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Traditional diabetes management employs reactive strategies with therapeutic adjustments after adverse gly-
caemic events rather than proactive prevention, resulting in suboptimal control and increased complications.
Digital twin (DT) technology creates virtual replicas through computational modelling and real time data
integration as a transformative approach. However, questions remain regarding clinical validation, imple-
mentation feasibility, and generalisability. This review examines current applications, challenges, and future
potential of digital twin technology in diabetes prediction and management. PubMed, Scopus, Web of Science,
and IEEE Xplore databases were searched for peer reviewed articles (2015-2024) on DT applications in diabetes
care, predictive modelling, and therapeutic optimisation. Critical synthesis compared methodological ap-
proaches, performance metrics, and implementation challenges. DT demonstrate variable but promising po-
tential through glucose prediction, personalised insulin dosing, dietary optimisation, and complication risk
assessment, integrating continuous glucose monitoring, wearable sensors, and machine learning algorithms.
Evidence quality varies substantially, with most studies representing proof-of-concept or pilot implementations.
Implementation faces data privacy concerns, validation requirements, and integration complexities. Critical gaps
exist in long-term effectiveness, algorithmic bias mitigation, and generalisability to underserved populations. DT
technology represents an evolving paradigm towards precision diabetes care. However, rigorous clinical vali-
dation, addressing equity concerns, and establishing sustainable implementation frameworks remain essential for
widespread adoption.

1. Introduction

Diabetes mellitus has evolved from a relatively uncommon condition
to one of the most pressing public health challenges of the 21st century
[1]. The International Diabetes Federation reports that approximately
537 million adults aged 20 to 79 years were living with diabetes in 2021,
with this figure projected to rise to 643 million by 2030 and 783 million
by 2045 [2]. This exponential growth trajectory, coupled with the
substantial economic burden estimated at USD 966 billion in global
healthcare expenditure annually, necessitates innovative approaches to
diabetes prevention, prediction, and management [3]. The disease's
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multifaceted nature, characterised by complex metabolic interactions
and significant inter individual variability in treatment response, pre-
sents substantial challenges to conventional one size fits all therapeutic
strategies.

The landscape of diabetes care has undergone remarkable trans-
formation over recent decades, transitioning from rudimentary urine
glucose testing to sophisticated continuous glucose monitoring systems
and automated insulin delivery devices. Despite these technological
advances, significant gaps persist in achieving optimal glycaemia con-
trol across patient populations [4,5]. Studies across multiple health
systems indicate that a substantial proportion of individuals with
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diabetes fail to achieve recommended clinical targets, with optimal
attainment often below 50 % in routine practice, underscoring the
limitations of current management paradigms [6-8]. The reactive na-
ture of traditional diabetes care, where therapeutic adjustments occur in
response to adverse events or suboptimal outcomes rather than antici-
pating them, contributes to this suboptimal control and the subsequent
development of debilitating microvascular and macrovascular compli-
cations [9,10].

Digital twin technology, originally developed in aerospace and
manufacturing industries for predictive maintenance and system opti-
misation, has emerged as a potentially transformative approach in
healthcare [11]. Digital twins are conceptually distinct from but related
to several established approaches in computational medicine [12].
While virtual patient models typically represent population-level phys-
iological responses and in silico simulations focus on specific biological
processes or drug interactions, digital twins uniquely combine these
elements with continuous real-time data integration to create dynamic,
individualised representations that evolve throughout a patient's disease
trajectory [13,14]. Unlike conventional clinical decision support sys-
tems that primarily provide rule-based recommendations, digital twins
employ sophisticated computational modelling to simulate future states
and predict outcomes under different scenarios before clinical imple-
mentation. A digital twin is defined as a dynamic virtual representation
of a physical entity or system that spans its lifecycle, updated from real
time data, and uses simulation, machine learning, and reasoning to
support decision making [15]. In the context of diabetes, digital twins
create individualised computational models that mirror a patient's
unique physiological responses to various factors, including food intake,
physical activity, medication, stress, and circadian rhythms [16].
However, the term “patient-specific digital twin” refers to a computa-
tional replica calibrated to an individual patient's unique metabolic
parameters, treatment responses, and disease progression patterns,
distinguishing it from generalised population models [17]. These virtual
representations enable clinicians and patients to simulate different
scenarios, predict outcomes, and optimise therapeutic interventions
before implementing them in the real world.

The convergence of several technological advances has catalysed the
development of diabetes focused digital twins [17]. Continuous glucose
monitoring devices now provide glucose readings every few minutes,
generating rich longitudinal datasets that capture glycaemic patterns
with unprecedented granularity [18]. Wearable sensors track physical
activity, heart rate variability, sleep patterns, and other physiological
parameters that influence glucose metabolism [19,20]. Smartphone
applications facilitate dietary logging and medication adherence
tracking, whilst cloud computing infrastructure enables the storage and
processing of massive datasets [17]. Artificial intelligence and machine
learning algorithms can identify complex patterns within these multi-
dimensional data streams, learning individual specific relationships
between inputs and glycaemic outcomes [21]. Together, these tech-
nologies provide the foundation for creating sophisticated, personalised
digital twins that hold promise for revolutionising diabetes care pending
rigorous validation.

Importantly, behavioural, psychological, and social dimensions
fundamentally influence diabetes management outcomes alongside
biological factors. Medication adherence, dietary choices, physical ac-
tivity, stress management, and healthcare engagement profoundly
impact glycaemic control [22,23]. Comprehensive digital twin frame-
works must therefore integrate these dimensions to achieve clinically
meaningful personalization.

However, despite the promise of digital twin technology in diabetes,
several critical gaps warrant comprehensive examination [24,25]. The
problem lies in the fragmented understanding of how digital twin ap-
plications can be effectively implemented across the diabetes care con-
tinuum, from early prediction of disease onset to optimisation of long-
term management strategies. Additionally, most published evidence
represents early-stage research with limited clinical validation, raising
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questions about real-world effectiveness, safety, and scalability
[16,24,25]. The rationale for this review stems from the need to criti-
cally synthesise emerging evidence, evaluate methodological quality,
identify current capabilities and limitations, and establish a roadmap for
future development. The novelty of this work resides in its compre-
hensive examination of digital twin applications spanning both predic-
tion and management domains, addressing technical, clinical, and
implementation perspectives with critical appraisal of evidence quality
and generalisability that have not been collectively analysed in existing
literature. The aim of this review is to critically evaluate the current
state of digital twin technology in diabetes prediction and management,
examining its methodological foundations, clinical applications, chal-
lenges, and future directions. The specific objectives are to: (1) elucidate
the fundamental principles and technical architectures of digital twin
systems in diabetes care; (2) analyse current applications in diabetes risk
prediction and early detection with critical comparison of methodo-
logical approaches and performance metrics; (3) evaluate digital twin
implementations in glucose prediction and management optimisation
distinguishing between proof-of-concept studies, pilot implementations,
and clinically validated systems; (4) identify challenges and barriers to
widespread adoption including model limitations, dataset biases, and
failure modes; and (5) propose evidence-based future research di-
rections to advance the field. As illustrated in Fig. 1, digital twin tech-
nology integrates multimodal data streams to create a dynamic virtual
replica of each patient for predictive and personalised diabetes
management.

The figure illustrates how multimodal data from continuous glucose
monitoring, wearable sensors, and clinical records are integrated into
computational models that form patient specific digital twins. These
virtual representations enable real time simulation, prediction, and
therapeutic optimisation through iterative feedback between patient
and clinician interfaces. Also, the figure represents an idealised frame-
work; actual implementations vary substantially in data sources, model
complexity, and validation status.

2. Methods

This narrative review was undertaken to provide a comprehensive
and critical synthesis of current knowledge regarding digital twin
technology applications in diabetes prediction and management. Unlike
systematic reviews that aim for exhaustive literature coverage with
predefined protocols, narrative reviews offer flexibility to explore
complex, multifaceted topics through critical analysis and thematic
synthesis. This approach was deemed appropriate given the emerging
and rapidly evolving nature of digital twin technology in healthcare,
where the landscape encompasses diverse methodological approaches,
technological platforms, and clinical applications that benefit from
integrative analysis rather than purely quantitative synthesis. However,
this methodological choice introduces inherent limitations including
potential selection bias and lack of quantitative meta-analysis, as dis-
cussed in Section 7.

