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ARTICLE INFO ABSTRACT

Keywords: Nanoparticle-based therapies have emerged as transformative tools in oncology, offering targeted drug delivery,
Nanomedicine improved pharmacokinetics, and minimised systemic toxicity. However, accumulating evidence suggests that
Cardiotoxicity whilst nanomedicines enhance therapeutic efficacy, they may inadvertently induce cardiotoxic effects through
Bioengineering mechanisms including oxidative stress, mitochondrial dysfunction, immune activation, endothelial injury, and
Nanoparticles

off-target accumulation in cardiac tissues. This narrative review synthesises current literature on the cardiotoxic
potential of various nanoparticle classes, including liposomes, polymeric nanoparticles, metallic nanostructures,
dendrimers, and carbon-based materials. Following an established narrative review framework, we examined
how nanoparticle physicochemical properties, administration parameters, and patient-specific factors contribute
to cardiac risks, evaluated current and emerging methodologies for detecting nanoparticle-induced cardiotoxi-
city, and explored mitigation strategies through nanomedicine design innovations and artificial intelligence
integration. The assessment of nanoparticle-induced cardiotoxicity faces significant challenges, including absent
standardised evaluation protocols, limited sensitivity of traditional diagnostic tools, and difficulties isolating
nanoparticle-specific effects from concurrent cancer therapies. Promising solutions encompass advanced in vitro
cardiac models (organoids, heart-on-a-chip), novel biomarkers (microRNAs, extracellular vesicles), molecular
imaging technologies, and computational modelling. Preventative strategies involve surface modification, bio-
degradable or biomimetic materials, co-delivery of cardioprotective agents, and stimuli-responsive drug delivery
systems. Artificial intelligence is enhancing nanoparticle design optimisation, toxicity prediction, and perso-
nalised monitoring through digital twin models and Al-assisted imaging. As nanomedicine advances cancer care,
addressing cardiotoxic risks through interdisciplinary collaboration, improved regulatory frameworks, and
precision cardio-oncology strategies is imperative for ensuring safe, effective nanoparticle use in cancer treat-

Precision oncology

ment.
1. Introduction nanostructures, and dendrimers are increasingly employed to enhance
the therapeutic index of anticancer agents [1]. The ability of NPs to
Cancer nanomedicine has revolutionised oncology by enabling tar- selectively accumulate in tumours through the enhanced permeability
geted delivery of chemotherapeutics, improving drug solubility, en- and retention (EPR) effect or via active targeting ligands has expanded
hancing pharmacokinetics, and reducing systemic toxicity. treatment options and opened new avenues for imaging and combined
Nanoparticles (NPs) such as liposomes, polymeric micelles, metallic therapies [2]. Understanding nanoparticle behaviour in biological
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systems requires consideration of the protein corona, a dynamic layer of
proteins that adsorbs onto nanoparticle surfaces upon contact with
biological fluids, fundamentally altering their biological identity and
interactions [3].

Despite these advantages, emerging evidence highlights that nano-
particle-based therapies may induce unintended cardiotoxic effects.
Unlike classical chemotherapy agents whose cardiotoxicity mechanisms
are relatively well understood, nanoparticles can induce complex car-
diac injury through a combination of oxidative stress, inflammatory
responses, endothelial dysfunction, and off-target accumulation [4].
The unique physicochemical properties of NPs, including their size,
surface chemistry, and composition, modulate their interaction with
cardiac tissue and contribute to potential toxicity [5]. Surface en-
gineering strategies, including covalent coating methods, have emerged
as critical approaches to enhance biocompatibility and reduce adverse
cardiovascular effects [6]. Advanced surface modification techniques,
such as those applied to MXene-based nanoplatforms, have demon-
strated that rational surface engineering can simultaneously improve
therapeutic performance while potentially mitigating toxicity through
enhanced biocompatibility and controlled biological interactions [7].

The rationale for this narrative review stems from the critical gap
between the rapid clinical translation of nanomedicines in cancer
therapy and the incomplete understanding of their cardiovascular
safety profiles. Whilst nanoparticle-based cancer treatments have de-
monstrated remarkable therapeutic benefits, cardiovascular complica-
tions represent a significant barrier to their optimal clinical im-
plementation. Current literature lacks a comprehensive synthesis that
bridges nanotoxicology, cardio-oncology, and advanced nanomedicine
design strategies. Furthermore, the absence of standardised assessment
protocols for nanoparticle-induced cardiotoxicity creates challenges for
clinicians, researchers, and regulatory bodies in evaluating and mana-
ging these risks. Traditional morphological imaging techniques have
proven insufficient for evaluating early therapeutic response and de-
tecting subclinical cardiotoxicity, necessitating the integration of ad-
vanced molecular imaging modalities and multimodal imaging ap-
proaches that can visualize biological processes at the cellular and
molecular level [8]. As the field of precision oncology continues to
expand with increasingly sophisticated nanoformulations, there is an
urgent need to systematically examine the cardiotoxic mechanisms,
detection methodologies, and mitigation strategies to ensure patient
safety whilst preserving therapeutic efficacy. Recent advances in bio-
nanomaterials have demonstrated promising anticancer properties
while addressing biocompatibility concerns, yet their cardiac safety
profiles require rigorous evaluation [9].

This review offers several novel contributions to existing literature.
Firstly, unlike previous reviews that primarily catalogue nanoparticle
toxicity or discuss cancer-related cardiotoxicity separately, this work
uniquely integrates fundamental nanotoxicology principles with clin-
ical cardio-oncology practice through a mechanistic lens, explicitly
connecting physicochemical nanoparticle properties to specific mole-
cular pathways of cardiac injury. Secondly, this review goes beyond
existing literature by critically examining clinically approved nano-
drugs and their real-world cardiotoxicity profiles, providing actionable
insights for current clinical practice rather than limiting discussion to
experimental systems. Thirdly, we uniquely incorporate the emerging
role of artificial intelligence and machine learning in predicting, de-
tecting, and mitigating nanoparticle-induced cardiac injury with spe-
cific examples of successful clinical applications, reflecting the latest
technological advances that have not been comprehensively reviewed
elsewhere. Fourthly, this work synthesises cutting-edge methodologies
including cardiac organoids, heart-on-a-chip platforms, novel bio-
markers (microRNAs, extracellular vesicles), molecular imaging tech-
nologies, and digital twin technologies in the specific context of na-
noparticle cardiotoxicity assessment, an integration absent in previous
reviews. Fifthly, the comprehensive examination of preventative stra-
tegies, from advanced surface modification techniques to stimuli-
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responsive systems, provides actionable insights with specific design
parameters for researchers developing next-generation nanomedicines.
Finally, this review addresses contemporary challenges in regulatory
frameworks and standardisation efforts with specific recommendations
for clinicians, regulatory agencies, and nanomaterial designers, making
it particularly relevant for translational research and clinical practice in
the rapidly evolving landscape of precision oncology.

The primary aim of this narrative review is to provide a compre-
hensive, evidence-based synthesis of nanoparticle-mediated cardio-
toxicity in cancer treatment and to evaluate current and emerging na-
nomedicine interventions designed to mitigate these adverse
cardiovascular effects.

The specific objectives are to:

1. Systematically examine the diverse classes of nanoparticles used in
oncology and characterise their physicochemical properties that
influence cardiac interactions.

2. Elucidate the molecular and cellular mechanisms underlying nano-
particle-induced cardiotoxicity, including oxidative stress, mi-
tochondrial dysfunction, immune activation, and endothelial injury.

3. Identify and analyse the key factors that modulate cardiotoxic risk,
including nanoparticle characteristics (size, shape, surface chem-
istry), administration parameters (dose, route, duration), and pa-
tient-specific variables (age, comorbidities, genetic factors).

4. Evaluate current methodologies and emerging technologies for de-
tecting and monitoring nanoparticle-induced cardiotoxicity, in-
cluding advanced in vitro models, novel biomarkers, and imaging
techniques.

5. Explore innovative nanomedicine design strategies and interven-
tions that minimise cardiac toxicity whilst maintaining or enhancing
anticancer efficacy.

6. Assess the role of artificial intelligence and computational modelling
in optimising nanoparticle design, predicting toxicity, and enabling
personalised cardio-oncology monitoring.

1.1. Narrative review framework

This manuscript employs a narrative review methodology, which is
particularly suited to synthesising complex, multidisciplinary topics
where diverse perspectives and evolving knowledge require inter-
pretative integration rather than purely systematic quantification. The
narrative review approach was selected because it allows for a com-
prehensive exploration of nanoparticle-mediated cardiotoxicity across
multiple domains, including nanotechnology, pharmacology, cardi-
ology, oncology, and artificial intelligence, whilst providing contextual
analysis and expert interpretation of emerging trends and translational
implications.

The review was conducted following an established narrative review
framework with the following methodological approach: First, a com-
prehensive literature search was performed across major scientific da-
tabases including PubMed, Web of Science, Scopus, and Google Scholar,
using relevant keywords such as 'nanoparticles,’ 'nanomedicine,' 'car-
diotoxicity,' 'cancer,' 'oncology,' 'cardiac safety,' 'nanotoxicology," and
'artificial intelligence.' The search encompassed peer-reviewed original
research articles, systematic reviews, meta-analyses, clinical trials, and
regulatory documents published predominantly within the last decade,
with selective inclusion of seminal earlier works where foundational
concepts were established. Second, the selected literature was critically
appraised based on scientific rigour, relevance to cardio-oncology, and
contribution to understanding nanoparticle-induced cardiovascular ef-
fects. Third, the information was synthesised thematically to present a
coherent narrative that progresses from fundamental mechanisms to
clinical implications and future directions. Unlike systematic reviews
that prioritise exhaustive inclusion based on predefined protocols, this
narrative approach enables flexibility to incorporate emerging tech-
nologies, discuss controversial findings, and provide expert perspectives
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on translational challenges and opportunities in the rapidly evolving
field of cancer nanomedicine.

