
RaY
Research at the University of York St John

For more information please contact RaY at
ray@yorksj.ac.uk

Alam, Amjad, Somasiri, Nalinda ORCID logoORCID:
https://orcid.org/0000-0001-6311-2251, Ganesan, Swathi ORCID
logoORCID: https://orcid.org/0000-0002-6278-2090 and Ali, kamran
(2025) Meta-Heuristic Fusion for 5G VANETs: A GWO–PSO–ACO
Framework Balancing. Latency, Energy and Spectrum. Lex localis -
Journal of Local Self-Government, 23 (56). pp. 6918-6947.

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/13900/

The version presented here may differ from the published version or version of record. If

you intend to cite from the work you are advised to consult the publisher's version:

https://doi.org/10.52152/sfa8jj59

Research at York St John (RaY) is an institutional repository. It supports the principles of

open access by making the research outputs of the University available in digital form.

Copyright of the items stored in RaY reside with the authors and/or other copyright

owners. Users may access full text items free of charge, and may download a copy for

private study or non-commercial research. For further reuse terms, see licence terms

governing individual outputs. Institutional Repositories Policy Statement

https://www.yorksj.ac.uk/policies-and-documents/library/statement/
mailto:ray@yorksj.ac.uk

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6918

META-HEURISTIC FUSION FOR 5G VANETS: A GWO–PSO–ACO

FRAMEWORK BALANCING LATENCY, ENERGY, AND SPECTRUM

Amjad Alam1, Nalinda Somasiri2*, Swathi Ganesan3, Kamran Ali4, Tanveer Ahmad5

1, 2, 3Faculty of Computer Science, York SJ University London, UK
4 Faculty of Computer Science, Middlesex University London, UK

5Faculty of Computer Science, BPP University London, UK

a.alam@yorksj.ac.uk1

n.somasiri@yorksj.ac.uk2

 s.ganesan@yorksj.ac.uk3

k.ali@mdx.ac.uk4

tanveerahmad@bpp.com5

*Corresponding Author: a.alam@yorksj.ac.uk1

Abstract—Next-generation vehicular applications such as augmented-reality navigation and cooperative

collision avoidance demand sub-second response times, low on-board energy use, and judicious utilisation of the

scarce 5G/DSRC uplink spectrum. We address these conflicting requirements by formulating task-offloading in

5G-enabled vehicular ad-hoc networks (VANETs) as a multi-objective optimisation that minimises end-to-end

latency and vehicular energy consumption while maximising deadline reliability and spectral efficiency. A

detailed system model captures variable-size tasks generated by mobile vehicles, bandwidth-constrained LTE/5G

and Wi-Fi channels, finite-capacity edge servers at roadside units (RSUs), and a remote cloud. Soft-deadline

penalties are imposed on tasks whose latency exceeds 1s, and channel-congestion costs discourage excessive

simultaneous off-loads. To solve the resulting NP-hard problem we propose an integrated GWO–PSO–ACO

swarm optimiser: Grey-Wolf encircling provides global exploration, Particle-Swarm velocity updates accelerate

exploitation, and Ant-Colony pheromone learning refines discrete task channel assignments. All three sub-swarms

share the best candidate each iteration, yielding rapid yet robust convergence. Extensive simulations with random

vehicle velocities (20–100 km/h) and varying numbers of vehicles (1–100, each generating one task) demonstrate

that the proposed hybrid GWO–PSO–ACO algorithm consistently outperforms standalone PSO, ACO, and GWO

baselines. Averaged over realistic workloads (1-40 MB tasks), the Hybrid achieves total latency reductions of

approximately 21.9% and 29.3% compared to PSO and GWO, respectively, while lowering vehicular energy

consumption by 12-18% and maintaining high reliability levels of ≈ 80-85% up to critical load points. Spectral

efficiency is improved by up to 0.5% at low-to-moderate loads, and composite objective values are reduced by as

much as 30–40% under heavy-load conditions. Convergence analysis confirms that the Hybrid reaches near-

optimal solutions in fewer iterations than the baselines, making it suitable for real-time vehicular scenarios.

Parameter variation tests further validate its scalability under heavier loads and stricter spectrum budgets. These

results indicate that the proposed Hybrid optimiser is a robust and effective edge–cloud orchestration mechanism

for future QoS- and spectrum-aware V2X services.

Keywords—Energy efficiency, Spectral efficiency, Vehicular Edge Computing, QoS-aware Offloading,

Metaheuristic Optimization, GWO–PSO–ACO.

I. INTRODUCTION

Modern vehicular applications such as autonomous driving, collision avoidance, navigation

assistance, and infotainment services are placing unprecedented demands on computing and

communication resources in Vehicular Ad Hoc Networks (VANETs). These applications often

require real-time data processing with strict latency and reliability requirements to ensure

safety and a high quality of experience for users. For example, advanced driver-assistance and

navigation systems process sensor data and traffic information under tight timing constraints,

while in-vehicle infotainment and augmented reality services demand high throughput and low

delay. However, vehicles (and their on-board units) have limited processing power and battery

capacity, making it challenging to execute such computationally intensive tasks locally [1], [2].

Offloading vehicular tasks to external computing infrastructure has thus emerged as a

promising solution to meet the growing computational and QoS requirements of connected

mailto:a.alam@yorksj.ac.uk
mailto:n.somasiri@yorksj.ac.uk
mailto:s.ganesan@yorksj.ac.uk
mailto:k.ali@mdx.ac.uk
mailto:tanveerahmad@bpp.com
mailto:a.alam@yorksj.ac.uk

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6919

vehicles [3]. Edge computing paradigms, including Mobile Edge Computing (MEC) and

Vehicular Edge Computing (VEC), extend cloud-like resources to the network edge (e.g., road-

side units or base stations) in proximity to vehicles [4]. By offloading tasks to edge servers on

RSUs or to cloud servers, vehicles can significantly reduce their computation load and

execution time, thereby improving application responsiveness [5]. Indeed, offloading delay-

sensitive workloads to more powerful edge or cloud servers can help meet ultra-low latency

constraints that local vehicular resources alone cannot satisfy.

Nevertheless, efficient task offloading in VANETs is non-trivial due to several challenges.

First, an offloading decision must carefully trade off the communication delay and energy cost

of sending data to the edge/cloud against the speed-up gained in remote processing. If the

wireless transmission time and energy consumption outweigh the benefits of faster

computation at the server, offloading may hurt performance, especially for small-sized tasks

where communication overhead is relatively large. Thus, offloading is advantageous only

under the right conditions (e.g. when remote execution is significantly faster than local and the

transmission energy is justifiable) [5]. Second, vehicular networks are highly dynamic i.e.

vehicles are mobile, network topology changes rapidly, and wireless link quality fluctuates

with distance and interference. Connectivity to edge servers can be intermittent or vary in

bandwidth, complicating the decision of when and where to offload a task. Offloading

strategies must be adaptive to these changing network conditions to avoid excessive delays or

failures. Third, resource heterogeneity further complicates the scenario i.e. vehicles differ in

computing power and available energy, and edge servers or cloud nodes have varying

capacities and loads. Any effective offloading scheme for VANETs must account for this

heterogeneity and mobility [5], [6].

Another critical challenge in 5G-enabled VANETs is efficient spectrum utilisation for data

offloading. Vehicles today may access network resources via multiple radio access

technologies. For instance, high-bandwidth 5G/LTE cellular links or dedicated short-range

communications (DSRC) and Wi-Fi based links. Each has limited spectrum availability, and a

surge in connected vehicles can easily lead to spectrum congestion if not managed properly.

Traditional offloading works often assume ideal or unconstrained wireless links, but in reality,

spectrum scarcity can significantly degrade offloading performance by increasing transmission

delays and packet losses [7]. Indeed, recent studies note that many prior VEC offloading

schemes ignore the impact of spectrum sharing and interference on V2V/V2I communications.

In a dense vehicular scenario, multiple vehicles offloading simultaneously over the same

cellular uplink or Wi-Fi channel will compete for bandwidth, leading to queuing and higher

latency. Hence, incorporating spectrum-awareness into the offloading decision is essential to

ensure Quality of Service (QoS) [8]. Spectral efficiency considerations include choosing the

appropriate access mode (e.g., offload via 5G macro-cell vs. via local Wi-Fi/DSRC) and

possibly enabling spectrum sharing or reuse in a controlled manner so that network capacity is

utilised fully without harmful interference. For example, allowing vehicle-to-vehicle (V2V)

task offloading on underused portions of the cellular spectrum can improve throughput, as

shown in recent work [7]. [9]. However, jointly deciding task offloading targets and spectrum

allocation greatly enlarges the solution space. The offloading optimisation must now balance

not only computation latency and energy consumption but also account for communication link

capacity and interference constraints to maintain QoS requirements (such as delay bounds or

throughput thresholds).

Formulating the task offloading problem with objectives of minimising latency and energy

(and possibly cost) under these conditions leads to a complex multi-constraint optimisation,

which is NP-hard in general. Exact algorithms or brute-force search are infeasible for real-time

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6920

decision-making in large-scale vehicular networks due to the exponential number of offloading

combinations (each vehicle choosing among local execution, edge server, or cloud, via various

link options) [10]. Therefore, researchers have increasingly turned to heuristic and

metaheuristic algorithms to obtain near-optimal offloading solutions within acceptable time.

Metaheuristics like Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),

Genetic Algorithms (GA), Grey Wolf Optimizer (GWO), and others have been successfully

applied to similar offloading and resource allocation problems in edge/fog computing [11],

[12]. These population-based algorithms are well-suited for the large search space and multi-

objective nature of the offloading problem, as they can explore many candidate solutions in

parallel and converge toward efficient trade-offs between metrics. For instance, prior works

have utilised PSO to minimise offloading delays in edge computing, GA to balance energy and

latency in multi-access edge systems, and ACO to optimise task assignments in vehicular grids.

In vehicular edge scenarios, GWO in particular has been noted as a promising approach for

reducing energy consumption due to its balance of exploration and exploitation and few control

parameters. However, a single method often faces limitations in convergence speed and

solution quality. Many conventional metaheuristic algorithms can prematurely converge to

suboptimal solutions (getting trapped in local minima) or require extensive tuning to handle

diverse problem instances. As the problem scale increases (more vehicles and tasks), issues of

slow convergence and high computational overhead may arise [12]. This motivates the use of

hybrid metaheuristic approaches that combine the strengths of multiple algorithms to overcome

each individual algorithm’s weaknesses. By hybridising, one algorithm can, for example,

provide a diverse global search while another fine-tunes the local search, leading to better

precision and faster convergence than either alone.

In this paper, we propose a novel hybrid metaheuristic algorithm termed in this paper as

GWO–PSO–ACO for optimised task offloading and energy management in 5G-enabled

VANETs with QoS and spectral efficiency considerations. The proposed system architecture

integrates vehicles, road-side units (RSUs) with edge servers, and remote cloud servers into a

three-tier computing environment. Each vehicle generates computational tasks (we consider

each vehicle handling a single task at a time in this paper) that can be executed locally or

offloaded to either a nearby edge server (via an RSU or 5G base station) or further to a cloud

server. Along with the decision of where to offload, the system must also decide how to offload

tasks over available wireless interfaces (e.g., using the cellular 5G link or a Wi-Fi/DSRC

connection), subject to spectrum availability and interference constraints.

Our hybrid GWO–PSO–ACO algorithm intelligently explores this decision space to

minimise the total completion time and energy consumption of vehicular tasks while satisfying

QoS requirements (such as task deadline constraints) and improving spectral utilisation. The

Grey Wolf Optimiser provides high-level global exploration for promising offloading

configurations; PSO quickly refines solutions by learning from the best candidates; and ACO’s

pheromone updates reinforce effective task-to-resource assignments (e.g., which vehicle

should use which RSU or channel). By combining these complementary strategies, our hybrid

algorithm avoids premature convergence and more effectively navigates the complex multi-

dimensional search space than any single metaheuristic alone.

II. CONTRIBUTIONS

This work addresses the identified challenges by introducing a comprehensive solution for

VANET task offloading.