2.1. Literature search and selection

A broad literature search was conducted across multiple databases
including PubMed, Scopus, Web of Science, and IEEE Xplore to identify
relevant publications from January 2015 to December 2024. This
timeframe was selected to capture the contemporary development of
digital twin applications in diabetes care whilst acknowledging that the
conceptual foundations extend further back. The search strategy
employed the following combinations of terms using Boolean operators:

Primary search string: (“digital twin” OR “virtual patient” OR “in silico
model*” OR “computational model*”) AND (“diabetes mellitus” OR
“type 1 diabetes” OR “type 2 diabetes” OR “glucose” OR “glyc?emic
control” OR “glyc?aemic control”) AND (“prediction” OR “forecasting”

OR “management” OR “therapy” OR “treatment optim*”)**.



D.B. Olawade et al.

Data Sources

Continuous

Machine

glucose monitor .
learning

Wearable
sensors

Clinical lab
data

Digital Twin Engine

Predictive
glucose curve

Real-time feedback =’

Diabetes Research and Clinical Practice 231 (2026) 113075

Clinical and Patient
Interface

Vad

Predictive
glucose curve

Patient Interface

Therapy

Fig. 1. Conceptual framework of digital twin technology in diabetes prediction and management.

Secondary searches incorporated technology-specific terms: (“continuous
glucose monitor” OR “CGM”) AND (“digital twin” OR “predictive
model*”); (“artificial pancreas” OR “closed loop™) AND (“digital twin*”
OR “virtual patient*”); (“machine learning” OR “deep learning” OR
“artificial intelligence”) AND (“diabetes” OR “glucose™) AND (“digital
twin*” OR “computational model*”).

The search strategy was deliberately inclusive rather than restrictive,
reflecting the narrative review approach of casting a wide net to capture
the breadth of the field. After removing duplicates and screening for
relevance, a substantial body of peer-reviewed literature formed the
evidence base for detailed analysis.

Literature selection prioritised peer-reviewed journal articles, con-
ference proceedings from major scientific meetings, and technical re-
ports from recognised institutions and regulatory agencies. Publications
were included if they: described digital twin, virtual patient, or in silico
modelling approaches specifically applied to diabetes prediction or
management; presented original empirical data, systematic reviews, or
substantive technical/methodological descriptions; were published in
English; and provided sufficient methodological detail for critical eval-
uation. Publications were excluded if they: focused solely on other
chronic diseases without diabetes-specific applications; provided only
abstract-level descriptions without methodological substance; or rep-
resented commentary or opinion pieces without empirical foundation.
Both empirical studies reporting original data and conceptual papers
providing theoretical frameworks were included to ensure comprehen-
sive coverage. The review emphasised recent publications whilst
incorporating seminal earlier works that established foundational con-
cepts. Reference lists of retrieved articles were examined to identify
additional relevant sources through snowball sampling, and forward
citation searching was employed to locate more recent work building on
key publications. Expert knowledge of the field guided identification of
important contributions that might not surface through database
searching alone, including emerging preprints and conference pre-
sentations representing cutting edge developments.

2.2. Thematic analysis and synthesis

The synthesis approach employed thematic analysis to organise the
diverse literature into coherent conceptual domains. Initial reading of
included publications identified recurring themes, which were itera-
tively refined through constant comparison and discussion to develop
the review's organisational framework. The final thematic structure
encompasses fundamental concepts and architectures of digital twin
technology; applications in diabetes prediction including risk stratifi-
cation and early detection; applications in diabetes management span-
ning glucose prediction, therapy optimisation, and lifestyle
personalisation; challenges and barriers to implementation; and future
directions and emerging opportunities. This structure was designed to
guide readers from foundational understanding through current appli-
cations to critical analysis of limitations and forward-looking
perspectives.

Within each thematic domain, the synthesis prioritised critically
identifying patterns, contrasts, methodological strengths and weak-
nesses, and gaps in the literature rather than attempting comprehensive
enumeration of all published studies. For each application area, we
systematically compared: modelling approaches and their theoretical
foundations; data sources and quality; validation methods and evidence
quality; reported performance metrics and their clinical significance;
study populations and generalisability; and acknowledged limitations
and potential biases. The narrative approach enabled critical interpre-
tation of findings, contextualisation within the broader diabetes care
landscape, and integration of insights from adjacent fields such as sys-
tems biology, artificial intelligence, and implementation science. Where
quantitative data were reported across multiple studies, ranges or
representative values are presented to illustrate typical performance
characteristics without formal meta-analysis. Evidence quality was
assessed using considerations of study design (e.g., prospective vs
retrospective, controlled vs observational), sample size, validation
approach (e.g., internal vs external validation, in silico vs clinical),
follow-up duration, and acknowledgment of limitations. The synthesis
deliberately highlights areas of uncertainty, inconsistency, or contro-
versy to inform future research priorities rather than presenting an
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artificially unified picture of the field.

This narrative review methodology acknowledges inherent limita-
tions including potential author bias in literature selection and inter-
pretation, lack of formal quality assessment of included studies, and
absence of quantitative effect size synthesis. These limitations are
particularly relevant in the context of digital twin research, where rapid
technological evolution, heterogeneous methodologies, and limited
long-term clinical validation create challenges for evidence synthesis.
Publication bias favouring positive results may lead to overestimation of
digital twin effectiveness, while proprietary commercial developments
may not be adequately represented in peer-reviewed literature. How-
ever, these limitations are balanced by strengths including flexibility to
address complex multidisciplinary topics, ability to incorporate diverse
evidence types, and capacity for critical analysis that extends beyond
what individual studies report to generate novel insights and frame-
works. The resulting review aims to provide readers with a compre-
hensive yet accessible overview of digital twin technology in diabetes
that serves both as an introduction for those new to the field and a
critical synthesis for domain experts.

3. Applications of digital twin technology in diabetes prediction
3.1. Early detection and risk stratification

Digital twin technology offers substantial potential for enhancing
diabetes prediction and risk stratification at both population and indi-
vidual levels [26,27]. However, most applications remain in early
development stages with limited prospective clinical validation [17,28].
Population based digital twins aggregate data from large cohorts to
identify patterns and risk factors associated with diabetes development,
enabling targeted screening and prevention strategies [29]. These sys-
tems integrate demographic data, genetic information, lifestyle factors,
biomarkers, and social determinants of health to generate risk scores
with reported superior accuracy compared to traditional risk calculators
[30,31]. However, direct comparison studies between digital twin ap-
proaches and established risk scores are limited. Studies have demon-
strated that machine learning enhanced risk models can achieve area
under receiver operating characteristic curves of 0.84 to 0.92 for pre-
dicting type 2 diabetes onset within 5 to 10 years, compared to AUC
values of approximately 0.74-0.78 for the Finnish Diabetes Risk Score
and 0.72-0.76 for the Framingham Offspring Study model, significantly
outperforming conventional tools in retrospective validation studies
[32-36]. Critical limitations include: most models are validated only on
single cohorts from high-income countries; performance in diverse
ethnic and socioeconomic groups remains inadequately characterised;
prospective implementation studies demonstrating clinical utility are
lacking; and cost-effectiveness compared to existing screening ap-
proaches has not been established.

Individual-focused digital twins take prediction a step further by
creating personalised models that evolve as new data become available
[37]. This represents a conceptual advance over static risk calculators,
though evidence for clinical superiority remains preliminary. For in-
dividuals identified as high risk, continuous monitoring through wear-
able devices and periodic biomarker assessments feed into digital twin
models that refine risk estimates over time [38]. These systems can
detect subtle deviations from normal glucose homeostasis that precede
overt diabetes, such as progressive postprandial hyperglycaemia or
declining first phase insulin secretion [17,39]. Evidence suggests that
incorporating Continuous Glucose Monitoring (CGM) data into predic-
tive models can enhance the accuracy of forecasting diabetes progres-
sion by capturing glycemic variability missed by standard metrics. In
particular, longitudinal studies of high-risk populations—such as in-
dividuals with islet autoantibodies, have demonstrated that specific
CGM-derived markers (e.g., time spent above 140 mg/dL) can predict
the onset of clinical diabetes with positive predictive values (PPV)
exceeding 75 % [40,41]. However, these findings are based primarily on
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retrospective analyses with limited follow-up periods. Key methodo-
logical concerns include: CGM-based prediction models require expen-
sive continuous monitoring that may not be cost-effective for population
screening; definitions of “progression” vary across studies, complicating
comparisons; the incremental benefit over simpler approaches (e.g.,
periodic HbAlc testing) has not been rigorously quantified; and adher-
ence to continuous monitoring in real-world settings may be substan-
tially lower than in research contexts. This enhanced prediction
capability potentially enables implementation of intensive prevention
strategies precisely when they are most likely to be effective, though
clinical trials demonstrating improved prevention outcomes are needed.

