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A B S T R A C T

The digital twin (DT) concept, originating from engineering disciplines, has emerged as a transformative tech
nology in healthcare, particularly in oncology. A digital twin creates a dynamic, virtual replica of a patient's 
physiological and pathological state, integrating multi-dimensional data to enable personalised cancer care. 
Despite growing interest, comprehensive reviews examining the breadth of DT applications in oncology remain 
limited. This narrative review aims to synthesise current evidence on digital twin applications in oncology, 
evaluate their potential to transform cancer care delivery, and identify challenges hindering clinical translation. 
A comprehensive literature search was conducted across PubMed, Scopus, Web of Science, and IEEE Xplore 
databases from inception to September 2025. Studies describing DT development, validation, or application in 
any cancer type were included. Grey literature, conference proceedings, and expert commentaries were also 
reviewed to capture emerging trends. Digital twins demonstrate applications across the cancer care continuum, 
including precision treatment selection, radiotherapy optimisation, drug development, immuno-oncology 
modelling, surgical planning, and survivorship care. Integration of multi-omics data, imaging biomarkers, and 
artificial intelligence enables dynamic simulation of tumour behaviour and treatment response. However, 
challenges persist in data integration, model validation, computational scalability, and ethical governance. 
Digital twin technology holds substantial promise for advancing precision oncology through predictive, per
sonalised, and adaptive care strategies. Addressing current limitations through interdisciplinary collaboration 
and regulatory framework development is essential for clinical implementation.

1. Introduction

The heterogeneous nature of cancer characterised by diverse mo
lecular profiles, varying treatment responses, and unpredictable disease 
trajectories, presents significant challenges in clinical management. 
Traditional one-size-fits-all treatment approaches have gradually given 
way to precision oncology, which seeks to tailor interventions based on 
individual patient characteristics. However, despite advances in mo
lecular diagnostics and targeted therapies, predicting treatment 

outcomes and optimising therapeutic strategies remain formidable 
challenges in contemporary oncology practice.

The advent of digital health technologies has revolutionised 
healthcare delivery, with data-driven approaches increasingly inform
ing clinical decisions. The integration of genomics, proteomics, radio
mics, and electronic health records has generated unprecedented 
volumes of patient data. Yet, translating these complex, multi- 
dimensional datasets into actionable clinical insights remains a bottle
neck for clinicians (Matheny et al., 2020). Conventional predictive 
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models, whilst useful, are often static and fail to capture the dynamic 
nature of cancer progression and treatment response (Olawade et al., 
2025). There is an urgent need for innovative computational frame
works that can synthesise diverse data streams, simulate disease tra
jectories, and enable real-time adaptation of treatment strategies.

Digital twin (DT) technology, originally developed in aerospace and 
manufacturing industries, has emerged as a promising solution to these 
challenges. A digital twin is defined as a dynamic, virtual representation 
of a physical entity in this case, a cancer patient that evolves in parallel 
with its real-world counterpart (Jones et al., 2020; Katsoulakis et al., 
2024). In oncology, DTs aim to integrate multi-omics data, clinical 
history, imaging findings, and lifestyle factors to create patient-specific 
models that simulate tumour growth, predict therapeutic responses, and 
enable scenario testing. Unlike traditional predictive models, oncology 
DTs have the potential to continuously update based on new patient 
data, offering a dynamic framework for personalised cancer care (Jones 
et al., 2020). This paradigm shift from static prediction to dynamic 
simulation represents a fundamental advancement in precision 
oncology.

Recent years have witnessed growing interest in DT applications 
across medical specialties, with oncology emerging as a particularly 
promising domain. The complexity and heterogeneity of cancer, com
bined with the availability of rich multi-modal datasets, make oncology 
an ideal testing ground for DT technology. Pilot and proof-of-principle 
studies (especially in breast cancer) have demonstrated the feasibility 
of tumour- or patient-specific digital twins in predicting treatment re
sponses and optimising treatment schedules (Wu et al., 2025). Artificial 
intelligence (AI) and machine-learning methods enhance the predictive 
capabilities of such DTs by enabling integration of imaging, mathe
matical modelling, and sometimes early-treatment data. However, evi
dence is limited for their use across all common cancer types, especially 
in terms of toxicity mitigation, and their translation into routine clinical 
practice remains constrained by technical, ethical, regulatory, and data 
challenges.