Given the growing clinical use of nanomedicine in cancer, under-
standing the mechanisms underlying nanoparticle-mediated cardio-
toxicity is crucial. Additionally, designing nanomedicines that mitigate
or avoid cardiac injury whilst preserving anticancer efficacy remains a
critical challenge. This review aims to provide a comprehensive over-
view of the types of nanoparticles used in oncology, elucidate their
cardiotoxic mechanisms, discuss factors influencing toxicity, examine
current and future nano-medicine strategies to minimise cardiac ad-
verse effects, as well as explore the transformative role of artificial in-
telligence in advancing safer nanoparticle design and personalised
cardio-oncology care.

2. Types of nanoparticles used in oncology

Nanoparticles employed in cancer treatment vary widely in com-
position, size, surface chemistry, and functionalization, each with un-
ique advantages and potential for cardiotoxicity. Understanding the
characteristics of these nanoparticles is essential to appreciating their
interactions with cardiac tissues. Notably, the principles governing
nanoparticle delivery to solid tumours, including biological identity
acquisition, organ competition for circulating nanoparticles, tumour
entry mechanisms, tumour microenvironment navigation, and the in-
fluence of physicochemical properties on transport processes, directly
impact both therapeutic efficacy and off-target cardiac accumulation
[3]. Fig. 1 provides a schematic overview of different types of nano-
particles used in oncology.

2.1. Liposomes

Liposomes are spherical vesicles composed of phospholipid bilayers
that encapsulate therapeutic agents, mostly used due to their high
biocompatibility, biodegradability and bioavailability [10]. Liposomal
formulations such as Doxil (liposomal doxorubicin) have demonstrated
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reduced systemic cardiotoxicity compared to free drugs due to altered
biodistribution and prolonged circulation times [11]. However, lipo-
some accumulation in non-target tissues including the heart can still
provoke toxicity, especially at higher doses or with repeated adminis-
tration. The formation of the protein corona on liposomal surfaces
significantly influences their cardiac uptake, with specific plasma pro-
teins such as apolipoproteins and immunoglobulins mediating re-
cognition by cardiac endothelial cells and subsequent translocation into
myocardial tissue.

2.2. Polymeric nanoparticles

Polymeric nanoparticles are composed of biodegradable polymers
such as poly (lactic-co-glycolic acid) (PLGA) or polyethylene glycol
(PEG)-modified polymers. These systems offer controlled drug release
and targeted delivery capabilities [12]. Their surface properties can be
engineered to minimize cardiac uptake, but polymer degradation pro-
ducts and surface chemistry may elicit inflammatory or oxidative re-
sponses contributing to cardiotoxicity [13].

The protein corona on polymeric nanoparticles varies significantly
with surface modification. PEGylated surfaces preferentially adsorb
dysopsonins (albumin, clusterin, histidine-rich glycoprotein), reducing
macrophage recognition called ‘stealth’ and increasing the circulatory
half-life, a tool primarily used to reduce toxicity by allowing target
delivery [14]. Nonetheless, repeated PEGylation triggers anti-PEG an-
tibodies, causing accelerated clearance and potential cardiac immune
complex deposition [15-17]. PLGA nanoparticles develop a biomole-
cular corona in vivo, often including immunoglobulins and complement
proteins as part of the opsonin profile. They can also adsorb apolipo-
proteins, notably Apolipoprotein E (ApoE), which has been shown to
mediate uptake of PLGA-PEG nanoparticles via the LDL receptor (LDLr)
pathway [18]. During PLGA degradation, acidic monomers (lactic and
glycolic acid) accumulate and the intraparticle microenvironment may
drop to pH values as low as ~1.5-3.5, potentially causing local protein
destabilisation and generation of inflammatory cues [19].

Fig. 1. Overview of nanoparticle classes and cardiac
toxicity pathways. A schematic representation of major
nanoparticle types employed in cancer therapy, including
liposomes, polymeric nanoparticles, metallic nano-
particles, dendrimers, and carbon-based materials. The
figure highlights their structural features, therapeutic ad-
vantages, and annotated cardiotoxicity risks such as oxi-
dative stress, mitochondrial dysfunction, immune activa-
tion, endothelial injury, and off-target accumulation.
Arrows and callouts illustrate key interactions and me-
chanistic links to cardiac tissue.
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2.3. Metallic nanoparticles

Metal-based nanoparticles including gold (AuNPs), silver (AgNPs),
and iron oxide nanoparticles are used for imaging, drug delivery, and
photothermal therapies [20]. Metallic NPs have unique optical and
magnetic properties but are prone to induce reactive oxygen species
(ROS) generation and mitochondrial damage in cardiomyocytes
[21,22]. Their persistence and potential bioaccumulation raise concerns
about long-term cardiac safety.

Gold nanoparticles rapidly acquire coronas dominated by fi-
brinogen, which undergoes conformational changes exposing Mac-1
integrin binding sites that recruit inflammatory cells in the body [23].
This could potentially affect cardiac tissues. Similarly, silver nano-
particles continuously release Ag" ions that cross-link corona proteins
through cysteine residues, causing aggregation of NP-protein complexes
[24]. superparamagnetic iron oxide nanoparticles NPs (SPION) coronas
frequently include transferrin (and sometimes apolipoproteins), pro-
viding potential access to TfR1 (often upregulated after myocardial
injury) and LDL-receptor family pathways in the heart [25,26]. Com-
plement adsorption on NP coronas can activate the alternative
pathway, contributing to pro-inflammatory biodistribution [27]. To-
gether, these NP-corona-immune interactions provide biologically
plausible pathways that could contribute to cardiac toxicities.

2.4. Dendrimers

Dendrimers are highly branched, monodisperse macromolecules
capable of drug encapsulation or surface conjugation. Poly(amidoa-
mine) (PAMAM) dendrimers have been explored in oncology for tar-
geted delivery [28]. While dendrimers improve drug solubility [29], the
positively charged dendrimers have been shown to induce cytotoxicity
and drastic phenotypic alterations when used as nanocarriers [30].

Cationic PAMAM dendrimers, particularly higher-generation amine-
terminated structures, show strong, charge-dependent binding of serum
proteins and complement components (including C3 and C4b) in their
protein coronas and are capable of activating complement in human
plasma [31]. This complement activation provides a mechanistic basis
for complement-mediated hypersensitivity responses and raises concern
for complement activation-related pseudo-allergy (CARPA) and pos-
sible cardiovascular involvement, although dendrimer-specific CARPA
events have not been systematically demonstrated. The highly cationic
surface of PAMAM dendrimers also promotes cellular internalisation
and endosomal buffering, contributing to a “proton-sponge”-type me-
chanism that facilitates endosomal escape. This process is linked to
mitochondrial membrane potential loss, reactive oxygen species (ROS)
generation, and cytotoxicity in mammalian cell models [32,33] Surface
modification of PAMAM dendrimers with carboxyl groups markedly
reduces complement activation, hemolytic activity and other in-
flammatory responses, but often also diminishes cellular uptake and
endosomal escape, which may limit therapeutic efficacy for in-
tracellular delivery [34,35].

2.5. Carbon-based nanoparticles

Carbon nanotubes (CNTs) and graphene oxide (GO) have potential
in drug delivery and photothermal cancer therapies [35]. However,
their biopersistence, shape, and surface chemistry can provoke in-
flammatory responses and endothelial damage in cardiac tissues [36].

Carbon nanotubes (CNTs) can bind serum proteins via strong -
and hydrophobic interactions, forming dense coronas. Some studies
report significant structural alteration of adsorbed fibrinogen on CNTs
and related carbon-nanomaterials, and this altered fibrinogen can en-
gage the Mac-1 (aMfp2) integrin on leukocytes, promoting in-
flammatory responses [37,38]. The high aspect ratio of CNTs has been
implicated in “frustrated phagocytosis” by macrophages, persistent
NLRP3 inflammasome activation and IL-1f release in fibrotic and lung
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models, suggesting a mechanistic basis for chronic inflammation, which
could also be relevant in cardiac tissues [39]. Graphene oxide (GO)
sheets, owing to their large planar surfaces (up to um scale) and sharp
edges, also form extensive protein coronas and can aggregate under
physiological conditions; their sharp edges and large surface area may
contribute to endothelial membrane disruption and microvascular
clearance issues, though direct evidence in cardiac capillaries remains
limited [40,41]. Both CNTs and GO exhibit considerable biopersistence
in vivo, with limited biodegradation over months and possible main-
tenance of chronic inflammatory stimuli [41,42]. Accordingly, these
nano-bio interactions provide plausible mechanistic pathways that
could contribute to cardiac toxicities via endothelial injury, micro-
vascular dysfunction, chronic inflammation and fibrosis.

Table 1 systematically catalogues common nanoparticle classes used
in oncology, linking their physicochemical properties to specific mo-
lecular mechanisms of cardiotoxicity and clinically approved examples,
providing a comprehensive reference for understanding structure-toxi-
city relationships in cancer nanomedicine. An overview of nanoparticle
classes and their cardiotoxic pathways is provided in Fig. 1.

2.6. Protein corona: the critical determinant of nanoparticle biological
behaviour

Upon entry into the bloodstream, nanoparticles immediately en-
counter a complex milieu of proteins, lipids, and biomolecules that
rapidly adsorb onto their surfaces, forming what is termed the "protein
corona" [3]. This protein corona, rather than the pristine nanoparticle
surface, becomes the biological identity that cells and tissues recognize,
profoundly influencing biodistribution, cellular uptake, and potential
off-target cardiac effects [43]. The corona composition is dynamic and
evolves over time, transitioning from an initial "soft corona" of loosely
bound proteins to a more stable "hard corona" of tightly associated
proteins [44].

The protein corona's composition is determined by multiple factors
including nanoparticle size, shape, surface charge, hydrophobicity, and
the biological environment encountered. For cardiac tissues, this is
particularly significant because emerging data show that specific
corona proteins can act as ‘molecular fingerprints’ that either enhance
or attenuate cardiac uptake, with apolipoprotein-enriched coronas re-
directing nanoparticles between heart and non-cardiac organs [45,46].
For instance, adsorption of opsonins such as immunoglobulins and
complement proteins can enhance recognition by immune and en-
dothelial cells, promoting inflammatory accumulation. Conversely,
dysopsonins like albumin tend to reduce phagocytic uptake and prolong
circulation, although albumin-rich coronas can still engage specific
receptors (e.g., albumin and scavenger receptors) on endothelial and
other cells and thereby modulate vascular responses [47].

