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A B S T R A C T

Traditional diabetes management employs reactive strategies with therapeutic adjustments after adverse gly
caemic events rather than proactive prevention, resulting in suboptimal control and increased complications. 
Digital twin (DT) technology creates virtual replicas through computational modelling and real time data 
integration as a transformative approach. However, questions remain regarding clinical validation, imple
mentation feasibility, and generalisability. This review examines current applications, challenges, and future 
potential of digital twin technology in diabetes prediction and management. PubMed, Scopus, Web of Science, 
and IEEE Xplore databases were searched for peer reviewed articles (2015–2024) on DT applications in diabetes 
care, predictive modelling, and therapeutic optimisation. Critical synthesis compared methodological ap
proaches, performance metrics, and implementation challenges. DT demonstrate variable but promising po
tential through glucose prediction, personalised insulin dosing, dietary optimisation, and complication risk 
assessment, integrating continuous glucose monitoring, wearable sensors, and machine learning algorithms. 
Evidence quality varies substantially, with most studies representing proof-of-concept or pilot implementations. 
Implementation faces data privacy concerns, validation requirements, and integration complexities. Critical gaps 
exist in long-term effectiveness, algorithmic bias mitigation, and generalisability to underserved populations. DT 
technology represents an evolving paradigm towards precision diabetes care. However, rigorous clinical vali
dation, addressing equity concerns, and establishing sustainable implementation frameworks remain essential for 
widespread adoption.

1. Introduction

Diabetes mellitus has evolved from a relatively uncommon condition 
to one of the most pressing public health challenges of the 21st century 
[1]. The International Diabetes Federation reports that approximately 
537 million adults aged 20 to 79 years were living with diabetes in 2021, 
with this figure projected to rise to 643 million by 2030 and 783 million 
by 2045 [2]. This exponential growth trajectory, coupled with the 
substantial economic burden estimated at USD 966 billion in global 
healthcare expenditure annually, necessitates innovative approaches to 
diabetes prevention, prediction, and management [3]. The disease's 

multifaceted nature, characterised by complex metabolic interactions 
and significant inter individual variability in treatment response, pre
sents substantial challenges to conventional one size fits all therapeutic 
strategies.

The landscape of diabetes care has undergone remarkable trans
formation over recent decades, transitioning from rudimentary urine 
glucose testing to sophisticated continuous glucose monitoring systems 
and automated insulin delivery devices. Despite these technological 
advances, significant gaps persist in achieving optimal glycaemia con
trol across patient populations [4,5]. Studies across multiple health 
systems indicate that a substantial proportion of individuals with 
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diabetes fail to achieve recommended clinical targets, with optimal 
attainment often below 50 % in routine practice, underscoring the 
limitations of current management paradigms [6–8]. The reactive na
ture of traditional diabetes care, where therapeutic adjustments occur in 
response to adverse events or suboptimal outcomes rather than antici
pating them, contributes to this suboptimal control and the subsequent 
development of debilitating microvascular and macrovascular compli
cations [9,10].

Digital twin technology, originally developed in aerospace and 
manufacturing industries for predictive maintenance and system opti
misation, has emerged as a potentially transformative approach in 
healthcare [11]. Digital twins are conceptually distinct from but related 
to several established approaches in computational medicine [12]. 
While virtual patient models typically represent population-level phys
iological responses and in silico simulations focus on specific biological 
processes or drug interactions, digital twins uniquely combine these 
elements with continuous real-time data integration to create dynamic, 
individualised representations that evolve throughout a patient's disease 
trajectory [13,14]. Unlike conventional clinical decision support sys
tems that primarily provide rule-based recommendations, digital twins 
employ sophisticated computational modelling to simulate future states 
and predict outcomes under different scenarios before clinical imple
mentation. A digital twin is defined as a dynamic virtual representation 
of a physical entity or system that spans its lifecycle, updated from real 
time data, and uses simulation, machine learning, and reasoning to 
support decision making [15]. In the context of diabetes, digital twins 
create individualised computational models that mirror a patient's 
unique physiological responses to various factors, including food intake, 
physical activity, medication, stress, and circadian rhythms [16]. 
However, the term “patient-specific digital twin” refers to a computa
tional replica calibrated to an individual patient's unique metabolic 
parameters, treatment responses, and disease progression patterns, 
distinguishing it from generalised population models [17]. These virtual 
representations enable clinicians and patients to simulate different 
scenarios, predict outcomes, and optimise therapeutic interventions 
before implementing them in the real world.

The convergence of several technological advances has catalysed the 
development of diabetes focused digital twins [17]. Continuous glucose 
monitoring devices now provide glucose readings every few minutes, 
generating rich longitudinal datasets that capture glycaemic patterns 
with unprecedented granularity [18]. Wearable sensors track physical 
activity, heart rate variability, sleep patterns, and other physiological 
parameters that influence glucose metabolism [19,20]. Smartphone 
applications facilitate dietary logging and medication adherence 
tracking, whilst cloud computing infrastructure enables the storage and 
processing of massive datasets [17]. Artificial intelligence and machine 
learning algorithms can identify complex patterns within these multi
dimensional data streams, learning individual specific relationships 
between inputs and glycaemic outcomes [21]. Together, these tech
nologies provide the foundation for creating sophisticated, personalised 
digital twins that hold promise for revolutionising diabetes care pending 
rigorous validation.

Importantly, behavioural, psychological, and social dimensions 
fundamentally influence diabetes management outcomes alongside 
biological factors. Medication adherence, dietary choices, physical ac
tivity, stress management, and healthcare engagement profoundly 
impact glycaemic control [22,23]. Comprehensive digital twin frame
works must therefore integrate these dimensions to achieve clinically 
meaningful personalization.

However, despite the promise of digital twin technology in diabetes, 
several critical gaps warrant comprehensive examination [24,25]. The 
problem lies in the fragmented understanding of how digital twin ap
plications can be effectively implemented across the diabetes care con
tinuum, from early prediction of disease onset to optimisation of long- 
term management strategies. Additionally, most published evidence 
represents early-stage research with limited clinical validation, raising 

questions about real-world effectiveness, safety, and scalability 
[16,24,25]. The rationale for this review stems from the need to criti
cally synthesise emerging evidence, evaluate methodological quality, 
identify current capabilities and limitations, and establish a roadmap for 
future development. The novelty of this work resides in its compre
hensive examination of digital twin applications spanning both predic
tion and management domains, addressing technical, clinical, and 
implementation perspectives with critical appraisal of evidence quality 
and generalisability that have not been collectively analysed in existing 
literature. The aim of this review is to critically evaluate the current 
state of digital twin technology in diabetes prediction and management, 
examining its methodological foundations, clinical applications, chal
lenges, and future directions. The specific objectives are to: (1) elucidate 
the fundamental principles and technical architectures of digital twin 
systems in diabetes care; (2) analyse current applications in diabetes risk 
prediction and early detection with critical comparison of methodo
logical approaches and performance metrics; (3) evaluate digital twin 
implementations in glucose prediction and management optimisation 
distinguishing between proof-of-concept studies, pilot implementations, 
and clinically validated systems; (4) identify challenges and barriers to 
widespread adoption including model limitations, dataset biases, and 
failure modes; and (5) propose evidence-based future research di
rections to advance the field. As illustrated in Fig. 1, digital twin tech
nology integrates multimodal data streams to create a dynamic virtual 
replica of each patient for predictive and personalised diabetes 
management.

The figure illustrates how multimodal data from continuous glucose 
monitoring, wearable sensors, and clinical records are integrated into 
computational models that form patient specific digital twins. These 
virtual representations enable real time simulation, prediction, and 
therapeutic optimisation through iterative feedback between patient 
and clinician interfaces. Also, the figure represents an idealised frame
work; actual implementations vary substantially in data sources, model 
complexity, and validation status.

2. Methods

This narrative review was undertaken to provide a comprehensive 
and critical synthesis of current knowledge regarding digital twin 
technology applications in diabetes prediction and management. Unlike 
systematic reviews that aim for exhaustive literature coverage with 
predefined protocols, narrative reviews offer flexibility to explore 
complex, multifaceted topics through critical analysis and thematic 
synthesis. This approach was deemed appropriate given the emerging 
and rapidly evolving nature of digital twin technology in healthcare, 
where the landscape encompasses diverse methodological approaches, 
technological platforms, and clinical applications that benefit from 
integrative analysis rather than purely quantitative synthesis. However, 
this methodological choice introduces inherent limitations including 
potential selection bias and lack of quantitative meta-analysis, as dis
cussed in Section 7.