Current oncology practice lacks comprehensive, dynamic tools that 
can integrate diverse patient data to predict treatment outcomes and 
optimise therapeutic strategies in real time. Whilst precision medicine 
has made significant strides, most predictive models remain static and 
fail to capture the evolving nature of cancer. Digital twin technology 
offers a novel solution by creating dynamic, patient-specific models that 
aim to continuously update based on new data. However, evidence on 
DT applications in oncology is scattered across multiple disciplines, and 
a comprehensive synthesis of current applications is lacking. This 
narrative review addresses this gap by systematically examining DT 
applications across the cancer care continuum, from diagnosis to sur
vivorship. The novelty of this review lies in its comprehensive coverage 
of diverse DT applications, critical evaluation of technical and ethical 
challenges, and identification of pathways for clinical translation. The 
primary aim is to synthesise evidence on digital twin applications in 
oncology, evaluate their transformative potential, and identify barriers 
to implementation. Specific objectives include: (1) describing the con
ceptual framework of oncology DTs; (2) reviewing current applications 
across cancer care domains; (3) analysing technical, ethical, and regu
latory challenges; and (4) proposing future directions for research and 
clinical implementation.

2. Methods

2.1. Search strategy

A comprehensive literature search was conducted across four major 
databases: PubMed/MEDLINE, Scopus, Web of Science, and IEEE 
Xplore. The search covered all publications from database inception to 
September 2025. The search strategy employed a combination of Med
ical Subject Headings (MeSH) terms and free-text keywords related to 
digital twins and oncology. The core search string was: ("digital twin*" 

OR "virtual patient*" OR "in silico model*" OR "computational model*" 
OR "patient-specific model*") AND ("oncology" OR "cancer" OR 
"neoplasm*" OR "tumour" OR "tumor" OR "malignancy") AND ("precision 
medicine" OR "personalised medicine" OR "treatment planning" OR 
"predictive model*").

2.2. Inclusion and exclusion criteria

Studies were included if they: (1) described the development, vali
dation, or application of digital twin technology in any cancer type; (2) 
reported on computational modelling approaches for patient-specific 
cancer care; (3) discussed integration of multi-omics, imaging, or clin
ical data for cancer prediction; or (4) addressed technical, ethical, or 
regulatory aspects of DT implementation in oncology. Both original 
research articles and review papers were included. Exclusion criteria 
comprised: (1) studies focusing solely on population-level models 
without patient-specific components; (2) articles describing only general 
computational techniques without oncology applications; and (3) pub
lications not available in English.

2.3. Data extraction and synthesis

Following duplicate removal, titles and abstracts were screened for 
relevance. Full-text articles of potentially eligible studies were retrieved 
and assessed against inclusion criteria. Given the narrative nature of this 
review, a qualitative synthesis approach was employed. Data extracted 
included: study design, cancer type, DT components (data sources, 
computational methods), clinical applications, validation approaches, 
reported outcomes, and identified challenges. Grey literature, including 
conference proceedings, technical reports, and expert commentaries, 
was also reviewed to capture emerging trends and ongoing initiatives. 
Thematic analysis was used to organise findings into coherent domains 
of DT application in oncology.

3. Concept and framework of digital twin in oncology

3.1. Defining digital twin in cancer care

The digital twin concept in oncology extends beyond simple pre
dictive modelling to create a comprehensive, dynamic virtual repre
sentation of an individual patient's cancer journey. An oncology DT aims 
to integrate multiple data layers, genomic and molecular profiles, 
tumour histopathology, radiological imaging, clinical history, treatment 
records, and lifestyle factors, into a unified computational framework. 
This integration has the potential to enable the simulation of tumour 
behaviour under various scenarios, including different treatment regi
mens, timing of interventions, and disease progression pathways (Jones 
et al., 2020).

Central to the DT paradigm is the concept of bidirectional data flow. 
Unlike conventional models that provide one-time predictions, DTs aim 
to continuously receive real-world data from the patient and update 
their internal representations accordingly (Katsoulakis et al., 2024). 
When a patient undergoes imaging, receives treatment, or experiences 
disease progression, these data are fed back into the DT, refining its 
accuracy and enabling more precise predictions over time. This iterative 
refinement process mirrors the biological evolution of cancer and cre
ates a learning system that becomes increasingly personalised to the 
individual patient. Fig. 1 illustrates the conceptual framework of digital 
twin technology in oncology, demonstrating how diverse data streams 
are integrated to create a dynamic virtual patient representation.