The protein corona directly impacts cardiotoxicity through several
mechanisms: (1) changing biodistribution and the cardiac dose of na-
noparticles [48]; (2) Modulating cellular uptake in cardiomyocytes and
cardiac endothelial cells [14]; (3) shielding the nanoparticle surface
and preventing direct membrane damage [49]; (4) controlling metal/
ion release and oxidative stress / ferroptosis in cardiovascular cells
[50]; (5) driving or mitigating inflammation and immune-mediated
cardiotoxicity [14,50]; (6) influencing coagulation and hemocompat-
ibility through fibrinogen protein corona, affecting coronary perfusion
[51]; (7) modulating cardiomyocyte Ca* handling and mitochondrial
function (silica NP example) [52]; (8) encoding patient-specific differ-
ences in cardiotoxic response (Cisneros et al., 2024). Importantly, the
protein corona can mask targeting ligands on nanoparticle surfaces,
reducing tumour specificity and increasing and contributing to unin-
tended cardiac exposure.

Surface engineering strategies to minimize problematic protein
corona formation include PEGylation, zwitterionic coatings, and bio-
mimetic cell membrane camouflaging. However, these approaches have
limitations. PEGylated nanoparticles acquire distinct coronas, albeit
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Table 1 (continued)

Clinically Approved

Examples

Molecular Mechanisms

Cardiac Toxicity Risks

Specific Physicochemical

Properties

Key Advantages

Composition

Nanoparticle Type

Currently in preclinical and
early clinical development

Frustrated phagocytosis leading to

No approved clinical carbon-

Size: Variable (CNTs: nm

Very high aspect ratio and
photothermal properties

Carbon nanotubes

Carbon-Based

Oyedeji, O.F. Olawuyi et al.

chronic inflammasome (NLRP3, NF-kB)
activation; prolonged oxidative stress via
persistent ROS generation; endothelial

diameter, um length); Surface: nanotube/graphene oncology

Hydrophobic; High aspect ratio

(single-walled, multi-

Nanoparticles

products; cardiovascular risks are
inferred from inhalation and

systemic exposure models:

(CNTs, graphene); large

walled), graphene and

graphene oxide,

[39,62]

surface area for loading;

tight junction disruption through VE-

potential for imaging and

photothermal ablation

fullerenes, carbon

dots

cadherin downregulation; pro-fibrotic

TGF-p1 signaling

oxidative stress, endothelial
dysfunction, inflammation,

promotion of atherosclerosis and
possible adverse cardiac

remodeling

Nano TransMed 5 (2026) 100113

with different compositions, indicating these strategies modulate rather
than eliminate the phenomenon [53]. Advanced characterization
techniques such as liquid chromatography-mass spectrometry (LC-MS)
based proteomics and differential centrifugal sedimentation, now en-
able quantitative mapping of corona composition and improve predic-
tion of nanoparticle-heart interactions [54]. Understanding and
managing the protein corona remains a central challenge in the de-
velopment of cardiovascularly safe nanomedicines, as the corona ulti-
mately determines whether NPs reach intended tumour tissues or ac-
cumulate in off-target organs like the heart.

3. Mechanisms of nanoparticle-mediated cardiotoxicity

Nanoparticle-induced cardiotoxicity arises from multifactorial and
often interrelated mechanisms that affect cardiomyocytes, endothelial
cells, and the cardiac microenvironment. Understanding these path-
ways is critical for developing safer nanomedicines and effective car-
dioprotective strategies. Table 2 summarises mechanisms of nano-
particle mediated cardiotoxicity as well as their cellular targets and
consequences of damage to cardiac tissues while Fig. 2 shows a
pathway diagram illustrating how nanoparticles induce cardiotoxicity
via oxidative stress, inflammation, endothelial damage, and fibrosis.

3.1. Influence of NPs composition and administration regimen on
cardiotoxicity

The composition and administration regimen of nanoparticle-based
therapies plays a decisive role in shaping cardiotoxic risk. Clinical ex-
perience with liposomal anthracyclines illustrates this point clearly.
Pegylated liposomal doxorubicin (PLD; Doxil) consistently demon-
strates a markedly safer cardiac profile than conventional doxorubicin,
even when administered at similar cumulative doses. In a cohort re-
ceiving = 500 mg/m? PLD, no clinical heart failure was observed and
only a minority developed modest declines in ejection fraction [11]. A
meta-analysis of randomized trials in multiple cancer types similarly
found significantly lower rates of heart failure with PLD-based regimens
[70]. These outcomes are tightly linked to the pharmacokinetics im-
posed by the liposomal carrier: by restricting distribution into cardiac
tissue and moderating free-drug peaks, liposomes reduce myocardial
exposure and thereby the probability of cumulative cardiac injury.

While liposomal systems illustrate how altered biodistribution can
mitigate chronic cardiotoxicity, metallic nanoparticles highlight the
importance of cumulative burden and dosing interval. Iron oxide na-
noparticles, for example, have been shown to induce ferroptotic injury
in cardiomyocytes following lysosomal degradation and release of
catalytically active ferrous iron, promoting lipid peroxidation and mi-
tochondrial dysfunction [50]. A broader review of magnetic nano-
particles notes that cardiovascular toxicity is strongly shaped by dose,
exposure duration, surface chemistry, and biodegradation profile, with
persistent particles posing particular concern for long-term cardiac
accumulation [60]. Although human data remain limited, these ex-
perimental findings suggest that dosing schedules that allow in-
sufficient recovery time between administrations may permit oxidative
injury and inflammation to accumulate progressively.

The clinical relevance of regimen design becomes evident when
comparing approved nanomedicine protocols. Standard Doxil dosing of
50 mg/m? every four weeks as a one-hour infusion contrasts sharply
with bolus administration of conventional doxorubicin at 60 mg/m?
every three weeks. Despite the lower per-cycle dose, liposomal sche-
dules reach comparable cumulative exposures while preserving anti-
tumor efficacy and substantially reducing cardiac injury [71]. En-
capsulation and controlled infusion attenuate peak free-drug
concentrations, limit acute hemodynamic reactions, and provide a more
gradual equilibrium of the protein corona, all of which may temper
acute and chronic cardiotoxicity. Other nano-formulations, such as nab-
paclitaxel (Abraxane), similarly rely on weekly lower-dose
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Table 2
Summary of Mechanisms of Nanoparticle-Mediated Cardiotoxicity.
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Mechanism Description

Key Cellular Targets Consequences

Oxidative Stress and Mitochondrial
Dysfunction [63,64]

Inflammatory and Immune Activation [65]

Endothelial Dysfunction [66]

damage

impaired NO production
Off-Target Accumulation [67,68]
Extracellular Matrix Remodelling [69]

ROS generation leading to DNA and lipid

Cytokine release, complement activation
Damage to vascular endothelium and

Retention of nanoparticles in cardiac tissue
Activation of fibroblasts, promoting fibrosis

Cardiomyocytes Apoptosis, contractile dysfunction

Macrophages, immune cells
Endothelial cells

Myocardial inflammation, fibrosis
Microvascular obstruction,
ischemia

Chronic inflammation, toxicity
Fibrosis, impaired myocardial
function

Cardiomyocytes, fibroblasts
Cardiac fibroblasts

administration to reduce acute infusion-related complications [72],
reinforcing the broader principle that regimen optimization is integral
to the clinical tolerability of nano-enabled therapeutics. As the field
advances toward increasingly complex nanostructures with diverse
clearance profiles, systematic evaluation of dosing schedules rather
than reliance on conventional chemotherapy paradigms will be central
to preventing avoidable cardiotoxicity and ensuring therapeutic dur-
ability.

3.2. Direct cardiac cell toxicity

One of the primary mechanisms by which nanoparticles exert car-
diotoxicity is through direct injury to cardiomyocytes. Nanoparticles
can induce oxidative stress by generating reactive oxygen species
(ROS), overwhelming the cell's antioxidant defenses. Specifically, na-
noparticles trigger ROS generation through multiple molecular cas-
cades: (1) NADPH oxidase (NOX) activation, particularly NOX2 and
NOX4 isoforms highly expressed in cardiomyocytes; (2) disruption of
the mitochondrial electron transport chain at Complex I (NADH dehy-
drogenase) and Complex III (cytochrome bcl complex), causing elec-
tron leakage and superoxide (O, ) formation; (3) depletion of en-
dogenous antioxidants including glutathione (GSH), superoxide
dismutase (SOD), and catalase; and (4) Fenton and Fenton-like reac-
tions catalyzed by metallic nanoparticles generating highly reactive
hydroxyl radicals (OH) from hydrogen peroxide. ROS accumulation
causes lipid peroxidation producing toxic aldehydes such as mal-
ondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), DNA damage
including 8-hydroxydeoxyguanosine (8-OHdG) formation, and protein
oxidation affecting critical contractile proteins and ion channels,
leading to mitochondrial dysfunction and triggering apoptosis or ne-
crosis [63,64].

Mitochondrial damage is particularly detrimental in cardiomyocytes
due to their high energy demand. Metallic nanoparticles, such as silver
and gold nanoparticles, have been shown to accumulate within mi-
tochondria, localizing to the intermembrane space and mitochondrial
matrix, disrupting the electron transport chain and reducing ATP pro-
duction [73]. This ATP depletion triggers AMP-activated protein kinase
(AMPK) activation and downstream metabolic stress responses. Ad-
ditionally, mitochondrial membrane potential (AW,,) dissipation occurs
through opening of the mitochondrial permeability transition pore
(mPTP), resulting in cytochrome c release into the cytosol, caspase-9
activation, and initiation of the intrinsic apoptosis pathway [74]. Mi-
tochondrial DNA (mtDNA) is particularly vulnerable to oxidative da-
mage due to limited repair mechanisms, and mtDNA damage further
impairs oxidative phosphorylation capacity through reduced tran-
scription of electron transport chain subunits. Furthermore, nano-
particle exposure can impair calcium handling in cardiomyocytes by
disrupting calcium channels and pumps including i-type calcium
channels (LTCC), ryanodine receptors (RyR2), and sarco/endoplasmic
reticulum Ca*-ATPase (SERCA2a), contributing to contractile dys-
function and arrhythmogenic potential through delayed after depolar-
izations and triggered activity [75].