2.1. Literature search and selection

A broad literature search was conducted across multiple databases 
including PubMed, Scopus, Web of Science, and IEEE Xplore to identify 
relevant publications from January 2015 to December 2024. This 
timeframe was selected to capture the contemporary development of 
digital twin applications in diabetes care whilst acknowledging that the 
conceptual foundations extend further back. The search strategy 
employed the following combinations of terms using Boolean operators:

Primary search string: (“digital twin” OR “virtual patient” OR “in silico 
model*” OR “computational model*”) AND (“diabetes mellitus” OR 
“type 1 diabetes” OR “type 2 diabetes” OR “glucose” OR “glyc?emic 
control” OR “glyc?aemic control”) AND (“prediction” OR “forecasting” 
OR “management” OR “therapy” OR “treatment optim*”)**.
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Secondary searches incorporated technology-specific terms: (“continuous 
glucose monitor” OR “CGM”) AND (“digital twin” OR “predictive 
model*”); (“artificial pancreas” OR “closed loop”) AND (“digital twin*” 
OR “virtual patient*”); (“machine learning” OR “deep learning” OR 
“artificial intelligence”) AND (“diabetes” OR “glucose”) AND (“digital 
twin*” OR “computational model*”).

The search strategy was deliberately inclusive rather than restrictive, 
reflecting the narrative review approach of casting a wide net to capture 
the breadth of the field. After removing duplicates and screening for 
relevance, a substantial body of peer-reviewed literature formed the 
evidence base for detailed analysis.

Literature selection prioritised peer-reviewed journal articles, con
ference proceedings from major scientific meetings, and technical re
ports from recognised institutions and regulatory agencies. Publications 
were included if they: described digital twin, virtual patient, or in silico 
modelling approaches specifically applied to diabetes prediction or 
management; presented original empirical data, systematic reviews, or 
substantive technical/methodological descriptions; were published in 
English; and provided sufficient methodological detail for critical eval
uation. Publications were excluded if they: focused solely on other 
chronic diseases without diabetes-specific applications; provided only 
abstract-level descriptions without methodological substance; or rep
resented commentary or opinion pieces without empirical foundation. 
Both empirical studies reporting original data and conceptual papers 
providing theoretical frameworks were included to ensure comprehen
sive coverage. The review emphasised recent publications whilst 
incorporating seminal earlier works that established foundational con
cepts. Reference lists of retrieved articles were examined to identify 
additional relevant sources through snowball sampling, and forward 
citation searching was employed to locate more recent work building on 
key publications. Expert knowledge of the field guided identification of 
important contributions that might not surface through database 
searching alone, including emerging preprints and conference pre
sentations representing cutting edge developments.

2.2. Thematic analysis and synthesis

The synthesis approach employed thematic analysis to organise the 
diverse literature into coherent conceptual domains. Initial reading of 
included publications identified recurring themes, which were itera
tively refined through constant comparison and discussion to develop 
the review's organisational framework. The final thematic structure 
encompasses fundamental concepts and architectures of digital twin 
technology; applications in diabetes prediction including risk stratifi
cation and early detection; applications in diabetes management span
ning glucose prediction, therapy optimisation, and lifestyle 
personalisation; challenges and barriers to implementation; and future 
directions and emerging opportunities. This structure was designed to 
guide readers from foundational understanding through current appli
cations to critical analysis of limitations and forward-looking 
perspectives.

Within each thematic domain, the synthesis prioritised critically 
identifying patterns, contrasts, methodological strengths and weak
nesses, and gaps in the literature rather than attempting comprehensive 
enumeration of all published studies. For each application area, we 
systematically compared: modelling approaches and their theoretical 
foundations; data sources and quality; validation methods and evidence 
quality; reported performance metrics and their clinical significance; 
study populations and generalisability; and acknowledged limitations 
and potential biases. The narrative approach enabled critical interpre
tation of findings, contextualisation within the broader diabetes care 
landscape, and integration of insights from adjacent fields such as sys
tems biology, artificial intelligence, and implementation science. Where 
quantitative data were reported across multiple studies, ranges or 
representative values are presented to illustrate typical performance 
characteristics without formal meta-analysis. Evidence quality was 
assessed using considerations of study design (e.g., prospective vs 
retrospective, controlled vs observational), sample size, validation 
approach (e.g., internal vs external validation, in silico vs clinical), 
follow-up duration, and acknowledgment of limitations. The synthesis 
deliberately highlights areas of uncertainty, inconsistency, or contro
versy to inform future research priorities rather than presenting an 

Fig. 1. Conceptual framework of digital twin technology in diabetes prediction and management.
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artificially unified picture of the field.
This narrative review methodology acknowledges inherent limita

tions including potential author bias in literature selection and inter
pretation, lack of formal quality assessment of included studies, and 
absence of quantitative effect size synthesis. These limitations are 
particularly relevant in the context of digital twin research, where rapid 
technological evolution, heterogeneous methodologies, and limited 
long-term clinical validation create challenges for evidence synthesis. 
Publication bias favouring positive results may lead to overestimation of 
digital twin effectiveness, while proprietary commercial developments 
may not be adequately represented in peer-reviewed literature. How
ever, these limitations are balanced by strengths including flexibility to 
address complex multidisciplinary topics, ability to incorporate diverse 
evidence types, and capacity for critical analysis that extends beyond 
what individual studies report to generate novel insights and frame
works. The resulting review aims to provide readers with a compre
hensive yet accessible overview of digital twin technology in diabetes 
that serves both as an introduction for those new to the field and a 
critical synthesis for domain experts.

3. Applications of digital twin technology in diabetes prediction

3.1. Early detection and risk stratification

Digital twin technology offers substantial potential for enhancing 
diabetes prediction and risk stratification at both population and indi
vidual levels [26,27]. However, most applications remain in early 
development stages with limited prospective clinical validation [17,28]. 
Population based digital twins aggregate data from large cohorts to 
identify patterns and risk factors associated with diabetes development, 
enabling targeted screening and prevention strategies [29]. These sys
tems integrate demographic data, genetic information, lifestyle factors, 
biomarkers, and social determinants of health to generate risk scores 
with reported superior accuracy compared to traditional risk calculators 
[30,31]. However, direct comparison studies between digital twin ap
proaches and established risk scores are limited. Studies have demon
strated that machine learning enhanced risk models can achieve area 
under receiver operating characteristic curves of 0.84 to 0.92 for pre
dicting type 2 diabetes onset within 5 to 10 years, compared to AUC 
values of approximately 0.74–0.78 for the Finnish Diabetes Risk Score 
and 0.72–0.76 for the Framingham Offspring Study model, significantly 
outperforming conventional tools in retrospective validation studies 
[32–36]. Critical limitations include: most models are validated only on 
single cohorts from high-income countries; performance in diverse 
ethnic and socioeconomic groups remains inadequately characterised; 
prospective implementation studies demonstrating clinical utility are 
lacking; and cost-effectiveness compared to existing screening ap
proaches has not been established.

Individual-focused digital twins take prediction a step further by 
creating personalised models that evolve as new data become available 
[37]. This represents a conceptual advance over static risk calculators, 
though evidence for clinical superiority remains preliminary. For in
dividuals identified as high risk, continuous monitoring through wear
able devices and periodic biomarker assessments feed into digital twin 
models that refine risk estimates over time [38]. These systems can 
detect subtle deviations from normal glucose homeostasis that precede 
overt diabetes, such as progressive postprandial hyperglycaemia or 
declining first phase insulin secretion [17,39]. Evidence suggests that 
incorporating Continuous Glucose Monitoring (CGM) data into predic
tive models can enhance the accuracy of forecasting diabetes progres
sion by capturing glycemic variability missed by standard metrics. In 
particular, longitudinal studies of high-risk populations—such as in
dividuals with islet autoantibodies, have demonstrated that specific 
CGM-derived markers (e.g., time spent above 140 mg/dL) can predict 
the onset of clinical diabetes with positive predictive values (PPV) 
exceeding 75 % [40,41]. However, these findings are based primarily on 

retrospective analyses with limited follow-up periods. Key methodo
logical concerns include: CGM-based prediction models require expen
sive continuous monitoring that may not be cost-effective for population 
screening; definitions of “progression” vary across studies, complicating 
comparisons; the incremental benefit over simpler approaches (e.g., 
periodic HbA1c testing) has not been rigorously quantified; and adher
ence to continuous monitoring in real-world settings may be substan
tially lower than in research contexts. This enhanced prediction 
capability potentially enables implementation of intensive prevention 
strategies precisely when they are most likely to be effective, though 
clinical trials demonstrating improved prevention outcomes are needed.

