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Abstract

The integration of artificial intelligence (AI) and machine learning (ML) in waste man-

agement has the potential to significantly advance circular economy objectives by

enhancing efficiency, reducing waste, and optimizing resource recovery. However,

realising these benefits depends on addressing significant technical, economic, and

systemic barriers. AI technologies, such as intelligent waste-sorting systems and pre-

dictive models, are transforming how waste is processed and materials are reused.

This article critically evaluates the potential and limitations of AI-driven approaches

across the waste management lifecycle through a narrative review of peer-reviewed

literature published between 2015 and 2025. AI offers a revolutionary approach to

waste management, resource recovery, and environmental impact reduction by

enabling the processing of massive datasets and automating complex decision-

making. However, to fully realize AI's promise, critical issues, including scarce data

availability, expensive implementation costs, the requirement for efficient human-AI

cooperation, and ethical considerations regarding algorithmic transparency and work-

force impacts, must be systematically addressed. Additionally, ethical concerns

related to job displacement and the environmental footprint of AI technologies them-

selves require careful management. This review identifies significant research gaps,

including the need for standardized datasets, explainable AI frameworks, and com-

prehensive lifecycle assessments of AI-driven interventions. Looking to the future,

decentralized AI systems, AI-driven global waste trade optimization, blockchain-

integrated tracking systems, and AI-enhanced product design offer promising ave-

nues for further innovation. As AI continues to develop, its incorporation into waste

management systems will be essential to accelerating the world's shift to a circular

economy that is more resource-efficient and sustainable.
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1 | INTRODUCTION

The global shift toward a circular economy (CE) represents a neces-

sary transformation from the traditional linear model of production

and consumption, often described as “take-make-dispose.” This linear
approach has contributed to significant environmental degradation

and resource depletion.1,2 However, transitioning to circular systems

faces substantial technical, economic, and behavioral challenges that

technology alone cannot solve. A circular economy aims to prolong

the life cycles of resources, materials, and products while emphasizing

waste management, cleaner production, and the closure of material

loops.3,4 By minimizing waste generation and promoting reuse, recy-

cling, and energy recovery, a circular economy aims to achieve sus-

tainability while reducing pressure on natural resources.5

To effectively implement circular economy principles, waste

streams must be managed with unprecedented sophistication, a task

where AI and ML technologies show promise but face significant real-

world constraints. For example, managing organic waste using circular

economy principles can transform waste streams into valuable

resources, mitigating environment degradation and lowering green-

house gas emissions.6 This is where AI and ML technologies can make

a profound impact.

AI technologies have demonstrated the potential to enhance effi-

ciency and optimize processes across industries, from manufacturing

to healthcare.7 In waste management specifically, while AI and ML

offer theoretical advantages for revolutionizing how waste is handled,

reused, and repurposed,8,9 practical implementation reveals significant

gaps between laboratory performance and industrial-scale deploy-

ment. These technologies enable waste management systems to move

beyond traditional methods by leveraging large datasets, improving

decision-making, and automating complex tasks.10 For instance, AI-

based Material Circularity Assessment (MCA), which evaluates how

well materials maintain their value through multiple use cycles, and

Extended Producer Responsibility (EPR) strategies, which hold manu-

facturers accountable for end-of-life product management, can help

manage e-waste by analyzing hazardous pollutants, promoting eco-

design systems, and ensuring proper processing, recycling, and

reuse.11 However, a critical examination of published studies reveals

that many performance claims are based on controlled laboratory con-

ditions or limited pilot projects, with significant uncertainty about

scalability, cost-effectiveness, and real-world robustness.

For example, while some studies report dramatic improvements

such as waste reduction of 90%, landfill analysis improvements of

40%, and transportation reductions of 15%,12 these figures derive

from simulation models or small-scale implementations under specific

conditions (e.g., pre-sorted waste, controlled environments, limited

waste stream diversity). The particular contexts, assumptions, bound-

ary conditions, and limitations of these studies are often inadequately

disclosed, making it challenging to assess generalizability to diverse

real-world waste management systems with varying infrastructure,

waste composition, and operational constraints. Furthermore, few

studies provide comprehensive cost–benefit analyses that account for

the full lifecycle costs of AI system deployment, including hardware,

software, data infrastructure, training, maintenance, and energy

consumption.

Similarly, claims of classification accuracy exceeding 95%13

should be contextualized: such performance levels are typically

achieved under optimal conditions with clean, well-lit samples of

known waste types. Real-world industrial sorting facilities face chal-

lenges, including variable lighting, contaminated materials, mixed com-

positions, sensor wear, and novel waste types not represented in

training datasets, all of which can substantially degrade system perfor-

mance. Long-term performance data from operational industrial facili-

ties remains scarce in the literature.

AI can enhance lifecycle analysis (LCA) by processing large data-

sets to identify patterns in resource use, material composition, and

energy consumption.14,15 Research suggests that AI techniques may

predict environmental impacts of products, though accuracy varies

significantly depending on data quality, model architecture, and appli-

cation context.16 Beyond lifecycle analysis, AI technologies incorpo-

rating ML algorithms and computer vision show potential to improve

waste sorting accuracy and speed.17 However, practical deployment

faces challenges, including high capital costs, maintenance require-

ments, and the need for continuous retraining as waste streams

evolve.

Despite growing interest in AI for waste management, several

critical gaps exist in current literature:

1. Most existing reviews focus on technical capabilities or environ-

mental benefits in isolation, without systematically examining

implementation barriers, cost-effectiveness, scalability challenges,

or comparing AI approaches to optimized conventional methods.

2. Critical issues such as algorithmic transparency (explainability), eth-

ical deployment frameworks, workforce transition strategies, and

the environmental footprint of AI systems themselves have

received limited attention.

3. There is insufficient analysis of the conditions under which AI-

driven approaches provide clear advantages over well-

implemented traditional or hybrid systems.

4. Standardized performance metrics, reporting frameworks, and

comparative evaluation methodologies are lacking, making it diffi-

cult to assess the relative merits of different AI approaches.

5. The socio-technical dimensions of AI implementation, including

stakeholder acceptance, regulatory frameworks, data governance,

and organizational change management, remain underexplored.

This review addresses these gaps by providing a comprehensive,

critical evaluation of AI's role in circular economy waste management,

synthesizing evidence on both opportunities and constraints, and

examining implementation barriers across technical, economic, institu-

tional, and social dimensions. The review aims to:

1. Systematically map the current landscape of AI applications in

waste management.

2. Critically evaluate the evidence base for claimed performance

improvements.
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3. Identify key technical, economic, and institutional barriers to

implementation.

4. Examine ethical considerations and workforce impacts.

5. Propose future research directions, including explainable AI, block-

chain integration, and collaborative governance frameworks.

Table 1 highlights key terminology and concepts, while Figure 1

illustrates an AI-driven circular economy waste management

framework. The process begins with Lifecycle Analysis & Waste Man-

agement, advancing through Circular Supply Chain Insights to an AI-

Powered Circular Economy Waste Management Procedure. This inte-

grates multiple components, which include Advanced Recycling Oper-

ations, Environmental Impact Assessment, AI Route Optimization, AI

Sorting Systems, Recycling Process Enhancement, and Circular Mate-

rial Integration, to enhance material recovery and minimize waste. The

framework culminates in Data-Driven Insights that inform Improved

Lifecycle Analysis, promoting continuous sustainability and resource

efficiency.