3.3. Inflammatory and immune-mediated cardiotoxicity

Nanoparticles can activate innate immune responses, leading to
myocardial inflammation. Cardiac macrophages and resident immune
cells recognize nanoparticles as foreign entities, initiating inflammatory
cascades through multiple pattern recognition receptors (PRRs) in-
cluding Toll-like receptors (TLRs), particularly TLR4, NOD-like re-
ceptors (NLRs), and scavenger receptors such as CD34 and CD36. This
recognition triggers downstream signaling through MyD88-dependent
and TRIF-dependent pathways, activating nuclear factor-kappa B (NF-
kB) and activator protein-1 (AP-1) transcription factors, which drive
expression of pro-inflammatory genes [76].

The resulting signaling cascade involves sequential release of pro-
inflammatory cytokines and chemokines such as TNF-a, IL-1f, IL-6, IL-
8 and MCP-1/CCL2 are upregulated and contribute to leukocyte re-
cruitment, myocardial injury and adverse remodelling, with IL-8 and
MCP-1 in particular linked to post-infarction leukocyte infiltration and
worse outcomes [77]. TNF-a promotes cardiomyocyte apoptosis and
heart failure through activation of both intrinsic and extrinsic caspase
pathways and induces endothelial and cardiac-cell expression of ad-
hesion molecules (ICAM-1, VCAM-1 and E-selectin), thereby facilitating
inflammatory cell recruitment to the myocardium [78]. In parallel, IL-
1P produced via NLRP3-ASC-caspase-1 inflammasome activation exerts
direct negative inotropic effects by inducing iNOS and excess nitric
oxide with subsequent peroxynitrite formation, leading to nitrosative
stress and contractile failure in experimental models of cytokine-in-
duced myocardial dysfunction [62].

This cytokine storm can cause myocardial injury, fibrosis, and
contribute to heart failure progression through persistent activation of
cardiac fibroblasts via IL-6/JAK/STAT3 signaling and TNF-a/NF-«xB
pathways, promoting transition from acute inflammation to chronic
fibrotic remodeling [79]. For example, dendrimers with cationic surface
charges have been reported to induce CARPA, resulting in acute cardiac
events in susceptible individuals [31]. Moreover, nanoparticle-induced
systemic inflammation may exacerbate pre-existing cardiovascular
conditions. Circulating inflammatory mediators increase systemic vas-
cular resistance through endothelin-1 upregulation, reduce endothelial
nitric oxide bioavailability, and destabilize atherosclerotic plaques by
activating matrix metalloproteinases (particularly MMP-2 and MMP-9),
increasing acute coronary syndrome risk in vulnerable patients [80].

3.4. Endothelial dysfunction and vascular toxicity

The cardiac endothelium plays a crucial role in regulating vascular
tone and myocardial perfusion. Nanoparticles can injure endothelial
cells through oxidative stress and inflammation, leading to endothelial
dysfunction [66]. Mechanistically, nanoparticle-induced ROS produc-
tion in endothelial cells has been shown to involve activation of NADPH
oxidases (notably NOX4, and in some contexts NOX2) and mitochon-
drial perturbation, overwhelming antioxidant systems such as super-
oxide dismutase (SOD), catalase and glutathione peroxidase. Silver
nanoparticles, for example, increase ROS generation in human umbi-
lical vein endothelial cells (HUVECs) via NOX4 upregulation, while
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Fig. 2. Pathway diagram of nanoparticle-induced cardiotoxicity. A mechanistic pathway diagram depicting how various nanoparticles trigger cardiac injury. The
infographic traces nanoparticle entry and disposition, annotates physicochemical determinants (size, shape, charge, dose), and maps injury routes including oxidative
stress, inflammation, immune cell activation, endothelial dysfunction, off-target accumulation, and extracellular matrix remodeling.

impairing Nrf2-dependent antioxidant responses [81]. This oxidative
stress promotes classical mechanisms of endothelial nitric oxide syn-
thase (eNOS) dysfunction and uncoupling: oxidation of the cofactor
tetrahydrobiopterin (BH,) to BH,, leading eNOS to generate superoxide
rather than NO; altered phosphorylation of eNOS, with reduced phos-
phorylation at the activating Ser1177 site and increased phosphoryla-
tion at inhibitory residues under oxidative conditions; and post-trans-
lational modifications, including S-glutathionylation and nitrosylation,

that further reduce enzymatic activity. Persistent oxidative stress also
downregulates eNOS expression at the transcriptional level, resulting
reduction in NO bioavailability diminishes endothelium-dependent
vasodilation, increases basal vascular tone and favours platelet activa-
tion and aggregation [82].

In parallel, nanoparticles compromise endothelial barrier integrity.
Multiple studies show that zinc oxide, gold, silver and titanium dioxide
nanoparticles disrupt tight and adherens junctions, including claudins,
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occludin, ZO-1 and VE-cadherin, leading to increased endothelial per-
meability in lung and brain microvascular beds [83]. These effects often
coincide with cytoskeletal remodelling and junctional protein inter-
nalisation, consistent with activation of RhoA/ROCK signalling, a ca-
nonical pathway by which inflammatory mediators and VEGF increase
endothelial permeability via actin stress fibre formation and junctional
protein phosphorylation [84]. Increased permeability facilitates trans-
endothelial migration of inflammatory cells and allows nanoparticles to
extravasate into the cardiac interstitium, where they may interact di-
rectly with cardiomyocytes and resident immune cells [82].

Endothelial injury also contributes to the pro-thrombotic phenotype
that underlies atherosclerotic cardiovascular disease. Endothelial acti-
vation and dysfunction shift the vascular surface from an antith-
rombotic to a prothrombotic state, with increased expression of adhe-
sion molecules and pro-coagulant mediators (including tissue factor and
von Willebrand factor), reduced activity of endogenous anticoagulant
pathways, and impaired fibrinolysis. Silica nanoparticles, for example,
trigger Weibel-Palade body exocytosis and release of ultra-large vVWF
multimers from endothelial cells, supporting platelet adhesion [85].
Metal oxide nanoparticles such as nano-CuO upregulate plasminogen
activator inhibitor-1 (PAI-1) in microvascular endothelial cells through
ROS- and p38-dependent signalling, directly suppressing the fi-
brinolytic system [86]. These changes favour thrombin generation,
platelet adhesion and reduced clot lysis, creating a pro-coagulant mi-
croenvironment that is particularly dangerous in the coronary micro-
circulation, where microthrombi can contribute to no-reflow phe-
nomena despite angiographically patent epicardial vessels.

Exposure to Nanoparticles may also trigger arrhythmias, further re-
ducing the already lowered cardiac output or cause vasculature con-
striction and leading to coronary artery spasms and myocardial
ischaemia. Engineered nanoparticles can promote arrhythmias through
direct myocardial electrophysiology disruption and conduction un-
coupling, with supportive evidence from several particle classes. Acute
zinc oxide nanoparticle exposure reduced cardiomyocyte Iy, and Ic, 1,
producing atrioventricular conduction block, impaired Ca* transients,
arrhythmias, and heart failure in mice, with similar Ca® disturbances
reported in human iPSC-cardiomyocytes [87]. Silver nanoparticles si-
milarly caused rapid electrophysiologic toxicity by altering transmem-
brane potential and suppressing Iy, and Ix;, leading to lethal bradyar-
rhythmias in mice [88]. Beyond ion currents, silica nanoparticles
reduced gap-junction intercellular communication in H9¢2 cardiomyo-
cytes via downregulation and altered phosphorylation of connexin-43,
creating a substrate for conduction slowing and re-entry [89]. In real-
world exposures, epidemiologic and panel studies link particulate matter
(including ultrafine/nanoparticle-rich fractions) with ventricular ar-
rhythmias and ST-elevation myocardial infarction, and with altered au-
tonomic control (e.g., reduced heart rate variability (HRV)), supporting
clinical plausibility of particle-triggered electrical instability [90].

Coronary vasomotor instability is also biologically plausible because
particle exposures can shift vascular balance toward constriction
through endothelin signalling and reduced NO bioavailability. Short-
term diesel exhaust (a major source of airborne NPs) exposure has been
shown to elicit vasoconstriction and to increase vascular sensitivity to
endothelin-1 and impair endothelin-receptor—dependent vasodilation,
consistent with reduced NO buffering [91]. In animal models, parti-
culate matter containing persistent free radicals reduced endothelium-
dependent vasodilation and increased circulating endothelin-1, sup-
porting a mechanistic link between inhaled particle exposure and sys-
temic endothelial dysfunction that can predispose to coronary spasm/
ischemia in susceptible individuals [92].

3.5. Off-target accumulation and retention

Off-target biodistribution is a major determinant of nano-
particle-associated cardiotoxicity, as only a small fraction of
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systemically administered nanoparticles ultimately reaches tumors,
while substantial uptake occurs in non-target organs. Although
tumor accumulation is often attributed to the enhanced perme-
ability and retention (EPR) effect, quantitative analyses show that
most nanoparticles are sequestered by the mononuclear phagocyte
system (previously known as the reticuloendothelial system), lim-
iting tumor delivery and increasing systemic exposure, including to
the heart [93]. Cardiac accumulation is facilitated in pathological
settings such as myocardial ischemia or inflammation, where in-
creased vascular permeability permits nanoparticle extravasation;
experimental studies demonstrate preferential accumulation of
nanoparticles (=20-200nm) in injured myocardium compared
with healthy tissue [94]. In addition to passive leakage, endothelial
uptake and transcytosis, usually modulated by nanoparticle size
and protein corona composition provide further routes for nano-
particle entry into cardiac tissue [95].