3.2. Gestational diabetes prediction

Gestational Diabetes Mellitus (GDM) affects approximately 14 % of 
pregnancies globally. Emerging research indicates that digital twin 
technology, specifically through machine learning-integrated physio
logical modeling, demonstrates potential for enhancing early risk 
stratification and personalizing glycemic interventions in this popula
tion [42]. The physiological changes of pregnancy, characterised by 
progressive insulin resistance and increased metabolic demands, create 
a dynamic system well suited to digital twin modelling [24]. Predictive 
models incorporating maternal characteristics, first trimester bio
markers, genetic risk scores, and early pregnancy glucose measurements 
can identify women at high risk for gestational diabetes well before the 
standard screening at 24 to 28 weeks gestation [43,44]. Early identifi
cation could potentially enable implementation of dietary modifica
tions, physical activity programmes, and close monitoring that may 
prevent or delay gestational diabetes onset. Studies evaluating predic
tive models in early pregnancy have reported good discriminatory per
formance, though digital twin-specific sensitivities require further 
validation [45], and specificities of 75 to 90 percent for predicting 
gestational diabetes in the first trimester, substantially earlier than 
conventional screening methods [43,46]. However, critical evaluation 
reveals several limitations: most studies are retrospective case-control 
designs rather than prospective cohort validations; prediction perfor
mance varies substantially across populations, with lower accuracy in 
ethnically diverse cohorts; whether early prediction translates to 
improved pregnancy outcomes through early intervention remains un
proven; false positive rates of 10–25 % could lead to unnecessary in
terventions and maternal anxiety; and cost-effectiveness analyses 
comparing early digital twin-based screening to standard care are 
lacking [47,48].

3.3. Complication risk prediction

Beyond predicting diabetes onset, digital twins have been proposed 
for forecasting the development and progression of diabetes related 
complications [31]. Microvascular complications including diabetic 
retinopathy, nephropathy, and neuropathy, as well as macrovascular 
complications such as cardiovascular disease, cerebrovascular disease, 
and peripheral arterial disease, result from cumulative metabolic injury 
over years to decades [49]. Digital twins that integrate longitudinal 
glycaemic data, blood pressure, lipid profiles, medication adherence, 
lifestyle factors, and genetic susceptibility have demonstrated individual 
complication risks with greater accuracy than existing risk equations in 
validation studies [39,50]. For instance, models predicting cardiovas
cular events in people with diabetes have achieved C statistics of 0.78 to 
0.83, comparing favorably to C statistics of 0.72–0.76 for established 
risk calculators such as the UKPDS Risk Engine and the Framingham 
Risk Score [51]. However, several critical gaps limit clinical translation: 
most models are trained and validated on historical cohort data, 
potentially limiting applicability to contemporary treatment paradigms; 
algorithm performance may degrade over time as treatment patterns 
evolve; whether model-based risk stratification actually improves clin
ical decision-making and patient outcomes has not been rigorously 
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tested; many models perform poorly in underrepresented populations 
due to training data limitations; and the clinical utility of marginal im
provements in C statistics (0.06–0.11) for guiding treatment intensifi
cation remains unclear [39,52]. This enhanced prediction could 
potentially enable risk stratified management approaches, directing 
intensive interventions to those at highest risk whilst avoiding over
treatment in lower risk individuals, though prospective intervention 
studies are needed to validate this hypothesis.

Table 1 summarises key digital twin applications in diabetes pre
diction, highlighting their methodologies and reported performance 
metrics. It is important to note that performance metrics represent 
findings from validation studies and may not generalise to diverse 
clinical populations. Most applications remain at proof-of-concept or 
early pilot stages.

4. Applications of digital twin technology in diabetes 
management

4.1. Glucose prediction and monitoring Enhancement

Real time glucose prediction represents one of the most mature and 
clinically impactful applications of digital twin technology in diabetes 
management [17,28]. This application area includes both commercially 
available systems with regulatory approval and research prototypes, 
requiring careful distinction. Short term forecasting (30 to 120 min) 
enables proactive interventions to prevent hypo and hyperglycaemia by 
integrating continuous glucose monitoring data with insulin dosing, 
carbohydrate intake, and physical activity [58]. Advanced models pro
vide confidence intervals alongside point predictions, achieving mean 
absolute relative differences of 10 to 15 percent for 30 min ahead pre
dictions and 15 to 25 percent for 60 min ahead predictions in type 1 
diabetes, performance considered clinically useful for therapeutic de
cision making [16,59]. However, performance varies substantially 
across studies depending on: prediction horizon, with accuracy 
degrading significantly beyond 60 min; glycemic range, with lower ac
curacy during rapid transitions; patient characteristics, including dia
betes duration and glycemic variability; and data quality, with sensor 
errors and missing data compromising predictions. Critical methodo
logical limitations include: most validation studies use retrospective 
data rather than prospective real-time implementation; performance 
metrics often exclude periods of sensor dropout or calibration, inflating 
apparent accuracy; clinical impact depends not only on prediction ac
curacy but also on patient/clinician response to alerts; and algorithm 
failures during critical hypoglycemic episodes could have serious safety 

implications.
Clinical benefits are substantial for specific commercially available 

systems with rigorous validation. Predictive low glucose suspend sys
tems, which automatically halt insulin delivery when hypoglycaemia is 
forecast, have reduced nocturnal hypoglycaemia episodes by 30 to 50 
percent without increasing hyperglycaemia or ketoacidosis risk [60,61]. 
These findings are based on randomised controlled trials of FDA- 
approved systems, representing the highest level of evidence in this 
review. Predictive alerts enable preemptive interventions to attenuate 
glycaemic excursions [62]. User satisfaction is high, with 80 to 90 
percent reporting that predictions improve treatment decisions and 
management confidence, underscoring the value of translating digital 
twin predictions into actionable insights that empower patients and 
clinicians [60]. However, real-world effectiveness may differ from trial 
conditions due to: alert fatigue, with users disabling alerts over time; 
socioeconomic barriers limiting access to expensive technologies; vari
able patient numeracy and health literacy affecting interpretation; and 
limited data on long-term durability of benefits beyond 6–12 month 
study periods.

4.2. Personalised insulin dosing and therapy optimisation

Digital twin technology enables personalised insulin therapy by 
modelling individual responses to different dosing regimens [24,63]. 
For multiple daily injection users, digital twins simulate various basal 
insulin doses and insulin to carbohydrate ratios to identify optimal pa
rameters maximising time in range whilst minimising hypoglycaemia 
[64]. However, most such applications remain in research or pilot 
phases without large-scale clinical validation. For insulin pump therapy, 
digital twins optimise basal rate profiles, insulin sensitivity factors, and 
duration of insulin action parameters governing automated delivery 
algorithms. Studies report time in range increases of 5 to 15 percentage 
points with digital twin guided dosing compared to standard care, 
translating to 1 to 3.5 additional hours daily within target glucose levels 
[63,64]. Critical evaluation reveals important caveats: “standard care” 
comparators vary widely across studies, from basic insulin pump ther
apy to sensor-augmented pumps, complicating interpretation; most 
studies have small sample sizes and short durations; improvement 
magnitudes are highly variable (5–15 percentage points), suggesting 
heterogeneous patient benefit; whether personalisation algorithms 
outperform careful conventional titration by experienced clinicians re
mains uncertain; and long-term sustainability of improvements and risk 
of algorithm degradation over time are unknown [28,63].

Closed loop insulin delivery systems (artificial pancreas systems) 

Table 1 
Digital Twin Applications in Diabetes Prediction.