The main contributions are as follows:

1. Hybrid Metaheuristic Offloading Algorithm: We propose a novel hybrid

optimisation framework combining Grey Wolf Optimizer (GWO), Particle Swarm

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6921

Optimization (PSO), and Ant Colony Optimization (ACO) for joint task-offloading and

wireless-resource management in vehicular edge computing. This hybrid leverages

GWO’s exploration capability, PSO’s rapid convergence, and ACO’s adaptive search

to improve solution quality, convergence speed, and robustness against local optima.

2. QoS and Spectrum-Aware Offloading Model: We formulate a multi-objective

optimisation model for 5G-enabled VANETs that explicitly incorporates spectrum

constraints, multiple access modes, and interference limitations. The proposed

formulation minimises task latency and energy consumption while ensuring QoS

requirements and maximising spectral efficiency.

3. Mobility-Aware Edge–Cloud Architecture: We design a vehicular network

architecture integrating mobile vehicles, RSU-based edge servers, and cloud resources,

with single-task offloading per vehicle. The model accounts for RSU handover and

cloud fallback mechanisms to maintain service continuity under mobility.

4. Performance Evaluation: We conduct extensive simulations comparing the proposed

hybrid algorithm with individual metaheuristics and other baseline approaches to yield

better reduced end-to-end latency, lower energy consumption, better load balancing,

and higher bandwidth utilisation. To carry out Convergence and scalability analyses to

confirm its effectiveness with higher number of vehicles and higher speed.

III. PAPER ORGANISATION

The remainder of this paper is organized as follows. Section IV provides a detailed review

of related works on metaheuristic-based task offloading and QoS- and spectrum-aware

optimization approaches. Section V describes the proposed hybrid GWO–PSO–ACO

methodology and algorithmic design. Section VI discusses the simulation setup, performance

metrics, and parameter configurations, while Section VII presents the experimental results and

analysis. Finally, Section VIII concludes the paper and highlights potential future research

directions.

IV. RELATED WORKS

A. Metaheuristic-Based Task Offloading in Edge Computing

A variety of metaheuristic algorithms have been employed in recent years to solve task

offloading and resource allocation problems in edge and fog computing environments. These

algorithms are attractive for their ability to tackle NP-hard optimisation problems and find near-

optimal solutions within reasonable time. Evolutionary and swarm-based techniques in

particular have seen wide use. For example, Abbas et al. (2021) applied three well-known

metaheuristics i.e. Ant Colony Optimisation (ACO), Whale Optimization Algorithm (WOA),

and Grey Wolf Optimiser (GWO) to optimize the selection of offloading tasks in a mobile edge

computing scenario involving IoT devices. Their study highlighted the trade-off between

energy consumption and delay, and the results showed that GWO achieved the best

performance in terms of reducing energy usage and execution latency, outperforming the ACO

and WOA approaches [6]. This result highlights GWO’s effectiveness in jointly optimizing

energy and delay—helping to explain why GWO has become a popular choice for edge

offloading problems.

Chanyour et al. (2022) formulated the offloading decision as a multi-objective problem to

simultaneously minimize total power consumption and task execution delay in a fog computing

environment [14]. They employed a Non-dominated Sorting Genetic Algorithm (NSGA-II)

alongside the Bees Algorithm to solve this bi-objective optimisation, demonstrating that

metaheuristics can obtain a set of Pareto-optimal solutions balancing energy and latency. Their

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6922

simulation results showed improved trade-offs i.e. the proposed methods achieved lower

overall energy consumption for given delay levels (and vice versa) compared to heuristic

baselines, and they ensured a better offloading probability (the fraction of tasks offloaded)

under power constraints. Likewise, Shahidinejad (2022) treated task offloading in edge–cloud

networks as a multi-objective optimisation and proposed an improved NSGA-II algorithm

(referred to as iNSGA-II) for this purpose [12]. By enhancing the genetic operators (crossover

and mutation), their iNSGA-II achieved faster convergence than standard evolutionary

algorithms, leading to higher edge server utilisation and noticeable reductions in both energy

consumption and task execution time. This work underlined that even within a single

metaheuristic family (GA-based), careful algorithmic improvements can yield significant gains

in offloading efficiency.

Several other studies have explored metaheuristics like Particle Swarm Optimisation and

Simulated Annealing for offloading. In the vehicular network domain, You and Tang (2021)

[16] employed a PSO algorithm to efficiently allocate tasks to edge servers in an industrial IoT

setting, reporting substantial latency improvements over random or greedy assignments.

Keshari et al. (2021) [17] also investigated PSO for vehicular edge computing offloading,

confirming its effectiveness in reducing task completion time under varying network

conditions. Genetic Algorithms have been used to handle task scheduling and offloading with

multiple objectives, as seen in works like Li & Zhu. (2020) [18] and Elkawkagy et al. (2025)

[19]. Ant Colony Optimisation has been less common for offloading, but it has shown promise

in problems like vehicular route selection and could be adapted to task assignment problems

due to its strength in combinatorial search. In summary, prior studies indicate that metaheuristic

offloading strategies outperform naive or static schemes by exploring the search space more

thoroughly and finding more efficient task–resource allocations. They are especially useful in

scenarios with multiple tasks and servers, where exhaustive search is infeasible.

B. Conventional Metaheuristics

Despite their successes, conventional metaheuristic approaches in offloading come with

notable limitations, which recent surveys have pointed out [20]. A comprehensive systematic

review by Li & Chen (2024) examined numerous metaheuristic task offloading techniques

aimed at minimising energy consumption in edge computing [21]. The review found that the

majority of existing techniques rely on a single metaheuristic algorithm and thus suffer from

issues like poor convergence speed, imbalance between local and global search, and high

computational complexity. In many cases, algorithms like PSO or GA can converge

prematurely to suboptimal solutions (local minima) if the population diversity is not maintained,

or they may require a large number of iterations to adequately explore the search space, which

is problematic for time-sensitive applications. The survey by Li & Chen [21] noted that Grey

Wolf Optimiser (GWO) has emerged as a promising approach among single metaheuristics for

energy-efficient offloading, owing to its efficient exploration mechanism and minimal

parameter tuning. However, even GWO and similar algorithms can stagnate or oscillate if the

problem landscape is complex with many constraints.

The recent survey by Pilli, Mohapatra, and Reddy (2025) underscores hybrid meta-heuristic

designs as a promising direction for priority-aware computation offloading, noting that

blending global search with structure-exploiting local improvement can mitigate typical

weaknesses of pure meta-heuristics namely slow convergence and limited solution precision

[15]. Complementing this line, Li et al. (2025) move beyond purely heuristic search by casting

joint task offloading and resource allocation in hybrid MEC-enabled LEO satellite networks as

a hierarchical game. Their game-theoretic formulation provides principled coordination across

layers and supports explicit service constraints (e.g., latency/throughput), illustrating how

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6923

pairing meta-heuristic exploration with equilibrium-driven or exact subroutines can deliver

both high-quality solutions and stronger QoS guarantees. Together, these works point to hybrid

pipelines in which meta-heuristics handle global exploration while problem-structured

optimization enforces feasibility and accelerates convergence.

Despite these advances, a gap remains in understanding scalability. Many proposed solutions

have only been evaluated on moderate-sized scenarios; their performance in large-scale, dense

network settings is rarely reported. Computational complexity can grow quickly with problem

size, so efficient encodings and search operators are needed to keep runtime feasible. Our

proposed hybrid GWO–PSO–ACO addresses this by combining algorithms that complement

each other’s search behaviour, effectively accelerating convergence and avoiding long stalls in

suboptimal regions of the search space. In summary, the literature points to a need for more

robust and faster-converging offloading algorithms. This need directly motivates our adoption

of a hybrid metaheuristic strategy in this work.

C. QoS-Aware and Spectrum-Aware Offloading Schemes

In parallel to algorithmic improvements, another line of work focuses on making offloading

more QoS-aware and network-aware. Traditional formulations often optimize average delay or

energy but may not enforce per-task QoS (e.g., latency deadlines) and often oversimplify

communication models (e.g., assuming a single homogeneous link) [23]. To support

heterogeneous QoS demands, some studies introduce multi-priority or multi-class frameworks.

For example, Huang et al. proposed a QoS-aware resource allocation scheme in fog-enabled

IoT, using Analytic Hierarchy Process (AHP) to prioritize QoS parameters per device type. A

matching-game approach then jointly optimized task offloading and resource block allocation,

ensuring that high-priority tasks (e.g., ultra-low latency or high reliability) receive preferential

treatment. Their scheme improved load balancing and reduced network overhead, showing that

explicitly handling QoS distinctions (e.g., treating URLLC vs. broadband traffic differently)

can enhance performance [9].

However, Huang et al.’s [9] method relies on a specific hierarchical and game-theoretic

framework and does not leverage metaheuristics; moreover, it assumes the availability of

resource blocks (RBs) in a single network context and does not explicitly address multi-RAT

(radio access technology) scenarios or spectrum sharing [9]. Until recently, very few offloading

studies explicitly incorporated communication-resource constraints (spectrum availability,

interference, etc.) into their decision models. One notable work is Huang et al. (2024) (a

different Huang, et al.) who investigated a joint spectrum sharing and task offloading problem

for vehicular edge computing [9]. They observed that prior VEC works either focused solely

on V2I offloading or implicitly assumed abundant spectrum, failing to account for spectrum

scarcity in growing vehicular networks.

To address this, they proposed a coalition formation game approach that allowed vehicles to

offload tasks via both V2I and V2V links, with V2V communications opportunistically sharing

the uplink spectrum of V2I links. This innovative spectrum-sharing mechanism improved

spectral utilisation and significantly reduced the total task completion delay (by over 50% in

many cases) compared to baseline schemes without spectrum sharing [9]. The work of Huang

et al. (2024) clearly demonstrates the benefit of incorporating spectrum awareness i.e. by

treating channel allocation and offloading target selection jointly, the scheme can exploit

underused bandwidth and avoid bottlenecks on congested links. Nevertheless, their solution is

tailored to a specific cooperative game model and optimises primarily for delay (network

throughput), without explicitly considering the energy consumption of vehicles.

Moreover, the game-theoretic algorithm, while distributed, may face complexity issues as

the number of vehicles and sub-channels grows, and it does not utilise metaheuristic

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6924

optimisation (instead, it iteratively forms coalitions). Another relevant study by Nguyen et al.

(2023) examined a collaborative UAV network handling inter-dependent edge computing task

[24]. They formulated an optimisation to minimise average latency by jointly deciding task

offloading (for tasks that are part of a dependency DAG) and allocating communication

resources (transmit power and channels) among UAVs. Owing to the NP-hard nature of the

joint problem, they split it and applied a discrete Whale Optimisation Algorithm (D-WOA) to

the offloading decision subproblem, while solving the resource allocation subproblem via

convex optimisation. This approach yielded a suboptimal but efficient solution that

outperformed several benchmarks in reducing latency and improving uplink transmission rates

for UAV-served users [24]. Nguyen et al.’s work is notable for considering task dependency

(workflow topology) in offloading, a QoS aspect (since some tasks must wait for others). It

also considers the power limits of UAVs (energy constraint) and effectively treats

communication channels as limited resources.

The use of a metaheuristic (WOA) aligns with our direction, though their UAV swarm

scenario with DAG tasks differs from VANETs and lacks explicit multi-RAT spectrum

handling (assuming a single-band UAV link). Overall, literature is evolving toward more

advanced offloading strategies that consider multiple objectives (e.g., delay, energy, cost), QoS,

and realistic constraints 20], [25], [26] Still, gaps remain, indicating that few studies unify

hybrid metaheuristic optimisation with QoS- and spectrum-aware offloading. Most either focus

narrowly on computing or assume simple communication models, while those addressing

spectrum or QoS often use game theory or heuristics and optimise a single objective [20], [26].

This leaves a research gap in achieving both high spectral efficiency and strong QoS

guarantees in a multi-tier vehicular offloading system using advanced optimisation algorithms.