3.2. Gestational diabetes prediction

Gestational Diabetes Mellitus (GDM) affects approximately 14 % of
pregnancies globally. Emerging research indicates that digital twin
technology, specifically through machine learning-integrated physio-
logical modeling, demonstrates potential for enhancing early risk
stratification and personalizing glycemic interventions in this popula-
tion [42]. The physiological changes of pregnancy, characterised by
progressive insulin resistance and increased metabolic demands, create
a dynamic system well suited to digital twin modelling [24]. Predictive
models incorporating maternal characteristics, first trimester bio-
markers, genetic risk scores, and early pregnancy glucose measurements
can identify women at high risk for gestational diabetes well before the
standard screening at 24 to 28 weeks gestation [43,44]. Early identifi-
cation could potentially enable implementation of dietary modifica-
tions, physical activity programmes, and close monitoring that may
prevent or delay gestational diabetes onset. Studies evaluating predic-
tive models in early pregnancy have reported good discriminatory per-
formance, though digital twin-specific sensitivities require further
validation [45], and specificities of 75 to 90 percent for predicting
gestational diabetes in the first trimester, substantially earlier than
conventional screening methods [43,46]. However, critical evaluation
reveals several limitations: most studies are retrospective case-control
designs rather than prospective cohort validations; prediction perfor-
mance varies substantially across populations, with lower accuracy in
ethnically diverse cohorts; whether early prediction translates to
improved pregnancy outcomes through early intervention remains un-
proven; false positive rates of 10-25 % could lead to unnecessary in-
terventions and maternal anxiety; and cost-effectiveness analyses
comparing early digital twin-based screening to standard care are
lacking [47,48].

3.3. Complication risk prediction

Beyond predicting diabetes onset, digital twins have been proposed
for forecasting the development and progression of diabetes related
complications [31]. Microvascular complications including diabetic
retinopathy, nephropathy, and neuropathy, as well as macrovascular
complications such as cardiovascular disease, cerebrovascular disease,
and peripheral arterial disease, result from cumulative metabolic injury
over years to decades [49]. Digital twins that integrate longitudinal
glycaemic data, blood pressure, lipid profiles, medication adherence,
lifestyle factors, and genetic susceptibility have demonstrated individual
complication risks with greater accuracy than existing risk equations in
validation studies [39,50]. For instance, models predicting cardiovas-
cular events in people with diabetes have achieved C statistics of 0.78 to
0.83, comparing favorably to C statistics of 0.72-0.76 for established
risk calculators such as the UKPDS Risk Engine and the Framingham
Risk Score [51]. However, several critical gaps limit clinical translation:
most models are trained and validated on historical cohort data,
potentially limiting applicability to contemporary treatment paradigms;
algorithm performance may degrade over time as treatment patterns
evolve; whether model-based risk stratification actually improves clin-
ical decision-making and patient outcomes has not been rigorously
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tested; many models perform poorly in underrepresented populations
due to training data limitations; and the clinical utility of marginal im-
provements in C statistics (0.06-0.11) for guiding treatment intensifi-
cation remains unclear [39,52]. This enhanced prediction could
potentially enable risk stratified management approaches, directing
intensive interventions to those at highest risk whilst avoiding over-
treatment in lower risk individuals, though prospective intervention
studies are needed to validate this hypothesis.

Table 1 summarises key digital twin applications in diabetes pre-
diction, highlighting their methodologies and reported performance
metrics. It is important to note that performance metrics represent
findings from validation studies and may not generalise to diverse
clinical populations. Most applications remain at proof-of-concept or
early pilot stages.

4. Applications of digital twin technology in diabetes
management

4.1. Glucose prediction and monitoring Enhancement

Real time glucose prediction represents one of the most mature and
clinically impactful applications of digital twin technology in diabetes
management [17,28]. This application area includes both commercially
available systems with regulatory approval and research prototypes,
requiring careful distinction. Short term forecasting (30 to 120 min)
enables proactive interventions to prevent hypo and hyperglycaemia by
integrating continuous glucose monitoring data with insulin dosing,
carbohydrate intake, and physical activity [58]. Advanced models pro-
vide confidence intervals alongside point predictions, achieving mean
absolute relative differences of 10 to 15 percent for 30 min ahead pre-
dictions and 15 to 25 percent for 60 min ahead predictions in type 1
diabetes, performance considered clinically useful for therapeutic de-
cision making [16,59]. However, performance varies substantially
across studies depending on: prediction horizon, with accuracy
degrading significantly beyond 60 min; glycemic range, with lower ac-
curacy during rapid transitions; patient characteristics, including dia-
betes duration and glycemic variability; and data quality, with sensor
errors and missing data compromising predictions. Critical methodo-
logical limitations include: most validation studies use retrospective
data rather than prospective real-time implementation; performance
metrics often exclude periods of sensor dropout or calibration, inflating
apparent accuracy; clinical impact depends not only on prediction ac-
curacy but also on patient/clinician response to alerts; and algorithm
failures during critical hypoglycemic episodes could have serious safety

Table 1
Digital Twin Applications in Diabetes Prediction.
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implications.

Clinical benefits are substantial for specific commercially available
systems with rigorous validation. Predictive low glucose suspend sys-
tems, which automatically halt insulin delivery when hypoglycaemia is
forecast, have reduced nocturnal hypoglycaemia episodes by 30 to 50
percent without increasing hyperglycaemia or ketoacidosis risk [60,61].
These findings are based on randomised controlled trials of FDA-
approved systems, representing the highest level of evidence in this
review. Predictive alerts enable preemptive interventions to attenuate
glycaemic excursions [62]. User satisfaction is high, with 80 to 90
percent reporting that predictions improve treatment decisions and
management confidence, underscoring the value of translating digital
twin predictions into actionable insights that empower patients and
clinicians [60]. However, real-world effectiveness may differ from trial
conditions due to: alert fatigue, with users disabling alerts over time;
socioeconomic barriers limiting access to expensive technologies; vari-
able patient numeracy and health literacy affecting interpretation; and
limited data on long-term durability of benefits beyond 6-12 month
study periods.

4.2. Personalised insulin dosing and therapy optimisation

Digital twin technology enables personalised insulin therapy by
modelling individual responses to different dosing regimens [24,63].
For multiple daily injection users, digital twins simulate various basal
insulin doses and insulin to carbohydrate ratios to identify optimal pa-
rameters maximising time in range whilst minimising hypoglycaemia
[64]. However, most such applications remain in research or pilot
phases without large-scale clinical validation. For insulin pump therapy,
digital twins optimise basal rate profiles, insulin sensitivity factors, and
duration of insulin action parameters governing automated delivery
algorithms. Studies report time in range increases of 5 to 15 percentage
points with digital twin guided dosing compared to standard care,
translating to 1 to 3.5 additional hours daily within target glucose levels
[63,64]. Critical evaluation reveals important caveats: “standard care”
comparators vary widely across studies, from basic insulin pump ther-
apy to sensor-augmented pumps, complicating interpretation; most
studies have small sample sizes and short durations; improvement
magnitudes are highly variable (5-15 percentage points), suggesting
heterogeneous patient benefit; whether personalisation algorithms
outperform careful conventional titration by experienced clinicians re-
mains uncertain; and long-term sustainability of improvements and risk
of algorithm degradation over time are unknown [28,63].