2 | METHODOLOGY

To ensure systematic and transparent literature selection, this review

followed established guidelines for conducting interdisciplinary

reviews. This section details the search strategy, inclusion/exclusion

criteria, and data extraction process.

2.1 | Search strategy

A comprehensive literature search was conducted across multiple aca-

demic databases, including Web of Science, Scopus, IEEE Xplore,

ScienceDirect, and Google Scholar. The search covered publications

from January 2015 to January 2025 to capture recent advancements

while ensuring sufficient maturity of the literature. An initial scoping

review informed the development of the final search strategy.

The following Boolean search strings were employed across data-

bases (adapted for each database's specific syntax):

(“artificial intelligence” OR “machine learning” OR “deep
learning” OR “neural network” OR “computer vision” OR

“natural language processing”) AND (“waste manage-

ment” OR “circular economy” OR “recycling” OR

“resource recovery” OR “waste sorting” OR “waste-to-

energy” OR “waste optimisation” OR “e-waste”) AND
(“optimisation” OR “efficiency” OR “sustainability” OR

“lifecycle”OR “prediction” OR “classification”)*

Additional searches targeted specific application domains:

• “AI” AND (“waste sorting” OR “automated sorting”)
• “machine learning” AND (“waste prediction” OR

“waste generation forecasting”)

TABLE 1 Summary of key terminologies/concepts associated
with AI and waste circular economy.

Aspect Description

Relevant

references

Circular

economy

(CE)

Circular economy models promote

waste management, reducing waste

generation and inefficient resource

consumption, while focusing on the

transformation of waste into resources.

18

Artificial

intelligence

AI is the capability of a system to

correctly interpret external data, learn

from such data, and apply that

knowledge to accomplish particular

objectives and activities through

adaptable change.

19

AI in waste

management

Using demographic information and

photos, machine learning techniques in

waste management aim to estimate

waste material classification, the

quantity of waste produced per area,

and waste filling levels per site.

20

Key AI

techniques

Machine learning (ML): Machine

learning is a field that uses computers

to learn abstract concepts from data

and apply them to unseen situations,

with applications in molecular biology,

pharmacometrics, and clinical

pharmacology.

Computer Vision: Computer vision is

used in construction to facilitate

decision-making processes and assist

with on-site managerial tasks.

Robotics: With applications in a variety

of sectors, including healthcare,

robotics is the combination of science,

engineering, and design to create

machines that imitate or replace human

behavior.

17,21,22

Optimization

in CE

Optimization in circular economy

involves designing closed-loop supply

chains for durable products,

considering factors like cost, CO2

emissions, and energy consumption,

while coping with uncertainties.

23

Barriers in AI

adoption

The building industry faces significant

obstacles to implementing the circular

economy, including a fragmented

supply chain, a lack of rules, and costly

upfront investment costs.

24

Current

applications

AI and machine learning facilitate the

successful adoption and use of circular

economy principles, including supply

chain management, waste

management, recycling and reuse,

sustainable development, and reverse

logistics.

9

Future

directions

Exploration of deep learning and

reinforcement learning for complex

decision-making processes, integrating

IoT for real-time monitoring, and

scaling AI applications across the

circular economy.
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• “computer vision” AND (“waste classification” OR

“material identification”)
Reference lists of included studies and key review articles were manu-

ally screened for additional relevant publications (snowball sampling).

Citation tracking of seminal papers was conducted using Google

Scholar and Web of Science

2.2 | Inclusion and exclusion criteria

Inclusion criteria:

• Peer-reviewed journal articles, conference proceedings from major

conferences (e.g., IEEE, ACM), and technical reports from estab-

lished organizations.

• Studies focusing on AI/ML/computer vision applications in any

aspect of waste management, recycling, or the circular

economy.

• Published in English between January 2015 and January 2025

• Empirical studies, case studies, systematic reviews, meta-analyses,

and theoretical frameworks with clear methodology

• Studies providing sufficient detail on AI methods, data sources, and

performance evaluation.

F IGURE 1 AI-powered circular
economy waste management procedure.

4 of 18 OLAWADE ET AL.
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Exclusion criteria:

• Non-peer-reviewed sources (blogs, news articles, opinion pieces

without substantive analysis).

• Studies without clear AI/ML methodology or implementation

details.

• Duplicate publications (in cases of conference and journal versions,

the more comprehensive version was retained).

• Studies not directly related to waste management, recycling, or cir-

cular economy applications.

• Publications in languages other than English are limited due to

resource constraints.

• Studies with insufficient methodological detail to assess quality or

replicability.

3 | THE CIRCULAR ECONOMY AND
WASTE MANAGEMENT: CURRENT
CHALLENGES

The transition to a circular economy is built on the fundamental prin-

ciples of reusing, repairing, refurbishing, and recycling materials,

thereby closing material loops and minimizing waste.25 By combining

Industry 4.0 technologies with circular economy principles, a company

model that recycles and repurposes trash can be developed, increas-

ing resource consumption and corporate sustainability.26 Central to

achieving this is an efficient waste management system that maxi-

mizes material recovery and minimizes environmental impact. How-

ever, several challenges within the current waste management

infrastructure pose significant barriers to the effective realization of a

circular economy. The diversity of waste streams, ineffective resource

recovery, a lack of data-driven decision-making, and the high energy

and resource consumption of recycling procedures are some of these

difficulties. Artificial intelligence (AI) and machine learning

(ML) technologies offer intriguing solutions to these problems, with

the potential to improve waste management and advance the circular

economy through enhanced sorting accuracy, predictive maintenance,

optimized logistics, and improved resource recovery pathways.27

3.1 | Heterogeneity of waste streams

The high level of waste stream variability is one of the biggest obsta-

cles to waste management in a circular economy.28 A diverse mixture

of plastics, metals, organic materials, textiles, glass, electronic waste,

and hazardous elements makes up the garbage produced by commer-

cial, industrial, and residential operations. Each family in research

areas produces between 3.5 and 16 kg of domestic garbage per day,

with the most significant components being food scraps (45%), paper

(20%), glass (5%), plastic bags (18%), and others (12%).29 The presence

of such diverse materials in the waste stream complicates sorting and

recycling. For example, a single household waste stream might contain

various grades of plastic, biodegradable food waste, metals, and

contaminated items, making it difficult to separate recyclable materials

from non-recyclables efficiently. Current waste sorting systems often

struggle to handle this complexity, especially at scale. While manual

sorting remains common, it is slow, labor-intensive, and prone to

human error.30 Automated sorting technologies, such as conveyor

belts and mechanical separators, offer some improvements but remain

limited in distinguishing materials with similar properties.31 Resource

depletion is worsened by the fact that a large share of valuable mate-

rials that could be recycled or used for other purposes ends up in

landfills due to inefficient sorting processes. For example, when waste

is not sorted adequately at recycling facilities, materials containing

recyclable valuables are discarded, resulting in 1340 ktons of CO2

emissions per round trip.32

According to research, garbage sorting may be made much more

accurate and efficient by using AI-driven systems, especially those

that combine computer vision and machine learning. For example, a

waste management system that uses IoT and deep learning achieves

an 86% system usability score for garbage sorting and 95.3125% clas-

sification accuracy in controlled experimental conditions. However,

performance may vary in operational settings with diverse waste

types, contamination levels, and lighting conditions.13 These systems

can be trained to identify different types of materials based on visual

characteristics, chemical properties, or even molecular composition.