Application 
Domain

Data Inputs Modelling Approaches Key Outcomes Reported Performance

Type 2 Diabetes Risk 
Prediction 
[53]

Demographics, biomarkers, lifestyle 
factors, genetic data, social determinants

Machine learning (random 
forests, neural networks), risk 
scoring algorithms

5–10-year diabetes onset 
prediction, identification of 
high-risk individuals

AUC 0.85–0.92; superior to 
conventional risk scores

Prediabetes 
Progression 
[54]

Continuous glucose monitoring, 
biomarkers, anthropometrics, lifestyle 
data

Time series analysis, recurrent 
neural networks, mechanistic 
glucose models

Prediction of progression from 
prediabetes to diabetes

PPV > 75 % for 3-year progression; 
sensitivity 70–80 %

Gestational Diabetes 
Prediction 
[43,55]

First trimester biomarkers, maternal 
characteristics, genetic risk scores, early 
glucose measurements

Logistic regression, machine 
learning, Bayesian models

Early pregnancy prediction of 
gestational diabetes

Sensitivity 70–85 %, specificity 
75–90 % in first trimester

Complication Risk 
Stratification 
[56]

Longitudinal glycaemic data, blood 
pressure, lipids, medication adherence, 
genetic factors

Cox proportional hazards, 
machine learning, multi state 
models

Prediction of microvascular and 
macrovascular complications

C statistic 0.78–0.83 for 
cardiovascular events; improved 
calibration over existing calculators

Hypoglycaemia 
Prediction 
[57]

Continuous glucose monitoring, insulin 
dosing, meals, physical activity

Recurrent neural networks, 
support vector machines, 
hybrid models

30–60 min ahead hypoglycaemia 
prediction

Sensitivity 85–95 %, specificity 
80–90 % at 30 min

Note: AUC = Area Under Curve; PPV = Positive Predictive Value. Performance metrics are derived from validation studies, predominantly single-center retrospective 
analyses. Clinical utility, cost-effectiveness, and performance in diverse populations require further investigation. Evidence quality varies from proof-of-concept 
(hypoglycemia prediction) to multi-cohort validation (Type 2 diabetes risk prediction).
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represent the most clinically mature digital twin applications in diabetes 
management [65]. These represent the transition from proof-of-concept 
to commercially available, FDA/CE-approved medical devices with 
robust clinical evidence. These systems integrate continuous glucose 
monitoring, insulin pumps, and control algorithms that automatically 
adjust insulin delivery based on glucose predictions and physiological 
models [65,66]. The algorithms function as simplified digital twins, 
continuously updating insulin sensitivity understanding and predicting 
future requirements to maintain target glucose levels [67]. Commercial 
hybrid closed loop systems demonstrate substantial glycaemic im
provements, with randomized trials and meta-analyses reporting time in 
range increases of approximately 6 to 11 percentage points and hae
moglobin A1c reductions of 0.3 to 0.5 percent compared to sensor- 
augmented pump therapy [68]. These findings represent rigorous evi
dence from multiple randomised controlled trials, though important 
limitations include: studies primarily enroll motivated, technology- 
savvy participants from high-income countries; performance in pop
ulations with erratic lifestyles, high glycemic variability, or limited 
healthcare access is less well characterised; long-term outcomes beyond 
6–12 months remain limited; cost-effectiveness compared to conven
tional intensive therapy has not been definitively established in diverse 
healthcare systems; and device failures, algorithm errors, and user errors 
can lead to serious adverse events including severe hypoglycemia and 
diabetic ketoacidosis [16,39,68]. Fully automated systems under 
investigation achieve time in range values exceeding 70 percent across 
diverse populations including children, adolescents, adults, and preg
nant women [69]. However, “fully automated” systems still require 
meal announcements and user oversight, and their performance de
teriorates with non-compliance or device malfunctions.

4.3. Dietary and lifestyle optimisation

Digital twins extend beyond medication to encompass dietary and 
lifestyle interventions, areas that substantially affect glycaemic control 
but are highly individualised and challenging to optimise [17,70]. Per
sonalised nutrition models predict postprandial glucose responses to 
specific foods based on individual metabolic characteristics, gut 
microbiome composition, and dietary patterns [70]. This represents an 
emerging application area with predominantly proof-of-concept evi
dence rather than validated clinical systems. The Personalised Nutrition 
Project demonstrated remarkable inter individual variability, with some 
people showing greater glucose excursions to bananas than cookies 
whilst others showed the opposite pattern [71]. Digital twins using 
machine learning trained on continuous glucose monitoring and dietary 
data predict postprandial responses with mean absolute errors of 15 to 
25 mg/dL, potentially enabling personalised recommendations that 
optimise glycaemic control without restrictive elimination diets (which 
refer to complete avoidance of multiple food categories, potentially 
leading to nutritional inadequacy) [17,71,72]. However, critical meth
odological concerns include several key limitations. Prediction accuracy 
of 15 to 25 mg/dL may be insufficient for precise dietary guidance given 
normal postprandial excursions of 50 to 100 mg/dL [16,73]. Models 
trained on free-living populations may conflate effects of food compo
sition with eating context, timing, and physical activity. While person
alized nutrition approaches show potential, evidence regarding their 
superior efficacy for long-term glycemic control compared to standard 
dietary guidelines remains heterogeneous and inconclusive in system
atic reviews. Furthermore, the clinical utility of such interventions is 
frequently limited by sub-optimal adherence, particularly when 
algorithm-driven recommendations lack concordance with an in
dividual’s gustatory preferences or sociocultural food norms [74]. 
Additionally, the cost of CGM monitoring required for personalisation 
may not be justified by clinical benefits.

Physical activity represents another critical factor amenable to dig
ital twin optimisation. Exercise effects on glucose metabolism are 
complex, influenced by type, intensity, duration, timing relative to 

meals and insulin, and fitness level [17]. Digital twins incorporating 
wearable sensor data predict exercise related glucose changes and 
recommend insulin adjustments or carbohydrate supplementation to 
prevent hypoglycaemia whilst preserving long term activity benefits 
[75]. Studies report approximately 10 to 25 percent reductions in 
exercise‑associated hypoglycaemia and improvements in physical ac
tivity engagement, helping to address a major barrier to optimal dia
betes management [76–78]. However, evidence quality is limited by 
several factors. Most studies are small single-center trials with limited 
sample sizes. Exercise is often controlled or supervised rather than free- 
living, limiting real-world applicability [78]. Long-term adherence to 
digital twin recommendations for activity management remains un
known. Algorithms may fail during high-intensity or unpredictable ac
tivities. Whether exercise-related improvements translate to better long- 
term outcomes requires investigation.

4.4. Clinical decision support and care Coordination

Digital twins serve as clinical decision support tools, synthesising 
complex data into actionable insights for clinicians [17,79]. These ap
plications range from research prototypes to pilot implementations, with 
limited evidence of widespread clinical adoption. Rather than reviewing 
extensive glucose downloads and insulin records, clinicians interrogate 
digital twin interfaces that highlight patterns, identify problems, and 
suggest therapeutic modifications [17,25]. These systems detect issues 
such as persistent postprandial hyperglycaemia indicating inadequate 
mealtime insulin, recurrent nocturnal hypoglycaemia suggesting 
excessive basal insulin, or unexplained glucose variability reflecting 
illness, stress, or medication nonadherence [80]. Digital twin recom
mendations with appropriate clinical context may enhance clinician 
efficiency and decision quality. Evidence from decision-support and 
digital-twin–style tools suggests meaningful reductions in data review 
burden and improvements in clinically actionable pattern detection 
compared with manual review, although exact figures vary by study and 
setting [80,81]. However, these findings come from small feasibility 
studies in controlled settings with important gaps remaining. Whether 
automated pattern detection actually improves patient outcomes 
beyond expert clinical review has not been demonstrated. Algorithm 
errors or false alerts could lead to inappropriate treatment changes. 
Clinician trust and acceptance of algorithmic recommendations varies 
widely [79,82]. Liability concerns when following erroneous algo
rithmic advice remain unresolved. Integration with existing electronic 
health record workflows presents substantial technical and administra
tive barriers.

Beyond individual management, digital twins have been proposed 
for facilitating population health management by identifying cohorts 
requiring intervention, predicting healthcare resource utilisation, and 
evaluating policy or programme changes before implementation 
[30,82]. This represents a largely theoretical application with minimal 
empirical validation. Health systems could potentially deploy digital 
twins to simulate different care delivery models, staffing configurations, 
or technology deployment strategies, optimising resource allocation and 
efficiency [30,83]. These applications extend digital twin benefits from 
individual patients to healthcare systems, supporting value based care 
initiatives and population health goals [84]. However, population-level 
digital twin applications face substantial challenges. Data quality and 
completeness vary substantially across diverse patient populations. 
Model validation for system-level predictions is complex and rarely 
attempted. Unintended consequences of system changes may not be 
captured by models. Ethical concerns about algorithmic allocation of 
scarce healthcare resources require careful consideration.

