 
from 0.3515 in Round 1 to 0.2630 by Round 3 and sta-
bilizes afterwards. Test accuracy (right plot) rises from 
0.8987 to 0.92–0.93. Despite some client-specific varia-
tions, the upward trend confirms effective global model 
generalization.

Testing on the EuroSAT dataset, which presents complex 
aerial and satellite imagery, shows that FEDGE achieves a 
test accuracy of approximately 91% with a test loss of 0.6 
(Fig. 4), confirming strong generalization in challenging 
scenarios.

Figure 5 shows ROC and Precision-Recall (PR) curves 
for the digit classification model. The ROC plots True Posi-
tive Rate versus False Positive Rate (AUC-ROC indicates 
class separability), and the PR curve reflects positive iden-
tification performance on imbalanced datasets. For the ten-
class EuroSAT dataset, performance was evaluated over ten 
rounds using a one-vs-rest strategy with one-hot labels and 
softmax outputs. Curves are shown for three representative 
classes (0, 3, 7) across early (Round 1), mid (Round 5), and 

projected to two dimensions using t-SNE for visualization 
of semantic groupings (Fig. 2). Let C denote the set of clus-
ters in this feature space, with each cluster c ∈ C represent-
ing semantically similar samples.

We define a global cluster proportion vector θ and sam-
ple a client-specific allocation vector π(i) from a Dirichlet 
distribution:

π(i) ∼ Dirichlet(βθ), ∀i ∈ {1, 2, . . . , N}� (13)

The concentration parameter β controls heterogeneity — 
smaller values yield more skewed (non-IID) client datasets, 
while larger values create near-uniform distributions. Each 
client receives data sampled according to π(i), ensuring con-
trolled variability in local feature distributions. This cluster-
driven allocation mimics real-world personalization among 
edge devices or satellites, where local data differs due to 
geography or sensor specialization, thus providing a realis-
tic evaluation of FEDGE under distributional heterogeneity.

4.3  Simulating edge-space conditions: intermittent 
connectivity and staleness

To capture the challenges of federated learning in edge and 
space-based environments, we simulate intermittent cli-
ent availability caused by connectivity disruptions, limited 
bandwidth, or out-of-range conditions (e.g., satellite cli-
ents). In each communication round, a binary availability 
mask is generated using a Bernoulli distribution with a pre-
defined drop probability p (e.g., 30%). A value of 1 repre-
sents an active client, while 0 indicates an unavailable or 
stale one. This mask is applied before model aggregation 

Fig. 2  t-SNE visualization of feature clusters from pretrained embeddings. Each cluster groups semantically related samples used for client-
specific data allocation via Dirichlet sampling, where β controls the degree of non-IIDness
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data exchange by ∼14× (170,552 → 12,182 bytes) with 
only a ∼5% accuracy drop and a slight loss increase (∼0.2), 
achieving a practical trade-off for real-time deep learning in 
resource-constrained edge environments . The performance 
of the proposed FEDGE is compared with the state-of-the-
art works and tabulated in (Table 3).

5.1  Algorithm complexity analysis

The computational time and memory requirements of the 
FEDGE algorithm are analyzed using asymptotic notations. 
Time complexity, expressed in Big O notation, indicates the 

late (Round 10) rounds. Increasing areas under both curves 
indicate improved discrimination and calibration, with later 
rounds showing higher TPR and precision at lower FPR and 
higher recall.

Figure 6 illustrates FEDGE performance with and with-
out gradient quantization on EuroSAT. Quantization reduces 
gradient precision for transmission from edge devices to 
the central server, using uniform or non-uniform methods, 
significantly lowering network latency [25]. The left sub-
plot shows global test accuracy over rounds for quantized 
(blue) versus full-precision (red) gradients, and the right 
subplot shows corresponding loss. Quantization reduces 

Fig. 4  Test loss and accuracy across clients 
on EuroSAT. Left: test loss (lower is bet-
ter). Right: test accuracy (higher is better)

 

Fig. 3  Test loss and accuracy across clients 
on MNIST. Left: test loss (lower is better). 
Right: test accuracy (higher is better)
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Ssync = O(n · m) + O(k) ≈ O(n · m).� (15)

5.1.2  Edge-based FL algorithm

For the Edge-based FL algorithm, the time complexity 
consists of receiving the global model from the GS, O(k), 
preprocessing the local dataset of size dk, O(dk), training 
the local model with E epochs, O(E · dk), and uploading 
gradients, O(m). Therefore, the overall time complexity is 
(refer Eq. 16)

Tsat = O(k) + O(dk) + O(E · dk) + O(m) = O(E · dk),� (16)

with E epochs and local dataset size dk.
The space complexity includes storing the global model 

O(k), the local dataset O(dk), and the gradients O(m). As 
dk typically dominates, the total space complexity simpli-
fies to (refer Eq. (17))

Ssat = O(k) + O(dk) + O(m) ≈ O(dk).� (17)

algorithm’s execution time as a function of input size (e.g., 
O(n) for linear, O(n2) for quadratic growth), while space 
complexity reflects the memory required to store inputs and 
intermediate data [28].