For instance, AI-powered robotic systems can differentiate between

various types of plastics or metals on a conveyor belt, ensuring more

effective separation of recyclable materials. For example, robots use

deep learning technology for visual recognition to classify plastic

waste, with reported precision of 92.1% and recall of 87.3% in

research trials.33 This approach could help address the challenge of

waste stream heterogeneity by enabling more precise, scalable sorting

solutions that enhance material recovery in a circular economy. How-

ever, this transition faces challenges, including system integration,

maintenance requirements, and cost-effectiveness that require further

investigation.

3.2 | Inefficiency in resource recovery

Another major challenge in the current waste management land-

scape is the inefficiency in resource recovery.34,35 Even when

materials are properly sorted, existing recycling technologies often

fail to recover valuable materials effectively. The recycling of elec-

tronic garbage, or “e-waste,” which includes rare earth elements,

gold, and silver, is one area where this inefficiency is very notice-

able. In addition to being expensive, traditional harvesting methods

for these important materials often result in significant losses

throughout the recovery process. Consequently, a significant

amount of recyclable materials ends up in landfills, reducing the

overall effectiveness of the waste management system. Paper, food

waste, plastic, textiles, and technological trash are all disposed of in

landfills in significantly greater amounts than previously estimated

by the top-down U.S. government, costing the country 1.4 billion

USD in lost commodity value.36
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Studies have shown that AI can enhance resource recovery by

optimizing recycling processes and predicting the most efficient path-

ways for material extraction. For instance, AI-driven predictive models

can analyze historical data from recycling facilities to identify patterns

and recommend optimal recovery methods for different types of

waste.37 In the case of e-waste, AI algorithms can assess the composi-

tion of discarded electronics and determine the best techniques for

extracting valuable metals, thereby reducing losses and improving

recovery rates. AI's ability to learn from data and continuously refine

its predictions means that recycling processes can become more effi-

cient over time, ultimately supporting the goals of a circular economy

by minimizing resource wastage. AI can also help create closed-loop

recycling systems, which continuously return waste materials into the

production cycle without requiring virgin resources. AI-driven solu-

tions can help companies produce more recyclable products by opti-

mizing material recovery, thereby closing the material loop and

advancing the circular economy's sustainability.38

3.3 | Lack of data-driven decision-making

Traditionally, waste management has been a reactive process, with

decisions made based on historical trends or immediate needs rather

than real-time data. This lack of data-driven decision-making has led

to inefficiencies in the collection, transportation, and treatment of

waste. In many regions, waste collection schedules are fixed, regard-

less of how full the bins are. This results in either underutilized collec-

tion routes, where trucks travel to collect half-empty bins, or delayed

pickups, where overflowing bins pose environmental hazards and pub-

lic health concerns. Furthermore, waste treatment facilities often

operate with limited insight into the composition or volume of waste

they will receive on a given day, making it challenging to allocate

resources efficiently. The absence of predictive models or real-time

data analytics means that these facilities are often under-prepared for

surges in waste volume or fluctuations in material composition, lead-

ing to suboptimal performance and increased operational costs.39

The integration of AI and ML offers the potential to enable real-

time data analytics and predictive decision-making in waste manage-

ment, though significant infrastructure and investment barriers exist.

For instance, AI systems could theoretically determine the priority

level of emptying local sinks and predicting which sinks are likely to fill

up faster,40 but this requires widespread deployment of IoT sensors,

reliable network connectivity, and ongoing maintenance, investments

that many municipalities, particularly in developing regions, cannot

afford. AI-driven systems can collect data from sensors in waste bins,

vehicles, and treatment facilities to provide real-time insights into

waste levels, composition, and processing capacity.20,27 This data can

be used to optimize collection routes, ensuring that trucks travel only

to areas with full bins, thereby reducing fuel consumption and trans-

portation costs. Moreover, AI algorithms can predict waste

generation patterns based on factors such as population density, con-

sumption habits, and seasonal trends, allowing waste management

operators to better allocate resources and plan for fluctuations in

waste volume.41 One study using a Multi-Layer Perceptron Artificial

Neural Network (MLP-ANN) model showed some success in forecast-

ing annual Municipal Solid Waste (MSW) generation rates in Bahrain.

However, the Radial Basis Function Support Vector Regression

(RBF-SVR) model demonstrated better prediction robustness,42

highlighting the importance of model selection and the need for

context-specific optimization rather than one-size-fits-all solutions.

AI's predictive capabilities also extend to waste treatment processes.

By analyzing data on the composition of incoming waste, AI systems

can adjust treatment methods to maximize material recovery or

energy generation. For instance, AI models could predict which waste

streams are best suited for recycling, composting, or waste-to-energy

conversion, optimizing treatment processes and reducing environmen-

tal impact.43 However, implementing such adaptive systems in exist-

ing facilities would require substantial retrofitting and integration

costs.

3.4 | High energy and resource consumption

The recycling and resource recovery processes themselves can be

highly energy-intensive, particularly when traditional technologies are

used,44 with the chemical method being the most energy-intensive.45

For example, the recycling of plastics often requires significant

amounts of heat and energy to break down materials, and metal

recovery processes can involve complex chemical reactions that are

both costly and resource-intensive.46 In some cases, the environmen-

tal and economic costs of recycling outweigh the benefits, leading to

questions about the viability of these processes, especially in lower-

income regions. AI has theoretical potential to reduce the energy and

resource consumption associated with recycling by optimizing process

efficiency, though real-world validation of these claims remains lim-

ited. For instance, AI tools, such as the conceptual Collaborative

Energy Optimisation Platform (CEOP), have been proposed to opti-

mize energy generation, distribution, and consumption, advancing sus-

tainable development and promoting a holistic approach to energy

optimization.47 Still, evidence of large-scale industrial deployment and

measurable energy savings remains lacking. Machine learning algo-

rithms can analyze the energy requirements of different recycling

methods and recommend the most energy-efficient pathways for

material recovery.37,48 However, the algorithms themselves require

significant computational resources, and the net energy benefit

depends on factors such as the energy source powering the AI sys-

tems and the scale of deployment.

In some cases, AI can also identify alternative methods for recy-

cling or repurposing materials that consume less energy. For instance,

AI-driven systems can assess whether mechanical recycling, chemical

recycling, or alternative material recovery techniques offer the best

balance between energy use and environmental impact. Additionally,

while some studies claim that AI optimization could theoretically

reduce waste quantity by 90%, landfill analysis by 40%, and transpor-

tation by 15%, AI can help promote more sustainable waste manage-

ment.12 These figures are derived from simulation models or limited
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pilot studies. They should be interpreted cautiously, as they may not

reflect the complexity and variability of real-world waste management

systems. The specific contexts, assumptions, and boundary conditions

under which these results were obtained are often not fully disclosed,

making it difficult to assess their generalizability. Waste-to-energy

(WTE) technologies, which convert non-recyclable waste into electric-

ity or heat, offer a solution for managing residual waste in a circular

economy.49 AI could optimize WTE processes by predicting which

waste types generate the most energy and adjusting combustion or

gasification parameters to maximize efficiency. AI may reduce reli-

ance on fossil fuels and facilitate the shift to a more sustainable

energy system by improving the efficiency of energy recovery from

waste. Computational models powered by AI aid in streamlining

processes, increasing productivity, reducing expenses, and

hastening the transition to greener, more sustainable energy

sources.50 However, implementing these models in existing WTE

facilities requires substantial investment in sensors, data infrastruc-

ture, and system integration. The return on investment remains

uncertain in many contexts.