Closed loop insulin delivery systems (artificial pancreas systems)

Application Data Inputs Modelling Approaches Key Outcomes Reported Performance

Domain

Type 2 Diabetes Risk ~ Demographics, biomarkers, lifestyle Machine learning (random 5-10-year diabetes onset AUC 0.85-0.92; superior to
Prediction factors, genetic data, social determinants forests, neural networks), risk prediction, identification of conventional risk scores

[53] scoring algorithms
Time series analysis, recurrent

Prediabetes Continuous glucose monitoring,
Progression biomarkers, anthropometrics, lifestyle
[54] data glucose models

Gestational Diabetes First trimester biomarkers, maternal

Prediction characteristics, genetic risk scores, early learning, Bayesian models
[43,55] glucose measurements

Complication Risk Longitudinal glycaemic data, blood Cox proportional hazards,
Stratification pressure, lipids, medication adherence, machine learning, multi state

[56] genetic factors models

Hypoglycaemia Continuous glucose monitoring, insulin Recurrent neural networks,
Prediction dosing, meals, physical activity support vector machines,
[57] hybrid models

neural networks, mechanistic

Logistic regression, machine

high-risk individuals
Prediction of progression from
prediabetes to diabetes

PPV > 75 % for 3-year progression;
sensitivity 70-80 %

Early pregnancy prediction of
gestational diabetes

Sensitivity 70-85 %, specificity
75-90 % in first trimester

C statistic 0.78-0.83 for
cardiovascular events; improved
calibration over existing calculators
Sensitivity 85-95 %, specificity
80-90 % at 30 min

Prediction of microvascular and
macrovascular complications

30-60 min ahead hypoglycaemia
prediction

Note: AUC = Area Under Curve; PPV = Positive Predictive Value. Performance metrics are derived from validation studies, predominantly single-center retrospective
analyses. Clinical utility, cost-effectiveness, and performance in diverse populations require further investigation. Evidence quality varies from proof-of-concept
(hypoglycemia prediction) to multi-cohort validation (Type 2 diabetes risk prediction).
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represent the most clinically mature digital twin applications in diabetes
management [65]. These represent the transition from proof-of-concept
to commercially available, FDA/CE-approved medical devices with
robust clinical evidence. These systems integrate continuous glucose
monitoring, insulin pumps, and control algorithms that automatically
adjust insulin delivery based on glucose predictions and physiological
models [65,66]. The algorithms function as simplified digital twins,
continuously updating insulin sensitivity understanding and predicting
future requirements to maintain target glucose levels [67]. Commercial
hybrid closed loop systems demonstrate substantial glycaemic im-
provements, with randomized trials and meta-analyses reporting time in
range increases of approximately 6 to 11 percentage points and hae-
moglobin Alc reductions of 0.3 to 0.5 percent compared to sensor-
augmented pump therapy [68]. These findings represent rigorous evi-
dence from multiple randomised controlled trials, though important
limitations include: studies primarily enroll motivated, technology-
savvy participants from high-income countries; performance in pop-
ulations with erratic lifestyles, high glycemic variability, or limited
healthcare access is less well characterised; long-term outcomes beyond
6-12 months remain limited; cost-effectiveness compared to conven-
tional intensive therapy has not been definitively established in diverse
healthcare systems; and device failures, algorithm errors, and user errors
can lead to serious adverse events including severe hypoglycemia and
diabetic ketoacidosis [16,39,68]. Fully automated systems under
investigation achieve time in range values exceeding 70 percent across
diverse populations including children, adolescents, adults, and preg-
nant women [69]. However, “fully automated” systems still require
meal announcements and user oversight, and their performance de-
teriorates with non-compliance or device malfunctions.

4.3. Dietary and lifestyle optimisation

Digital twins extend beyond medication to encompass dietary and
lifestyle interventions, areas that substantially affect glycaemic control
but are highly individualised and challenging to optimise [17,70]. Per-
sonalised nutrition models predict postprandial glucose responses to
specific foods based on individual metabolic characteristics, gut
microbiome composition, and dietary patterns [70]. This represents an
emerging application area with predominantly proof-of-concept evi-
dence rather than validated clinical systems. The Personalised Nutrition
Project demonstrated remarkable inter individual variability, with some
people showing greater glucose excursions to bananas than cookies
whilst others showed the opposite pattern [71]. Digital twins using
machine learning trained on continuous glucose monitoring and dietary
data predict postprandial responses with mean absolute errors of 15 to
25 mg/dL, potentially enabling personalised recommendations that
optimise glycaemic control without restrictive elimination diets (which
refer to complete avoidance of multiple food categories, potentially
leading to nutritional inadequacy) [17,71,72]. However, critical meth-
odological concerns include several key limitations. Prediction accuracy
of 15 to 25 mg/dL may be insufficient for precise dietary guidance given
normal postprandial excursions of 50 to 100 mg/dL [16,73]. Models
trained on free-living populations may conflate effects of food compo-
sition with eating context, timing, and physical activity. While person-
alized nutrition approaches show potential, evidence regarding their
superior efficacy for long-term glycemic control compared to standard
dietary guidelines remains heterogeneous and inconclusive in system-
atic reviews. Furthermore, the clinical utility of such interventions is
frequently limited by sub-optimal adherence, particularly when
algorithm-driven recommendations lack concordance with an in-
dividual’s gustatory preferences or sociocultural food norms [74].
Additionally, the cost of CGM monitoring required for personalisation
may not be justified by clinical benefits.

Physical activity represents another critical factor amenable to dig-
ital twin optimisation. Exercise effects on glucose metabolism are
complex, influenced by type, intensity, duration, timing relative to
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meals and insulin, and fitness level [17]. Digital twins incorporating
wearable sensor data predict exercise related glucose changes and
recommend insulin adjustments or carbohydrate supplementation to
prevent hypoglycaemia whilst preserving long term activity benefits
[75]. Studies report approximately 10 to 25 percent reductions in
exercise-associated hypoglycaemia and improvements in physical ac-
tivity engagement, helping to address a major barrier to optimal dia-
betes management [76-78]. However, evidence quality is limited by
several factors. Most studies are small single-center trials with limited
sample sizes. Exercise is often controlled or supervised rather than free-
living, limiting real-world applicability [78]. Long-term adherence to
digital twin recommendations for activity management remains un-
known. Algorithms may fail during high-intensity or unpredictable ac-
tivities. Whether exercise-related improvements translate to better long-
term outcomes requires investigation.

4.4. Clinical decision support and care Coordination

Digital twins serve as clinical decision support tools, synthesising
complex data into actionable insights for clinicians [17,79]. These ap-
plications range from research prototypes to pilot implementations, with
limited evidence of widespread clinical adoption. Rather than reviewing
extensive glucose downloads and insulin records, clinicians interrogate
digital twin interfaces that highlight patterns, identify problems, and
suggest therapeutic modifications [17,25]. These systems detect issues
such as persistent postprandial hyperglycaemia indicating inadequate
mealtime insulin, recurrent nocturnal hypoglycaemia suggesting
excessive basal insulin, or unexplained glucose variability reflecting
illness, stress, or medication nonadherence [80]. Digital twin recom-
mendations with appropriate clinical context may enhance clinician
efficiency and decision quality. Evidence from decision-support and
digital-twin-style tools suggests meaningful reductions in data review
burden and improvements in clinically actionable pattern detection
compared with manual review, although exact figures vary by study and
setting [80,81]. However, these findings come from small feasibility
studies in controlled settings with important gaps remaining. Whether
automated pattern detection actually improves patient outcomes
beyond expert clinical review has not been demonstrated. Algorithm
errors or false alerts could lead to inappropriate treatment changes.
Clinician trust and acceptance of algorithmic recommendations varies
widely [79,82]. Liability concerns when following erroneous algo-
rithmic advice remain unresolved. Integration with existing electronic
health record workflows presents substantial technical and administra-
tive barriers.

Beyond individual management, digital twins have been proposed
for facilitating population health management by identifying cohorts
requiring intervention, predicting healthcare resource utilisation, and
evaluating policy or programme changes before implementation
[30,82]. This represents a largely theoretical application with minimal
empirical validation. Health systems could potentially deploy digital
twins to simulate different care delivery models, staffing configurations,
or technology deployment strategies, optimising resource allocation and
efficiency [30,83]. These applications extend digital twin benefits from
individual patients to healthcare systems, supporting value based care
initiatives and population health goals [84]. However, population-level
digital twin applications face substantial challenges. Data quality and
completeness vary substantially across diverse patient populations.
Model validation for system-level predictions is complex and rarely
attempted. Unintended consequences of system changes may not be
captured by models. Ethical concerns about algorithmic allocation of
scarce healthcare resources require careful consideration.