3.2. Technical architecture and data integration

The technical architecture of an oncology DT typically comprises 
three core components: the data layer, the computational layer, and the 
interface layer. The data layer aggregates information from electronic 

D.B. Olawade et al.                                                                                                                                                                                                                             Critical Reviews in Oncology / Hematology 220 (2026) 105171 

2 



health records, laboratory information systems, picture archiving and 
communication systems (PACS), genomic databases, and patient- 
reported outcomes. Data harmonisation and standardisation are crit
ical at this stage, as information originates from heterogeneous sources 
with varying formats and quality (Mollica et al., 2024).

The computational layer employs a hybrid approach combining 
mechanistic modelling and machine learning. Mechanistic models, 
based on biological principles and differential equations, simulate 
tumour growth dynamics, drug pharmacokinetics, and radiation dose- 
response relationships (Laubenbacher et al., 2024; Kolokotroni et al., 
2024; Coveney et al., 2025). Machine learning algorithms, including 
deep neural networks and ensemble methods, complement mechanistic 
models by identifying complex patterns in high-dimensional data and 
making predictions where biological mechanisms are incompletely un
derstood (Mollica et al., 2024; Ștefănigă et al., 2024). The integration of 
these approaches aims to create a robust framework capable of both 
interpretable simulation and accurate prediction.

A critical consideration in DT architecture is uncertainty quantifi
cation and error propagation. Given that digital twins integrate data 
from diverse sources, each with inherent measurement errors, missing 
values, and variability, understanding how uncertainties propagate 
through the computational models is essential for reliable clinical 
decision-making (Kemkar et al., 2024; Giansanti and Morelli, 2025). 
Probabilistic methods, Bayesian inference frameworks, and ensemble 
modelling approaches are increasingly being incorporated to charac
terise prediction uncertainty and provide confidence intervals alongside 
point estimates (Dhiman et al., 2022; Amasiadi et al., 2025). Without 
explicit uncertainty quantification, clinicians may be unable to assess 
the reliability of DT predictions, potentially leading to inappropriate 
clinical decisions. Future DT systems must implement robust uncertainty 
propagation methods to ensure that confidence in predictions aligns 
with their actual accuracy.

The interface layer provides clinicians with intuitive visualisations 
and decision-support tools. Interactive dashboards display tumour pro
gression trajectories, treatment response predictions, and risk stratifi
cation results. Scenario-testing modules allow oncologists to explore 
"what-if" questions, such as the predicted outcome of delaying surgery or 
switching from chemotherapy to immunotherapy (Wentzel et al., 2024). 

This layer translates complex computational outputs into actionable 
clinical insights, facilitating shared decision-making between healthcare 
providers and patients.

3.3. Multi-omics integration and systems biology

Modern oncology DTs increasingly aim to incorporate multi-omics 
data, reflecting the multi-layered complexity of cancer biology 
(Kolokotroni et al., 2024; Moztarzadeh et al., 2023). Genomic, tran
scriptomic, proteomic, and metabolomic data each contribute distinct 
biological insights: genomic data identify driver mutations, copy num
ber variations, and mutational signatures that influence therapeutic 
vulnerability, whilst transcriptomic analysis reveals gene expression 
patterns associated with treatment response and resistance mechanisms 
(Kolokotroni et al., 2024). Proteomic and metabolomic data provide 
insights into functional consequences of genetic alterations and meta
bolic reprogramming within tumours (Aghamiri and Amin, 2025).

Integrating these diverse omics layers requires systems biology ap
proaches that model molecular interactions, signalling pathways, and 
regulatory networks. Pathway analysis tools identify dysregulated bio
logical processes, whilst network modelling reveals potential thera
peutic targets and combination strategies (Aghamiri and Amin, 2025). 
The incorporation of single-cell sequencing data has added another 
dimension, enabling DTs to capture intra-tumoural heterogeneity and 
predict the emergence of resistant subclones under therapeutic pressure 
(Li et al., 2022a). These advances are exemplified by recent AI-driven 
Molecular Twin platforms that integrate multi-omic data to predict 
outcomes and therapeutic responses in cancer (Osipov et al., 2024).