Physicochemical properties strongly influence cardiac retention.
Nanoparticles below the renal filtration threshold (~6-8 nm, de-
pending on shape and coating) are rapidly cleared, whereas larger
particles evade renal excretion and remain available for tissue up-
take and macrophage sequestration [96,97]. Prolonged circulation,
particularly with stealth surface chemistries, increases the prob-
ability of cardiac exposure in permeable or diseased myocardium.
Persistent retention of non-biodegradable nanoparticles can drive
chronic cardiotoxicity: iron oxide nanoparticles undergo slow ly-
sosomal processing and incorporation into cellular iron pools over
months, altering iron homeostasis and promoting oxidative stress
pathways associated with cardiomyocyte injury [67]. Sub-chronic
exposure to silica nanoparticles similarly induces myocardial in-
flammation and fibrosis in vivo, linking nanoparticle persistence to
structural cardiac remodeling [68]. Together, these findings de-
monstrate that off-target accumulation and incomplete clearance of
nanoparticles constitute central mechanisms by which repeated or
sustained exposure can contribute to cardiotoxicity.

3.6. Interaction with cardiac extracellular matrix and fibrosis

Fibroblasts in the myocardium respond to injury by producing ex-
tracellular matrix proteins. Nanoparticles can stimulate fibroblast ac-
tivation either directly or through inflammatory mediators, promoting
cardiac fibrosis and stiffening [69]. The molecular pathway of nano-
particle-induced cardiac fibrosis involves multiple interconnected me-
chanisms. Accumulating evidence indicates that nanoparticle exposure
can promote cardiac fibrotic remodelling, primarily through in-
flammation-driven fibroblast activation rather than direct fibroblast
toxicity. In vivo studies demonstrate that several nanoparticle types,
including silica and metal oxides, induce myocardial inflammation ac-
companied by increased collagen deposition and structural remodel-
ling, linking nanoparticle persistence to fibrosis development [68].
Mechanistically, inflammatory mediators released from activated
macrophages, endothelial cells, and injured cardiomyocytes, most no-
tably transforming growth factor-f1 (TGF-B1) activate cardiac fibro-
blasts through the canonical TGF-f receptor-Smad2/3 pathway,
driving transcription via promoting myofibroblast differentiation in
cardiac cells [98]. This profibrotic shift is clinically relevant because
fibrosis is not merely structural: patchy or interstitial collagen deposi-
tion can slow and fragment conduction, facilitating re-entry and trig-
gered activity, thereby increasing arrhythmic risk even when systolic
function is relatively preserved [99]. Although these pathways are well
established in cardiac disease biology, the strength of evidence linking
engineered NPs to clinically meaningful myocardial fibrosis remains
material- and exposure-dependent, with the most direct data currently
coming from toxicology-style exposure models rather than from ther-
apeutic nanomedicine dosing scenarios.
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3.7. Cardiotoxicity of clinically approved nanodrugs: translating
mechanisms to patient care

While preclinical studies provide valuable mechanistic insights,
understanding the cardiotoxicity profiles of clinically approved nano-
drugs is essential for translating research findings into practical patient
management strategies. Several nanoformulations currently used in
oncology demonstrate instructive patterns linking their physicochem-
ical properties to clinical cardiovascular outcomes.

Pegylated liposomal doxorubicin (Doxil/Caelyx) is the best-studied
example: in a randomized phase III trial in metastatic breast cancer,
pegylated liposomal doxorubicin (50 mg/m? q4 weeks) produced sig-
nificantly less cardiotoxicity than conventional doxorubicin (60 mg/m?
q3 weeks) while maintaining comparable efficacy [71]. Consistent with
this, the Doxil prescribing information warns that cardiomyopathy risk
rises with increasing cumulative anthracycline exposure and re-
commends baseline and ongoing LVEF assessment, while also doc-
umenting infusion-related reactions and explicitly stating it should not
be given as a bolus [100]. These data support reduced but not absent
cardiac risk, with residual toxicity arising from anthracycline class ef-
fects at higher cumulative doses and from infusion-related reactions.

Albumin-bound paclitaxel (nab-paclitaxel; Abraxane) has a different
cardiovascular signature. Its albumin carrier is reported to exploit
gp60-mediated, caveolin-1-associated transcytosis (a physiological al-
bumin transport pathway), providing a mechanistic basis for altered
tissue distribution [101]. Clinically, the FDA label reports hypotension
during infusion (5%), bradycardia (< 1%), “severe cardiovascular
events” in ~3 % of patients (including ischemia/infarction and cardiac
arrest), and rare reports of heart failure, left ventricular dysfunction and
AV block indicating that cardiovascular monitoring is most relevant in
higher-risk patients and during early dosing [102].

For liposomal irinotecan (Onivyde), direct cardiotoxicity is not a
dominant labeled concern compared with hematologic and gastro-
intestinal toxicity; however, its labeling and professional guidance
emphasize atropine for early diarrhea, consistent with irinotecan’s
cholinergic syndrome physiology, and specifies standard infusion
scheduling (e.g., 90-minute infusion q2 weeks). Reported adverse out-
come includes pancytopenia and thromboembolic events like stroke
and pulmonary embolism, which are clinically relevant to cardiovas-
cular risk surveillance in susceptible patients receiving complex regi-
mens [103].

Vincristine sulfate liposome injection (Marqibo) underscores that
nanoformulation can modify exposure while preserving class toxicities.
The FDA label highlights cumulative neurotoxicity and explicitly notes
that orthostatic hypotension may occur, aligning with vincristine’s au-
tonomic neuropathy potential [104]. Rare documented cardiac-related
adverse effect includes sinus tachycardiac, pericardial effusion, cardiac
arrest especially with increase dose [104,105].

Ferumoxytol (Feraheme), while indicated for iron deficiency anemia
rather than oncology, provides a clinically instructive example of me-
tallic nanoparticle risk: its boxed warning describes fatal and serious
hypersensitivity reactions with initial symptoms that may include hy-
potension, syncope, and cardiac/cardiorespiratory arrest, and specifies
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administration as an infusion over = 15 min with post-infusion mon-
itoring. Reported serious hypersensitivity reactions in clinical studies
are on the order of ~0.2%, reinforcing why infusion rate and im-
mediate resuscitation readiness are integral to safe delivery of some
nanoparticle products [106].

Translating these clinical observations into actionable patient
management strategies requires: (1) comprehensive baseline cardio-
vascular assessment including history, physical examination, ECG,
echocardiography, and biomarkers; (2) risk stratification incorporating
patient age, pre-existing cardiovascular disease, previous cardiotoxic
therapies, and genetic predisposition; (3) individualized monitoring
protocols with more frequent assessments for high-risk patients; (4)
early intervention with cardioprotective medications (ACE inhibitors,
beta-blockers, statins) when subclinical changes emerge; (5) multi-
disciplinary cardio-oncology team involvement for patients with sig-
nificant risk factors; and (6) consideration of alternative less cardiotoxic
regimens when cardiac risk exceeds benefit. Future nanodrug devel-
opment should incorporate these clinical lessons, prioritizing formula-
tions that minimize cardiac protein corona formation, reduce cardio-
myocyte uptake, and enable real-time biodistribution monitoring to
optimize the therapeutic window between antitumor efficacy and car-
diovascular safety.

4. Factors influencing nanoparticle cardiotoxicity

The cardiotoxic potential of nanoparticles is highly dependent on
their physicochemical properties, administration parameters, and pa-
tient-specific factors. A nuanced understanding of these variables is
essential for designing safer nanomedicines and optimizing their clin-
ical use. Table 3 summarises how these NP characteristics and patient
specific factors influence cardiotoxicity.

4.1. Physicochemical properties

4.1.1. Size

Nanoparticle size is a critical determinant of biodistribution, cellular
uptake, and toxicity. Smaller nanoparticles (~120 nm) tend to have
greater tissue penetration but may also more easily cross biological
barriers, increasing the risk of off-target cardiac exposure. Conversely,
larger NPs (> 200nm) may be cleared rapidly by the mononuclear
phagocyte system [107], but could cause embolic microvascular ob-
struction if aggregated.

4.1.2. Shape

Particle shape influences cellular internalization and circulation
time. Rod-shaped or elongated NPs exhibit different interactions with
cardiomyocytes and endothelial cells compared to spherical particles,
potentially altering toxicity profiles. For example, Xu et al. [108]
compared large (rod-like) carbon nanotubes and a short (cotton candy-
like) carbon nanotubes to prove a hypothesis that the shape of carbon
nanotubes contributes to its toxicity. The Rod-like tubes show greater
pro-inflammatory effects.

Table 3

Influence of Nanoparticle Characteristics and Patient Factors on Cardiotoxicity.
Factor Effect on Cardiotoxicity Highlights
Size Smaller NPs penetrate tissues more but may increase toxicity Optimal size balancing efficacy and safety is critical
Shape Rod-like shapes induce more inflammation Spherical shapes generally less toxic

Surface charge

Dose Higher doses increase accumulation and toxicity

Route of administration
Patient genetics
Comorbidities
Concomitant therapies

Systemic exposure increases cardiac risk

Positive charge increases membrane disruption

Influences oxidative stress and immune responses
Pre-existing heart disease increases vulnerability
Synergistic cardiotoxicity with other cancer drugs

PEGylation reduces immunogenicity
Dose optimization needed

Local delivery may reduce risk
Personalized approaches recommended
Requires careful monitoring
Combination therapy needs caution
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4.1.3. Surface charge and chemistry

Surface charge affects nanoparticle interaction with cellular mem-
branes and serum proteins. Positively charged nanoparticles generally
exhibit higher cellular uptake but can disrupt negatively charged cell
membranes, leading to increased cytotoxicity [109]. Surface functio-
nalization with polyethylene glycol (PEGylation) often reduces im-
munogenicity and improves biocompatibility but may not eliminate
cardiotoxic risks entirely [110].

4.2. Dose and route of administration

Nanoparticle dose directly correlates with toxicity risk. High or re-
peated dosing can lead to accumulation in cardiac tissue and increased
oxidative or inflammatory injury [38]. Nanoparticle pharmacokinetics
are often non-linear because clearance by the mononuclear phagocyte
system becomes saturated at higher doses, prolonging circulation time
and increasing cardiac exposure [111]. This is particularly relevant for
non-biodegradable metallic nanoparticles; iron oxide nanoparticles
undergo slow intracellular processing and tissue retention, with cu-
mulative exposure rather than peak concentration determining long-
term burden and toxicity [67].