5. Challenges and opportunities in digital twin implementation

Table 2 outlines major challenges in digital twin implementation 
alongside potential strategies to address them. Solution status in the 
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table represents author assessment based on current literature; actual 
implementation varies substantially across contexts.

5.1. Data Quality, Integration, and interoperability

Digital twin effectiveness depends critically on data quality, 
completeness, and integration. Despite proliferating digital health 
technologies, substantial challenges persist in aggregating data from 
disparate sources [88]. Continuous glucose monitors, insulin pumps, 
activity trackers, food logging applications, and electronic health re
cords often operate as isolated silos with incompatible formats, pro
prietary interfaces, and limited interoperability [82]. Integration 
success rates for multi-device data into unified platforms remain low 
approximately 30 % across digital health applications, with technical 
barriers, poor user experience, and lack of universal standards as major 
obstacles [89–91]. This fragmentation represents a fundamental barrier 
to digital twin implementation, as comprehensive patient representa
tions require multi-source integration. Critical consequences include: 
incomplete or biased patient profiles that compromise model accuracy; 
substantial patient burden in managing multiple incompatible systems; 
widening digital divides as only technologically sophisticated users 
achieve integration; and proprietary vendor lock-in preventing patients 
from switching systems [39,82,89]. Even with technical integration, 
data quality issues including sensor inaccuracies, missing data from 
device removal or malfunction, and inconsistent patient reporting 
compromise digital twin performance [85]. Sensor accuracy claims (e. 
g., MARD < 10 %) are typically derived from controlled validation 
studies and may not reflect real-world performance during rapid gly
cemic excursions. Furthermore, missing data patterns are often non- 
random (e.g., signal loss due to water interference, adhesive failure 
during exercise, or compression artifacts), introducing systematic biases 
that standard predictive models may not account for [92,93].

Data heterogeneity presents additional analytical challenges. Struc
tured data (laboratory results, medication lists) coexist with unstruc
tured data (clinical notes, patient reported outcomes, virtual assistant 
inputs). Temporal misalignment, where data elements are recorded at 
different frequencies and time points, requires sophisticated 

synchronisation methods. Naive approaches to data fusion (e.g., simple 
interpolation of missing values) may introduce artifacts and spurious 
correlations that compromise model validity [94–96]. Addressing these 
challenges necessitates advances in data standards, interoperability 
frameworks, and analytical techniques. Fast Healthcare Interoperability 
Resources standards and international consensus on diabetes data rep
resentation offer promise for improving integration. However, wide
spread implementation remains inconsistent, particularly in resource 
limited settings with less developed technology infrastructure. Eco
nomic incentives often favour proprietary systems over open interop
erability, creating fundamental conflicts between vendor interests and 
patient welfare. Regulatory mandates for data portability (e.g., 21st 
Century Cures Act in the US) have not yet achieved meaningful inter
operability in practice [97].

5.2. Model validation and clinical trust

Establishing trust requires rigorous validation through multiple 
lenses: analytical validation confirming model accuracy against gold 
standards, clinical validation demonstrating improved patient out
comes, and practical validation ensuring usability and workflow inte
gration [29,98]. The dynamic, personalised nature of digital twins 
complicates validation compared to static diagnostic tests or medica
tions. Traditional regulatory frameworks assume static, population-level 
performance characteristics that may not apply to continuously adapt
ing individual models. Critical validation challenges include: continu
ously learning algorithms may drift over time, requiring ongoing 
validation; individual model performance may vary substantially from 
population metrics; failure modes are difficult to characterise compre
hensively; adversarial inputs or edge cases may cause unpredictable 
behaviour; and model updates could degrade performance without 
proper oversight [82,99]. Traditional validation frameworks for in vitro 
diagnostic devices may not adequately address continuously adapting 
digital twin characteristics [86]. Regulatory agencies including the FDA 
and European Medicines Agency are developing frameworks for evalu
ating software as a medical device and artificial intelligence-based tools, 
but consensus on appropriate digital twin validation standards remains 

Table 2 
Challenges and Solutions in Digital Twin Implementation for Diabetes Care.

Challenge 
Domain

Specific Issues Impact on Implementation Potential Solutions Status of Solutions

Data Integration 
[31,39]

Lack of interoperability, proprietary 
formats, data silos

Incomplete patient 
representations, reduced digital 
twin accuracy

FHIR standards adoption, universal APIs, 
vendor cooperation mandates

Partial implementation; 
ongoing development

Data Quality 
[82]

Sensor inaccuracies, missing data, 
inconsistent reporting

Compromised predictions, reduced 
clinical utility

Improved sensor technology, automated 
data validation, imputation methods

Incrementally improving; 
requires continued 
advancement

Model Validation 
[16,39]

Lack of standardised frameworks, 
difficulty validating adaptive 
models

Regulatory uncertainty, limited 
clinical trust

Regulatory guidance development, 
prospective clinical trials, validation 
databases

Early stage; frameworks 
emerging

Clinical Trust 
[17,28]

Black box algorithms, liability 
concerns, insufficient training

Low adoption rates, reluctance to 
follow recommendations

Explainable AI, comprehensive training 
programmes, clinical decision support 
integration

Moderate progress; significant 
work remaining

Privacy and 
Security 
[79,85]

Data breach risks, surveillance 
concerns, re identification potential

Patient reluctance, regulatory 
barriers

Strong encryption, federated learning, 
privacy preserving technologies

Established technologies; 
implementation inconsistent

Equity and 
Fairness 
[82,86]

Algorithm bias, digital divide, 
disparate performance across groups

Health disparities, limited benefit 
for underserved populations

Diverse training data, fairness audits, 
inclusive design

Early attention; requires 
sustained focus

Cost and 
Reimbursement 
[16]

High development costs, unclear 
payment models

Limited commercial viability, 
restricted access

Value based care models, health 
economics studies, tiered solutions

Emerging models; significant 
uncertainty

Infrastructure 
[87]

Limited technology access, 
inadequate internet connectivity

Excludes populations most in need Low bandwidth solutions, offline 
capabilities, community technology hubs

Variable by region; ongoing 
challenge

Note: FHIR = Fast Healthcare Interoperability Resources; AI = Artificial Intelligence. Challenges and solutions represent synthesis across diverse healthcare contexts. 
Implementation success varies substantially by geographic region, healthcare system structure, and resource availability. Evidence for solution effectiveness is pre
dominantly observational or expert opinion rather than controlled evaluation. Critical gaps exist in addressing equity and fairness concerns, particularly regarding 
algorithmic bias in underrepresented populations.
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incomplete [100–102]. Current regulatory approaches struggle to bal
ance innovation with safety, leading to either overly restrictive re
quirements that stifle development or insufficient oversight that risks 
patient harm.

Clinician acceptance represents another critical dimension. Surveys 
reveal that whilst 70 to 80 percent of healthcare providers express in
terest in digital twin technology, only 30 to 40 percent feel confident 
interpreting and acting on recommendations without additional training 
[82,103]. This confidence gap represents a major implementation bar
rier that technical solutions alone cannot address. Concerns include 
black box machine learning models, liability when following algo
rithmic recommendations leading to adverse outcomes, and balancing 
algorithmic guidance with clinical judgment [103]. Legal frameworks 
assigning liability for AI-generated recommendations remain unclear in 
most jurisdictions [104,105]. Questions include: Who is responsible 
when a digital twin recommendation leads to patient harm, the clinician 
who followed it, the software developer, the healthcare institution, or 
the algorithm itself? This uncertainty creates substantial barriers to 
clinical adoption. Transparency in model development, clear uncer
tainty communication, explainable artificial intelligence techniques 
illuminating recommendation reasoning, and incorporation of clinician 
feedback into iterative refinement can build trust. However, true 
explainability may be fundamentally incompatible with complex ma
chine learning models, requiring tradeoffs between performance and 
interpretability. Demonstrating clinical effectiveness through well 
designed prospective studies with patient centred outcomes is essential 
for widespread adoption. Currently, such evidence is limited, with most 
studies focusing on technical performance metrics rather than patient- 
important outcomes.