In summary, our work bridges the two research threads identified above. On one hand, we

introduce a hybrid GWO–PSO–ACO metaheuristic to solve the complex offloading problem

with faster convergence and higher solution quality. On the other hand, we formulate the

offloading decision to explicitly include spectrum constraints and QoS deadlines alongside the

usual latency and energy objectives. Our evaluation demonstrates that this fused approach can

simultaneously reduce vehicle energy consumption and task delay while respecting spectrum

limitations, achieving a combination of benefits that previous approaches could not. In doing

so, we present a novel solution that advances the state of the art in metaheuristic offloading and

yields a VANET offloading framework more attuned to spectral efficiency and QoS

compliance than prior methods. Next, we present the system model and the hybrid algorithm

in detail, followed by performance evaluation results that show how our approach addresses

the research gaps identified above.

V. METHODOLOGY

This section details the design rationale, mathematical formulation, and algorithmic

workflow underpinning our hybrid GWO–PSO–ACO task-offloading framework for 5G-

enabled VANETs. We first present the system architecture and core assumptions including

mobile vehicles with heterogeneous workloads, bandwidth-constrained LTE/5G and Wi-Fi

uplinks, and multi-tier computing resources at RSUs and the cloud. We then formalise latency,

energy, reliability, and spectral-efficiency metrics, framing a multi-objective optimisation that

captures practical soft-deadline penalties and channel-capacity limits. Finally, we describe how

Grey Wolf Optimiser, Particle Swarm Optimisation, and Ant Colony Optimization operate in

parallel as an ensemble, iteratively sharing the best candidate solution to achieve fast

convergence and robust performance.

Figure 1 presents a flowchart overview of the proposed methodology

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:algo

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6925

Fig 1: Flowchart of proposed Methodology

VI. SYSTEM MODEL

Figure 2 presents the architecture of the proposed vehicular edge computing framework. The

system consists of a set of mobile vehicles equipped with On-Board Units (OBUs), a network

of Roadside Units (RSUs), edge servers co-located with RSUs, and a centralised cloud server.

Each vehicle generates computational tasks and must decide whether to execute them locally

or offload them to a nearby RSU or the cloud. RSUs communicate with the cloud via high-

speed backhaul links. The wireless uplink operates over 5G NR or LTE bands, with shared

bandwidth and velocity-dependent transmission rates. A hybrid GWO–PSO–ACO

optimisation engine is used to determine optimal offloading decisions based on real-time task

profiles, bandwidth availability, and QoS constraints.

A. System Architecture

Fig 2: System Architecture

B. Decision Engine and Optimization Deployment

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:system_arch

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6926

The hybrid GWO–PSO–ACO optimiser is executed at the RSU-side edge controller.

Vehicles periodically send task metadata (e.g., input size, CPU cycles, velocity) to their nearest

RSU. The RSU aggregates this information and applies the optimiser to decide where each task

should be executed i.e. locally at the vehicle, at the RSU edge server, or offloaded to the cloud.

The final decision is sent back to the vehicle, which then either processes the task locally or

initiates transmission. This centralised optimisation ensures global coordination across

multiple vehicles and enables efficient spectrum and resource usage.

We consider a three-tier vehicular edge computing architecture consisting of mobile vehicles,

road-side units (RSUs) with edge servers, and a remote cloud. Vehicles (forming a 5G-enabled

VANET) generate computational tasks that can be processed locally or offloaded. Each vehicle

has at most one active task at a time (no task queue per vehicle). Tasks have varying input data

sizes and processing requirements. The vehicles are equipped with wireless interfaces for

LTE/5G cellular and WiFi (IEEE 802.11p or similar) connectivity. This allows two offloading

paths:

(1) Vehicle-to-Infrastructure (V2I) via cellular to a 5G base station/RSU that provides edge

computing services, or

(2) Vehicle-to-RSU via WiFi for local edge processing.

In both cases, RSUs are connected to a core network enabling further offload to the cloud if

needed.

Fig 3: System Model

Figure 3 illustrates the model. Mobile vehicles 𝑉𝑖 (for 𝑖 = 1,2, … , 𝑁) each generate a task 𝑡𝑖. A

task 𝑡𝑖 is characterised by a data size 𝑑𝑖 (in bits) that must be uploaded if offloaded, and a

computational workload 𝑐𝑖 (in CPU cycles) required to execute the task. Each task can be

executed in one of three places:

1. Locally on the vehicle (Local execution): The vehicle’s on-board unit (OBU) processes

the task.

2. At the edge (Edge offloading): The task is transmitted to a nearby RSU or 5G base

station and executed on the edge server (MEC server) there.

3. In the cloud (Cloud offloading): The task is transmitted over the cellular network to a

remote cloud server for execution (possibly via the RSU/base station as a relay).

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6927

The network uplink for task offloading has limited bandwidth and channel resources. We

assume a total of 𝑁𝑐ℎ orthogonal channels (subchannels or time-frequency resource blocks) are

available for vehicular uplink transmission (across LTE/5G or WiFi). If more than 𝑁𝑐ℎ vehicles

attempt to offload simultaneously, they must share channels (e.g., by time-division or causing

interference), which degrades each vehicle’s data rate. Each channel ℎ has a bandwidth 𝐵 (Hz)

and a corresponding data rate depending on channel conditions. Let 𝑅𝑖 (in bit/s) denote the

achievable uplink rate for vehicle 𝑖 when it offloads (this encapsulates bandwidth 𝐵 and SINR

conditions). For simplicity, we assume 𝑅𝑖 is the individual data rate when using one channel

exclusively; if multiple vehicles share or exceed available channels, the effective rate per

vehicle will be reduced (modelled later via a spectrum penalty). Downlink transmission of the

task result is assumed to be very small or delivered over the same link with negligible delay (a

common assumption, as output data sizes are typically much smaller than input sizes).

The edge servers at RSUs (or 5G base stations) have finite computing capacity. Let 𝑓𝑒 be the

processing speed (CPU cycles per second) be available to each RSU’s edge server, and 𝑓𝑐 for

the cloud server. Similarly, each vehicle’s CPU has speed 𝑓𝑣 cycles/s. Typically 𝑓𝑐 ≫ 𝑓𝑒 ≫ 𝑓𝑣

(cloud is most powerful, then edge, then vehicle). For example, an edge server might be a

micro-datacenter with several cores (e.g. 10× the speed of a single vehicle’s CPU), while the

cloud has virtually unlimited capacity (for modelling, a very high speed or enough resources

to process all offloaded tasks in parallel). Vehicles may be moving; however, we assume that

during the execution of its task, a vehicle remains under coverage of the same RSU/cellular

base station. (In the simulation, we can treat vehicles as either fixed or moving at moderate

speeds, and we account for mobility’s effect via a reliability factor for the communication link

as described later). Reliability of task execution can be impacted by mobility (loss of

connection) or resource outages. We incorporate reliability into the model by assigning a

success probability to each offloading option (detailed in the formulation below).

In summary, the system model entails each vehicle deciding whether to execute its task

locally or offload it to an edge or cloud server. Offloading yields lower computation time

(especially for large tasks) but incurs delays, energy cost for wireless communication, and

potential packet loss or channel contention. Local execution avoids network usage (no

transmission delay or wireless energy cost) but may take longer and drain the vehicle’s battery.

The goal is to optimise the offloading decisions for all vehicles to achieve a balance between

low latency, low energy consumption, high reliability, and efficient spectrum usage.

VII. MATHEMATICAL FORMULATION

We now formulate the task of offloading and resource allocation problems mathematically. We

define decision variables, performance metrics (latency, energy, etc.), and constraints.

A. Decision Variables:

For each vehicle 𝑖 we introduce binary offloading decision variables:

𝑥𝑖
(𝐿)

, 𝑥𝑖
(𝐸)

, 𝑥𝑖
(𝐶)

∈ 0,1 (1)

indicating whether task 𝑡𝑖 is executed Locally, at the Edge, or in the Cloud, respectively.

Each task must be executed exactly in one place, so we have the assignment constraint:

𝑥𝑖
(𝐿)

+ 𝑥𝑖
(𝐸)

+ 𝑥𝑖
(𝐶)

= 1,  ∀𝑖 = 1, … , 𝑁. (2)

For example, 𝑥𝑖
(𝐸)

= 1 means vehicle 𝑖 offloads its task to an edge server (and 𝑥𝑖
(𝐿)

= 𝑥𝑖
(𝐶)

= 0

in that case).

B. Latency Model:

The latency 𝑇𝑖 for task 𝑡𝑖 depends on the decision:

1. Local execution latency: If 𝑥𝑖
(𝐿)

= 1, latency consists solely of local processing time. We

model this as

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6928

𝑇𝑖
(𝐿)

=
𝑐𝑖

𝑓𝑣

, (3)

 i.e. the CPU cycles required are divided by the vehicle’s CPU speed.

2. Edge offloading latency: If 𝑥𝑖
(𝐸)

= 1 , latency includes two components: (i) uplink

transmission time to send 𝑑𝑖 bits to the RSU, and (ii) edge computing time. The

transmission time is 𝑇𝑖
𝑡𝑥(𝑒𝑑𝑔𝑒)

=
𝑑𝑖

𝑅𝑖
(𝐸), where 𝑅𝑖

(𝐸) is the uplink data rate for vehicle 𝑖 on the

RSU/5G link. The edge processing time is 𝑇𝑖
𝑝𝑟𝑜𝑐(𝑒𝑑𝑔𝑒)

=
𝑐𝑖

𝑓𝑒
 (assuming the edge server can

allocate sufficient CPU to this task – we discuss capacity constraints shortly). Thus

𝑇𝑖
(𝐸)

=
𝑑𝑖

𝑅𝑖
(𝐸)

+
𝑐𝑖

𝑓𝑒

(4)

 If multiple tasks are offloaded to the same edge server, we assume the server can

process them in parallel up to its capacity; beyond that, tasks will experience additional

waiting time (modeled via a constraint/penalty later). We neglect the output download

time as output data is typically small.

3. Cloud offloading latency: If 𝑥𝑖
(𝐶)

= 1, latency includes (i) uplink transmission to the

cellular network, (ii) backhaul/core network transit to the cloud, and (iii) cloud

processing. We combine (i) and (ii) as an effective transmission delay 𝑇𝑖
𝑡𝑥(𝑐𝑙𝑜𝑢𝑑)

=
𝑑𝑖

𝑅𝑖
(𝐶) +

𝑇𝑏ℎ, where 𝑅𝑖
(𝐶) is the uplink rate to cloud (which could be the same as 𝑅𝑖

(𝐸) if the first

hop is the bottleneck) and 𝑇𝑏ℎ is the additional backhaul latency for reaching the cloud

data centre. 𝑇𝑏ℎ might be a fixed 10–50ms depending on network distance (5G MEC

has very small 𝑇𝑏ℎ, while a distant cloud might add tens of milliseconds). The cloud

processing time is 𝑇𝑖
𝑝𝑟𝑜𝑐(𝑐𝑙𝑜𝑢𝑑)

=
𝑐𝑖

𝑓𝑐
. Thus,

𝑇𝑖
(𝐶)

=
𝑑𝑖

𝑅𝑖
(𝐶)

+ 𝑇𝑏ℎ +
𝑐𝑖

𝑓𝑐

(5)

 Typically, 𝑓𝑐 ≫ 𝑓𝑒 , so cloud execution is very fast, but 𝑇𝑏ℎ might make total cloud

latency higher than edge for small tasks. We assume tasks are independent, so no

waiting is needed at cloud (cloud has ample capacity).

 For each vehicle 𝑖, the actual latency 𝑇𝑖 is determined by its decision:

𝑇𝑖 = 𝑥𝑖
(𝐿)

. 𝑇𝑖
(𝐿)

+ 𝑥𝑖
(𝐸)

. 𝑇𝑖
(𝐸)

+ 𝑥𝑖
(𝐶)

. 𝑇𝑖
(𝐶) (6)

 This selects the appropriate latency formula.