4. Applications of digital twins in oncology

The following sections examine how digital twin technology is being 
applied across different stages of cancer care, from initial treatment 
selection through long-term survivorship monitoring. Digital twins 
demonstrate applications across the cancer care continuum (Fig. 2), 
with the potential to enable precision medicine approaches from initial 
diagnosis through long-term survivorship.

Fig. 1. Conceptual framework of digital twin technology in oncology showing bidirectional data flow between the real patient and virtual representation. The system 
integrates multi-omics data, clinical records, imaging, and lifestyle factors through computational layers to enable predictive modeling and personalized treatment 
optimization. Not all components are currently implemented in all oncology digital twin platforms; the figure represents an aspirational integrated framework.
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Fig. 2. Digital twin applications across the cancer care continuum. Six key application domains are illustrated: (A) Precision treatment selection with drug response 
prediction, (B) Radiotherapy planning and dose optimization, (C) Drug development through in silico trials, (D) Immuno-oncology modeling of tumor microenvi
ronment, (E) Surgical planning with 3D visualization, and (F) Survivorship care with long-term monitoring. The figure illustrates potential applications currently at 
varying stages of development and clinical validation.
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4.1. Precision oncology and personalised treatment selection

One of the most promising applications of DT technology lies in 
precision treatment selection, where virtual simulations aim to guide 
therapeutic decision-making. By integrating a patient's molecular profile 
with tumour growth kinetics and treatment response data, DTs have the 
potential to predict the efficacy and toxicity of various therapeutic op
tions. In breast cancer, DTs have been developed to simulate responses 
to different chemotherapy regimens and targeted agents. For example, 
an MRI-based digital twin calibrated to individual imaging data pre
dicted pathological complete response (pCR) in triple-negative breast 
cancer and was used to optimise neoadjuvant chemotherapy schedules 
for each patient (Wu et al., 2025). These models typically incorporate 
tumour receptor status, genomic alterations, and clinical covariates to 
rank treatment options by predicted outcome (Mollica et al., 2024).

In lung cancer, DTs are being explored for modelling response to 
targeted therapies (e.g., EGFR inhibitors) by integrating mutation pro
files, imaging, and resistance mechanisms (Gevaert et al., 2017; Wang 
et al., 2019). Preliminary systems point toward the ability to anticipate 
treatment failure or suggest optimal sequencing of lines of therapy. 
However, large prospective validations comparing DT-guided selection 
versus standard care remain scarce.

Beyond regimen selection, DTs also have the potential to enable dose 
optimisation by simulating relationships between drug exposure, organ 
function, and therapeutic effect. For patients with renal or hepatic 
impairment, DT-based pharmacokinetic models aim to personalise 
dosing schedules to maintain efficacy while minimising toxicity, 
particularly for narrow-therapeutic-index drugs such as platinum-based 
agents and combination therapies (Prunella et al., 2025).

A landmark adaptive clinical trial in metastatic castrate-resistant 
prostate cancer (mCRPC) illustrated how DT-inspired adaptive therapy 
principles can improve outcomes. During this trial, abiraterone treat
ment was halted once prostate-specific antigen (PSA) levels decreased 
by 50 % and restarted when PSA levels returned to baseline (Zhang 
et al., 2022). This cyclical, feedback-controlled approach maintained 
competition between drug-sensitive and resistant tumour populations, 
delaying resistance and extending disease control. This finding demon
strates how mechanistic evolutionary DT models could capture indi
vidual tumour growth dynamics, interactions with therapy, and 
simulation of retreatment timing.Tables 1–3

4.2. Radiotherapy planning and optimisation

Radiation oncology has emerged as a frontrunner in clinical DT 
implementation, given its quantitative nature and reliance on imaging 
and computational dose calculation. Modern DTs in radiotherapy 

integrate anatomical imaging (CT, MRI), functional imaging (PET), 
tumour delineation, and normal tissue constraints to optimise treatment 
planning (Chaudhuri et al., 2023). By simulating thousands of potential 
dose distributions, these systems identify plans that maximise tumour 
coverage whilst sparing critical organs such as the heart, lungs, and 
spinal cord.