5.3. Privacy, Security, and ethical considerations

Digital twins process highly sensitive health information, raising 
substantial privacy and security concerns. Continuous data collection, 
information granularity, and re identification potential amplify con
cerns beyond traditional medical records [14]. Wearable sensors and 
applications track health metrics, location, activity patterns, and 
behavioural data revealing intimate details. Data breach risks with 
consequences including discrimination, social stigma, or identity theft 
create patient apprehension [106]. The potential for re-identification 
from supposedly anonymized data has been demonstrated repeatedly, 
with researchers re-identifying individuals from combinations of seem
ingly innocuous data points. Digital twin data, being longitudinal and 
high-dimensional, may be particularly vulnerable to such attacks.

Regulatory frameworks including the General Data Protection 
Regulation and Health Insurance Portability and Accountability Act 
provide baseline protections, but gaps remain. Questions about data 
ownership, consent for secondary uses, algorithmic decision explanation 
rights, and cross border data flows require clarification [107]. Current 
regulatory frameworks were designed for static medical records rather 
than continuously generated personal data, leaving critical questions 
unresolved. For example: Do patients “own” their digital twin? Can they 
demand deletion? Can data be used to train commercial algorithms 
without explicit consent? What rights do they have to understand 
algorithmic decisions affecting their care? Ethical considerations extend 
beyond privacy to equity and fairness. Algorithms trained predomi
nantly on well-resourced population data may perform poorly for un
derserved groups, exacerbating disparities [108]. Studies document 
lower glucose prediction accuracy in racial and ethnic minorities and 
lower socioeconomic populations [109]. This algorithmic bias repre
sents a critical threat to health equity. Mechanisms include: underrep
resentation in training data leading to poor model calibration; 
differential data quality (e.g., sensor accuracy may vary across skin 
tones); socioeconomic differences in device access and usage patterns; 
and failure to account for structural determinants of health. Simply 
including more diverse training data is insufficient if underlying 

healthcare disparities remain unaddressed. Diverse training data, fair
ness audits, and inclusive design are essential to prevent widening in
equities. However, achieving algorithmic fairness is technically 
complex, as optimising for one fairness metric (e.g., equal sensitivity 
across groups) may worsen others (e.g., equal positive predictive value). 
Moreover, fairness interventions may reduce overall model perfor
mance, creating ethical dilemmas about acceptable tradeoffs [110,111].

5.4. Economic considerations and healthcare system integration

The economic viability of digital twin technology in diabetes care 
remains under active investigation. Development costs for sophisticated 
platforms are substantial, encompassing data infrastructure, algorithm 
development, regulatory compliance, clinical validation, and ongoing 
maintenance [39,82]. Commercial solutions typically require subscrip
tion fees ranging from several hundred to several thousand dollars 
annually per patient, costs often not covered by payers without 
demonstrated cost effectiveness [25]. These costs potentially limit ac
cess to affluent populations, exacerbating existing health inequities. 
Whilst pilot studies show promising results, comprehensive health 
economic analyses examining long term costs, complication prevention 
savings, and healthcare resource impacts are limited [64,108]. Critical 
economic questions remain unanswered: What is the incremental cost- 
effectiveness ratio compared to conventional care? Who captures the 
economic benefits, patients, healthcare systems, or technology vendors? 
How should value be assessed, traditional QALYs, time in range, patient- 
reported outcomes? What is the budget impact of widespread adoption 
on healthcare systems? How should costs be allocated between pre
vention/detection and management applications?

Successful healthcare system integration requires addressing multi
ple dimensions beyond functionality. Clinical workflow integration 
must ensure digital twin interactions fit seamlessly into existing care 
patterns without excessive burden [112]. Current digital twin systems 
often require substantial additional clinician time for data review, al
gorithm supervision, and patient education, potentially worsening 
clinician burnout rather than alleviating it [113]. Interoperability with 
electronic health records, enabling bidirectional data flow and docu
mentation of recommendations within legal medical records, remains 
technically and administratively challenging [114,115]. Lack of stand
ardised documentation formats for digital twin recommendations cre
ates legal and quality assurance problems. How should AI-generated 
recommendations be recorded? Who verifies their appropriateness? 
How are deviations from recommendations justified? Care team edu
cation and training require time and resource investment to provide 
clinicians with skills to effectively utilise digital twin insights. Current 
medical and nursing education curricula rarely include substantive 
training in AI-based clinical decision support, creating a knowledge gap 
that will take years to address. Reimbursement mechanisms recognising 
digital twin enabled care value and appropriately compensating 
healthcare organisations are necessary for financial sustainability [116]. 
Some health systems have implemented bundled payment models or 
capitated arrangements incentivising improved outcomes rather than 
service volume, creating financial alignment for digital twin adoption. 
However, fee for service payment models, which still predominate in 
many regions, provide limited incentive for preventive, technology 
enabled care innovations [82]. The current reimbursement landscape 
creates a fundamental misalignment: digital twins primarily generate 
value through complication prevention and efficiency gains, but fee-for- 
service systems reward volume of acute interventions. This misalign
ment may prevent adoption even when technologies are clinically 
effective and cost-effective from a societal perspective.
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6. Future directions and emerging opportunities

6.1. Integration of multi omics and systems biology

The next frontier involves integrating multi omics data (genomics, 
transcriptomics, proteomics, metabolomics, microbiomics) to create 
comprehensive systems biology models. Genomic data identifies in
dividuals at high risk for diabetes or complications based on genetic 
predisposition, enabling targeted prevention [117]. Proteomic and 
metabolomic profiles provide real-time metabolic state snapshots, 
capturing perturbations preceding clinical disease progression. Gut 
microbiome composition influences glucose metabolism, insulin sensi
tivity, and dietary response, with emerging evidence suggesting micro
biome modulation through probiotics, prebiotics, or diet may improve 
glycaemic control [118]. Digital twins incorporating these multi- 
dimensional datasets could achieve unprecedented personalisation, 
potentially predicting glucose responses and identifying optimal thera
peutic targets tailored to individual biology [119]. However, several 
critical challenges temper enthusiasm for near-term clinical imple
mentation. Multi-omics profiling remains expensive and technically 
complex, limiting accessibility beyond research settings. Integration of 
heterogeneous data types including discrete genomic variants, contin
uous metabolite levels, and compositional microbiome data presents 
substantial analytical challenges. Biological mechanisms linking omics 
signatures to clinical outcomes are often poorly understood, limiting 
causal inference and therapeutic targeting [120,121]. Temporal stability 
of omics profiles, particularly microbiome composition, raises questions 
about how frequently assessment must be repeated for accurate digital 
twin calibration. The incremental clinical benefit of multi-omics inte
gration over simpler approaches combining clinical and basic laboratory 
data has not been established through comparative effectiveness studies.

Technical advances in sensor technology, high throughput 
sequencing, and computational biology are making multi-omics digital 
twins increasingly feasible. Minimally invasive biosensors continuously 
monitoring multiple metabolites beyond glucose (lactate, ketones, bio
markers) are under development [122]. However, such sensors remain 
largely in early research stages, with significant technical hurdles 
including biocompatibility challenges, calibration stability over 
extended periods, and regulatory approval pathways that remain un
clear. Artificial intelligence, particularly deep learning for integrating 
heterogeneous data, shows promise for extracting insights from complex 
multi omics datasets. However, interpretability challenges intensify 
substantially with multi-omics models, potentially creating opaque 
systems that clinicians cannot understand or validate, raising safety and 
liability concerns. As these technologies mature and costs decrease, 
multi-omics digital twins may transition from research tools to clinical 
reality, offering precision diabetes care [14]. Realistic timelines for 
clinical implementation likely extend beyond a decade, requiring sus
tained research investment across multiple disciplines, development of 
appropriate regulatory frameworks for complex multi-omics devices, 
and generation of robust evidence demonstrating clinical utility and 
cost-effectiveness in diverse populations.