C. Mobility-Aware Channel Rate Modelling

In vehicular environments, uplink data rate 𝑅𝑖 is affected by the vehicle’s velocity 𝑣𝑖, due to

Doppler shift, RSU dwell time, and channel fading. To model this, we used a mobility-aware

rate function that degrades performance with increasing speed [7]. Each vehicle’s uplink rate

is approximated by:

𝑅𝑖 =
𝑅max

1 +
𝑣𝑖 − 𝑣min

𝑣max − 𝑣min

(7)

where:

• 𝑣𝑖 ∈ [𝑣min, 𝑣max] is the speed of vehicle 𝑖 in km/h,

• 𝑅max is the peak data rate achievable at the minimum speed,

• The denominator models a linear rate drop-off with speed.

For example, if 𝑅max = 15 Mbps, 𝑣min = 20 km/h, and 𝑣max = 100 km/h, then a vehicle at

100km/h experiences a rate 𝑅𝑖 ≈ 7.3 Mbps. This value of 𝑅𝑖 is used in the transmission delay

term
𝑑𝑖

𝑅𝑖
 in energy model for offloaded tasks.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6929

Optionally, velocity-aware reliability can also be incorporated by decreasing the probability

of successful offloading as speed increases, reflecting reduced RSU dwell time or higher

handover risk.

D. Energy Consumption Model:

We focus on the energy consumed by vehicles (as vehicles are energy-constrained). If a task

runs locally, the vehicle expends CPU energy; if offloaded, the vehicle expends radio

transmission energy (assuming the edge and cloud energy costs are less critical or not charged

to the vehicle). We define:

1. Local computation energy: If executed locally, the energy consumed by the vehicle’s

CPU is

𝐸𝑖
(𝐿)

= 𝜅. 𝑐𝑖 . (𝑓𝑣)𝛼 (8)

 where 𝜅 and 𝛼 are device-specific constants related to CPU power consumption. A

common model from DVFS (dynamic voltage frequency scaling) literature is 𝛼 = 2 or

3, meaning energy per cycle grows with the square or cube of the CPU frequency. For

simplicity, one can use 𝐸𝑖
(𝐿)

= 𝜂. 𝑐𝑖 where 𝜂 (Joules per cycle) is a constant indicating

energy cost per CPU cycle on the vehicle. This captures that larger tasks (more cycles)

drain more battery [9].

2. Offloading transmission energy: If offloaded (edge or cloud), the vehicle’s primary

energy cost is from transmitting 𝑑𝑖 bits over wireless. We model this as

𝐸𝑖
(𝑇𝑋)

= 𝑃𝑡𝑥,𝑖 × 𝑇𝑖
𝑡𝑥 (9)

 where 𝑃𝑡𝑥,𝑖 is the transmit power of vehicle 𝑖 and 𝑇𝑖
𝑡𝑥 is the transmission duration. Using

𝑇𝑖
𝑡𝑥(𝑒𝑑𝑔𝑒) or 𝑇𝑖

𝑡𝑥(𝑐𝑙𝑜𝑢𝑑) as appropriate, we get 𝐸𝑖
(𝐸)

= 𝑃𝑡𝑥,𝑖 .
𝑑𝑖

𝑅𝑖
(𝐸) if offloaded to edge, or 𝐸𝑖

(𝐶)
=

𝑃𝑡𝑥,𝑖 .
𝑑𝑖

𝑅𝑖
(𝐶) for cloud (the transmit power might differ if different interfaces are used, but

we assume similar power usage for simplicity). We neglect the tiny reception energy

for result downloading.

Thus, the vehicle’s energy 𝐸𝑖 for task 𝑖 is:

𝐸𝑖 = 𝑥𝑖
(𝐿)

. 𝐸𝑖
(𝐿)

+ 𝑥𝑖
(𝐸)

. 𝐸𝑖
(𝑇𝑋)

+ 𝑥𝑖
(𝐶)

. 𝐸𝑖
(𝑇𝑋) (10)

where we used the same 𝐸𝑖
(𝑇𝑋) for edge/cloud as the transmit action is similar (if needed, one

could distinguish 𝑃𝑡𝑥 for cellular vs WiFi, but that can be folded into 𝑅𝑖 or 𝑇𝑖 differences).

E. Reliability and QoS

We incorporate a reliability factor to account for the probability that a task is successfully

executed and returned to the vehicle within acceptable time. Several factors affect reliability:

1. Communication reliability: Offloading over wireless can fail due to packet loss,

interference, or the vehicle moving out of coverage. We denote by 𝜌𝑐𝑜𝑚𝑚
(𝐸) the success

probability of edge offloading transmission (e.g., a 5G link might have 𝜌𝑐𝑜𝑚𝑚
𝐸 ≈ 0.99

reliability), and 𝜌𝑐𝑜𝑚𝑚
𝐶 for cloud offloading (possibly slightly lower if more network

hops are involved). Local execution has essentially 𝜌𝑐𝑜𝑚𝑚
𝐿 = 1 (no communication

needed).

2. Processing reliability: There is a small chance an edge server or cloud could fail or be

too overloaded to complete a task in time. We denote 𝜌𝑝𝑟𝑜𝑐
𝐸 for edge computing

reliability (maybe very high if edge is stable, e.g. 0.999) and 𝜌𝑝𝑟𝑜𝑐
𝐶 for cloud (also high).

3. Deadline/QoS satisfaction: Often tasks have a deadline or maximum latency 𝐷𝑖 (QoS

requirement). If 𝑇𝑖 exceeds 𝐷𝑖, the task result is no longer useful (considered a failure

for QoS). This effectively reduces reliability of that decision. We can incorporate this

by setting 𝜌𝑄𝑜𝑆,𝑖 = 1 if 𝑇𝑖 ≤ 𝐷𝑖 and 0 if 𝑇𝑖 > 𝐷𝑖 . To keep the problem formulation

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6930

continuous, one might approximate this with a very steep penalty for exceeding 𝐷𝑖

rather than a hard step function.

For simplicity, we combine these factors into an overall reliability probability 𝜌𝑖 for each

task given the offloading decision:

𝜌𝑖 = {

𝜌(𝐿), 𝑥𝑖
(𝐿)

= 1,

𝜌(𝐸), 𝑥𝑖
(𝐸)

= 1,

𝜌(𝐶), 𝑥𝑖
(𝐶)

= 1.

(11)

where 𝜌(𝐿), 𝜌(𝐸), 𝜌(𝐶) are the success probabilities for local, edge, and cloud execution

respectively. These can be defined as 𝜌(𝐿) = 𝜌𝑝𝑟𝑜𝑐
𝐿 (nearly 1, assuming the vehicle’s OBU rarely

fails and no deadline miss locally), 𝜌(𝐸) = 𝜌𝑐𝑜𝑚𝑚
(𝐸)

⋅ 𝜌𝑝𝑟𝑜𝑐
𝐸 ⋅ 𝜌𝑄𝑜𝑆

(𝐸) , and similarly for 𝜌(𝐶). Typically,

𝜌(𝐿) ≈ 1, 𝜌(𝐸) might be slightly less (e.g. 0.98-0.99), and 𝜌(𝐶) slightly less than 𝜌(𝐸) (due to longer

network path, say 0.95-0.98). The QoS deadline component 𝜌𝑄𝑜𝑆 would be 1 if the predicted

latency 𝑇𝑖 meets the requirement 𝐷𝑖, or 0 if it exceeds (in practice we will handle this via a

penalty term rather than a strict zero, to allow trade-offs).

We will not impose a hard reliability constraint; instead, we include a penalty in the objective

for unreliability or QoS violation. For formulation, define an unreliability cost for task 𝑖 as 𝑈𝑖 =

1 − 𝜌𝑖. This 𝑈𝑖 is 0 if success is guaranteed, and positive if there is a failure probability or QoS

risk. For example, if 𝑖 offloads to cloud with 𝜌(𝐶) = 0.96, then 𝑈𝑖 = 0.04 (4% risk of failure or

deadline miss). Our goal is to minimize these unreliability values across all tasks.

F. Spectrum Allocation and Capacity Constraints

The network constraint is that at most 𝑁𝑐ℎ tasks can be transmitted simultaneously without

sharing spectrum [27]. If 𝑦 = ∑ (𝑥𝑖
(𝐸)

+ 𝑥𝑖
(𝐶)

)𝑖 is the number of offloading vehicles, then:
𝑦 ≤ 𝑁𝑐ℎ (12)

If eq12 is violated (i.e. more vehicles attempt to offload than channels), then some vehicles

must either share a channel or wait. Sharing a channel (e.g. two vehicles on one channel)

effectively halves the bandwidth for each, reducing 𝑅𝑖 and thus increasing latency 𝑇𝑖 (possibly

causing deadlines to be missed). Waiting (time-division) would also increase latency. Rather

than add a complex scheduling sub-problem, we enforce eq12 as a soft constraint by penalizing

any exceedance. Specifically, in the objective we will add a spectrum penalty term if 𝑦 > 𝑁𝑐ℎ.

One simple penalty is 𝑃𝑠𝑝𝑒𝑐 × max(0, , 𝑦 − 𝑁𝑐ℎ) with a large coefficient 𝑃𝑠𝑝𝑒𝑐 to strongly

discourage infeasible channel load. In our approach, we prefer to avoid this situation by

optimization, so typically the solution will satisfy 𝑦 ≤ 𝑁𝑐ℎ automatically if the penalty weight

is high.

Next, for edge server capacity: The edge server has finite CPU 𝑓𝑒 cycles/s. If too many large

tasks are offloaded to a single edge, they may queue. A rough constraint is that the total

processing demand of tasks offloaded to a given edge in the time horizon should not exceed

what the server can handle. For a single time slot model (all tasks come at once), a constraint

can be:

∑ 𝑐𝑖

𝑖∈𝑅𝑆𝑈𝑗

≤ 𝑓𝑒 × 𝑇𝑠𝑙𝑜𝑡 (13)

where 𝑇𝑠𝑙𝑜𝑡 is the maximum latency tolerance (e.g. if tasks should finish in under 1 s, we set

𝑇𝑠𝑙𝑜𝑡 = 1 s). This ensures the edge 𝑠𝑒𝑟𝑣𝑒𝑟𝑗 can process all offloaded tasks within that time if

scheduled optimally. Similarly for the cloud (although cloud capacity is very large, we can

assume it’s not a bottleneck or apply a similar constraint if modelling multiple clouds). In

practice, rather than a hard constraint, we incorporate this in reliability: if eq13 is violated,

some tasks will be delayed beyond the slot, effectively causing 𝜌𝑄𝑜𝑆 = 0 for them (counted in

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6931

unreliability). Our optimization will naturally avoid sending more tasks to edge than it can

handle because that would incur high latency and QoS penalties.

Finally, each decision variable is binary:

𝑥𝑖
(𝐿)

, 𝑥𝑖
(𝐸)

, 𝑥𝑖
(𝐶)

∈ 0,1,  ∀𝑖. (14)

This makes the problem a combinatorial optimization (each vehicle chooses one of 3 options).

G. Multi-Objective Optimization Formulation

We now frame the offloading decision problem as a multi-objective optimization.

The objectives are:

1. Minimize total latency (or equivalently average latency) of tasks.

2. Minimize total energy consumption of vehicles.

3. Maximize reliability/QoS or equivalently minimize the number of failures or deadline

violations.

4. Maximize spectrum efficiency, which in our formulation translates to minimise

excessive spectrum usage or channel congestion.

Because these objectives conflict (for example, minimizing latency might mean offloading

everything to cloud, which could increase spectrum usage and risk), we formulate a single

composite objective function using weighted sums. Decision makers can adjust weights to

prioritize certain metrics. Let 𝑤1, 𝑤2, 𝑤3, 𝑤4 be the weight coefficients for latency, energy,

unreliability, and spectrum usage respectively.

We first express the metrics in a quantitative form:

1. Total latency: 𝑇𝑡𝑜𝑡 = ∑ 𝑇𝑖
𝑁
𝑖=1 (𝑥𝑖), where 𝑇𝑖(𝑥𝑖) is given by eq-6. This is the sum of all task

latencies (we could also use max latency or a weighted sum, but sum/average is chosen

for simplicity).