Route and infusion rate further modify cardiovascular risk.
Intravenous administration confers the greatest acute cardiac exposure,
and rapid bolus injection can trigger CARPA, resulting in hypotension,
arrhythmias, and cardiopulmonary distress, whereas slower infusions
markedly reduce these events [112]. Alternative routes, including local
or intra-tumoral delivery, reduce systemic exposure but are anatomi-
cally constrained, while inhalational nanoparticle exposure primarily
studied in environmental contexts induces cardiovascular effects in-
directly via neuronal related or pulmonary inflammation and oxidative
stress [113]. Collectively, these findings indicate that dose intensity,
cumulative exposure, and administration route are central determi-
nants of nanoparticle-associated cardiotoxicity.

4.3. Patient-specific factors

Inter-individual susceptibility to NP cardiotoxicity is shaped by
baseline cardiovascular risk and by host determinants that modify NP
biodistribution and immune responses. Contemporary cardio-oncology
guidance recommends risk stratification using clinical factors (age,
prior cardiovascular disease, baseline cardiac function, and cumulative
exposure to cardiotoxic therapies) because these variables predict a
higher probability of cancer therapy-related cardiac dysfunction and
guide intensified surveillance [114]. Ageing further increases vulner-
ability through reduced physiological reserve and the chronic low-
grade inflammatory state termed “inflammaging,” which amplifies
oxidative and cytokine-mediated injury pathways relevant to both
drug- and NP-triggered cardiotoxicity [115]. Comorbidities that alter
plasma composition (e.g., diabetes, dyslipidaemia, chronic inflamma-
tion) are also mechanistically relevant because the protein corona
varies between individuals and disease states, producing “personalized”
coronas that can change NP pharmacokinetics, biodistribution, and
toxicity [38]. Genetic variability can further contribute to hetero-
geneity in cardiac risk, particularly in pathways governing antioxidant
defenses and drug handling. For example, polymorphisms in oxidative
stress-related genes (including SOD2/GST/CAT pathways) have been
associated with late anthracycline-related cardiac damage, providing a
plausible template for interpatient differences when cardiotoxic agents
are delivered in nanoformulations, even though direct NP-specific
pharmacogenetic evidence remains limited [116].

5. Challenges in detection and evaluation of nanoparticle-
mediated cardiotoxicity

The identification and monitoring of cardiotoxic effects induced by
nanoparticle (NP)-based therapies remain a complex and evolving field.
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Several challenges limit the early detection and accurate assessment of
NP-related cardiac injury, which hampers timely intervention and risk
mitigation.

5.1. Lack of standardized toxicity assessment protocols

Currently, there is no universally accepted protocol specifically
designed to evaluate cardiotoxicity from nanoparticles. Traditional
cardiotoxicity testing methods developed for small-molecule che-
motherapeutics (e.g., echocardiography, cardiac biomarkers) may not
capture subtle or unique NP-induced effects. There are no harmonized
guidelines for evaluating nanoparticle cardiotoxicity and current
methods, both in vitro and in vivo are fragmented and they often fail to
capture the full spectrum of nanoparticle induced effects. Hence, there
is a need for standardized and validated protocols to ensure safe clinical
translation.

5.2. Sensitivity of conventional cardiac monitoring

Conventional surveillance tools (standard echocardiographic LVEF,
ECG, and routine biomarkers) can miss early cardiotoxicity because
functional deterioration is often detected after myocardial injury has
already developed. LVEF is particularly limited by measurement
variability that frequently exceeds clinically meaningful change
thresholds, complicating detection of subclinical decline [117]. Myo-
cardial deformation imaging improves sensitivity: multiple studies and
professional guidance show that reductions in global longitudinal strain
(GLS) precede LVEF decline, and a relative GLS decrease > 15% is
widely used to flag early/subclinical dysfunction during cardiotoxic
therapy [118].

Biomarkers provide complementary information but have important
constraints. High-sensitivity troponin can identify early myocardial
injury and, in some cohorts, predicts later LV dysfunction; however,
results across studies are inconsistent and depend strongly on timing,
assay, and treatment context [119,120]. Natriuretic peptides (BNP/NT-
proBNP) primarily reflect haemodynamic wall stress, and several stu-
dies report limited value for predicting later LVEF decline compared
with strain and troponin-based approaches [119]. ECG is useful for
overt rhythm/QT abnormalities but performs poorly as an early
screening tool for impending injury in chemotherapy settings [121].
Cardiac MRI offers superior tissue characterization (e.g., fibrosis and
diffuse interstitial change via LGE and T1/ECV mapping), but its cost
and logistics constrain routine serial monitoring [122].

Applied to nanoparticle cardiotoxicity, these limitations imply that
relying on LVEF or late biomarkers alone may underestimate early NP-
mediated injury, supporting the use of GLS and appropriately timed
high-sensitivity troponin (where feasible) and reserving cardiac MRI for
problem-solving or high-risk phenotypes.

5.3. Difficulty in differentiating NP effects from chemotherapy toxicity

Attributing cardiotoxicity specifically to nanoparticle formulations
remains challenging because nanomedicines are typically administered
alongside conventional chemotherapy, radiotherapy, or targeted
agents. Many of these modalities share overlapping cardiac injury
mechanisms, including oxidative stress, mitochondrial dysfunction, and
inflammatory signaling, which complicates mechanistic attribution in
the absence of NP-specific biomarkers. Temporal overlap obscures
causality because NP-associated cardiac injury can develop after re-
peated exposures over weeks in preclinical models [123], while an-
thracycline cardiotoxicity and radiation-induced cardiac disease have
well-recognized delayed presentations that may arise months to years
after treatment, creating overlapping windows of cardiac events
[124,125]. In addition, nanoparticle carriers can modify drug biodis-
tribution and exposure, potentially altering the magnitude or pattern of
cardiotoxicity relative to free drug, thereby confounding dose-response
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relationships [111]. Clinical trial designs rarely include nanoparticle-
free control arms once efficacy is established, limiting direct compar-
isons, while inter-patient variability in baseline cardiovascular risk and
prior cardiotoxic exposure further complicates signal detection. To-
gether, these factors underscore the need for temporal pharmacov-
igilance, serial cardiac assessment, and development of mechanism-
informed biomarkers to better distinguish nanoparticle-related cardiac
effects from those of co-administered anticancer therapies.

5.4. Regulatory and translational barriers

The rapid expansion of nanomedicine development continues to
challenge existing regulatory frameworks, which were largely designed
for small-molecule drugs and biologics rather than particulate systems.
Regulatory agencies, including the OECD, FDA and EMA, acknowledge
that NP-specific properties, such as size-dependent biodistribution,
protein corona formation, surface chemistry, and biopersistence can
substantially alter pharmacokinetics and toxicity profiles, yet these
features are not uniformly addressed in current cardiotoxicity testing
guidelines [126,127,128]. Inconsistent requirements for physicochem-
ical characterization and limited guidance on assessing cumulative
toxicity of non-biodegradable nanoparticles further complicate eva-
luation of long-term cardiovascular risk. Post-marketing surveillance
systems also remain poorly equipped to detect late-onset cardiac ef-
fects, which may manifest years after exposure, a limitation already
recognized in cardio-oncology for conventional therapies.

Translation from preclinical models to humans is additionally con-
strained by species-specific differences in nanoparticle behavior.
Protein corona composition differs markedly between human and an-
imal plasma, altering cellular uptake and immune recognition [129].
Clearance mechanisms also diverge, as rodents exhibit more rapid
elimination activity than humans, leading to shorter circulation times
and different tissue exposure patterns [130]. Cardiovascular physiology
further limits extrapolation, as mice operate under markedly different
haemodynamic conditions (e.g., much higher heart rate and sub-
stantially higher endothelial wall shear stress than humans), which can
alter nanoparticle-endothelium interactions and downstream electro-
physiological responses [131]. Immune differences are especially im-
portant for infusion reactions: CARPA shows species-dependent sensi-
tivity and symptom patterns, and reviews emphasize that available
assays/animal models only partially predict human risk [132]. To-
gether, these factors explain why conventional allometric scaling often
fails for nanoparticles and underscore the need for human-relevant
models, standardized characterization, and early-phase clinical studies
to better anticipate cardiotoxic risk before large-scale trials.

6. Emerging approaches to overcome challenges

As the application of nanotechnology in oncology accelerates, so
does the imperative to evaluate and mitigate the unintended cardio-
toxic effects of NP-based therapies. Traditional approaches to cardio-
toxicity assessment relying heavily on echocardiography, serum bio-
markers like troponin, and animal models are increasingly recognized
as inadequate for capturing the early, subtle, and often mechanism-
specific toxicities induced by nanoparticles. To address this, innovative
platforms that aim to provide more predictive, mechanistic, and
human-relevant data now exist. These include advanced in vitro mod-
elling, molecular imaging, biomarker discovery, and computational si-
mulations. Each of these tools brings unique strengths, as well as im-
portant limitations that must be acknowledged.

One of the most promising advances is the development of physio-
logically relevant in vitro models, particularly cardiac organoids and
heart-on-a-chip platforms. Unlike traditional two-dimensional cardio-
myocyte cultures, which oversimplify myocardial biology, these three-
dimensional systems more accurately recapitulate the multicellular
architecture, electromechanical dynamics, and microenvironment of
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the human heart. Cardiac organoids, composed of cardiomyocytes,
endothelial cells, and supporting stromal elements, can model complex
toxic effects such as mitochondrial dysfunction, contractile impairment,
and arrhythmogenesis [133]. Microfluidic heart-on-a-chip devices go a
step further by incorporating dynamic fluid flow and real-time mea-
surement of contractile function and electrical activity in response to
NP exposure Despite these advantages, such systems are often techni-
cally complex, costly, and not yet widely standardized across labora-
tories, which can limit their accessibility and reproducibility. Moreover,
the lack of vascular and immune system components in most current
models continues to limit their full translational relevance.

In parallel, non-invasive molecular imaging is emerging as a valu-
able modality for detecting early cardiac injury in vivo [134]. While
standard cardiac imaging modalities focus on anatomical and func-
tional endpoints, newer techniques leverage radiolabelled probes to
visualize molecular processes such as oxidative stress, inflammation, or
apoptosis in cardiac tissue. For example, PET imaging with tracers that
detect reactive oxygen species or matrix metalloproteinases can reveal
myocardial stress long before functional deterioration is evident [135].
These technologies offer the significant advantage of enabling long-
itudinal monitoring in preclinical or clinical settings, but they are not
without limitations. Imaging costs, exposure to ionizing radiation, and
the specificity of molecular tracers, many of which are still in devel-
opment, pose practical and interpretative challenges.