6.2. Expansion to type 2 diabetes and broader populations

Digital twin applications focus predominantly on type 1 diabetes, 
where intensive insulin therapy and continuous glucose monitoring are 
standard. However, type 2 diabetes, accounting for 90 to 95 percent of 
cases, represents a far larger opportunity. Its pathophysiology, charac
terised by progressive insulin resistance and beta cell dysfunction with 
substantial heterogeneity, presents unique challenges and opportunities 
[123]. Extending to type 2 diabetes requires addressing different ther
apeutic paradigms: diverse pharmacological agents beyond insulin, 
greater lifestyle modification emphasis, and multiple comorbidity 
management [124]. Critical differences from type 1 diabetes complicate 
direct translation of existing digital twin approaches. Oral medications 

and non-insulin injectables require different pharmacokinetic and 
pharmacodynamic modelling frameworks not yet well developed. Life
style factors including diet, exercise, and weight management play more 
central therapeutic roles, requiring sophisticated behavioural modelling 
beyond current capabilities. Multimorbidity management involving 
hypertension, dyslipidemia, and cardiovascular disease requires inte
grated models spanning multiple organ systems rather than diabetes- 
specific approaches [16,31]. Disease heterogeneity with distinct 
phenotypic subtypes and highly variable progression patterns compli
cates development of standardised digital twin architectures. Simplified 
solutions leveraging periodic glucose measurements, patient reported 
outcomes, and population models rather than continuous monitoring 
may be more practical and scalable. However, whether simplified ap
proaches retain sufficient personalisation to justify digital twin termi
nology versus conventional population-based clinical decision support 
remains debatable. The value proposition for expensive digital twin 
technology may be substantially lower in type 2 diabetes without 
intensive insulin therapy, where conventional care already achieves 
reasonable outcomes in many patients through medication titration and 
lifestyle counselling [25,80].

Geographic and socioeconomic expansion represents another critical 
frontier. Most digital twin development has occurred in high income 
countries with advanced infrastructure and technology [14]. Low and 
middle income countries bear a disproportionate diabetes burden whilst 
facing limited technology access, constrained resources, and different 
cultural contexts. Tailored solutions emphasising low-cost sensors, 
smartphone platforms, task sharing models, and community health 
worker integration could potentially democratise precision care and 
address global equity concerns [125,126]. However, substantial barriers 
impede implementation in resource-limited settings. Infrastructure 
limitations including unreliable electricity and limited internet con
nectivity constrain technology deployment in many regions. Low health 
literacy and digital literacy among target populations limit effective 
engagement with sophisticated systems. Lack of trained healthcare 
workforce to support technology implementation and provide backup 
when systems fail represents a critical bottleneck. Cultural appropri
ateness of algorithms developed in Western contexts for diverse global 
populations remains largely unexplored. Financial sustainability when 
healthcare resources are already severely constrained raises funda
mental questions about opportunity costs [127–129]. Simply adapting 
high-income country technologies may be insufficient; fundamentally 
different approaches designed specifically for resource-limited settings 
may be necessary to achieve meaningful impact.

6.3. Behavioural integration and patient engagement

Effective diabetes management depends on biological, behavioural, 
psychological, and social dimensions. Medication adherence, diet, 
physical activity, stress management, and healthcare engagement pro
foundly influence outcomes [17,25]. Digital twins should incorporate 
behavioural science principles and psychological models to predict 
adherence challenges, identify barriers, and deliver personalised 
behaviour change interventions. Currently, most digital twin systems 
focus predominantly on biological and physiological modelling with 
limited integration of behavioural dimensions. This represents a critical 
gap, as behavioural factors often contribute more to glycaemic vari
ability than biological heterogeneity alone, particularly in type 2 dia
betes and non-intensive insulin regimens [27]. Integrating cognitive 
behavioural therapy, motivational interviewing, and positive rein
forcement could potentially enhance engagement and sustained modi
fication. Social determinants (food insecurity, housing instability, 
transportation barriers, social isolation) impact management capacity 
and should be incorporated into holistic models [130]. However, oper
ationalising these concepts faces significant challenges across multiple 
dimensions. Behavioural and social determinants are difficult to mea
sure objectively and continuously using available sensors or self-report 
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mechanisms. Causal relationships between social factors and health 
outcomes are complex and confounded by numerous unmeasured vari
ables [27]. Algorithmic recommendations addressing social de
terminants such as obtaining stable housing may be ineffectual without 
resources to act on them. Privacy concerns intensify substantially when 
systems track behavioural patterns and social circumstances beyond 
traditional medical data.

Gamification, social support, and personalised goal setting have been 
proposed to enhance patient engagement. Gamified interventions may 
improve adherence and outcomes, particularly among younger pop
ulations though evidence is mixed and long-term effectiveness uncer
tain. Social features enabling peer connection through communities or 
programmes may enhance motivation and reduce isolation [130]. 
However, concerns about privacy protection, potential for harmful peer 
pressure, and risks of unhelpful social comparisons require careful 
attention in system design. Systems adapting communication style, 
interaction frequency, and intervention intensity to individual prefer
ences could potentially optimise adherence and prevent abandonment, a 
common digital health challenge. However, personalisation of engage
ment strategies remains largely theoretical, with limited empirical evi
dence demonstrating superiority over well-designed standardised 
approaches. Digital intervention abandonment rates frequently 
exceeding 50 to 80 percent within 6 months remain common across 
diverse platforms, suggesting that current engagement strategies, 
whether personalised or standardised, are often ineffective at main
taining long-term user engagement [25].

6.4. Artificial intelligence advances and explainability

Advances in artificial intelligence, particularly transformer models, 
graph neural networks, and reinforcement learning, may enhance digital 
twin capabilities. Transformer models could potentially model complex 
temporal sequences such as extended glucose patterns [115,131]. 
However, these remain largely research applications without clinical 
validation demonstrating superiority over simpler approaches. Graph 
neural networks could represent interconnected physiological systems, 
capturing relationships between glucose metabolism, cardiovascular 
function, inflammatory processes, and organ systems. However, bio
logical network structures are incompletely characterised, and whether 
graph-based representations improve predictions over conventional 
approaches remains empirically unproven. Reinforcement learning 
could theoretically optimise sequential decision making, such as insulin 
dosing strategies maximising long term outcomes rather than immediate 
control, offering superior therapeutic recommendations [132]. Howev
er, reinforcement learning in healthcare faces substantial challenges 
limiting near-term clinical deployment. Reward functions must balance 
multiple competing objectives including glycaemic control, hypo
glycaemia prevention, and treatment burden without clear methods for 
appropriate weighting. Safety constraints are difficult to encode 
comprehensively, risking unexpected dangerous behaviours. Explora
tion in clinical settings raises ethical concerns about exposing patients to 
potentially suboptimal treatments during algorithm learning phases. 
Real-world deployment of reinforcement learning systems could lead to 
unexpected behaviours in novel situations not encountered during 
training, creating potentially serious safety risks [25,27,39].

As models become more complex, ensuring explainability becomes 
increasingly critical. Clinicians and patients need to understand rec
ommendations and their rationale, enabling trust, error identification, 
and integration of algorithmic guidance with human judgment and 
experience [27,39]. Explainable artificial intelligence techniques 
including attention mechanisms highlighting influential input features, 
counterfactual explanations showing alternative scenario outcomes, and 
local interpretable model agnostic explanations approximating complex 
behaviour with simpler models attempt to bridge the gap between so
phistication and comprehension [133]. However, current explainable AI 
techniques face significant limitations in practice. Explanations may be 

technically accurate but clinically unintuitive, failing to provide 
actionable insights for non-technical users. Fidelity-interpretability 
tradeoffs mean simpler explanatory models may systematically 
misrepresent complex model behaviour, providing misleading rather 
than clarifying information. Different stakeholders including clinicians, 
patients, and regulators require fundamentally different types of ex
planations that may be difficult to provide simultaneously [134]. Post- 
hoc explanations may not accurately reflect actual model decision pro
cesses, particularly for complex neural networks. Fundamentally, there 
may be inherent tension between model performance and interpret
ability that cannot be fully resolved through technical approaches alone. 
Research on communicating uncertainty, visualising predictions with 
confidence intervals, and presenting recommendations clearly will be 
essential as digital twins advance. However, effectively communicating 
uncertainty to clinical audiences with variable statistical literacy re
mains an unsolved challenge across healthcare informatics. Over
simplified communication risks misinterpretation and inappropriate 
confidence, while comprehensive uncertainty quantification may over
whelm users and paradoxically reduce rather than enhance decision 
quality.

As depicted in Fig. 2, multiple technical, clinical, and ethical chal
lenges remain, but emerging frameworks and technologies provide 
pathways toward scalable and trustworthy digital twin integration.

Note: Proposed solutions in the figure represent current research 
directions and expert recommendations rather than validated ap
proaches. Implementation feasibility and effectiveness vary substan
tially across healthcare contexts. Critical evidence gaps exist for most 
proposed solutions, particularly regarding equity and fairness 
interventions.