2. Total energy: 𝐸𝑡𝑜𝑡 = ∑ 𝐸𝑖
𝑁
𝑖=1 (𝑥𝑖) from eq-10.

3. Total unreliability (QoS cost): 𝑈𝑡𝑜𝑡 = ∑ (1 − 𝜌𝑖(𝑥𝑖))𝑁
𝑖=1 . This essentially counts the

expected number of failed tasks or the sum of failure probabilities. If 𝜌 values are near

1, 𝑈𝑡𝑜𝑡 will be small. In practice, if tasks have deadlines, this term heavily penalizes any

task predicted to miss its deadline (which would make 𝜌𝑖 ≈ 0 for that task).

4. Spectrum usage cost: We define 𝑆𝑢𝑠𝑎𝑔𝑒 in terms of total data transmitted or channel

usage. A simple choice is

𝑆𝑢𝑠𝑎𝑔𝑒   =   ∑ 𝑦𝑖

𝑁

𝑖=1

 
𝑑𝑖

𝐵
,

 which represents the total time–frequency resource consumed (bits transmitted divided

by channel bandwidth—effectively the sum of Tx time across all offloads). However,

this is somewhat redundant with latency, since transmission time is part of latency.

 Another proxy is simply the number of offloaded tasks

𝑦  =   ∑(

𝑁

𝑖=1

𝑥𝑖
(𝐸)

+ 𝑥𝑖
(𝐶)

),

 i.e. how many tasks are used in the spectrum.

 For our multi-objective we penalise the fraction of channels utilised, or any excess

usage beyond the available channels. We set

𝑆𝑢𝑠𝑎𝑔𝑒   =  
𝑦

𝑁𝑐ℎ

,

 the ratio of offloading demand to channel supply. This term encourages using fewer

channels (smaller 𝑦) relative to 𝑁𝑐ℎ. If 𝑦 > 𝑁𝑐ℎ, the ratio exceeds 1, heavily penalising

the objective.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6932

Now the multi-objective optimization problem can be written as minimizing the weighted

sum:

min
𝑥𝑖

(𝐿)
, 𝑥𝑖

(𝐸)
, 𝑥𝑖

(𝐶)
𝐹 = 𝑤1 ∑ 𝑇𝑖

𝑁

𝑖=1

+ 𝑤2 ∑ 𝐸𝑖 + 𝑤3 ∑(1 − 𝜌𝑖)

𝑁

𝑖=1

+ 𝑤4

∑ (𝑁
𝑖=1 𝑥𝑖

(𝐸)
+ 𝑥𝑖

(𝐶)
)

𝑁𝑐ℎ

 (15)

𝑁

𝑖=1

subject to the constraints: assignment constraint eq2 for each vehicle, capacity constraint

eq12 (or penalize it in objective), edge capacity eq13 (implicitly handled via 𝑇𝑖 and 𝜌𝑖), and

binary constraints eq14.

In eq15, all terms are to be minimized:

1. The first term (𝑤1) penalizes high total latency.

2. The second term (𝑤2) penalizes high energy consumption.

3. The third term (𝑤3) penalizes unreliability (since 1 − 𝜌𝑖 is 0 for a perfectly reliable task

and close to 1 for a high-risk task or a definite failure).

4. The fourth term (𝑤4) penalizes heavy use of spectrum resources (especially if the

number of offloaded tasks is large relative to available channels).

By adjusting the weights 𝑤1, 𝑤2, 𝑤3, 𝑤4, we can emphasize different design goals. For example,

to ensure QoS is strictly prioritized, 𝑤3 can be set very large so that any solution with a likely

failure is considered unacceptable unless it dramatically improves other metrics. In practice,

we might normalize each component (e.g., divide latency by some reference value, etc.) so that

the numerical scales are comparable before applying weights. For clarity here, we assume the

weights have been tuned appropriately.

The optimization defined by eq15 and constraints is a NP-hard combinatorial problem

(essentially an integer programming problem with a non-linear objective, due to products like

𝑥𝑖𝑅𝑖 in latency if 𝑅𝑖 depends on sharing, etc.). Exhaustive search is infeasible for large 𝑁, so we

propose a hybrid metaheuristic algorithm to find a near-optimal solution efficiently.

H. Hybrid GWO–PSO–ACO Solution Algorithm

To solve the above multi-objective optimization, we design a hybrid algorithm that combines

Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and Ant Colony

Optimization (ACO). Each of these algorithms contributes complementary strengths:

• GWO provides fast convergence and effective exploitation by mimicking the leadership

hierarchy of grey wolves [28].

• PSO offers efficient global search by having “particles” share information about the

best-found solutions (quickly guiding the swarm to good regions) [29].

• ACO contributes a powerful combinatorial search capability, constructing solutions via

pheromone trails that effectively capture good assignments for discrete decision

components [30].

1. Solution Encoding: We encode a candidate solution as a vector of length 𝑁 specifying

each vehicle’s offloading decision. For example, 𝐗 = [𝑑1, 𝑑2, … , 𝑑𝑁] where 𝑑𝑖 ∈ 𝐿, 𝐸, 𝐶 (or

equivalently 0,1,2) indicating the choice for vehicle 𝑖. This discrete representation is

naturally suited for ACO. For GWO/PSO (which operate in a continuous space), we

map it to a continuous vector representation, e.g., 𝐗 = [𝑥1, 𝑥2, . . . , 𝑥𝑁] where each 𝑥𝑖 is a

real number and its value range is partitioned into the three decision options. One

common approach is to let 𝑥𝑖 ∈ [0,1] and interpret 0 ≤ 𝑥𝑖 <
1

3
 as local,

1

3
≤ 𝑥𝑖 <

2

3
 as edge,

and
2

3
≤ 𝑥𝑖 ≤ 1 as cloud. Alternatively, we maintain three continuous variables per

vehicle summing to 1, but that requires special handling to enforce one-hot selection.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6933

In our implementation, we use the single-variable encoding with rounding to the nearest

category for evaluating a solution’s objective.

2. Population Initialization: We start with an initial population of 𝑃 candidate solutions

(for example, 𝑃 = 50). This population can be randomly generated (assign each task a

random choice among L/E/C), or seeded with some heuristic solutions (e.g., all local,

all edge, all cloud, to give baseline extremes; or based on simple greedy criteria). We

also initialize ACO pheromone levels i.e. we maintain a pheromone value 𝜏𝑖
(𝐿)

, 𝜏𝑖
(𝐸)

, 𝜏𝑖
(𝐶)

for each decision of each vehicle, initially all equal (indicating no preference).

3. Hybrid Iterative Optimization: The algorithm proceeds in iterations (generations). At

each iteration, we evolve the population in parallel using GWO, PSO, and ACO

operators:

a. Grey Wolf Optimizer (GWO) operator: In GWO, candidate solutions are

considered as “wolves” hunting for the prey (optimal solution). We identify the

three best solutions in the current population as 𝛼 (best), 𝛽 (2nd best), and 𝛿 (3rd

best) wolves. These top three guide the movement of the other wolves (𝜔

wolves). The position update in GWO for each wolf involves computing

attraction towards 𝛼, 𝛽, and 𝛿. For a given wolf position 𝐗, GWO computes:
𝐷𝛼 = |𝐶1 ⋅ 𝑋𝛼 − 𝑋|,
𝑋1 = 𝑋𝛼 − 𝐴1 ⋅ 𝐷𝛼 .

 and similarly, 𝐗2, 𝐗3 using 𝛽 and 𝛿 with random coefficient vectors 𝐀2, 𝐂2 and

𝐀3, 𝐂3 . Then the new position is 𝐗𝑛𝑒𝑤 = (𝐗1 + 𝐗2 + 𝐗3)/3 . Here 𝐀, 𝐂 are

coefficient vectors that decrease over iterations to balance

exploration/exploitation (they depend on a control parameter 𝑎 that linearly

decreases each iteration) [28]. In our hybrid, we apply this GWO update to a

subset of the population (or potentially to all non-elite solutions) to get new

candidate solutions influenced by the current bests.

b. Particle Swarm Optimization (PSO) operator: In PSO, each candidate solution

is a “particle” that has a velocity and moves through the search space. We

maintain for each particle its personal best solution found so far. At each

iteration, we update the particle’s velocity and position by:
𝑣𝑖 ← 𝜔𝑣𝑖 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖)

 +𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖)
𝑥𝑖 ← 𝑥𝑖 + 𝑣𝑖 .

 (16)

 for each dimension 𝑖 of the particle (in our case, each vehicle’s decision). Here

𝜔 is an inertia weight (to control momentum), 𝑐1, 𝑐2 are acceleration coefficients

for cognitive (self) and social (global) components, and 𝑟1, 𝑟2 are random

samples in [0,1]. The term 𝑝𝑏𝑒𝑠𝑡𝑖 is the particle’s best-known position and 𝑔𝑏𝑒𝑠𝑡𝑖

is the global best position (i.e., 𝛼 wolf’s position). We clamp 𝑥𝑖 into [0,1] if

needed after update. After moving, we discretize each 𝑥𝑖 to a decision and

evaluate the fitness. If the new solution is better than its personal best, update

𝑝𝑏𝑒𝑠𝑡. In our hybrid, we perform PSO updates on each particle in the population

(or a designated subset). The presence of the global best (𝑔𝑏𝑒𝑠𝑡 , which

corresponds to the 𝛼 solution from GWO) means PSO is also being guided by

the best solution currently found.

c. Ant Colony Optimization (ACO) operator: In parallel to the above, we use a set

of 𝑚 artificial ants to probabilistically construct new solutions for each iteration.

Each ant builds a solution by assigning decisions for vehicles one by one. The

probability that an ant assigns vehicle 𝑖 to option 𝑜 ∈ 𝐿, 𝐸, 𝐶 is given by a

combination of pheromone and a heuristic desirability:

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6934

𝑃𝑖(𝑜) =
τ𝑖(𝑜)[η𝑖(𝑜)]β

∑ τ𝑖
(𝑜′)

[η𝑖
(𝑜′)

]
β

𝑜′∈{𝐿,𝐸,𝐶}

.

 where 𝜏𝑖
(𝑜) is the pheromone level indicating how favorable option 𝑜 has been

historically for vehicle 𝑖, and 𝜂𝑖
(𝑜) is a heuristic factor [29] (for example, we can

define 𝜂𝑖
(𝐿)

= 1/𝑇𝑖
(𝐿) and 𝜂𝑖

(𝐸)
= 1/𝑇𝑖

(𝐸) etc., meaning we prefer choices with lower

latency, or a combination of metrics). 𝛽 is a parameter controlling the influence

of the heuristic relative to pheromone (often 𝛽 ≈ 2). Starting from 𝑖 = 1 to 𝑁,

each ant chooses an option according to 𝑃𝑖(𝑜) (roulette-wheel selection). This

yields a complete solution vector.

 We then evaluate its objective 𝐹 using eq-15. After all ants construct solutions,

we update the pheromones: first apply evaporation 𝜏𝑖
(𝑜)

← (1 − 𝜌)𝜏𝑖
(𝑜) (where 0 <

𝜌 < 1 is evaporation rate, not to be confused with reliability earlier) to diminish

old information, then add pheromone 𝛥𝜏 on decisions used by the best solutions

found by ants. For example, if 𝐗𝑏𝑒𝑠𝑡 is the best ant solution of this iteration (or

overall so far), we deposit pheromone: for each vehicle 𝑖, if 𝐗𝑏𝑒𝑠𝑡 chose option 𝑜

for 𝑖, then 𝜏𝑖
(𝑜)

← 𝜏𝑖
(𝑜)

+ 𝛥. 𝛥 can be proportional to the quality (e.g., 𝛥 ∝ 1/𝐹 for

that solution) so that better solutions reinforce pheromone more. This ACO

process biases future ants towards good assignments (e.g., if it’s often optimal

for vehicles with large tasks to offload, those decisions will accumulate higher

𝜏).