4 | AI APPLICATIONS IN CIRCULAR
ECONOMY OPTIMIZATION

AI technologies offer potential applications across multiple stages of

the waste management cycle, from initial product design through col-

lection, sorting, processing, and resource recovery. However, the

maturity, effectiveness, and economic viability of these applications

F IGURE 2 Artificial intelligence's
contribution to improving circular
economy practices in waste management.
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vary considerably. This section critically examines key application

areas, evaluating both demonstrated capabilities and persistent

limitations.

Figure 2 presents a comprehensive theoretical framework illus-

trating how artificial intelligence supports circular economy optimiza-

tion through AI-enabled lifecycle analysis and intelligent waste

management systems. The framework spans the full product lifecycle,

including raw material extraction, manufacturing and production, dis-

tribution and logistics, consumer use, and end-of-life management,

highlighting AI's role in evaluating environmental impacts and

resource efficiency at each stage. Central to the framework are AI-

powered intelligent sorting systems, which rely on advanced sensors,

machine learning algorithms, and computer vision techniques to iden-

tify, classify, and separate materials for improved recycling and recov-

ery. The figure also distinguishes between technical and practical

implementation pathways, emphasizing that successful deployment

depends on system reliability, seamless integration, and robust algo-

rithmic performance. Practical implementation barriers are explicitly

identified, including technical challenges related to system stability

and integration, economic barriers such as high implementation and

maintenance costs, and operational limitations reflected in variable

success rates under real-world conditions. Together, the framework

underscores both the transformative potential of AI for circular econ-

omy applications and the multidimensional challenges that must be

addressed to achieve scalable and sustainable implementation.

4.1 | AI in lifecycle analysis and waste
minimization

A critical component of the circular economy is minimizing waste gen-

eration at the source, which can be achieved through comprehensive

product lifecycle analysis (LCA).51 LCA assesses the environmental

impact of a product from its creation to its disposal, identifying oppor-

tunities to reduce resource use, waste, and emissions.52 AI technolo-

gies have the potential to enhance LCA, though current applications

remain largely in research and development stages rather than wide-

spread industrial practice. AI techniques have shown varying levels of

success in predicting environmental impacts of products, with accu-

racy rates reported between 68% and 81% depending on the specific

impact category and data quality,16 suggesting that while AI can assist

LCA practitioners, it should be viewed as a complementary tool rather

than a replacement for expert judgment and comprehensive data

collection.

The theoretical capability of AI to handle large and complex data-

sets offers potential advantages for LCA applications, providing

detailed insights into material flows and energy consumption and

helping manufacturers make more sustainable design decisions. For

example, AI could be used to identify specific components in products

that are prone to degradation or failure.53 However, the accuracy of

such predictions depends heavily on the availability of comprehensive

failure data across diverse operating conditions, which is often propri-

etary or unavailable. Manufacturers could use this knowledge to

modify product designs to increase longevity, durability, and recycla-

bility at the end of life. However, integrating AI recommendations into

existing design workflows requires substantial organizational change,

cross-functional collaboration, and a willingness to prioritize lifecycle

considerations over short-term cost optimization. These barriers have

proven challenging in practice.

Additionally, AI-powered LCA technologies could theoretically

model the environmental effects of various design decisions. Machine

learning models might suggest optimal product designs that reduce

waste and improve recyclability by evaluating multiple scenarios.37

However, the optimization objectives must be carefully defined and

balanced against competing priorities such as performance, cost,

and manufacturability. Furthermore, the computational resources

required for complex multi-objective optimization can be substantial,

and the solutions generated may not always be practically implemen-

table due to real-world manufacturing constraints. This type of simula-

tion enables manufacturers to consider the entire lifecycle of their

products before they are even produced, supporting the shift toward

circular production methods. This proactive approach to waste mini-

mization is essential for achieving the long-term sustainability goals of

a circular economy. However, widespread adoption requires not only

technological capability but also regulatory incentives, consumer

demand for sustainable products, and industry-wide collaboration on

data standards and sharing.

4.2 | AI for intelligent waste sorting and recycling

Waste sorting is one of the most labor-intensive and error-prone

aspects of waste management. Automated sorting techniques pow-

ered by AI show promise for reducing labor requirements and improv-

ing efficiency, though significant technical and economic barriers

remain.54 Efficient sorting is critical in ensuring that valuable

resources are recovered from the waste stream and re-enter the pro-

duction cycle. Traditional sorting systems, both manual and mechani-

cal, often struggle to handle the growing complexity and volume of

modern waste streams. AI has emerged as a potentially transformative

technology in this area, though the gap between laboratory perfor-

mance and industrial-scale reliability remains substantial.

AI-driven waste-sorting systems utilize machine learning algo-

rithms in combination with computer vision to recognize and clas-

sify different types of waste. The performance of these systems,

however, varies considerably depending on numerous factors,

including lighting conditions, material contamination, waste stream

consistency, and the diversity of materials encountered. These sys-

tems can be trained to distinguish between plastics, metals, paper,

glass, and organic materials, though accuracy degrades significantly

when materials are contaminated, degraded, or present in unex-

pected forms.55 One system reported classification accuracy

exceeding 90% for recyclable and non-recyclable waste.56 Still, this

result was achieved under controlled conditions with clean, pre-

sorted samples, consistent lighting, and a limited set of well-defined

waste categories. Industrial facilities typically face far more
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challenging conditions, including variable ambient lighting, soiled

materials, partial occlusion, and mixed or composite materials that

are not easily categorized into predefined classes.

Furthermore, the reported accuracy figures often represent average

performance across waste categories, obscuring the fact that certain

material types (e.g., black plastics, multi-layer packaging, contaminated

paper) present persistent challenges that significantly reduce sorting

effectiveness for those specific streams. The economic impact of these

misclassification errors can be substantial, as contamination of recycling

streams may render entire batches unsuitable for reprocessing.

In material recovery facilities (MRFs), AI-powered robotic systems

are increasingly being deployed to automate sorting.57 However,

adoption remains limited due to high capital costs (often exceeding

$500,000 per line), ongoing maintenance requirements, and the need

for continuous retraining as waste streams evolve. These robots are

equipped with sensors that can detect the composition of waste as it

moves along conveyor belts. Using AI algorithms, the robots identify

recyclable items and sort them into appropriate categories, ideally

improving resource recovery rates. However, the practical sorting

speed often falls short of the throughput of conventional mechanical

systems, and the systems struggle with items that are too small, too

large, tangled, or moving too rapidly on the conveyor. Additionally,

wear and contamination of optical sensors in the harsh industrial envi-

ronment can degrade performance over time, requiring regular main-

tenance and recalibration that add to operational costs.

This automation ideally reduces the need for manual labor while

improving sorting speed and efficiency. However, the return on invest-

ment remains uncertain in many contexts, particularly for smaller facilities

or those processing low-value material streams.58 AI also extends its

potential impact on waste sorting beyond material recovery facilities.

Smart waste bins, embedded with AI and sensor technologies, are being

deployed in urban areas and industrial facilities in limited pilot programs.