5.1.1  Global model synchronization algorithm

The time complexity is computed in three steps. First, the 
Ground Station (GS) receives updates from n satellites, 
which takes O(n). Second, the GS checks the condition 
ai = 1 to decide whether to update the model, taking O(1). 
Third, the GS broadcasts the updated global model to all 
satellites, again O(n). Thus, a single synchronization round 
has (refer Eq. (14))

Tsync = O(n) + O(1) + O(n) = O(n),� (14)

showing that synchronization time scales linearly with the 
number of satellites.

The space complexity includes storing gradients and 
metadata from all satellites, O(n · m), and maintaining the 
global model, O(k). Since k ≪ n · m, the total space com-
plexity simplifies to (refer Eq. (15))

Fig. 6  Gradient quantization for compress-
ing data
 

Fig. 5  ROC and precision-recall curves for EuroSAT dataset
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training despite interruptions, they may lead to inconsistent 
models. Adaptive learning rates, dynamic aggregation, and 
staleness-aware gradient methods could improve stability 
and convergence. (iii) Resource-constrained optimization 
is critical. Although ASIC integration is acknowledged, this 
study focuses on simulations. Future work should explore 
lightweight architectures, gradient sparsification, compres-
sion, and efficient training for feasible deployment on sat-
ellites and edge devices. (iv) Security and privacy require 
stronger guarantees. Beyond inherent FL protections, 
mechanisms such as differential privacy or homomorphic 
encryption should be incorporated. Real-world deployment 
will also need to handle communication delays, intermittent 
connectivity, and dynamic topologies. (v) Finally, FEDGE 
could support advanced training paradigms, including real-
time fine-tuning of pre-trained LLMs on space-generated 
data, enabling applications such as autonomous anomaly 
detection, predictive maintenance, and intelligent resource 
allocation. FEDGE could also foster collaborative research 
across distributed spacecraft datasets, accelerating discov-
ery and providing new insights into space environments.

6  Conclusion

This research proposes FEDGE, a federated learning 
architecture for efficient and robust DNN deployment in 
resource-constrained edge environments, particularly sat-
ellite networks, with potential AI ASIC integration for 
enhanced performance. Key enhancements include on-
satellite data pre-processing and gradient compression, 
reducing computational load on the ground station and 
optimizing bandwidth usage. Gradient compression tech-
niques, such as sparsification or quantization, minimize 
communication overhead, enabling more frequent model 
updates in bandwidth-limited scenarios. Metadata sharing 
and a dynamic scheduler allow satellites to transmit infor-
mation (e.g., training accuracy, data statistics) to the ground 
station, guiding aggregation decisions and prioritizing high-
quality updates, thereby improving convergence speed and 
resource efficiency. FEDGE also supports scalability by 
handling distributed preprocessing and training at the edge, 
enabling robust federated learning across complex, distrib-
uted environments. This design aligns with the trend of 
leveraging satellite-edge computing for in-orbit ML training 
on massive, distributed datasets. Addressing the challenges 
outlined in the discussion can further enhance FEDGE’s 
performance, robustness, and security, paving the way for 
applications in satellite observation systems, LiDAR scan-
ning, autonomous vehicle networks, and embedded systems.

Data availability  The datasets used in this study are 1) the MNIST 
database of handwritten data and 2) EuroSAT, labeled tiny images, 

5.2  Discussions

This study introduces FEDGE, a federated learning frame-
work for real-time DNN deployment in edge environments 
with limited connectivity, such as satellite networks. The 
architecture leverages on-device processing and gradi-
ent compression to reduce communication overhead while 
maintaining high accuracy, demonstrating scalability, resil-
ience to disconnections, and suitability for satellite-based 
federated learning applications.
Challenges and future scope: (i) Enhancing the scheduler 
in Algorithm 1 is a key area for improvement. Dynamically 
adjusting the ai condition based on network status, satel-
lite resources, and model performance could optimize effi-
ciency and communication costs. Addressing non-IID data 
across satellites is also essential; techniques such as stan-
dardization, normalization, or domain adaptation in edge 
processing (Step 2 of Algorithm 2) could improve perfor-
mance. (ii) Model staleness and synchronization remain 
challenges. While asynchronous updates help maintain 

Table 3  Performance comparison of FEDGE with state-of-the-art fed-
erated learning frameworks
Method Dataset Accu-

racy 
(%)

Loss Key features

FedProx [12] FEMNIST 78–80 1.1–1.3 Handles 
system 
heterogeneity

FedAsync [13] CIFAR-10 78–80 – Asynchronous 
aggregation

Optimal Client 
Sampling [15]

CIFAR-10 92–95 
(val.)

0.15–
0.25

Optimized 
client selec-
tion strategy

Hybrid 
privacy-preserving

MNIST ∼90 – Privacy pres-
ervation with 
differential 
privacy

FL [16] Nursery 
(UCI)

∼80 
(F1)

FedNova [26] CIFAR-10 82–85 0.45–
0.55

Normalized 
averaging for 
heterogeneous 
local updates

SCAFFOLD [27] FEMNIST 81–83 0.8–1.0 Variance 
reduction 
via control 
variates

FEDGE (Ours) MNIST 94.33 
(train)

0.21 
(train)

Edge-
enhanced 
GS protocol 
gradient com-
pression (14 
× reduction) 
satellite meta-
data-driven 
scheduling 
resource-
constrained 
deployment

90.05 
(test)

0.24 
(test)

EuroSAT 93.47 
(train)

0.18 
(train)

91.51 
(test)

0.21 
(test)
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