 In our hybrid approach, we run GWO, PSO, and ACO operators concurrently each

iteration. That is, in iteration 𝑡:

a. We have the current population of solutions (size 𝑃). Compute the objective 𝐹

for each.

b. Identify the global best solution 𝐗𝛼 (and also 𝛽, 𝛿 for GWO).

c. Generate a set of new candidate solutions using GWO update on the population

(excluding maybe the elites 𝛼, 𝛽, 𝛿 which remain).

d. Apply PSO update to move each particle to a new position (including possibly

𝛼 itself also moves or we keep 𝛼 static – we can keep 𝛼 as an elite that just

carries over).

e. Use 𝑚 ants to construct 𝑚 new solutions via ACO.

f. Combine all these new solutions into a new population pool. Evaluate all their

objective values.

g. Selection: Out of the combined pool (old population, GWO-moved solutions,

PSO-moved solutions, and ant-generated solutions), select the top 𝑃 solutions

to form the population for the next iteration. (We ensure the best solution 𝐗𝛼

always carries over to the next generation.)

h. Update the pheromone matrix in ACO using the best solutions found (either the

global best or some top fraction of ants).

i. Increment iteration and repeat.

 By sharing the best global solution among all three sub-algorithms, we ensure synergy:

PSO and GWO are both pulled toward the best-known solution, and ACO deposits

pheromone favouring the components of that best solution. Meanwhile, ACO’s random

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6935

exploration and GWO/PSO’s divergent moves ensure diversity so we don’t get stuck

prematurely. The process continues for a predetermined number of iterations 𝑇max or

until convergence (e.g., no improvement in best solution for a number of iterations).

4. Best Solution Selection: At the end of each iteration, we identify the best candidate

solution (minimum 𝐹 value). This is the 𝛼 leader, which we record. After the final

iteration, the algorithm outputs the best solution found overall, which gives the optimal

(or near optimal) offloading decisions 𝑥𝑖
(𝐿)

, 𝑥𝑖
(𝐸)

, 𝑥𝑖
(𝐶) for all vehicles. From this, we can

derive performance metrics like total latency, etc., to verify the objectives are met. The

best solution is selected simply by comparing the objective values: since 𝐹 is a weighted

sum of all criteria, the solution with lowest 𝐹 is considered the best trade-off according

to the given weights. (If a truly multi-objective Pareto front analysis is needed, the

algorithm could be modified to store a set of non-dominated solutions, but here we

assume the weighted sum approach yields a single optimum.)

5. Parallelism and Efficiency: It is worth noting that the hybrid nature allows parallel

execution: evaluating solutions can be done in parallel easily. The GWO and PSO

updates on different particles/wolves can also be parallelized. ACO solution

constructions are independent and can be parallel. Thus, the hybrid algorithm is well-

suited to parallel computing, which is useful given the potentially large search space

(3𝑁 possible assignments). The combination of methods helps escape local optima: for

instance, if PSO tends to converge too fast to a suboptimal point, the random

exploration of ants or the divergent component of GWO (via the 𝐴 coefficient which

can drive wolves beyond the current best) can introduce new solutions that lead the

swarm out of the local optimum. This cooperative behavior improves solution quality

and convergence speed.

I. Simulation Assumptions and Parameters

For performance evaluation, we simulate the above system using realistic parameters. Below

we list the key assumptions and parameter ranges used in our experiments:

• Vehicles and Tasks: We consider 𝑁 vehicles (e.g. 𝑁 = 100) in a cell/region. Each

vehicle generates one task. The input data size 𝑑𝑖 of each task is uniformly distributed

in a range (to model variable task sizes). For example, 𝑑𝑖 ∼ U[1 𝑀𝐵 to 40 𝑀𝐵] . We

assume each bit of input requires a fixed 300 CPU cycles of processing, so a 1 MB task

demands roughly 2.4×10⁹ cycles, whereas a 40 MB task requires about 9.6 ∗ 1010 cycles.

This workload can be executed locally or offloaded to edge or cloud resources. Vehicle

speeds are randomly drawn between 20 km/h and 100 km/h to capture mobility effects

on execution and communication.

• Wireless Network: We assume a 5G NR uplink for offloading. The total uplink

bandwidth is, say, 𝐵 = 20MHz with 𝑁𝑐ℎ = 5 orthogonal subchannels (resource blocks)

available for our vehicles (this could correspond to 5 scheduling units if we limit

concurrent transmissions to 5). The peak data rate per vehicle on a 20MHz channel in

good conditions might be on the order of 100–200 Mbps. In the simulation, we simplify

by assigning each offloading vehicle an effective rate depending on how many share

the bandwidth: if 𝑦 vehicles offload simultaneously, each gets ≈ 𝐵/𝑦 bandwidth (if

using equal allocation) so their rate 𝑅𝑖 is reduced accordingly. For example, if one

vehicle offloads alone, it might achieve 𝑅𝑖 = 200 Mbps; if 5 vehicles offload, each gets

about 40 Mbps (assuming all have similar channel quality). We also consider a

WiFi/DSRC RSU with bandwidth ≈ 10 MHz as an alternative, but for simplicity we let

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6936

the cellular network handle all offloads (the model can accommodate separate

interfaces, but we abstract it here).

• Computing Capacities: Each vehicle’s on-board unit (OBU) has a processing speed

drawn uniformly from [0.7,  1.3] 𝐺𝐻𝑧; denote the CPU frequency by 𝑓𝑣. This range is

centered around ∼ 1 𝐺𝐻𝑧 to represent typical embedded processors. The roadside unit

(edge server) provides far greater computing capacity: set 𝑓𝑒 = 60 𝐺𝐻𝑧, roughly 60 ×

faster than a 1 𝐺𝐻𝑧 vehicle (this could correspond to a multi-core MEC server). The

cloud has virtually unlimited capacity; for simulation we use 𝑓𝑐 = 200 𝐺𝐻𝑧, which makes

cloud processing times negligible for our task sizes. For example, even a 1.92 × 1010-

cycle task (8 MB) would take only ≈ 0.096 𝑠 on a 200 𝐺𝐻𝑧 server. We do, however,

include a fixed extra backhaul latency 𝑇bh = 20 𝑚𝑠 for any task offloaded to the cloud to

account for wide-area network delays between the edge and the cloud data centre (edge

offloads incur no backhaul delay beyond the immediate wireless link).

• Task Deadline/QoS: We assume each task has a soft deadline of 𝐷 = 2second (for

example, a vehicular alert or computation result should return in 2s to be useful). This

is used in determining 𝜌𝑄𝑜𝑆 for reliability. In simulation, if a task’s total latency 𝑇𝑖

exceeds 2s, we mark it as a violation (the task “fails” QoS). For reliability values, we

might set 𝜌(𝐿) = 1 (local always succeeds if perhaps slower), 𝜌(𝐸) = 0.99 if completed

within 𝐷, dropping to 0 if over time (so effectively most edge tasks meet 𝐷 or they fail),

and 𝜌(𝐶) = 0.98 (a slightly higher chance of delay due to longer path).

• Energy Parameters: We assume a transmit power 𝑃𝑡𝑥 for vehicles around 0.5W (27 dBm)

when using cellular uplink. So, transmitting, e.g., a 10MB task at 100Mbps (0.8s) would

consume 0.5𝑊 × 0.8𝑠 = 0.4 J. For local CPU energy, we assume 𝜂 = 10−11 Joule per

cycle (just an order-of-magnitude estimate; 1e-11 J/cycle means 109 cycles =0.01J).

Thus a 5 × 108 cycle task locally would use 5 × 108 × 10−11 = 5 × 10−3 J, which is

actually less than transmission in this example (but if tasks are larger, local can consume

more).

• Hybrid Algorithm Settings: For the GWO-PSO-ACO algorithm, we choose population

size 𝑃 = 36. PSO parameters: inertia 𝜔 = 0.9, 𝑐1 = 1, 𝑐2 = 1.7 (typical values). The Grey

Wolf Optimizer (GWO) baseline uses a pack of 36 wolves (solutions) and 110 iterations,

with the standard GWO parameter a decreasing from 2.0 to 0 over the course of

iterations (to reduce the exploratory move range as the algorithm progresses). The Ant

Colony Optimization (ACO) baseline constructs solutions using 22 ants per iteration

and runs for 55 iterations (ACO is more computationally intensive per iteration, so we

use a slightly smaller swarm and fewer iterations for parity) and pheromone evaporation

rate 𝜌 = 0.25 , initial pheromone 𝜏𝑖
(𝑜)

= 1 for all, heuristic weight 𝛽 = 2 . We run the

algorithm for 𝑇max = 100 iterations (or until convergence if earlier). Weights in the

objective might be set (after normalization of units) to something like 𝑤1 = 0.4, 𝑤2 =

0.3, 𝑤3 = 0.2, 𝑤4 = 0.1 as a baseline, ensuring latency is slightly prioritized, followed by

energy, etc. We also include heavy penalty factors in 𝜌 or 𝑤3, 𝑤4 to make channel

overflow or deadline misses very undesirable (e.g. if a solution causes any deadline

miss, its 𝐹 increases sharply by design).

Pseudocode 1: GWO–PSO–ACO

With these assumptions, we simulate scenarios to evaluate performance. Vehicles may be

placed randomly in a cell; Mobility is considered, vehicles have speeds 0–100 km/h, but we

assume the network can maintain the connection for the task duration (e.g., using handover if

needed, not explicitly modeled). The reliability factors 𝜌(𝐸), 𝜌(𝐶) can indirectly reflect that high

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6937

mobility might reduce 𝜌𝑐𝑜𝑚𝑚. For simplicity, we used fixed 𝜌 values as above and did not drop

any task due to mobility in the simulation (but tasks could fail by missing the 2s deadline,

which could happen if network is congested or tasks are huge).

Algorithm 1: Condensed Hybrid GWO–PSO–ACO Offloading Optimiser

Input:

• Vehicles and tasks: 𝑉with (𝑑𝑖, 𝑐𝑖 , 𝐷𝑖)

• CPU capacities: 𝑓𝑣, 𝑓𝑒, 𝑓𝑐

• Channels & bandwidth: 𝑁𝑐ℎ , 𝐵

• Weights: (𝑤1: 𝑤4)

• Population sizes: 𝑃(particles/solutions), 𝑚(ants)

• Max iterations: 𝑇max

Output:

• Best offloading vector 𝑋⋆

Procedure:

1. Initialization.

1.1 Generate 𝑃initial candidate solutions; initialize PSO velocities.

1.2 Initialize GWO parameter 𝑎 ← 2; initialize pheromones 𝜏 ← 1.

1.3 Evaluate objective 𝐹for all candidates; set global best 𝛼.

2. For 𝑡 = 1to 𝑇maxdo

2.1 GWO update — exploration via wolves.

 Identify 𝛼, 𝛽, 𝛿; update remaining wolves using the encircling rule.

 Update 𝑎as required by GWO schedule.

2.2 PSO update — velocity/position refinement.

 For each particle, update velocity and position:

 𝑣 ← 𝜔𝑣 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥);

 apply bounds/constraints to 𝑥.

2.3 ACO construction — probabilistic solution building.

 Construct 𝑚ant solutions using selection probability

 𝑃𝑖
(𝑜)

∝ 𝜏𝑖
(𝑜)

 𝜂𝑖
(𝑜) 𝛽.

2.4 Evaluation — multi-objective function.

 Merge all candidate solutions (GWO, PSO, ACO); discretize as needed.

 Compute per-task metrics 𝑇𝑖 , 𝐸𝑖 , 𝜌𝑖and system score 𝑆;

 evaluate 𝐹(𝑋).

2.5 Selection & pheromone update.

 Keep the best 𝑃candidates (elitism); update 𝛼.

 Evaporate pheromones 𝜏; deposit Δ𝜏 ∝ 1/𝐹(𝛼).