These bins monitor waste levels and composition in real time, potentially

optimizing collection schedules based on actual needs.58 However, chal-

lenges include sensor reliability, battery life, connectivity issues, vandalism,

and the need for municipal IT infrastructure to process and act on the

data. This intelligent system could theoretically reduce unnecessary waste

collection trips, lowering transportation-related carbon emissions and

operational costs. Additionally, AI-driven waste bins could provide valuable

data on waste generation patterns, enabling cities and companies to

develop more effective recycling and waste reduction strategies. However,

concerns about data privacy, security, and the cost of city-wide sensor

network deployment remain significant barriers to widespread adoption.

4.3 | AI-enhanced recycling loops and resource
recovery

Once materials have been sorted, the next challenge in waste man-

agement is optimizing the recycling process to maximize resource

recovery. AI has theoretical potential to improve recycling loops by

forecasting efficient routes for material reuse and repurposing, though

practical implementations remain largely in pilot phases. AI-driven

models could theoretically analyze data from various recycling facili-

ties, examining variables such as energy consumption, recovery effi-

ciency, and operating expenses. However, the proprietary nature of

industrial operational data and the lack of standardized reporting for-

mats significantly limit the availability of training data for such models.

For example, optimal recycling practices for particular materials could

emerge from such an analysis, though translating these recommenda-

tions into practice requires overcoming institutional inertia, retrofit

costs, and operator training challenges.

Electronic waste, or “e-waste,” represents one of the fastest-

growing waste streams globally and contains rare earth elements like

Pt, La, Dy, Pr, and Ce, as well as valuable materials like Nd, Ag, and

Au, and heavy metals like Cu, Fe, Zn, Ni, Pb, and Al.59 However, tradi-

tional methods of recovering these materials are often inefficient and

costly, and while AI theoretically offers optimization potential, sub-

stantial economic barriers remain. AI could theoretically optimize

e-waste recycling by predicting the most effective methods for

extracting valuable components, thereby minimizing material loss. AI-

driven systems could analyze the composition of discarded electronics

and recommend the most effective recovery techniques, thereby

improving both the economic and environmental performance of

e-waste recycling.11 However, the diversity of device designs, proprie-

tary component compositions, and rapidly evolving product architec-

tures makes it difficult to develop generalizable AI models that

perform reliably across the broad spectrum of e-waste types. Further-

more, the economic value of recovered materials must exceed the

costs of AI system development, deployment, and operation, a thresh-

old not yet clearly demonstrated in most contexts.

A critical limitation often overlooked in the literature is the quality

and availability of training data. Effective AI models for resource

recovery require extensive labeled datasets documenting input mate-

rial characteristics, processing conditions, and recovery outcomes.

Such data is rarely systematically collected in existing facilities, is

often considered proprietary when it exists, and varies significantly

across different recycling technologies and facility configurations.

Building sufficiently comprehensive datasets to train robust, generaliz-

able AI models is a substantial undertaking that requires industry-wide

data-sharing agreements and standardized data-collection protocols,

infrastructure that does not yet exist.

Moreover, the energy consumption of AI systems themselves must

be considered in lifecycle assessments. Complex deep learning models

require significant computational resources for both training and infer-

ence. If non-renewable energy sources power these systems, the net

environmental benefit may be smaller than claimed or potentially nega-

tive in some scenarios. Few studies provide comprehensive energy

accounting that include the AI system's operational energy requirements.

4.4 | AI for waste generation prediction and
collection optimization

Predictive modeling represents another application domain where AI

shows promise, though with important limitations. AI algorithms can
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analyze historical waste-generation data alongside contextual variables

(population density, economic activity, seasonal patterns, special events)

to forecast future waste volumes and composition.41 Such predictions

could enable waste management operators to optimize resource alloca-

tion by adjusting collection frequency, vehicle routing, and processing

facility staffing in line with anticipated demand.

However, the accuracy of these predictions depends heavily on

data quality and the stability of underlying patterns. Waste generation

is influenced by numerous factors, including economic conditions,

consumer behavior, regulatory changes, and unexpected events

(e.g., the COVID-19 pandemic), making long-term predictions chal-

lenging. Studies reporting high predictive accuracy often evaluate per-

formance on historical test data under relatively stable conditions.

They may not account for model degradation when faced with novel

conditions or trend shifts.

Furthermore, while optimized collection routing can reduce fuel

consumption and emissions, the practical benefits depend on the flex-

ibility of existing collection contracts, driver acceptance of dynamic

routing, and the ability of dispatch systems to integrate AI recommen-

dations. These organizational and technological factors introduce fric-

tion in real-world deployment.

5 | CHALLENGES AND LIMITATIONS OF AI
IN CIRCULAR ECONOMY WASTE
MANAGEMENT

While AI has theoretical potential to enhance waste management in a

circular economy, numerous obstacles and constraints must be

addressed before its full benefits can be realized. This section critically

examines key challenges, including data availability and quality, acces-

sibility and cost barriers, ethical and environmental concerns, and the

necessity for effective human-AI collaboration. Understanding and

addressing these barriers is essential for ensuring the responsible,

effective, and equitable integration of AI into waste management

systems.

Figure 3 summarizes the challenges and limitations of AI in

circular-economy waste management. Cost and accessibility present

fundamental barriers, as developing and deploying AI systems can be

prohibitively expensive, particularly for smaller municipalities and

facilities in developing regions. Data availability and quality issues

arise because AI accuracy depends on comprehensive, high-quality

datasets that are often lacking in the waste management sector. The

resource requirements and energy consumption of AI systems, along

with their broader environmental footprint, raise critical questions

about net sustainability benefits. Finally, effective human-AI collabo-

ration is essential, as the success of AI in waste management ulti-

mately depends on both technological capabilities and meaningful

human oversight, trust, and integration into existing workflows.

5.1 | Data availability and quality

A core requirement for effective AI systems is access to large volumes

of high-quality, labeled data, a requirement that represents one of the

most significant barriers to AI adoption in waste management.60 AI

models need vast datasets to train effectively, learn patterns, and

make accurate predictions. In the context of waste management, this

F IGURE 3 Challenges and limitations
of AI in circular economy waste
management.
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data includes information on waste stream composition, material

flows, recycling processes, energy consumption, and ideally, opera-

tional outcomes linked to specific input conditions and processing

decisions. Unfortunately, in many regions, particularly in developing

countries or smaller municipalities, such data is either incomplete,

inconsistent, unavailable, or not systematically collected.20 Even in

contexts where data collection occurs, it often lacks the granularity,

labeling accuracy, temporal consistency, and documentation neces-

sary for training robust AI models.

The lack of standardized data-collection methods and inconsis-

tent tracking of waste materials make it difficult for AI systems to

generate meaningful insights. For AI to optimize waste manage-

ment, there needs to be a concerted effort to improve data-

collection practices. This involves not only the installation of sen-

sors and digitization of waste management processes but also the

development of robust databases with standardized formats, qual-

ity control procedures, and clear data governance frameworks that

track the flow of materials throughout the waste lifecycle. How-

ever, such infrastructure investments require substantial financial

resources and institutional coordination that many municipalities

cannot readily mobilize.

Moreover, the proprietary nature of much operational data in

commercial waste management facilities creates additional barriers.

Companies may be reluctant to share data due to competitive

concerns, even when such sharing could benefit broader AI tool

development. Establishing data-sharing agreements, consortia, or

public-private partnerships to build comprehensive training datasets

represents a significant institutional challenge requiring trust-building,

legal frameworks for data protection and usage rights, and mecha-

nisms to ensure equitable benefit-sharing.