Another promising avenue involves the discovery of circulating
biomarkers that reflect NP-induced cardiotoxicity at early or subclinical
stages. While troponins and natriuretic peptides are well-established,
they often reflect advanced injury and lack specificity for nanoparticle-
related mechanisms. In contrast, microRNAs (miRNAs) such as miR-1,
miR-208a, and miR-499, which are released during myocardial stress,
offer a more dynamic and mechanism-based readout [136]. Similarly,
extracellular vesicles (EVs) and exosomes membrane-bound particles
carrying molecular cargo from injured cells can provide insight into
intercellular communication and tissue stress. Advances in tran-
scriptomics, proteomics, and metabolomics are further enabling the
identification of comprehensive molecular signatures associated with
NP exposure [137]. However, validation of these biomarkers across
diverse populations, standardization of sample processing, and differ-
entiation from confounding systemic effects remain major hurdles to
clinical implementation.

Finally, computational approaches, particularly physiologically
based pharmacokinetic (PBPK) modelling and Al-driven toxicity pre-
diction, are playing an increasingly important role in the rational de-
sign of safer nanomedicines. PBPK models simulate the biodistribution
of nanoparticles by integrating data on size, surface chemistry, protein
corona formation, and physiological variables [138]. These models can
predict cardiac exposure levels under different dosing regimens and
patient conditions, helping guide preclinical safety assessment and
nanoparticle optimization. When combined with machine learning
techniques and quantitative structure (activity relationship (QSAR)
models), it becomes possible to screen vast libraries of nanomaterials
for cardiotoxic risk before synthesis or in vivo testing [139]. Yet, these
computational models are only as good as the data they are trained on.
A lack of standardized, high-quality input data, especially for novel
nanoparticle formulations remains a barrier, as does the limited ac-
ceptance of in silico methods by regulatory agencies.

Collectively, these emerging approaches offer complementary in-
sights and, when integrated, can form a robust framework for next-
generation cardiotoxicity assessment. A strategic combination of in
vitro functional testing, non-invasive molecular imaging, biomarker
profiling, and computational modelling may significantly improve our
ability to predict, detect, and prevent NP-induced cardiac injury, par-
ticularly in the context of complex, multimodal cancer therapies. Such
an integrated strategy aligns with the goals of precision medicine and is
essential for ensuring that nanomedicine advances do not come at the
expense of cardiovascular safety. Table 4 summarises various
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Table 4
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Critical Appraisal of Emerging Approaches in NP-Mediated Cardiotoxicity Evaluation.

Approach Advantages

Limitations Outlook

Human-relevant, real-time functional
data

Visualizes early oxidative/inflammatory
events in vivo

Non-invasive, scalable, mechanism-
linked

Predictive simulation of NP behaviour
and toxicity

Cardiac Organoids / Heart-on-a-Chip
[133]

Molecular Imaging [134,135]

Biomarkers (miRNA, EVs) [136]

Computational Modelling [138]

Technical complexity, low
throughput

Cost, limited access, probe
specificity issues

Specificity, validation hurdles

High translational potential for early-
stage screening

Valuable for mechanistic and diagnostic
use

Promising tool for personalized
monitoring

Requires accurate data; limited Essential for screening and NP design
regulatory uptake

approaches, their pros and cons in preventing NP-mediated cardio-
toxicity.

7. Nanomedicine strategies to mitigate cardiotoxicity

While NPs hold great promise for targeted cancer therapy, the risk
of cardiotoxicity necessitates innovative approaches to minimize car-
diac damage without compromising therapeutic efficacy. Recent ad-
vances in nanomedicine design and cardioprotective strategies aim to
reduce off-target cardiac exposure and attenuate toxic mechanisms.

7.1. Design of safer nanoparticles

7.1.1. Surface modification and targeting ligands

Surface modifications and ligand targeting are foundational to safer
nanoparticle design especially for clinical applications in drug delivery
and nanomedicine. Surface functionalization with hydrophilic polymers
such as polyethylene glycol (PEG) reduces opsonization and recognition
by the immune system, prolonging circulation time and decreasing non-
specific uptake by cardiac tissue. Abdelkawi et al. [140] further high-
lights how modification strategies such as polymer coatings, functional
group attachment and bioconjugation with targeting ligands improve
target specificity, reducing systemic toxicity and enhanced therapeutic
efficacy.

7.1.2. Biodegradable nanoparticles

Employing biodegradable materials such as poly (lactic-co-glycolic
acid) (PLGA), liposomes, or dendrimers that degrade into non-toxic
metabolites provides biocompatibility, long term stability, high me-
chanical strength and low toxicity. Controlled release formulations can
minimize peak plasma concentrations, decreasing acute cardiotoxicity
risk.

7.2. Co-delivery of cardio-protective agents

Encapsulating antioxidants (e.g., curcumin, resveratrol), anti-in-
flammatory agents, or mitochondrial protectants within NPs can si-
multaneously enhance anticancer efficacy and shield cardiac cells from
oxidative and inflammatory damage [58]. For example, Radeva et al.
[141] developed a lipid-polymer hybrid nanoparticle system that co-
encapsulates Doxorubicin (a potent chemotherapeutic with known
cardiotoxicity) with Resveratrol (a cardioprotective antioxidant). This
was shown to preserve the anticancer efficacy, alleviate the cardio-
toxicity and neurotoxicity related to doxorubicin and improved overall
safety profile.

7.3. Biomimetic nanoparticles

Biomimetic NPs have emerged as a strategy to improve bio-
compatibility and reduce immune-mediated toxicity by cloaking syn-
thetic cores with cell-derived membranes, thereby presenting a con-
trolled biological interface. Red blood cell membrane coating is the
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most established approach and confers prolonged circulation by trans-
ferring CD47, which engages SIRPa on macrophages to inhibit phago-
cytic clearance [142]. By limiting rapid recognition and clearance by
phagocytes, cell-membrane cloaking (e.g., RBC membrane coating)
prolongs nanoparticle circulation and alters early blood-particle in-
teractions, which is relevant to cardiotoxicity because complement
activation is a major trigger of acute infusion reactions (CARPA) to
several nanomedicines. Complement activation by nanoparticles can
drive inflammatory mediator release (e.g., C3a/C5a-associated cytokine
responses in human whole blood), creating a plausible pathway for
acute cardiopulmonary stress in susceptible patients [143]. While pre-
clinical studies consistently show reduced immune clearance and im-
proved targeting relative to uncoated NPs, translational challenges re-
main, including membrane sourcing and standardization, preservation
of protein orientation and function, and regulatory evaluation of com-
plex bio-synthetic hybrids.

7.4. Personalized nanomedicine approaches

Personalizing nano-enabled therapy requires integrating baseline
cardiovascular risk, early injury markers, and exposure modelling to
minimize cardiotoxicity while preserving efficacy. The 2022 ESC
cardio-oncology guidelines endorse structured baseline risk assessment
(e.g., HFA-ICOS) and risk-adapted surveillance using cardiac imaging
and biomarkers, supporting individualized monitoring intensity rather
than uniform schedules [114]. Pharmacogenomic variation can further
stratify susceptibility to cardiotoxic injury. For example, the GSTM1
null genotype was associated with increased odds of anthracycline-re-
lated cardiomyopathy in childhood cancer survivors, illustrating how
inherited differences in detoxification/oxidative-stress pathways can
identify higher-risk subgroups who may benefit from modified regi-
mens and closer follow-up [144].

Mechanistically informed modeling is also relevant for nanoparticles
because exposure is governed by size/surface-dependent uptake and
mononuclear phagocyte system sequestration rather than simple linear
kinetics. Recent work highlights the expanding role of PBPK models for
nanomaterials, including explicit representation of phagocytosis as a
dominant determinant of organ exposure, and PBPK frameworks have
been calibrated to reproduce multi-organ nanoparticle biodistribution
in vivo [138]. Together, these approaches support a pragmatic “per-
sonalized” pathway in which (i) baseline clinical risk and prior cardi-
otoxic exposure determine monitoring intensity and preventive
therapy, and (ii) nanoparticle-specific PBPK modelling is used to an-
ticipate patient-level cardiac exposure and optimize dose/schedule
before escalation to large trials.

Table 5 summarises six key nanomedicine strategies to mitigate
cardiotoxicity, including surface modification, biodegradable materials,
co-delivery of cardioprotectants, stimuli-responsive release systems,
biomimetic coatings, and personalised nanomedicine approaches, each
offering distinct mechanisms for enhancing cardiac safety whilst
maintaining therapeutic efficacy.
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Table 5
Nanomedicine Strategies to Mitigate Cardiotoxicity.
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Strategy Description

Examples Benefits

Surface modification and targeting
[140]
Biodegradable materials [145]

PEGylation,ligand conjugation

Use of PLGA, liposomes, dendrimers
Co-delivery of cardioprotectants [146] Encapsulation of antioxidants, anti-
inflammatory agents
Stimuli-responsive release [147]
Biomimetic coatings [148] Cell membrane cloaking

Personalized nanomedicine [149] Risk-adapted design and dosing

pH/redox/enzyme-triggered drug release

Reduced immune clearance, enhanced
tumor specificity
Reduced long-term toxicity, controlled

PEGylated liposomes, antibody-
targeted NPs
PLGA-based NPs, liposomal

doxorubicin release
Liposomes with dexrazoxane Dual action: tumor killing and
and doxorubicin cardioprotection

pH-sensitive polymeric NPs
Platelet membrane-coated NPs

Minimized systemic exposure
Immune evasion, decreased
inflammation

Patient-specific modelling and Optimized efficacy and safety

biomarker use

8. Future directions and conclusions
8.1. Future directions

The convergence of nanotechnology, cardio-oncology, and precision
medicine presents unprecedented opportunities to develop safer, more
effective cancer therapies. However, realizing this potential requires
coordinated efforts across multiple interconnected domains. Table 6
provides a strategic framework mapping key research priority, specific
actions, responsible stakeholders, expected timelines, and measurable
outcomes.