Adaptive radiotherapy, a key application of DT technology, enables 
real-time plan modification based on changes in tumour size, shape, or 
position during treatment. For patients with head and neck cancer, 
significant weight loss during radiotherapy can alter the relationship 
between the tumour and surrounding anatomy (Noble et al., 2019). DTs 
continuously monitor these changes through repeat imaging and auto
matically generate revised treatment plans that maintain optimal dose 
distribution. This approach has been shown to reduce acute toxicity and 
improve local control rates.

DTs also have the potential to facilitate prediction of radiation- 
induced toxicity by modelling dose-response relationships for normal 
tissues (Chaudhuri et al., 2023). For breast cancer patients receiving 
radiotherapy, cardiac dose is a critical concern for long-term cardio
vascular health. DTs aim to estimate the lifetime risk of coronary events 
based on individualised heart dose distributions, patient age, and car
diovascular risk factors (Thangaraj et al., 2024). This enables clinicians 
to balance oncological benefit against potential late toxicity, particu
larly in young patients with excellent prognosis.

4.3. Drug development and in silico clinical trials

The pharmaceutical industry faces escalating costs and prolonged 
timelines in oncology drug development, with the average cost of 
bringing a new cancer drug to market exceeding $2 billion, which may 
even fail to reach the market (Austin and Hayford, 2021). DT technology 
offers a paradigm shift by enabling in silico clinical trials, where virtual 
patient cohorts are used to test drug efficacy and toxicity before pro
gressing to human trials. These virtual cohorts are generated by sam
pling from distributions of patient characteristics derived from real 
clinical data, creating diverse populations that reflect the heterogeneity 
encountered in actual practice (Surendran et al., 2023).

In silico trials allow rapid exploration of multiple scenarios: different 
dosing schedules, combination regimens, and patient selection criteria. 
For example, DTs have been used to optimise the design of immuno
therapy trials by identifying biomarkers that predict response to certain 
chemotherapeutic agents (Giansanti and Morelli, 2025; Moingeon et al., 
2023). By simulating trial outcomes across various patient stratification 
strategies, pharmaceutical companies can design more efficient trials 
with higher success rates and smaller sample sizes. Regulatory agencies, 
including the FDA and EMA, are increasingly receptive to incorporating 

Table 1 
Applications of Digital Twins Across the Oncology Care Continuum.

Clinical Domain Specific Applications Key Data Inputs Computational Methods Clinical Outcomes

Precision Treatment Selection (
Bordukova et al., 2023)

Drug response prediction, regimen 
ranking, dose optimization

Genomics, drug levels, tumour 
kinetics, comorbidities

Machine learning, 
pharmacokinetic models, response 
prediction algorithms

Improved progression-free 
survival, reduced toxicity

Radiotherapy Planning (Sumini 
et al., 2024)

Dose distribution optimisation, 
normal tissue sparing, adaptive 
planning

CT/MRI imaging, tumour 
geometry, tissue density, organ 
motion

Monte Carlo simulation, dose- 
volume modelling, optimisation 
algorithms

Reduced radiation toxicity, 
improved local control

Drug Development (Jiang et al., 
2023; Chasseloup et al., 2023; 
Kleeberger, 2025)

Virtual clinical trials, biomarker 
identification, patient stratification

Multi-omics data, clinical trial 
databases, drug properties

Population modelling, Bayesian 
inference, virtual cohort 
generation

Accelerated drug approval, 
reduced trial costs

Immuno-oncology (Wang et al., 
2024)

Checkpoint inhibitor response 
prediction, combination therapy 
design

Tumour microenvironment 
profiling, immune markers, 
imaging

Agent-based modelling, immune 
system simulation, network 
analysis

Enhanced immunotherapy 
response rates

Surgical Planning (Mekki et al., 
2025; Shu et al., 2023)

Resection boundary planning, 
complication prediction, operative 
guidance

3D imaging, tumour vasculature, 
organ anatomy

Computational fluid dynamics, 
biomechanical modelling, 
augmented reality

Reduced surgical 
complications, improved 
precision

Survivorship Care (Sarp et al., 
2023)

Recurrence/progression risk 
assessment, toxicity monitoring, 
quality of life prediction

Follow-up imaging, biomarkers, 
patient-reported outcomes

Longitudinal modelling, risk 
prediction algorithms, symptom 
tracking

Early response tracking, 
improved quality of life
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in silico evidence into drug approval pathways, particularly for rare 
cancers where large-scale trials are infeasible (Pappalardo et al., 2019).