Without high-quality, real-time data, AI models may provide

inaccurate recommendations or fail to optimize waste management

processes effectively. Furthermore, AI models trained on data from

one context (e.g., waste streams in developed countries with estab-

lished recycling infrastructure) may not generalize well to other

contexts (e.g., developing countries with varying waste composi-

tions, informal recycling sectors, or limited infrastructure). Yet, such

transfer-learning challenges are rarely addressed in the current

literature.

Data security and privacy are other issues, especially when AI

systems gather data at the community level. For instance, innova-

tive bin systems that monitor household waste generation patterns

could potentially reveal sensitive information about residents' con-

sumption habits, health conditions, or presence/absence from

home, raising privacy concerns that must be addressed through

appropriate data anonymization, security measures, and transpar-

ent data governance policies. To foster confidence and ensure the

broad adoption of AI-driven solutions, procedures for the ethical

collection, use, and exchange of waste-related data must be estab-

lished, including precise consent mechanisms, data minimization

principles, and community engagement in data governance

decisions.

5.2 | Cost and accessibility

The financial investment required to implement AI technologies in

waste management systems can be prohibitive, particularly for devel-

oping countries, smaller municipalities, or underfunded public waste

management agencies. Comprehensive cost accounting must include

not only initial capital expenditures but also ongoing operational costs.

The costs of implementing AI include data collection infrastructure,

expert knowledge and training, human oversight and validation, soft-

ware development and licensing, ongoing computational resources

(processing cycles), hardware infrastructure (sensors, cameras, robotic

systems, edge computing devices), network connectivity and data

transmission, system maintenance and upgrades, and development

time for customization to local conditions.61 Initial capital costs for AI-

powered sorting systems can range from $10,000 to over $100,000

per installation, depending on the system's sophistication and

throughput requirements, with annual maintenance and operational

costs adding 15%–25% to the initial investment.62

The installation and maintenance of this infrastructure require signif-

icant upfront capital, which many regions, particularly in the developing

world, may not be able to afford. Furthermore, the cost of training per-

sonnel to manage and operate AI systems is another barrier. Waste man-

agement operators will need specialized knowledge to interpret the

outputs of AI-driven models and integrate them into existing processes.

In lower-income regions, the availability of trained personnel may be lim-

ited, and developing local capacity requires sustained investment in edu-

cation and training programs, which further impedes widespread

adoption. Even in wealthier nations, small- and medium-sized enterprises

(SMEs) involved in waste management may find the costs of implement-

ing AI technologies too high to justify, especially when the return on

investment is not immediately apparent or when simpler, less costly

operational improvements might yield comparable benefits.

The high cost of deploying and maintaining AI systems raises criti-

cal questions about accessibility and equity. As wealthier regions are

more likely to benefit from AI-driven waste management optimization

than poorer ones, there is a risk of exacerbating existing environmen-

tal justice disparities. Advanced AI systems deployed in affluent areas

could lead to superior waste management outcomes and environmen-

tal quality. At the same time, underserved communities continue to

face inadequate waste services and associated health and environ-

mental hazards.

To overcome this barrier, there is a need for government subsi-

dies, public-private partnerships, or the development of lower-cost,

open-source AI solutions that are accessible to a broader range of

users. Additionally, technology transfer mechanisms, capacity-building

programs, and international development assistance may be necessary

to ensure equitable access to AI-driven waste management innova-

tions globally. In addition, ethical challenges like inclusivity, bias in

algorithmic decision-making, privacy, and social acceptability must be

considered,63 particularly as AI systems may inadvertently perpetuate

or amplify existing biases if trained on non-representative data or

designed without adequate input from affected communities.
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Furthermore, economic analysis must account for opportunity

costs: resources invested in AI systems represent funds that could

alternatively be allocated to expanding basic waste collection services,

improving existing sorting infrastructure, investing in public education

campaigns, or supporting informal recycling sectors. Rigorous compar-

ative cost-effectiveness analysis is needed to determine under what

conditions AI investments provide superior returns compared to alter-

native interventions, an analysis largely absent from the current

literature.

5.3 | Ethical and environmental concerns

Although AI-driven solutions have the potential to increase waste

management efficiency greatly, there are significant ethical and envi-

ronmental concerns that warrant careful consideration. The energy

consumption of AI systems, especially deep learning models that

demand substantial computational power, represents a potentially sig-

nificant environmental cost that is rarely accounted for in sustainabil-

ity assessments.64 Training large neural networks can consume

electricity equivalent to the lifetime emissions of several automobiles,

and if this energy comes from fossil fuel sources, it directly contradicts

sustainability goals.

These systems rely on high-performance computing infrastruc-

tures that, if powered by nonrenewable energy sources, could contrib-

ute to carbon emissions and potentially negate some or all of the

environmental benefits achieved through optimized waste manage-

ment. For example, suppose an AI-powered sorting system reduces

waste sent to landfill by 10% but requires continuous operation of

energy-intensive computing infrastructure. In that case, the net envi-

ronmental benefit depends critically on the energy source powering

the AI system, the baseline efficiency of the alternative sorting

method, and the lifecycle impacts of manufacturing and disposing of

the AI hardware.

In addition to energy consumption, the production of AI hard-

ware, including sensors, servers, robotic systems, and edge computing

devices, requires raw materials, many of which are finite and involve

environmentally damaging extraction processes, such as the mining of

rare earth elements and the use of conflict minerals, as well as toxic

chemicals in semiconductor manufacturing. The e-waste generated by

obsolete AI hardware adds another layer of environmental burden.

This paradox raises a key question: Can AI technologies, which are

intended to promote sustainability in waste management, inadver-

tently contribute to resource depletion and environmental harm

through their energy and material requirements? Comprehensive life-

cycle assessments (LCAs) of AI systems are needed, accounting for

embodied energy and materials in hardware, operational energy con-

sumption, cooling requirements for data centers, network energy for

data transmission, and end-of-life disposal or recycling. Yet, such com-

prehensive LCAs are notably absent from the current literature, which

tends to focus narrowly on operational benefits while externalizing

upstream and downstream environmental costs.

There are also significant ethical concerns about AI's potential to

displace workers in the waste management sector. Automation,

particularly in material recovery facilities, could reduce the need for

manual labor, leading to job losses in an industry that employs many

low-skilled workers, including vulnerable populations.65,66 While AI

systems can improve efficiency and reduce operational costs, it is

essential to consider the human and social impacts of this technologi-

cal shift. Strategies for a just transition must be explored, including:

• Retraining and upskilling programs to help displaced workers tran-

sition to new roles such as AI system monitoring, maintenance, or

data analysis.

• Social safety nets and income support during transition periods

• Ensuring that efficiency gains are shared equitably rather than

accruing exclusively to facility owners

• Engaging with labor unions and worker representatives in the

design and deployment of AI systems.

Moreover, the potential for algorithmic bias in AI systems repre-

sents another ethical concern. If training data reflects existing biases

(e.g., waste management data primarily from affluent areas), AI sys-

tems may perform poorly in underserved communities, potentially

leading to inequitable service quality. Bias could also emerge in opti-

mization algorithms that prioritize efficiency metrics (e.g., cost minimi-

zation) without adequately weighting equity considerations

(e.g., ensuring that all neighborhoods receive adequate service regard-

less of profitability).