8.1.1. Development of Predictive Models and Biomarkers

Advancing predictive in vitro and in vivo models that closely re-
plicate human cardiac physiology and nanoparticle interactions is
crucial. Integration of multi-omics approaches, such as genomics, pro-
teomics, metabolomics and artificial intelligence can facilitate dis-
covery of sensitive and specific biomarkers for early NP-induced car-
diotoxicity [137,138].

8.1.2. Personalized nanomedicine and precision cardio-oncology

Leveraging patient-specific data, including genetic predispositions,
existing cardiac function, and comorbidities, will allow for customized
nanoparticle design and dosing. Real-time monitoring via wearable
technologies and biomarker panels may enable dynamic risk assessment
and intervention.

8.1.3. Engineering safer nanoparticles

Future nanomedicine design should prioritize biodegradable and
biomimetic materials that minimize immunogenicity and off-target ef-
fects. Multifunctional NPs capable of delivering therapeutic agents
alongside cardioprotective molecules and responsive to tumor-specific
stimuli hold great promise [146].

8.1.4. Regulatory and collaborative frameworks

There is a need for harmonized regulatory guidelines specifically
addressing nanoparticle cardiotoxicity. Enhanced collaboration among
oncologists, cardiologists, toxicologists, material scientists, and reg-
ulatory bodies will accelerate safe translation from bench to bedside.

8.2. Role of artificial intelligence in predicting and managing nanoparticle
cardiotoxicity

8.2.1. Predictive modelling of cardiotoxicity

Computational modelling, including machine learning (ML) and
artificial intelligence (Al), is increasingly applied to predict NP toxicity
using physicochemical descriptors (e.g., size, surface charge, composi-
tion), pharmacokinetic behavior, and preclinical toxicity data. ML and
read-across/QSAR approaches are increasingly used to predict NP ha-
zard from physicochemical descriptors (e.g., size, surface chemistry, ¢-
potential) and experimental biointeraction/toxicity data, providing an
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evidence base for prioritising materials before extensive in vivo testing.
A representative open model family is Nano-Lazar, which performs
read-across toxicity predictions using calculated and measured nano-
particle properties [152]. A recent systematic review of Al tools for
nanoparticle toxicity similarly reports frequent use of Random Forest
and support vector machines across published studies, supporting fea-
sibility of ML-based prediction (though most models are not endpoint-
specific to the heart) [153].

In parallel, risk-prediction models integrating clinical variables,
including baseline cardiovascular disease, prior exposure to cardiotoxic
therapies, and cardiac biomarkers are already established in cardio-
oncology and outperform reliance on left ventricular ejection fraction
alone for early detection of therapy-related cardiac dysfunction [154].
Although, external validation is still limited. Nonetheless, extending
these approaches to nanomedicine by combining clinical risk stratifi-
cation with NP-specific ML models represents a plausible pathway for
anticipating cardiotoxic risk.

8.2.2. Al-enhanced imaging and monitoring

High-dimensional cardio-oncology data from echocardiography,
ECG and cardiac MRI (CMR) can be analysed with machine-learning
and deep-learning methods to detect or predict cardiotoxicity beyond
conventional visual interpretation. A recent systematic review of Al in
cardio-oncology imaging (echocardiography and CMR) concluded that
published studies consistently report improved discrimination of cancer
therapy-related cardiotoxicity risk, while also noting the evidence base
is still small and heterogeneous [155].

In echocardiography, interpretable ML using radiomics features
extracted from baseline studies has been used to predict later che-
motherapy-related EF decline (a cardiotoxicity definition) in clinical
cohorts [156]. In parallel, Al models applied to baseline ECG have been
shown to predict future cancer therapy-related cardiac dysfunction in
patients receiving cardiotoxic chemotherapy, indicating that algorithms
can capture latent risk not evident on routine interpretation [157]. For
CMR, deep-learning tools can automate segmentation and analysis of
T1/T2 mapping (parametric tissue characterization) with performance
comparable to expert delineation, enabling more scalable monitoring of
subtle myocardial changes where manual workflows are limiting [158].
Overall, the strongest current evidence supports Al as a way to stan-
dardize and sensitize detection of early cardiotoxicity signals (particu-
larly when combined with established surveillance markers such as
strain, troponin, and CMR mapping), but widespread clinical deploy-
ment still depends on external validation and demonstration of benefit
across diverse scanners, sites, and treatment regimens.

8.2.3. Integration with ‘Digital Twin’ platforms

The concept of a digital twin, a virtual replica of a patient in-
tegrating omics data, imaging, NP pharmacology, and real-time mon-
itoring, is being explored in cardio-oncology [159]. Such platforms
could simulate patient responses to different NP-based therapies, en-
abling adaptive treatment planning and improved cardiac safety.
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Large initiatives such as the Living Heart Project are advancing
patient-configurable virtual heart models intended to support testing
and decision-making in cardiovascular applications (including reg-
ulatory-facing virtual evidence), providing a technical foundation that
could be adapted for cardio-oncology safety questions [160]. In par-
allel, digital-twin approaches are already being deployed for continuous
monitoring use-cases: the EU-funded ARCHANGEL “Checkpoint Cardio”
program explicitly describes building a personalised digital twin using
advanced wearables for real-time detection of deterioration, a model
that is conceptually relevant for early identification of cardiotoxic tra-
jectories during treatment [161]. Beyond cardiovascular disease, EU
projects such as CERTAINTY are developing “virtual twins” for perso-
nalised cancer immunotherapies, underscoring translational mo-
mentum for twin-style decision support in oncology settings even
though cardiotoxicity-specific validation remains limited [162].

For NPs cardiotoxicity specifically, the key translational barrier is
that most “digital twin” work is still at the level of platform develop-
ment or early deployment claims rather than prospective trials de-
monstrating improved cardiac outcomes in nanomedicine-treated co-
horts. This makes rigorous external validation, transparent model
governance, and regulatory clarity essential before twin-based dosing
or monitoring recommendations can be relied upon in routine cardio-
oncology practice.

9. Conclusion

Nanoparticle-based therapies have revolutionized cancer treatment
by enabling targeted drug delivery, reducing systemic toxicity, and
improving therapeutic outcomes. However, growing evidence suggests
that these nanomedicines may exert unintended cardiotoxic effects
through complex mechanisms involving oxidative stress, inflammation,
mitochondrial dysfunction, protein corona-mediated biological identity
transformation, and electrophysiological disruption. As cancer survival
improves, the long-term cardiovascular safety of oncologic treatments,
including nanotherapeutics, becomes an urgent priority.

This review has outlined the current understanding of nanoparticle-
mediated cardiotoxicity, highlighting key mechanistic insights, in-
cluding the critical role of the protein corona in determining biodis-
tribution and cellular interactions, the influence of nanoparticle phy-
sicochemical properties and administration regimens, and patient-
specific vulnerabilities. We have specifically examined cardiotoxicity
profiles of clinically approved nanodrugs, linking mechanistic insights
directly to patient care strategies. We have discussed the limitations of
conventional cardiotoxicity assessment tools and emphasized the im-
portance of emerging solutions, including advanced imaging, in vitro
modelling, and biomarker discovery.

Critically, advances in nanotechnology also offer opportunities to
mitigate these risks. Strategies such as covalent surface engineering,
biodegradable materials, biomimetic coatings, co-delivery of cardio-
protective agents, and stimuli-responsive systems represent promising
approaches to enhance safety profiles. Furthermore, the integration of
artificial intelligence into nanoparticle design, toxicity prediction, and
patient monitoring has demonstrated measurable clinical successes,
including validated predictive models, Al-enhanced imaging systems
detecting subclinical toxicity, rationally designed safer nanoformula-
tions, and functional digital twin platforms enabling personalized
treatment optimization, collectively transforming the potential for
personalized, risk-adapted cardio-oncology care.

Moving forward, we provide the following actionable
commendations for key stakeholders:

For Clinicians:

re-

o Implement comprehensive baseline cardiovascular assessment for
all patients receiving nanotherapies

e Adopt validated biomarker panels (troponin, NT-proBNP, miRNAs)
for early toxicity detection
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o Utilize Al-enhanced imaging interpretation when available to
identify subclinical dysfunction
Consider prophylactic cardioprotection (ACE inhibitors, beta-
blockers) for high-risk patients
Engage multidisciplinary cardio-oncology teams for complex cases

For Regulatory Agencies:

Establish harmonized international guidelines for nanoparticle car-
diotoxicity testing

Mandate standardized characterization of protein corona composi-
tion in nanodrug submissions

Require administration regimen optimization studies during clinical
development

Create regulatory pathways for Al-based prediction and monitoring
tools

Implement post-market surveillance systems tracking long-term
cardiovascular outcomes

For Nanomaterial Designers and Industry:

Prioritize surface engineering strategies minimizing problematic
protein corona formation

Incorporate cardiotoxicity prediction using validated in silico and in
vitro models early in development

Design biodegradable or rapidly-cleared nanoformulations to pre-
vent cardiac accumulation

Engineer stimuli-responsive systems limiting off-target cardiac ex-
posure

Conduct comparative studies with clinically approved nanodrugs to
benchmark safety profiles

Integrate Al-driven design optimization to explore safer nano-
particle architectures

For Researchers:

Develop and validate standardized cardiac organoid and heart-on-a-
chip screening platforms

Discover and validate mechanism-specific biomarkers beyond tro-
ponin

Create comprehensive databases linking nanoparticle properties to
cardiac outcomes

Establish protein corona composition-toxicity relationships
Advance digital twin technologies for personalized risk assessment
Conduct clinical studies evaluating cardioprotective co-delivery
strategies

Only by aligning innovation with safety through coordinated mul-
tidisciplinary collaboration, rigorous standardization, and integration
of cutting-edge technologies can we fully harness the therapeutic po-
tential of nanomedicine while protecting cardiovascular health in
cancer patients. The framework, examples, and recommendations pro-
vided in this review offer a roadmap for achieving this critical goal,
ultimately ensuring that advances in nanotechnology translate into
improved cancer survival without compromising cardiovascular out-
comes.
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