5. Challenges and opportunities in digital twin implementation

Table 2 outlines major challenges in digital twin implementation
alongside potential strategies to address them. Solution status in the
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Table 2
Challenges and Solutions in Digital Twin Implementation for Diabetes Care.
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Challenge Specific Issues

Domain

Impact on Implementation

Potential Solutions Status of Solutions

Data Integration
[31,39]

Lack of interoperability, proprietary
formats, data silos

Incomplete patient

twin accuracy

Data Quality Sensor inaccuracies, missing data,

representations, reduced digital

Compromised predictions, reduced

FHIR standards adoption, universal APIs,
vendor cooperation mandates

Partial implementation;
ongoing development

Improved sensor technology, automated Incrementally improving;

[82] inconsistent reporting clinical utility data validation, imputation methods requires continued
advancement
Model Validation Lack of standardised frameworks, Regulatory uncertainty, limited Regulatory guidance development, Early stage; frameworks
[16,39] difficulty validating adaptive clinical trust prospective clinical trials, validation emerging

models
Black box algorithms, liability
concerns, insufficient training

Clinical Trust
[17,28]

Privacy and Data breach risks, surveillance

Security concerns, re identification potential barriers
[79,85]

Equity and Algorithm bias, digital divide, Health disparities, limited benefit
Fairness disparate performance across groups  for underserved populations
[82,86]

Cost and High development costs, unclear Limited commercial viability,
Reimbursement payment models restricted access
[16]

Infrastructure Limited technology access, Excludes populations most in need
[87] inadequate internet connectivity

Low adoption rates, reluctance to
follow recommendations

Patient reluctance, regulatory

databases

Explainable Al, comprehensive training
programmes, clinical decision support
integration

Strong encryption, federated learning,
privacy preserving technologies

Moderate progress; significant
work remaining

Established technologies;
implementation inconsistent

Diverse training data, fairness audits,
inclusive design

Early attention; requires
sustained focus

Value based care models, health
economics studies, tiered solutions

Emerging models; significant
uncertainty

Low bandwidth solutions, offline
capabilities, community technology hubs

Variable by region; ongoing
challenge

Note: FHIR = Fast Healthcare Interoperability Resources; AI = Artificial Intelligence. Challenges and solutions represent synthesis across diverse healthcare contexts.
Implementation success varies substantially by geographic region, healthcare system structure, and resource availability. Evidence for solution effectiveness is pre-
dominantly observational or expert opinion rather than controlled evaluation. Critical gaps exist in addressing equity and fairness concerns, particularly regarding

algorithmic bias in underrepresented populations.

table represents author assessment based on current literature; actual
implementation varies substantially across contexts.

5.1. Data Quality, Integration, and interoperability

Digital twin effectiveness depends critically on data quality,
completeness, and integration. Despite proliferating digital health
technologies, substantial challenges persist in aggregating data from
disparate sources [88]. Continuous glucose monitors, insulin pumps,
activity trackers, food logging applications, and electronic health re-
cords often operate as isolated silos with incompatible formats, pro-
prietary interfaces, and limited interoperability [82]. Integration
success rates for multi-device data into unified platforms remain low
approximately 30 % across digital health applications, with technical
barriers, poor user experience, and lack of universal standards as major
obstacles [89-91]. This fragmentation represents a fundamental barrier
to digital twin implementation, as comprehensive patient representa-
tions require multi-source integration. Critical consequences include:
incomplete or biased patient profiles that compromise model accuracy;
substantial patient burden in managing multiple incompatible systems;
widening digital divides as only technologically sophisticated users
achieve integration; and proprietary vendor lock-in preventing patients
from switching systems [39,82,89]. Even with technical integration,
data quality issues including sensor inaccuracies, missing data from
device removal or malfunction, and inconsistent patient reporting
compromise digital twin performance [85]. Sensor accuracy claims (e.
g., MARD < 10 %) are typically derived from controlled validation
studies and may not reflect real-world performance during rapid gly-
cemic excursions. Furthermore, missing data patterns are often non-
random (e.g., signal loss due to water interference, adhesive failure
during exercise, or compression artifacts), introducing systematic biases
that standard predictive models may not account for [92,93].

Data heterogeneity presents additional analytical challenges. Struc-
tured data (laboratory results, medication lists) coexist with unstruc-
tured data (clinical notes, patient reported outcomes, virtual assistant
inputs). Temporal misalignment, where data elements are recorded at
different frequencies and time points, requires sophisticated

synchronisation methods. Naive approaches to data fusion (e.g., simple
interpolation of missing values) may introduce artifacts and spurious
correlations that compromise model validity [94-96]. Addressing these
challenges necessitates advances in data standards, interoperability
frameworks, and analytical techniques. Fast Healthcare Interoperability
Resources standards and international consensus on diabetes data rep-
resentation offer promise for improving integration. However, wide-
spread implementation remains inconsistent, particularly in resource
limited settings with less developed technology infrastructure. Eco-
nomic incentives often favour proprietary systems over open interop-
erability, creating fundamental conflicts between vendor interests and
patient welfare. Regulatory mandates for data portability (e.g., 21st
Century Cures Act in the US) have not yet achieved meaningful inter-
operability in practice [97].

5.2. Model validation and clinical trust

Establishing trust requires rigorous validation through multiple
lenses: analytical validation confirming model accuracy against gold
standards, clinical validation demonstrating improved patient out-
comes, and practical validation ensuring usability and workflow inte-
gration [29,98]. The dynamic, personalised nature of digital twins
complicates validation compared to static diagnostic tests or medica-
tions. Traditional regulatory frameworks assume static, population-level
performance characteristics that may not apply to continuously adapt-
ing individual models. Critical validation challenges include: continu-
ously learning algorithms may drift over time, requiring ongoing
validation; individual model performance may vary substantially from
population metrics; failure modes are difficult to characterise compre-
hensively; adversarial inputs or edge cases may cause unpredictable
behaviour; and model updates could degrade performance without
proper oversight [82,99]. Traditional validation frameworks for in vitro
diagnostic devices may not adequately address continuously adapting
digital twin characteristics [86]. Regulatory agencies including the FDA
and European Medicines Agency are developing frameworks for evalu-
ating software as a medical device and artificial intelligence-based tools,
but consensus on appropriate digital twin validation standards remains
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incomplete [100-102]. Current regulatory approaches struggle to bal-
ance innovation with safety, leading to either overly restrictive re-
quirements that stifle development or insufficient oversight that risks
patient harm.

Clinician acceptance represents another critical dimension. Surveys
reveal that whilst 70 to 80 percent of healthcare providers express in-
terest in digital twin technology, only 30 to 40 percent feel confident
interpreting and acting on recommendations without additional training
[82,103]. This confidence gap represents a major implementation bar-
rier that technical solutions alone cannot address. Concerns include
black box machine learning models, liability when following algo-
rithmic recommendations leading to adverse outcomes, and balancing
algorithmic guidance with clinical judgment [103]. Legal frameworks
assigning liability for Al-generated recommendations remain unclear in
most jurisdictions [104,105]. Questions include: Who is responsible
when a digital twin recommendation leads to patient harm, the clinician
who followed it, the software developer, the healthcare institution, or
the algorithm itself? This uncertainty creates substantial barriers to
clinical adoption. Transparency in model development, clear uncer-
tainty communication, explainable artificial intelligence techniques
illuminating recommendation reasoning, and incorporation of clinician
feedback into iterative refinement can build trust. However, true
explainability may be fundamentally incompatible with complex ma-
chine learning models, requiring tradeoffs between performance and
interpretability. Demonstrating clinical effectiveness through well
designed prospective studies with patient centred outcomes is essential
for widespread adoption. Currently, such evidence is limited, with most
studies focusing on technical performance metrics rather than patient-
important outcomes.