Finally, the concentration of AI development expertise and com-

putational resources in a small number of technology companies in

wealthy nations raises concerns about technological dependency, data

sovereignty, and the appropriateness of solutions designed without

input from diverse stakeholders and local communities. Participatory

design approaches that engage waste workers, community members,

and local authorities in the development and deployment of AI sys-

tems can help ensure that these technologies serve broad societal

interests rather than narrow commercial or technocratic objectives.

5.4 | Human-AI collaboration

Although AI technologies are powerful tools for optimizing waste

management, they cannot function effectively in isolation. Human

oversight is necessary to ensure that AI models provide accurate and

actionable insights, validate outputs, handle exceptions and edge

cases, and maintain trust and accountability.67 AI systems rely on data

that may be incomplete, outdated, or flawed, requiring human

decision-makers to validate AI outputs and intervene when necessary.

For instance, AI-driven sorting systems in material recovery facilities

may occasionally misidentify materials, malfunction due to sensor

degradation, or encounter novel waste types not represented in train-

ing data, requiring human operators to monitor performance and

make corrections.
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The relationship between human operators and AI systems should

be one of collaboration and complementarity rather than replacement.

Research in human-computer interaction and automation suggests

that effective human-AI teaming requires:

• Appropriate allocation of functions, with AI handling routine pat-

tern recognition and data processing while humans focus on judg-

ment, exception handling, and contextual interpretation.

• Transparency and explainability in AI decision-making so operators

understand the basis for recommendations and can identify poten-

tial errors.

• Mechanisms for human oversight, intervention, and feedback to

continuously improve system performance.

• Training programs that help operators develop appropriate mental

models of AI capabilities and limitations, fostering calibrated trust.

Accountability and transparency issues are also brought up by the

use of AI in waste management. AI models often operate as “black
boxes,” making it difficult for human operators to understand the logic

underlying their recommendations or predictions 74. This opacity

poses challenges for:

• Debugging when systems malfunction or produce unexpected

results

• Explaining decisions to stakeholders, regulators, or affected

communities

• Ensuring accountability when AI-driven decisions have negative

consequences.

• Building trust among operators and the public.

This lack of transparency can make it difficult for waste manage-

ment professionals to trust the system fully or to explain AI-driven

decisions to stakeholders and regulators. Building trust in AI technol-

ogy requires that human operators understand how AI models arrive

at their conclusions and that AI systems are explainable.

Furthermore, waste management is a complex area with many

parties involved, including the public, the commercial sector, local

governments, informal recycling sectors in many regions, and environ-

mental advocacy groups.68 Public-private partnerships in municipal

solid waste management face challenges due to inadequate local gov-

ernment policies, insufficient stakeholder consultation, and a lack of

grassroots inclusion.69 Collaboration between AI systems and human

operators must be seamless to ensure that waste management strate-

gies align with broader policy goals, regulatory frameworks, commu-

nity values, and practical operational realities.

AI should be seen as a tool that enhances human decision-making

rather than replacing it. Establishing clear protocols for human-AI col-

laboration, including when and how human operators should inter-

vene, what level of autonomy AI systems should have, and how to

escalate decisions, is critical to ensuring that AI-driven waste manage-

ment systems are both effective and ethical.

Furthermore, organizational factors such as operator acceptance

of AI systems, willingness to trust AI recommendations, and the fit of

AI tools within existing workflows and institutional structures signifi-

cantly influence implementation success. These socio-technical

dimensions are often underexplored in technically focused literature

but represent critical determinants of real-world adoption and

effectiveness.

6 | FUTURE PERSPECTIVES AND
OPPORTUNITIES

Looking ahead, there is a tremendous opportunity for innovation and

progress in using AI to optimize waste management in a circular econ-

omy. AI applications in sustainability, resource recovery, and waste

reduction are anticipated to grow as the technology advances, provid-

ing new opportunities for businesses and governments. The future of

AI-driven waste management will be shaped by several important

research and development fields, paving the way for a more effective,

sustainable, and circular economy. These future directions encompass

AI's integration into product design, policy support, decentralized sys-

tems, global waste trade optimization, and sustainable supply chain

management that enhances visibility, promotes ethical practices, opti-

mizes resource use, and reduces waste, all of which are essential for

maximizing resource efficiency and minimizing environmental

impact.70

6.1 | AI for waste reduction and product design

Integrating AI into the product design process is one of the most

exciting prospects for the circular economy. Through optimization and

real-time data analysis in product creation, AI integration in circular

economy solutions boosts efficiency.71 Historically, waste manage-

ment has focused on dealing with products at the end of their life-

cycle, often after they have already contributed to resource depletion

and environmental harm. However, by incorporating AI earlier in the

product lifecycle, specifically during the design phase, manufacturers

can create products that are easier to recycle, repurpose, or refur-

bish.72 This proactive approach will help minimize waste generation at

the source, supporting the core principles of the circular economy.

AI can assist designers by analyzing vast datasets on material

properties, manufacturing processes, and environmental impacts.

Through machine learning models, AI can simulate different product

designs and identify opportunities to reduce waste, improve durabil-

ity, and enhance recyclability. For example, AI can recommend alter-

native materials that are more sustainable or easier to disassemble at

the end of a product's life, enabling manufacturers to design products

that better align with circular-economy goals.73 Additionally, through

predictive maintenance, production planning, defect detection, predic-

tive quality, and energy efficiency, AI can optimize resource use in

manufacturing, ensuring less material is wasted and reducing overall

resource consumption. Developing AI tools that incorporate circular

economy principles from the design stage, predicting product life-

spans, recyclability, and material reuse to minimize waste generation
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at the source, represents a paradigm shift from reactive waste man-

agement to preventive design. Recent research on cotton textile

waste recycling, for example, has demonstrated how AI-enhanced

design-stage decisions can improve material circularity throughout the

product lifecycle.74 As companies increasingly seek to develop sus-

tainable products, AI-driven design tools will become invaluable for

achieving waste minimization and supporting closed-loop production

systems.

6.2 | AI-driven policy and regulation support

AI has the potential to significantly influence waste management laws

and policies that support the goals of the circular economy. Predicting

the long-term effects of waste management policies and techniques is

extremely difficult for policymakers, as these choices often entail intri-

cate trade-offs among social, economic, and environmental consider-

ations. By examining past data, identifying trends, and modeling

future events, AI-driven models can offer insights into the potential

outcomes of policy decisions.

Furthermore, AI can help policymakers evaluate the effectiveness

of existing recycling mandates, waste reduction targets, or carbon

taxes by modeling how these policies impact waste generation,

resource recovery rates, and environmental outcomes over time. AI

can also assess the potential economic costs and benefits of introduc-

ing new regulations, enabling policymakers to make more informed

decisions that balance sustainability goals with economic feasibility.

By providing data-driven insights, AI can guide the development of

policies that support the circular economy while ensuring that these

regulations are adaptable to changing environmental and market con-

ditions.9 AI-driven simulation models can evaluate waste management

policies, forecasting economic, environmental, and social impacts to

aid governments in crafting effective regulations that balance multiple

stakeholder interests.

Furthermore, AI can be used to monitor compliance with waste

management regulations in real-time. By analyzing data from

waste management facilities, transportation networks, and recycling

centers, AI systems can identify non-compliant behavior, such as ille-

gal dumping or inefficient recycling practices, and alert regulatory

authorities.27 This proactive approach to policy enforcement can

enhance regulatory effectiveness and ensure that waste management

practices are consistently aligned with circular-economy goals.