3. End For

4. Return: 𝑋⋆ ← 𝛼.

To summarize, our proposed methodology provides a complete framework: a detailed system

model for 5G-enabled VANET offloading, a mathematical formulation capturing latency,

energy, reliability, and spectral efficiency, a multi-objective optimization problem, and a novel

hybrid GWO–PSO–ACO algorithm to solve it. The simulation setup outlined above will allow

us to test the efficacy of the approach under realistic conditions, demonstrating improvements

in latency-energy trade-offs and resource utilization for vehicular networks.

VII. RESULTS AND DISCUSSION.

To evaluate the effectiveness of the proposed hybrid GWO–PSO–ACO algorithm for task

offloading in 5G-enabled VANETs, we conducted extensive simulations in Python using

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6938

realistic vehicular task profiles and uplink constraints. The results were benchmarked against

standalone PSO, ACO, and GWO optimizers under a common task set. The ensemble nature

of GWO–PSO–ACO allows the system to explore and exploit the search space more effectively

than any single heuristic alone. The hybrid model demonstrates superior convergence, lower

QoS violations, and improved spectral awareness, making it well-suited for dynamic vehicular

environments. Trade-offs exist—computation time is marginally higher—but gains in energy

and latency dominate.

A. Experimental Setup

We simulated three task scales with 𝑁 = 1,2,3 … .100 vehicles, each generating a variable-size

task ranging from 1 MB to 40 MB. The CPU frequency of onboard units (OBUs) varied

between 0.7 and 1.3 GHz, while the edge server and cloud server were configured at 60 GHz

and 200 GHz respectively. Uplink bandwidth was 20 MHz with 5 concurrent channels.

Transmission rates were adapted dynamically based on vehicle mobility (20–100 km/h), and

spectral penalty was calculated based on channel contention. Soft deadline was set to 𝑇𝐷 = 2

seconds.

B. Latency Analysis

From figure 4, it can be observed that across all evaluated task loads (1–60 tasks), the total

latency increased with the number of tasks due to higher aggregate transmission times and

occasional contention for channels or edge computing resources. Under low-load conditions (≤

20 tasks), all algorithms produced near-identical latencies because resources were underutilised

and most tasks met their deadlines with ease.

At higher loads (40–60 tasks), differences between algorithms became pronounced. The

Proposed-Hybrid approach consistently outperformed PSO and GWO in these congested

scenarios, achieving latency reductions of over 50% against PSO and more than 70% against

GWO, with an overall average improvement of approximately 21.9% and 29.3%, respectively.

These gains stem from the Hybrid’s combination of GWO’s broad search, PSO’s refinement,

and ACO’s discrete allocation reinforcement, which together distribute tasks more effectively

and avoid overloading single resources.

Fig. 4: Total latency vs number of tasks

Total latency vs number of tasks.

In contrast from figure 5, proposed Hybrid alone achieved the lowest mean latency (20.28 s)

across all loads, outperforming the al others. The Hybrid’s average latency was still far better

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:latency

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6939

than that of PSO (65.73 s) and GWO (105.79 s). This shows that proposed-Hybrid is more

effective for pure latency minimisation under specific congestion patterns, and offers a more

consistent multi-objective balance, sacrificing small latency gains in exchange for better energy

efficiency, reliability, and spectral performance across diverse conditions.

Overall, the results indicate that the Hybrid method is a robust choice when multiple

performance metrics must be jointly optimised, maintaining competitive latency while

significantly outperforming PSO, ACO and GWO under load. However, for scenarios where

latency is the sole critical metric and conditions favour its strengths, ACO results was closed

to proposed Hybrid so ACO may remain a second preferable option. This trade-off underscores

the importance of aligning the choice of optimisation strategy with the dominant constraints

and objectives of the target vehicular edge computing environment.

Fig. 5: Average Latency vs number of tasks

C. Energy Consumption

From figure 6, it can be observed that across all task loads, total energy consumption rose

steadily with the number of tasks, reflecting the increased aggregate transmission and

computation demands. Under light to moderate loads (≤ 20 tasks), all algorithms showed

similarly low energy use, as offloading decisions could be made without overloading

communication links or edge servers. At higher loads (40–60 tasks), the proposed-Hybrid

approach delivered clear advantages over PSO and GWO, reducing total energy consumption

by approximately 12–18% and 20–25%, respectively, with gains stemming from its ability to

intelligently allocate tasks to execution modes that minimise both high-power uplink

transmissions and prolonged idle times during queuing. The integration of GWO’s exploration,

PSO’s refinement, and ACO’s task–resource memory enabled the Hybrid to better avoid

sending large tasks over congested channels or overburdening the edge tier, thus keeping

energy costs lower in heavy-load conditions.

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:energy

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6940

Fig. 6: Total energy consumption vs number of tasks

When compared to ACO, the Hybrid showed more mixed results. In several high-load cases,

ACO achieved slightly lower total energy than the Hybrid, benefiting from its direct

combinatorial construction, which in certain runs produced highly energy-efficient allocations

by avoiding excessive offloads to the cloud and limiting long transmissions. Nevertheless, the

Hybrid’s mean energy use remained competitive and consistently better than PSO and GWO,

with its allocation patterns offering a more balanced trade-off between energy efficiency,

latency, and reliability. While ACO could sometimes achieve marginally better energy savings

in specific congestion patterns, it lacked the Hybrid’s broader multi-objective optimisation

capability.

Overall, the Hybrid algorithm proved effective in maintaining low energy consumption

under varying conditions, especially when compared to PSO and GWO, and without the

instability sometimes seen in ACO’s allocation behaviour. For systems prioritising both energy

efficiency and other QoS objectives, the Hybrid offers a robust and adaptable solution. In

contrast, if energy reduction alone is the dominant goal in a stable, predictable network

environment, a well-tuned ACO may be a suitable alternative. This highlights the need to match

the optimisation approach to the operational priorities and variability of the vehicular edge

computing context.

D. Reliability and QoS

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6941

Fig. 7: Reliability (%) vs number of tasks with strict QoS penalty i.e. 1Sec.

From figure 7, reliability is defined as the proportion of tasks successfully completed within

their required deadline (or without failure). The simulation reveals that across all load levels,

reliability i.e. measured as the proportion of tasks completed within the 2-second deadline was

high at small to moderate task counts but declined as the system became saturated. At ≤ 20

tasks, all algorithms achieved near-perfect reliability because the available bandwidth and

processing capacity were more than sufficient to meet deadlines. As the number of tasks

increased to 40 and 60, the impact of channel contention reduced throughput at higher vehicle

speeds, and occasional edge-server queuing became more pronounced. In these heavy-load

scenarios, the Proposed-Hybrid maintained a higher reliability than PSO and GWO, with

improvements of up to 15–25 percentage points, extending the range of high-reliability

operation before the performance drop-off occurred. This resilience was largely due to the

Hybrid’s combination of global search, rapid convergence, and adaptive discrete allocation,

which collectively reduced the number of tasks missing deadlines.

Overall, the Hybrid algorithm achieved strong reliability across varied network loads,

especially outperforming PSO and GWO in congested conditions. It preserved high success

rates for a larger range of task volumes, only dropping significantly when the system

approached or exceeded its spectrum and processing capacity limits. For deployments,

maintaining reliability above a strict threshold (e.g., 80%) is critical under dynamic load

conditions, the Hybrid’s adaptive and multi-objective design provides a more dependable

choice, whereas ACO can be competitive if the environment consistently favours its channel-

aware assignment behaviour.

E. Spectral Efficiency

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:reliability

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6942

Fig. 8: Spectral Efficiency vs number of tasks.

We evaluate spectral efficiency to measure how effectively the available wireless bandwidth

is utilised during task offloading. The results show that spectral efficiency (measured as the

effective bits per second per Hz) remained consistently high across all task counts, with only

minor variations between algorithms. At low loads (≤ 10 tasks), the Proposed-Hybrid achieved

a small but measurable advantage, reaching about 0.5% higher spectral efficiency than PSO

and GWO, and approximately 0.2–0.3% higher than ACO. For example, at 5 tasks, the Hybrid

reached 3.659 b/s/Hz, compared to 3.643–3.650 b/s/Hz for the baselines. These early-stage

gains indicate the Hybrid’s ability to allocate channels more effectively and avoid idle

bandwidth periods when resources are abundant.

As the load increased beyond 20 tasks, all algorithms quickly approached near-saturation,

with spectral efficiency stabilising around 3.54–3.58 b/s/Hz (≈ 1.00–1.01 normalised bits/s/Hz).

In this regime, the differences between algorithms were marginal i.e. generally less than 0.2%

because once all channels were fully occupied, physical-layer limits and interference

constraints left little room for further improvement.

Overall, the Hybrid demonstrated up to 0.5% higher spectral efficiency than PSO, GWO,

and ACO at lower loads and matched their performance under high-load, fully utilised

conditions. While these percentage improvements are modest compared to the double-digit

gains seen for latency and energy, they show the Hybrid reaches peak spectrum utilisation

earlier and maintains it without introducing excessive congestion making it a balanced choice

when spectral efficiency must be optimised alongside other QoS metrics.

F. Objective

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6943

Fig. 9: Objective function vs number of tasks.

The composite objective value in this study represents a weighted combination of latency,

energy consumption, reliability, and spectrum cost, with lower values indicating a better overall

balance across these metrics. From figure 9, across all task loads, the Proposed-Hybrid

consistently achieved lower objective values than PSO and GWO, with average improvements

of approximately 5–10% at low loads and growing to more than 30–40% at high loads (40–60

tasks). These gains reflect the Hybrid’s ability to explore widely through GWO, refine

promising solutions quickly via PSO, and lock in efficient discrete assignments with ACO,

enabling it to avoid high-penalty situations such as excessive deadline misses or spectrum

overload.

When compared to ACO, the Hybrid delivered more mixed results. At low to moderate loads,

its objective values were marginally lower, improving on ACO by about 2–5%, due to slightly

better energy–latency trade-offs while maintaining high reliability. However, at 40 tasks in the

high-rate run, ACO’s channel-contention-aware allocations reduced its penalty terms enough

to slightly outperform the Hybrid in composite score, despite the Hybrid holding stronger

reliability. Even in these cases, the differences remained small generally within ±5% i.e.

indicating that the two methods are competitive on the overall objective under heavy load.

On average, the Hybrid achieved the lowest mean objective value across all algorithms,

confirming that it is the most balanced performer when all KPIs are considered jointly. While

ACO can match or slightly surpass the Hybrid in certain high-load scenarios, PSO and GWO

were consistently less effective, often producing objective scores 15–30% higher than the

Hybrid due to weaker handling of simultaneous latency, energy, and reliability constraints.

These results underline that the Hybrid’s strength lies not in excelling in a single metric but in

delivering the best compromise across conflicting performance goals in dynamic vehicular

edge computing environments.

G. Convergence

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:objective

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6944

Fig. 10: Spectral Efficiency vs number of tasks

The convergence behaviour reflects how quickly and stably each optimisation method

reduces the composite objective value over iterations. From figure 10, the Proposed-Hybrid

consistently converged faster than PSO, GWO, and ACO across all task loads. At low to

moderate loads, the Hybrid reached near-optimal solutions within 40–50% fewer iterations

than GWO and PSO, owing to the simultaneous influence of GWO’s broad exploration, PSO’s

rapid local exploitation, and ACO’s discrete decision reinforcement. Even at higher loads (40–

60 tasks), where the search space is significantly larger and more complex, the Hybrid

stabilised within 70–80 iterations, while PSO and GWO often required the full 100 iterations

to plateau at higher objective values.

ACO alone demonstrated strong convergence stability in the early stages, particularly for

low loads, but its progress slowed in mid- to late-stage iterations when further refinement was

needed. By contrast, the Hybrid maintained a steady rate of improvement throughout the

optimisation process. The integration of pheromone learning from ACO with the adaptive

positional updates from GWO and PSO prevented stagnation in local minima i.e. a limitation

observed in the standalone metaheuristics. This synergy ensured that the Hybrid continued to

explore alternative task–resource allocations even when the current best solution appeared

strong, often uncovering small but important improvements in the final stages.