5.3. Privacy, Security, and ethical considerations

Digital twins process highly sensitive health information, raising
substantial privacy and security concerns. Continuous data collection,
information granularity, and re identification potential amplify con-
cerns beyond traditional medical records [14]. Wearable sensors and
applications track health metrics, location, activity patterns, and
behavioural data revealing intimate details. Data breach risks with
consequences including discrimination, social stigma, or identity theft
create patient apprehension [106]. The potential for re-identification
from supposedly anonymized data has been demonstrated repeatedly,
with researchers re-identifying individuals from combinations of seem-
ingly innocuous data points. Digital twin data, being longitudinal and
high-dimensional, may be particularly vulnerable to such attacks.

Regulatory frameworks including the General Data Protection
Regulation and Health Insurance Portability and Accountability Act
provide baseline protections, but gaps remain. Questions about data
ownership, consent for secondary uses, algorithmic decision explanation
rights, and cross border data flows require clarification [107]. Current
regulatory frameworks were designed for static medical records rather
than continuously generated personal data, leaving critical questions
unresolved. For example: Do patients “own” their digital twin? Can they
demand deletion? Can data be used to train commercial algorithms
without explicit consent? What rights do they have to understand
algorithmic decisions affecting their care? Ethical considerations extend
beyond privacy to equity and fairness. Algorithms trained predomi-
nantly on well-resourced population data may perform poorly for un-
derserved groups, exacerbating disparities [108]. Studies document
lower glucose prediction accuracy in racial and ethnic minorities and
lower socioeconomic populations [109]. This algorithmic bias repre-
sents a critical threat to health equity. Mechanisms include: underrep-
resentation in training data leading to poor model calibration;
differential data quality (e.g., sensor accuracy may vary across skin
tones); socioeconomic differences in device access and usage patterns;
and failure to account for structural determinants of health. Simply
including more diverse training data is insufficient if underlying
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healthcare disparities remain unaddressed. Diverse training data, fair-
ness audits, and inclusive design are essential to prevent widening in-
equities. However, achieving algorithmic fairness is technically
complex, as optimising for one fairness metric (e.g., equal sensitivity
across groups) may worsen others (e.g., equal positive predictive value).
Moreover, fairness interventions may reduce overall model perfor-
mance, creating ethical dilemmas about acceptable tradeoffs [110,111].

5.4. Economic considerations and healthcare system integration

The economic viability of digital twin technology in diabetes care
remains under active investigation. Development costs for sophisticated
platforms are substantial, encompassing data infrastructure, algorithm
development, regulatory compliance, clinical validation, and ongoing
maintenance [39,82]. Commercial solutions typically require subscrip-
tion fees ranging from several hundred to several thousand dollars
annually per patient, costs often not covered by payers without
demonstrated cost effectiveness [25]. These costs potentially limit ac-
cess to affluent populations, exacerbating existing health inequities.
Whilst pilot studies show promising results, comprehensive health
economic analyses examining long term costs, complication prevention
savings, and healthcare resource impacts are limited [64,108]. Critical
economic questions remain unanswered: What is the incremental cost-
effectiveness ratio compared to conventional care? Who captures the
economic benefits, patients, healthcare systems, or technology vendors?
How should value be assessed, traditional QALYs, time in range, patient-
reported outcomes? What is the budget impact of widespread adoption
on healthcare systems? How should costs be allocated between pre-
vention/detection and management applications?

Successful healthcare system integration requires addressing multi-
ple dimensions beyond functionality. Clinical workflow integration
must ensure digital twin interactions fit seamlessly into existing care
patterns without excessive burden [112]. Current digital twin systems
often require substantial additional clinician time for data review, al-
gorithm supervision, and patient education, potentially worsening
clinician burnout rather than alleviating it [113]. Interoperability with
electronic health records, enabling bidirectional data flow and docu-
mentation of recommendations within legal medical records, remains
technically and administratively challenging [114,115]. Lack of stand-
ardised documentation formats for digital twin recommendations cre-
ates legal and quality assurance problems. How should Al-generated
recommendations be recorded? Who verifies their appropriateness?
How are deviations from recommendations justified? Care team edu-
cation and training require time and resource investment to provide
clinicians with skills to effectively utilise digital twin insights. Current
medical and nursing education curricula rarely include substantive
training in Al-based clinical decision support, creating a knowledge gap
that will take years to address. Reimbursement mechanisms recognising
digital twin enabled care value and appropriately compensating
healthcare organisations are necessary for financial sustainability [116].
Some health systems have implemented bundled payment models or
capitated arrangements incentivising improved outcomes rather than
service volume, creating financial alignment for digital twin adoption.
However, fee for service payment models, which still predominate in
many regions, provide limited incentive for preventive, technology
enabled care innovations [82]. The current reimbursement landscape
creates a fundamental misalignment: digital twins primarily generate
value through complication prevention and efficiency gains, but fee-for-
service systems reward volume of acute interventions. This misalign-
ment may prevent adoption even when technologies are clinically
effective and cost-effective from a societal perspective.
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6. Future directions and emerging opportunities
6.1. Integration of multi omics and systems biology

The next frontier involves integrating multi omics data (genomics,
transcriptomics, proteomics, metabolomics, microbiomics) to create
comprehensive systems biology models. Genomic data identifies in-
dividuals at high risk for diabetes or complications based on genetic
predisposition, enabling targeted prevention [117]. Proteomic and
metabolomic profiles provide real-time metabolic state snapshots,
capturing perturbations preceding clinical disease progression. Gut
microbiome composition influences glucose metabolism, insulin sensi-
tivity, and dietary response, with emerging evidence suggesting micro-
biome modulation through probiotics, prebiotics, or diet may improve
glycaemic control [118]. Digital twins incorporating these multi-
dimensional datasets could achieve unprecedented personalisation,
potentially predicting glucose responses and identifying optimal thera-
peutic targets tailored to individual biology [119]. However, several
critical challenges temper enthusiasm for near-term clinical imple-
mentation. Multi-omics profiling remains expensive and technically
complex, limiting accessibility beyond research settings. Integration of
heterogeneous data types including discrete genomic variants, contin-
uous metabolite levels, and compositional microbiome data presents
substantial analytical challenges. Biological mechanisms linking omics
signatures to clinical outcomes are often poorly understood, limiting
causal inference and therapeutic targeting [120,121]. Temporal stability
of omics profiles, particularly microbiome composition, raises questions
about how frequently assessment must be repeated for accurate digital
twin calibration. The incremental clinical benefit of multi-omics inte-
gration over simpler approaches combining clinical and basic laboratory
data has not been established through comparative effectiveness studies.

Technical advances in sensor technology, high throughput
sequencing, and computational biology are making multi-omics digital
twins increasingly feasible. Minimally invasive biosensors continuously
monitoring multiple metabolites beyond glucose (lactate, ketones, bio-
markers) are under development [122]. However, such sensors remain
largely in early research stages, with significant technical hurdles
including biocompatibility challenges, calibration stability over
extended periods, and regulatory approval pathways that remain un-
clear. Artificial intelligence, particularly deep learning for integrating
heterogeneous data, shows promise for extracting insights from complex
multi omics datasets. However, interpretability challenges intensify
substantially with multi-omics models, potentially creating opaque
systems that clinicians cannot understand or validate, raising safety and
liability concerns. As these technologies mature and costs decrease,
multi-omics digital twins may transition from research tools to clinical
reality, offering precision diabetes care [14]. Realistic timelines for
clinical implementation likely extend beyond a decade, requiring sus-
tained research investment across multiple disciplines, development of
appropriate regulatory frameworks for complex multi-omics devices,
and generation of robust evidence demonstrating clinical utility and
cost-effectiveness in diverse populations.