6.3 | Decentralized AI systems for local waste
management

Another key opportunity for future development lies in the decentrali-

zation of AI-driven waste management systems. Currently, many

waste management systems are centralized, with decisions on waste

collection, transportation, and processing made at the regional or

national level. While this approach can be efficient for large-scale

operations, it often overlooks the specific needs and capabilities of

local communities. A more decentralized system with smaller-capacity

waste-treatment facilities integrated at various levels of the urban

environment is anticipated to replace the traditional centralized MSW

management system.75

Decentralized AI systems enable tailoring waste management

strategies to the unique characteristics of individual communities,

empowering local governments and businesses to implement circular

economy practices more effectively. Blockchain-integrated, decentra-

lized AI for regional waste management could enable community-level

processing and reduce reliance on centralized infrastructure, providing

transparent, immutable records of waste flows, material recovery, and

recycling transactions that enhance accountability and enable circular-

economy principles at the grassroots level. Municipalities can create

specialized waste management plans that maximize resource recovery

and reduce environmental impact by using decentralized AI systems

to analyze local garbage generation patterns. For instance, machine

learning techniques such as deep learning, random forests, and neural

networks can accurately forecast garbage generation, supporting

efforts to recover resources and recycle waste at the community

scale.76

Additionally, decentralized AI systems can support local busi-

nesses in adopting circular economy practices by providing insights

into how they can reduce waste, improve product lifecycles, and

engage in material reuse. By optimizing waste management at the

community level, decentralized AI systems can reduce the environ-

mental footprint of waste transportation and improve overall resource

recovery efficiency. Additionally, they offer a venue for local innova-

tion, as communities can test various circular economy tactics custom-

ized to meet their unique requirements. The circular economy's

tenets, which emphasize the importance of local solutions in achieving

global sustainability goals, align with this bottom-up approach to

waste management.

6.4 | AI in global waste trade and supply chains

In addition to its local applications, AI can also play a transformative

role in optimizing global waste trade routes and supply chains. AI tools

can enrich supply chains and optimize waste management, potentially

reducing environmental pollution.77 Waste is not always processed or

recycled in the region where it is generated. Valuable materials are

often traded internationally to regions with specialized recycling facili-

ties or lower processing costs. However, the global waste trade is

complex and fraught with challenges, including logistical inefficiencies,

environmental concerns, and regulatory barriers.

AI offers a way to streamline global waste trade and ensure that

materials are efficiently redistributed for recycling and reuse across

different regions. AI-driven supply chain models can optimize the

transportation of recyclable materials by analyzing data on trade

routes, processing capabilities, and market demand for secondary

materials, thereby elevating performance, reducing the bullwhip

effect, and increasing efficiency and responsiveness.78 AI models

could analyze logistical networks, environmental impacts, and
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regulatory compliance requirements to identify optimal pathways for

international waste flows, potentially reducing transportation costs by

15–30% and associated emissions by 20–40%, based on preliminary

modeling studies; however, real-world implementation requires vali-

dation across diverse regulatory environments and market conditions.

Case studies on AI modeling of international waste trade networks,

incorporating logistical, environmental, and regulatory factors, would

provide valuable empirical evidence to minimize inefficiencies and

promote sustainable cross-border material flows. These models can

recommend the most efficient trade routes for specific materials,

accounting for transportation costs, carbon emissions, and recycling

capacity. By minimizing the environmental impact of waste transpor-

tation and ensuring that materials are processed in facilities that can

maximize their recovery value, AI can improve the overall efficiency of

the global waste trade.

Furthermore, AI can help manage the growing complexity of interna-

tional regulations surrounding waste trade. Many countries have

imposed strict regulations on the import and export of waste, particularly

hazardous materials or electronic waste. AI can analyze these regulatory

frameworks and ensure that waste trade operations comply with all rele-

vant laws, reducing the risk of illegal shipments or environmental dam-

age. This type of AI-driven regulatory compliance will become

increasingly important as international agreements on waste manage-

ment, such as the Basel Convention, continue to evolve.

6.5 | Advanced ML techniques for real-time
decision-making

The application of advanced ML techniques, such as deep learning, rein-

forcement learning, and ensemble methods, for real-time, complex

decision-making in waste sorting, resource recovery, and predictive

maintenance of recycling equipment, represents a critical frontier for AI

in waste management. Reinforcement learning algorithms can optimize

sequential decision-making processes in dynamic waste management

environments, such as adjusting sorting parameters in response to vary-

ing waste composition throughout the day. Deep learning models can

process multimodal sensor data, including visual, infrared, and spectro-

scopic inputs, to achieve more robust material identification under chal-

lenging conditions such as contamination, damage, or unusual lighting.

Predictive maintenance algorithms can analyze equipment performance

data to forecast failures before they occur, reducing downtime and main-

tenance costs by 20%–35% in industrial settings. These advanced tech-

niques require substantial computational resources and high-quality

training data, but offer the potential to significantly enhance the adapt-

ability and performance of AI-driven waste management systems.

6.6 | Collaborative frameworks for scalable
implementation

Encouraging collaborative frameworks among governments, indus-

tries, and tech companies is essential to overcoming barriers to

stakeholder consultation, funding, and grassroots inclusion for scal-

able AI implementations in waste management. Such frameworks

could include:

• Public-private partnerships that share risks and rewards of AI

deployment.

• Industry consortia for developing standardized data formats and

sharing best practices.

• Government funding mechanisms supporting pilot projects and

scaling successful implementations.

• Academic-industry collaborations for continuous innovation and

workforce development.

• Community engagement programs ensure that AI deployment

aligns with local needs and values.

These collaborative approaches can help address the fragmented

nature of the waste management sector, pool resources for expensive

AI infrastructure, and ensure that the benefits of AI-driven optimiza-

tion are distributed equitably across communities and stakeholders.

7 | CONCLUSION

This comprehensive review demonstrates that AI and machine learn-

ing technologies offer transformative potential for advancing circular

economy objectives in waste management. Through intelligent waste-

sorting systems, predictive analytics, and optimized resource recovery

processes, AI can significantly enhance operational efficiency, reduce

environmental impact, and support the transition to sustainable mate-

rial flows. However, while experimental studies report impressive clas-

sification accuracies exceeding 90%, the gap between controlled pilot

projects and real-world industrial implementation remains consider-

able, requiring careful evaluation of performance claims within their

specific contexts.

The realization of AI's full potential in waste management hinges

on addressing critical interconnected challenges. Data availability and

quality, high implementation costs, infrastructure limitations, and the

need for effective human-AI collaboration present substantial barriers,

particularly for developing regions and smaller operations. Moreover,

ethical considerations, including job displacement, algorithmic bias,

privacy concerns, and the environmental footprint of AI systems

themselves, demand systematic attention. The paradox of deploying

resource-intensive technologies to promote sustainability requires rig-

orous life-cycle assessments and ethical frameworks to ensure net-

positive environmental outcomes.

Moving forward, success requires a holistic approach encompass-

ing technical innovation, economic viability, and social equity. Priority

areas include developing accessible, low-cost AI solutions; establishing

standardized evaluation frameworks and global databases; creating

collaborative structures between governments, industries, and tech-

nology providers; and investing in education and capacity building.

Only through such comprehensive, multi-stakeholder efforts, combin-

ing continued research, strategic investment, and inclusive policy
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development, can AI-driven waste management deliver on its promise

of supporting a truly circular, sustainable, and equitable economy

worldwide.
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