7. Limitations of the review

This narrative review, whilst comprehensive in scope, has several 
limitations that warrant acknowledgment. First, the narrative review 
methodology, whilst enabling breadth of coverage and thematic syn
thesis, does not employ the systematic, structured approach of system
atic reviews with meta-analysis. Unlike systematic reviews following 
PRISMA guidelines, this narrative review did not pre-register a protocol, 
did not conduct duplicate independent screening, and did not perform 
formal quality assessment using standardised tools. We did not create a 
formal PRISMA flow diagram documenting screening decisions at each 
stage, as narrative reviews prioritise thematic synthesis over quantita
tive enumeration. This limitation introduces potential for selection bias 
in included studies and precludes quantitative synthesis of effect sizes 
across studies. The heterogeneity of digital twin implementations, 
outcome measures, and study designs further complicates direct com
parisons and evidence synthesis. Our thematic synthesis approach, while 
enabling integration of diverse evidence types, is inherently more sus
ceptible to author bias than quantitative meta-analysis. Readers should 
interpret our critical assessments as informed expert opinion rather than 
objective quantification of evidence quality. Second, the rapidly 
evolving nature of digital twin technology means that some emerging 
developments, particularly those in early research stages or proprietary 
commercial systems without published peer reviewed data, may not be 
fully represented. The lag between technological innovation and peer 
reviewed publication creates an inherent temporal limitation in the 
literature base. Published literature may overrepresent academic 
research prototypes while underrepresenting commercially deployed 
systems, creating a potentially distorted picture of clinical reality.

Third, the majority of published research on digital twin applications 
in diabetes originates from high income countries with advanced 
healthcare infrastructure, particularly the United States, United 
Kingdom, and select European nations. This geographic concentration 
limits generalisability of findings to diverse healthcare contexts, 
particularly resource limited settings where the burden of diabetes is 
growing most rapidly. Moreover, study populations within high-income 
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countries often overrepresent affluent, well-educated, technologically 
savvy individuals willing to participate in research, further limiting 
generalisability to broader populations. Fourth, many studies examining 
digital twin performance and clinical impact are relatively short term, 
spanning weeks to months rather than years. Long term effectiveness, 
durability of benefits, and evolution of system performance over 
extended time periods remain inadequately characterised. Algorithm 
degradation over time due to changing treatment patterns, device up
dates, or patient characteristics represents a largely unexamined threat 
to sustainability of digital twin systems. Fifth, publication bias favouring 
positive results may lead to overestimation of digital twin effectiveness 
if studies demonstrating limited benefits or implementation challenges 
are less likely to be published. We attempted to identify negative or null 
findings through comprehensive searching, but likely underrepresent 
implementation failures and abandoned projects that never reached 
publication.

Sixth, this review focuses predominantly on technological and clin
ical dimensions of digital twin applications, with limited attention to 
important implementation science considerations including change 
management, organisational factors influencing adoption, and strategies 
for scaling successful pilot implementations to routine care. These “soft” 
factors often determine implementation success or failure more than 
technical performance, representing a critical gap in our analysis. Sev
enth, whilst ethical considerations are discussed, comprehensive anal
ysis of complex ethical issues such as algorithmic bias, data governance, 
and patient autonomy in the context of increasingly sophisticated de
cision support tools extends beyond the scope of this review. Ethical 
frameworks for AI in healthcare remain underdeveloped, and many 
questions lack clear answers in current philosophical or regulatory 
discourse. Finally, the review does not address in detail the technical 
specifications of different modelling approaches, machine learning ar
chitectures, or validation methodologies, areas that would benefit from 

dedicated technical reviews aimed at computational and engineering 
audiences. Our critical synthesis attempts to evaluate model quality and 
limitations, but readers with deep technical expertise may find our as
sessments insufficiently granular for computational validation.

Additional specific limitations include several important consider
ations. Our search was limited to English-language publications, 
potentially missing important work published in other languages 
particularly from non-English speaking countries. Grey literature 
including conference abstracts, white papers, and technical reports 
received limited systematic attention despite potentially containing 
important unpublished findings. Our assessment of clinical maturity 
distinguishing proof-of-concept from commercially available systems 
relied on author judgment rather than formal criteria, introducing 
subjectivity.

8. Conclusion

Digital twin technology represents an evolving paradigm in diabetes 
prediction and management, offering potential opportunities for per
sonalisation, proactive intervention, and precision care. Through 
continuous integration of diverse data streams with sophisticated 
computational models, digital twins create dynamic virtual represen
tations of individuals that can predict glucose trajectories, optimise 
therapeutic regimens, and forecast complication risks with varying de
grees of accuracy depending on application and population. Current 
applications demonstrate promising though variable clinical benefits, 
including improved glycaemic control, reduced hypoglycaemia, 
enhanced patient engagement, and more efficient use of healthcare re
sources in selected populations and controlled settings. The maturation 
of enabling technologies, including continuous glucose monitoring, 
wearable sensors, artificial intelligence, and cloud computing infra
structure, has established a foundation for exploring widespread digital 

Fig. 2. Major challenges and emerging solutions in implementing digital twin technology for diabetes care. The figure summarises key technical, clinical, 
ethical, and economic barriers alongside corresponding mitigation strategies. Addressing these interlinked domains is essential for translating digital twin innovation 
into scalable, equitable, and sustainable clinical practice.
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twin implementation in diabetes care. However, significant gaps sepa
rate current proof-of-concept demonstrations from validated, equitably 
accessible clinical systems.

Realising the potential of digital twin technology requires addressing 
significant challenges spanning technical, clinical, ethical, and eco
nomic domains. Data integration and interoperability barriers limit the 
creation of comprehensive patient representations. Current proprietary 
systems create data silos that fundamentally undermine the compre
hensive integration digital twins require. Model validation frameworks 
appropriate for dynamic, adaptive systems remain under development. 
Regulatory pathways for continuously learning algorithms are evolving 
but incomplete, creating uncertainty for developers and clinicians. 
Building trust among clinicians and patients necessitates transparency, 
explainability, and demonstrated clinical effectiveness through rigorous 
prospective studies. Current evidence consists predominantly of retro
spective analyses, small pilot studies, and proof-of-concept demonstra
tions rather than large-scale randomised trials with patient-important 
outcomes. Privacy and security concerns must be addressed through 
robust technical safeguards and clear governance frameworks. Howev
er, technical solutions cannot fully mitigate risks inherent in continuous 
collection of intimate personal data. Equity considerations demand 
attention to ensure that digital twin benefits extend to diverse pop
ulations rather than exacerbating existing health disparities. Evidence of 
algorithmic bias and differential performance across demographic 
groups raises serious concerns that cannot be addressed through tech
nical fixes alone but require fundamental attention to healthcare in
equities. Economic sustainability depends on demonstrating cost 
effectiveness and developing reimbursement models that appropriately 
value technology enabled care. However, current fee-for-service pay
ment structures create misaligned incentives that may prevent adoption 
of cost-effective preventive technologies.

Looking forward, the integration of multi omics data, expansion to 
type 2 diabetes and global populations, incorporation of behavioural 
science, and continued artificial intelligence advances may enhance 
digital twin capabilities further. However, these future directions face 
substantial technical, regulatory, economic, and ethical challenges that 
will require years to decades to address. Realistic expectations are 
essential; digital twins are not imminent panaceas but rather long-term 
research priorities requiring sustained investment and rigorous evalua
tion. The vision of comprehensive, whole body digital twins that predict, 
prevent, and manage not only diabetes but multiple interconnected 
chronic conditions remains largely aspirational, achievable potentially 
within the coming decade with sustained research investment and suc
cessful navigation of multiple challenges. Collaboration among tech
nologists, clinicians, researchers, patients, policymakers, and industry 
stakeholders will be essential to navigate the complex pathway from 
promising technology to routine clinical practice. This collaboration 
must prioritise patient benefit and equity over commercial interests, 
requiring careful governance and regulatory oversight. With sustained 
effort and appropriate investment, digital twin technology has the po
tential to contribute to fundamentally reshaping diabetes care, trans
forming it from reactive disease management to proactive health 
optimisation though not achieving the ambitious goal of preventing and 
curing diabetes altogether in the near term. Critical success factors 
include: rigorous clinical validation demonstrating patient-important 
outcomes; equitable access ensuring benefits reach underserved pop
ulations; transparent governance addressing privacy and algorithmic 
fairness; sustainable business models aligning incentives for all stake
holders; and realistic expectations balancing enthusiasm with evidence- 
based caution.
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