6.2. Expansion to type 2 diabetes and broader populations

Digital twin applications focus predominantly on type 1 diabetes,
where intensive insulin therapy and continuous glucose monitoring are
standard. However, type 2 diabetes, accounting for 90 to 95 percent of
cases, represents a far larger opportunity. Its pathophysiology, charac-
terised by progressive insulin resistance and beta cell dysfunction with
substantial heterogeneity, presents unique challenges and opportunities
[123]. Extending to type 2 diabetes requires addressing different ther-
apeutic paradigms: diverse pharmacological agents beyond insulin,
greater lifestyle modification emphasis, and multiple comorbidity
management [124]. Critical differences from type 1 diabetes complicate
direct translation of existing digital twin approaches. Oral medications
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and non-insulin injectables require different pharmacokinetic and
pharmacodynamic modelling frameworks not yet well developed. Life-
style factors including diet, exercise, and weight management play more
central therapeutic roles, requiring sophisticated behavioural modelling
beyond current capabilities. Multimorbidity management involving
hypertension, dyslipidemia, and cardiovascular disease requires inte-
grated models spanning multiple organ systems rather than diabetes-
specific approaches [16,31]. Disease heterogeneity with distinct
phenotypic subtypes and highly variable progression patterns compli-
cates development of standardised digital twin architectures. Simplified
solutions leveraging periodic glucose measurements, patient reported
outcomes, and population models rather than continuous monitoring
may be more practical and scalable. However, whether simplified ap-
proaches retain sufficient personalisation to justify digital twin termi-
nology versus conventional population-based clinical decision support
remains debatable. The value proposition for expensive digital twin
technology may be substantially lower in type 2 diabetes without
intensive insulin therapy, where conventional care already achieves
reasonable outcomes in many patients through medication titration and
lifestyle counselling [25,80].

Geographic and socioeconomic expansion represents another critical
frontier. Most digital twin development has occurred in high income
countries with advanced infrastructure and technology [14]. Low and
middle income countries bear a disproportionate diabetes burden whilst
facing limited technology access, constrained resources, and different
cultural contexts. Tailored solutions emphasising low-cost sensors,
smartphone platforms, task sharing models, and community health
worker integration could potentially democratise precision care and
address global equity concerns [125,126]. However, substantial barriers
impede implementation in resource-limited settings. Infrastructure
limitations including unreliable electricity and limited internet con-
nectivity constrain technology deployment in many regions. Low health
literacy and digital literacy among target populations limit effective
engagement with sophisticated systems. Lack of trained healthcare
workforce to support technology implementation and provide backup
when systems fail represents a critical bottleneck. Cultural appropri-
ateness of algorithms developed in Western contexts for diverse global
populations remains largely unexplored. Financial sustainability when
healthcare resources are already severely constrained raises funda-
mental questions about opportunity costs [127-129]. Simply adapting
high-income country technologies may be insufficient; fundamentally
different approaches designed specifically for resource-limited settings
may be necessary to achieve meaningful impact.

6.3. Behavioural integration and patient engagement

Effective diabetes management depends on biological, behavioural,
psychological, and social dimensions. Medication adherence, diet,
physical activity, stress management, and healthcare engagement pro-
foundly influence outcomes [17,25]. Digital twins should incorporate
behavioural science principles and psychological models to predict
adherence challenges, identify barriers, and deliver personalised
behaviour change interventions. Currently, most digital twin systems
focus predominantly on biological and physiological modelling with
limited integration of behavioural dimensions. This represents a critical
gap, as behavioural factors often contribute more to glycaemic vari-
ability than biological heterogeneity alone, particularly in type 2 dia-
betes and non-intensive insulin regimens [27]. Integrating cognitive
behavioural therapy, motivational interviewing, and positive rein-
forcement could potentially enhance engagement and sustained modi-
fication. Social determinants (food insecurity, housing instability,
transportation barriers, social isolation) impact management capacity
and should be incorporated into holistic models [130]. However, oper-
ationalising these concepts faces significant challenges across multiple
dimensions. Behavioural and social determinants are difficult to mea-
sure objectively and continuously using available sensors or self-report
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mechanisms. Causal relationships between social factors and health
outcomes are complex and confounded by numerous unmeasured vari-
ables [27]. Algorithmic recommendations addressing social de-
terminants such as obtaining stable housing may be ineffectual without
resources to act on them. Privacy concerns intensify substantially when
systems track behavioural patterns and social circumstances beyond
traditional medical data.

Gamification, social support, and personalised goal setting have been
proposed to enhance patient engagement. Gamified interventions may
improve adherence and outcomes, particularly among younger pop-
ulations though evidence is mixed and long-term effectiveness uncer-
tain. Social features enabling peer connection through communities or
programmes may enhance motivation and reduce isolation [130].
However, concerns about privacy protection, potential for harmful peer
pressure, and risks of unhelpful social comparisons require careful
attention in system design. Systems adapting communication style,
interaction frequency, and intervention intensity to individual prefer-
ences could potentially optimise adherence and prevent abandonment, a
common digital health challenge. However, personalisation of engage-
ment strategies remains largely theoretical, with limited empirical evi-
dence demonstrating superiority over well-designed standardised
approaches. Digital intervention abandonment rates frequently
exceeding 50 to 80 percent within 6 months remain common across
diverse platforms, suggesting that current engagement strategies,
whether personalised or standardised, are often ineffective at main-
taining long-term user engagement [25].

6.4. Artificial intelligence advances and explainability

Advances in artificial intelligence, particularly transformer models,
graph neural networks, and reinforcement learning, may enhance digital
twin capabilities. Transformer models could potentially model complex
temporal sequences such as extended glucose patterns [115,131].
However, these remain largely research applications without clinical
validation demonstrating superiority over simpler approaches. Graph
neural networks could represent interconnected physiological systems,
capturing relationships between glucose metabolism, cardiovascular
function, inflammatory processes, and organ systems. However, bio-
logical network structures are incompletely characterised, and whether
graph-based representations improve predictions over conventional
approaches remains empirically unproven. Reinforcement learning
could theoretically optimise sequential decision making, such as insulin
dosing strategies maximising long term outcomes rather than immediate
control, offering superior therapeutic recommendations [132]. Howev-
er, reinforcement learning in healthcare faces substantial challenges
limiting near-term clinical deployment. Reward functions must balance
multiple competing objectives including glycaemic control, hypo-
glycaemia prevention, and treatment burden without clear methods for
appropriate weighting. Safety constraints are difficult to encode
comprehensively, risking unexpected dangerous behaviours. Explora-
tion in clinical settings raises ethical concerns about exposing patients to
potentially suboptimal treatments during algorithm learning phases.
Real-world deployment of reinforcement learning systems could lead to
unexpected behaviours in novel situations not encountered during
training, creating potentially serious safety risks [25,27,39].

As models become more complex, ensuring explainability becomes
increasingly critical. Clinicians and patients need to understand rec-
ommendations and their rationale, enabling trust, error identification,
and integration of algorithmic guidance with human judgment and
experience [27,39]. Explainable artificial intelligence techniques
including attention mechanisms highlighting influential input features,
counterfactual explanations showing alternative scenario outcomes, and
local interpretable model agnostic explanations approximating complex
behaviour with simpler models attempt to bridge the gap between so-
phistication and comprehension [133]. However, current explainable Al
techniques face significant limitations in practice. Explanations may be
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technically accurate but clinically unintuitive, failing to provide
actionable insights for non-technical users. Fidelity-interpretability
tradeoffs mean simpler explanatory models may systematically
misrepresent complex model behaviour, providing misleading rather
than clarifying information. Different stakeholders including clinicians,
patients, and regulators require fundamentally different types of ex-
planations that may be difficult to provide simultaneously [134]. Post-
hoc explanations may not accurately reflect actual model decision pro-
cesses, particularly for complex neural networks. Fundamentally, there
may be inherent tension between model performance and interpret-
ability that cannot be fully resolved through technical approaches alone.
Research on communicating uncertainty, visualising predictions with
confidence intervals, and presenting recommendations clearly will be
essential as digital twins advance. However, effectively communicating
uncertainty to clinical audiences with variable statistical literacy re-
mains an unsolved challenge across healthcare informatics. Over-
simplified communication risks misinterpretation and inappropriate
confidence, while comprehensive uncertainty quantification may over-
whelm users and paradoxically reduce rather than enhance decision
quality.

As depicted in Fig. 2, multiple technical, clinical, and ethical chal-
lenges remain, but emerging frameworks and technologies provide
pathways toward scalable and trustworthy digital twin integration.

Note: Proposed solutions in the figure represent current research
directions and expert recommendations rather than validated ap-
proaches. Implementation feasibility and effectiveness vary substan-
tially across healthcare contexts. Critical evidence gaps exist for most
proposed solutions, particularly regarding equity and fairness
interventions.