Overall, the Hybrid exhibited both faster convergence speed and lower final objective values

across most task scenarios. The faster convergence makes it particularly well-suited for time-

sensitive vehicular edge computing applications, where decision windows are limited. While

ACO could rival the Hybrid in early iteration stability, and PSO occasionally matched its

refinement speed at low loads, neither maintained the same level of balanced progress across

all load conditions. These findings confirm that the Hybrid’s cooperative search strategy is

effective at accelerating convergence without sacrificing solution quality.

Conclusion

In conclusion, the simulation results demonstrate that our metaheuristic-based task

offloading approach yields significant performance enhancements across multiple metrics in a

vehicular edge computing scenario. By dynamically optimizing which tasks to offload (and to

where), the system is able to substantially reduce latency and energy consumption while

maintaining high reliability and efficient spectrum usage. The updated simulation results

confirm that the proposed Hybrid GWO–PSO–ACO task offloading framework achieves

consistent and measurable improvements across all key performance metrics in 5G-enabled

vehicular edge computing. By combining GWO’s global exploration, PSO’s rapid local

file:///C:/Users/CARA-USER/Documents/Usersalam8DownloadsMTT_reveyrand.docx%23fig:convergence

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6945

refinement, and ACO’s discrete task–resource allocation reinforcement, the hybrid method

delivers a well-balanced solution that adapts effectively under varying load and network

conditions. Compared to PSO and GWO, the Hybrid reduced average latency by approximately

21.9% and 29.3%, respectively, and lowered total energy consumption by 12–18%, while

sustaining high reliability levels and maintaining competitive spectral efficiency. Although

ACO occasionally become close to the Hybrid in pure latency or energy under heavy-load,

channel-congested scenarios, the Hybrid consistently provided superior multi-objective

performance, minimising the composite objective value and achieving faster convergence.

The Hybrid’s ability to maintain high reliability i.e. around 80–85% up to critical load points,

while also improving spectral efficiency by up to 0.5% at low loads, demonstrates its

robustness in balancing stringent QoS requirements. Convergence analysis further highlighted

that the Hybrid reached high-quality solutions in fewer iterations than standalone

metaheuristics, making it more suitable for real-time vehicular scenarios where decision

windows are limited. This performance balance is particularly valuable in realistic VANET

environments where latency, energy, and reliability must be jointly optimised under dynamic

conditions.

Overall, these findings reinforce that a hybrid metaheuristic approach can deliver dependable,

cost-effective, and high-performance offloading strategies in congested vehicular networks.

Beyond its demonstrated improvements over individual algorithms, the Hybrid framework

offers a scalable foundation for future enhancements, such as integrating predictive offloading

models, adaptive spectrum management, and cooperative V2V resource sharing. These

extensions could further push the limits of reliability, efficiency, and responsiveness in next-

generation intelligent transportation systems.

Future Work and Limitations

While the proposed GWO–PSO–ACO hybrid optimizer demonstrated strong performance in

terms of latency, energy, reliability, and spectral efficiency, the current study operates under

static task distributions and fixed mobility assumptions. In future work, we aim to extend the

model to support dynamic task arrival patterns, realistic vehicular mobility traces, and multi-

hop V2V cooperative offloading. Additionally, while the metaheuristic approach yields near-

optimal results, real-time deployment on vehicular hardware may require further optimization

or lightweight surrogate models. Incorporating machine learning-based prediction for task

classification or link quality could further enhance decision quality. Finally, integrating

adaptive spectrum management, such as channel reuse and prioritization, would allow better

spectrum utilization under congestion, especially for delay-sensitive tasks in dense urban

scenarios.

REFERENCES

[1] H. Yang, K. Zheng, K. Zhang, J. Mei, and Y. Qian, “Ultra-reliable and low-latency

communications for connected vehicles: Challenges and solutions,” IEEE Network, vol. 34,

no. 3, pp. 92–100, May/Jun. 2020, doi: 10.1109/MNET.011.1900242.

[2] ETSI, 5G; Service Requirements for Enhanced V2X Scenarios (3GPP TS 22.186, Rel. 17),

ETSI TS 122 186 V17.3.0, Dec. 2022. [Online]. Available:

https://www.etsi.org/deliver/etsi_ts/122100_122199/122186/17.00.00_60/ts_122186v1700

00p.pdf. Accessed: Jun. 8, 2025.

[3] Z. Wu, Z. Jia, X. Pang, and S. Zhao, “Deep reinforcement learning-based task offloading

and load balancing for vehicular edge computing,” Electronics, vol. 13, no. 8, Art. no. 1511,

2024, doi: 10.3390/electronics13081511.

https://www.etsi.org/deliver/etsi_ts/122100_122199/122186/17.00.00_60/ts_122186v170000p.pdf
https://www.etsi.org/deliver/etsi_ts/122100_122199/122186/17.00.00_60/ts_122186v170000p.pdf

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6946

[4] P. Mach and Z. Becvár, “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017,

doi: 10.1109/COMST.2017.2682318.

[5] B. Radouane, G. Lyamine, K. Ahmed, and B. Kamel, “Scalable mobile computing: From

cloud computing to mobile edge computing,” in Proc. 2022 5th Int. Conf. Networking,

Information Systems and Security (NISS), 2022, pp. 1–6.

[6] A. Abbas, A. Raza, F. Aadil, and M. Maqsood, “Meta-heuristic-based offloading task

optimization in mobile edge computing,” International Journal of Distributed Sensor

Networks, vol. 17, no. 6, Art. no. 15501477211023021, 2021, doi:

10.1177/15501477211023021.

[7] R. Latip, J. Aminu, Z. M. Hanafi, S. Kamarudin, and D. Gabi, “Metaheuristic task

offloading approaches for minimization of energy consumption on edge computing: A

systematic review,” Discover Internet of Things, vol. 4, Art. no. 35, 2024.

[8] L. Zhao, Y. Liu, A. Hawbani, N. Lin, W. Zhao, and K. Yu, “QoS-aware multihop task

offloading in satellite–terrestrial edge networks,” IEEE Internet of Things Journal, vol. 11,

no. 19, pp. 31453–31466, 2024.

[9] M. Huang, Z. Shen, and G. Zhang, “Joint spectrum sharing and V2V/V2I task offloading

for vehicular edge computing networks based on coalition formation game,” IEEE

Transactions on Intelligent Transportation Systems, vol. 25, no. 9, pp. 11918–11934, 2024,

doi: 10.1109/TITS.2024.3371096.

[10] T. T. Vu, N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Offloading

energy efficiency with delay constraint for cooperative mobile edge computing networks,”

in Proc. IEEE GLOBECOM 2018, 2018.

[11] A. Umer, M. Ali, A. I. Jehangiri, M. Bilal, and J. Shuja, “Multi-objective task-aware

offloading and scheduling framework for Internet of Things logistics,” Sensors, vol. 24, no.

8, Art. no. 2381, 2024, doi: 10.3390/s24082381.

[12] A. Shahidinejad and M. Ghobaei-Arani, “A metaheuristic-based computation offloading

in edge-cloud environment,” Journal of Ambient Intelligence and Humanized Computing,

vol. 13, pp. 2785–2794, 2022.

[13] S. S. Abuthahir and J. S. P. Peter, “Tasks offloading in vehicular edge computing network

using meta-heuristic algorithms—A study of selected algorithms,” in Proc. 2024 15th Int.

Conf. Computing, Communication and Networking Technologies (ICCCNT), Jun. 2024, pp.

1–10.

[14] T. Chanyour, M. El Ghmary, Y. Hmimz, and M. O. Cherkaoui Malki, “Energy-efficient

and delay-aware multitask offloading for mobile edge computing networks,” Transactions

on Emerging Telecommunications Technologies, vol. 33, no. 3, p. e3673, 2022.

[15] N. Pilli, D. Mohapatra, and S. S. Reddy, “Review on meta-heuristic algorithm-based

priority-aware computation offloading in edge computing system,” Journal of The Institution

of Engineers (India): Series B, pp. 1–26, 2025.

[16] Q. You and B. Tang, “Efficient task offloading using particle swarm optimization

algorithm in edge computing for industrial Internet of Things,” Journal of Cloud Computing:

Advances, Systems and Applications, vol. 10, Art. no. 41, 2021, doi: 10.1186/s13677-021-

00256-4.

[17] N. Keshari, T. S. Gupta, and D. Singh, “Particle swarm optimization-based task offloading

in vehicular edge computing,” in Proc. 2021 IEEE 18th India Council Int. Conf. (INDICON),

2021, pp. 1–8.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S6(2025)

6947

[18] Z. Li and Q. Zhu, “Genetic algorithm-based optimization of offloading and resource

allocation in mobile-edge computing,” Information, vol. 11, no. 2, Art. no. 83, 2020, doi:

10.3390/info11020083.

[19] M. Elkawkagy, I. A. Elgendy, S. A. Chelloug, and H. Elbeh, “Genetic algorithm-driven

joint optimization of task offloading and resource allocation for fairness-aware latency

minimization in mobile edge computing,” IEEE Access, vol. 13, pp. 118237–118248, 2025,

doi: 10.1109/ACCESS.2025.3584971.

[20] X. Yang, J. Zhang, J. Peng, and L. Lei, “Incentive mechanism based on a Stackelberg

game under reputation constraint for mobile crowdsensing,” International Journal of

Distributed Sensor Networks, vol. 17, no. 6, p. 155014772110230, 2021

[21] C. Li and L. Chen, “Optimization for energy-aware design of task scheduling in

heterogeneous distributed systems: A meta-heuristic-based approach,” Computing, vol. 106,

no. 6, pp. 2007–2031, 2024.

[22] P. Li, Y. Wang, Z. Wang, T. Wang, and J. Cheng, “Joint task offloading and resource

allocation strategy for hybrid MEC-enabled LEO satellite networks: A hierarchical game

approach,” IEEE Transactions on Communications, vol. 73, no. 5, pp. 3150–3166, 2025.

[23] H. Choi, H. Yu, and E. Lee, “Latency-classification-based deadline-aware task offloading

algorithm in mobile edge computing environments,” Applied Sciences, vol. 9, no. 21, 2019.

[24] L. X. Nguyen, Y. K. Tun, T. N. Dang, Y. M. Park, Z. Han, and C. S. Hong, “Dependency

tasks offloading and communication resource allocation in collaborative UAV networks: A

metaheuristic approach,” IEEE Internet of Things Journal, vol. 10, no. 10, pp. 9062–9076,

2023.

[25] M. Keshavarznejad, M. H. Rezvani, and S. Adabi, “Delay-aware optimization of energy

consumption for task offloading in fog environments using metaheuristic algorithms,”

Cluster Computing, vol. 24, no. 3, pp. 1825–1853, 2021. doi: 10.1007/s10586-020-03230-y.

(online).

[26] Y. Chen, J. Hu, J. Zhao, and G. Min, “QoS-aware computation offloading in LEO satellite

edge computing for IoT: A game-theoretical approach,” Chinese Journal of Electronics, vol.

33, no. 4, pp. 875–885, 2024. doi: 10.23919/CJE.2022.00.412.

[27] X. Huang, Y. Cui, Q. Chen, and J. Zhang, “Joint task offloading and QoS-aware resource

allocation in fog-enabled Internet of Things networks,” IEEE Internet of Things Journal, vol.

7, no. 8, pp. 7194–7206, Aug. 2020, doi: 10.1109/JIOT.2020.2982670.

[28] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey wolf optimizer,” Advances in

Engineering Software, vol. 69, pp. 46–61, 2014, doi: 10.1016/j.advengsoft.2013.12.007.

[29] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf.

Neural Networks (ICNN’95), vol. 4, 1995, pp. 1942–1948, doi: 10.1109/ICNN.1995.488968.

[30] M. Dorigo and G. Di Caro, “Ant colony optimization: A new meta-heuristic,” in Proc.

1999 IEEE Congr. Evol. Comput. (CEC’99), vol. 2, 1999, pp. 1470–1477, doi:

10.1109/CEC.1999.782657.