7. Limitations of the review

This narrative review, whilst comprehensive in scope, has several
limitations that warrant acknowledgment. First, the narrative review
methodology, whilst enabling breadth of coverage and thematic syn-
thesis, does not employ the systematic, structured approach of system-
atic reviews with meta-analysis. Unlike systematic reviews following
PRISMA guidelines, this narrative review did not pre-register a protocol,
did not conduct duplicate independent screening, and did not perform
formal quality assessment using standardised tools. We did not create a
formal PRISMA flow diagram documenting screening decisions at each
stage, as narrative reviews prioritise thematic synthesis over quantita-
tive enumeration. This limitation introduces potential for selection bias
in included studies and precludes quantitative synthesis of effect sizes
across studies. The heterogeneity of digital twin implementations,
outcome measures, and study designs further complicates direct com-
parisons and evidence synthesis. Our thematic synthesis approach, while
enabling integration of diverse evidence types, is inherently more sus-
ceptible to author bias than quantitative meta-analysis. Readers should
interpret our critical assessments as informed expert opinion rather than
objective quantification of evidence quality. Second, the rapidly
evolving nature of digital twin technology means that some emerging
developments, particularly those in early research stages or proprietary
commercial systems without published peer reviewed data, may not be
fully represented. The lag between technological innovation and peer
reviewed publication creates an inherent temporal limitation in the
literature base. Published literature may overrepresent academic
research prototypes while underrepresenting commercially deployed
systems, creating a potentially distorted picture of clinical reality.

Third, the majority of published research on digital twin applications
in diabetes originates from high income countries with advanced
healthcare infrastructure, particularly the United States, United
Kingdom, and select European nations. This geographic concentration
limits generalisability of findings to diverse healthcare contexts,
particularly resource limited settings where the burden of diabetes is
growing most rapidly. Moreover, study populations within high-income
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Fig. 2. Major challenges and emerging solutions in implementing digital twin technology for diabetes care. The figure summarises key technical, clinical,
ethical, and economic barriers alongside corresponding mitigation strategies. Addressing these interlinked domains is essential for translating digital twin innovation

into scalable, equitable, and sustainable clinical practice.

countries often overrepresent affluent, well-educated, technologically
savvy individuals willing to participate in research, further limiting
generalisability to broader populations. Fourth, many studies examining
digital twin performance and clinical impact are relatively short term,
spanning weeks to months rather than years. Long term effectiveness,
durability of benefits, and evolution of system performance over
extended time periods remain inadequately characterised. Algorithm
degradation over time due to changing treatment patterns, device up-
dates, or patient characteristics represents a largely unexamined threat
to sustainability of digital twin systems. Fifth, publication bias favouring
positive results may lead to overestimation of digital twin effectiveness
if studies demonstrating limited benefits or implementation challenges
are less likely to be published. We attempted to identify negative or null
findings through comprehensive searching, but likely underrepresent
implementation failures and abandoned projects that never reached
publication.

Sixth, this review focuses predominantly on technological and clin-
ical dimensions of digital twin applications, with limited attention to
important implementation science considerations including change
management, organisational factors influencing adoption, and strategies
for scaling successful pilot implementations to routine care. These “soft”
factors often determine implementation success or failure more than
technical performance, representing a critical gap in our analysis. Sev-
enth, whilst ethical considerations are discussed, comprehensive anal-
ysis of complex ethical issues such as algorithmic bias, data governance,
and patient autonomy in the context of increasingly sophisticated de-
cision support tools extends beyond the scope of this review. Ethical
frameworks for Al in healthcare remain underdeveloped, and many
questions lack clear answers in current philosophical or regulatory
discourse. Finally, the review does not address in detail the technical
specifications of different modelling approaches, machine learning ar-
chitectures, or validation methodologies, areas that would benefit from
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dedicated technical reviews aimed at computational and engineering
audiences. Our critical synthesis attempts to evaluate model quality and
limitations, but readers with deep technical expertise may find our as-
sessments insufficiently granular for computational validation.

Additional specific limitations include several important consider-
ations. Our search was limited to English-language publications,
potentially missing important work published in other languages
particularly from non-English speaking countries. Grey literature
including conference abstracts, white papers, and technical reports
received limited systematic attention despite potentially containing
important unpublished findings. Our assessment of clinical maturity
distinguishing proof-of-concept from commercially available systems
relied on author judgment rather than formal criteria, introducing
subjectivity.

8. Conclusion

Digital twin technology represents an evolving paradigm in diabetes
prediction and management, offering potential opportunities for per-
sonalisation, proactive intervention, and precision care. Through
continuous integration of diverse data streams with sophisticated
computational models, digital twins create dynamic virtual represen-
tations of individuals that can predict glucose trajectories, optimise
therapeutic regimens, and forecast complication risks with varying de-
grees of accuracy depending on application and population. Current
applications demonstrate promising though variable clinical benefits,
including improved glycaemic control, reduced hypoglycaemia,
enhanced patient engagement, and more efficient use of healthcare re-
sources in selected populations and controlled settings. The maturation
of enabling technologies, including continuous glucose monitoring,
wearable sensors, artificial intelligence, and cloud computing infra-
structure, has established a foundation for exploring widespread digital
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twin implementation in diabetes care. However, significant gaps sepa-
rate current proof-of-concept demonstrations from validated, equitably
accessible clinical systems.

Realising the potential of digital twin technology requires addressing
significant challenges spanning technical, clinical, ethical, and eco-
nomic domains. Data integration and interoperability barriers limit the
creation of comprehensive patient representations. Current proprietary
systems create data silos that fundamentally undermine the compre-
hensive integration digital twins require. Model validation frameworks
appropriate for dynamic, adaptive systems remain under development.
Regulatory pathways for continuously learning algorithms are evolving
but incomplete, creating uncertainty for developers and clinicians.
Building trust among clinicians and patients necessitates transparency,
explainability, and demonstrated clinical effectiveness through rigorous
prospective studies. Current evidence consists predominantly of retro-
spective analyses, small pilot studies, and proof-of-concept demonstra-
tions rather than large-scale randomised trials with patient-important
outcomes. Privacy and security concerns must be addressed through
robust technical safeguards and clear governance frameworks. Howev-
er, technical solutions cannot fully mitigate risks inherent in continuous
collection of intimate personal data. Equity considerations demand
attention to ensure that digital twin benefits extend to diverse pop-
ulations rather than exacerbating existing health disparities. Evidence of
algorithmic bias and differential performance across demographic
groups raises serious concerns that cannot be addressed through tech-
nical fixes alone but require fundamental attention to healthcare in-
equities. Economic sustainability depends on demonstrating cost
effectiveness and developing reimbursement models that appropriately
value technology enabled care. However, current fee-for-service pay-
ment structures create misaligned incentives that may prevent adoption
of cost-effective preventive technologies.

Looking forward, the integration of multi omics data, expansion to
type 2 diabetes and global populations, incorporation of behavioural
science, and continued artificial intelligence advances may enhance
digital twin capabilities further. However, these future directions face
substantial technical, regulatory, economic, and ethical challenges that
will require years to decades to address. Realistic expectations are
essential; digital twins are not imminent panaceas but rather long-term
research priorities requiring sustained investment and rigorous evalua-
tion. The vision of comprehensive, whole body digital twins that predict,
prevent, and manage not only diabetes but multiple interconnected
chronic conditions remains largely aspirational, achievable potentially
within the coming decade with sustained research investment and suc-
cessful navigation of multiple challenges. Collaboration among tech-
nologists, clinicians, researchers, patients, policymakers, and industry
stakeholders will be essential to navigate the complex pathway from
promising technology to routine clinical practice. This collaboration
must prioritise patient benefit and equity over commercial interests,
requiring careful governance and regulatory oversight. With sustained
effort and appropriate investment, digital twin technology has the po-
tential to contribute to fundamentally reshaping diabetes care, trans-
forming it from reactive disease management to proactive health
optimisation though not achieving the ambitious goal of preventing and
curing diabetes altogether in the near term. Critical success factors
include: rigorous clinical validation demonstrating patient-important
outcomes; equitable access ensuring benefits reach underserved pop-
ulations; transparent governance addressing privacy and algorithmic
fairness; sustainable business models aligning incentives for all stake-
holders; and realistic expectations balancing enthusiasm with evidence-
based caution.
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