Beyond clinical trial design, DTs have the potential to accelerate 
biomarker discovery by identifying molecular signatures associated 
with treatment response (Rodriguez et al., 2021). Machine learning 
models analyse multi-omics data from virtual patient cohorts to predict 
which genetic alterations, pathway activations, or immune profiles 
correlate with drug sensitivity (Liu et al., 2025). These biomarkers can 
then be validated in smaller, focused clinical studies, streamlining the 
path to personalised therapy.

4.4. Immuno-oncology and tumour microenvironment modelling

The complexity of immune system-tumour interactions presents both 
opportunities and challenges for DT development. Immunotherapy 
response depends on multiple factors: tumour mutational burden, neo
antigen presentation, immune cell infiltration, checkpoint molecule 
expression, and immunosuppressive signals within the tumour micro
environment. DTs in immuno-oncology aim to integrate these elements 
to predict which patients will benefit from checkpoint inhibitors, 
adoptive cell therapies, or cancer vaccines.

Agent-based modelling, a technique where individual cells (tumour 
cells, T cells, macrophages) are simulated as discrete entities, has proven 
valuable for immuno-oncology DTs. These models capture spatial re
lationships, cell-cell interactions, and temporal dynamics of the immune 
response. By simulating the effects of checkpoint inhibitors on the 
tumour microenvironment, DTs have the potential to predict response 
likelihood and optimal treatment timing. For example, Mongeon et al. 
(2024) used a spatial agent-based model (ABM) initialised with 
patient-derived data, oncolytic virus, and combination ther
apies/immune checkpoint inhibitors to model immune responses in 
glioblastoma. Their simulations identified factors that influenced the 
success of immune checkpoint inhibitors and suggested how spatial 
immune cell density could impact treatment efficacy. Other multiscale 
ABMs have been developed to capture how neoantigen expression, im
mune checkpoint signalling (e.g., PD-1/PD-L1), and tumour growth 
affect response to immunotherapy. These models can also simulate the 
effects of combination strategies, such as checkpoint inhibitors with 
chemotherapy or oncolytic viruses (Gong et al., 2017; Norton et al., 
2019). Such modelling approaches offer a promising direction for 
rational design of immuno-oncology trials by narrowing down treatment 
combinations and patient selection strategies prior to human studies.

Table 2 
Major Challenges in Digital Twin Implementation and Potential Solutions.

Challenge Domain Specific Issues Technical Barriers Potential Solutions Timeframe

Data Integration (Mollica et al., 
2024; HL7 International, 2024)

EHR fragmentation, format heterogeneity, 
missing data

Limited interoperability, 
inconsistent standards

FHIR/HL7 standard adoption, federated 
learning, automated data pipelines

2–5 years

Model Validation (Rudin, 2019; 
Fuse et al., 2025)

Lack of prospective trials, black-box 
algorithms, regulatory uncertainty

Computational cost, limited 
interpretability

Explainable AI, adaptive licensing, 
prospective RCTs

5–10 years

Computational Resources (Es-haghi 
et al., 2024)

High processing demands, long runtimes, 
infrastructure costs

Scalability limitations, cloud 
security concerns

High-performance computing, reduced- 
order models, edge computing

3–7 years

Ethical Governance (Huang et al., 
2022)

Data privacy, algorithmic bias, informed 
consent

Regulatory compliance, 
representation gaps

Diverse training data, continuous bias 
monitoring, dynamic consent frameworks

Ongoing

Clinical Acceptance (Zackoff et al., 
2024; Jawad et al., 2022)

Healthcare providers and Patient 
acceptance, workflow integration, training 
needs

Change management, 
workforce capacity

User-friendly interfaces, clinical champion 
programmes, education initiatives

3–5 years

Equity and Access (Strigari et al., 
2025)

Resource-limited settings, digital divide, cost 
barriers

Infrastructure gaps, 
affordability

Open-source platforms, simplified models, 
capacity-building programmes

10 + years

Table 3 
Cancer-Specific Digital Twin Applications and Maturity Levels.

Cancer Type Primary DT Applications Key Biomarkers 
Integrated

Validation Status Clinical 
Implementation

Maturity 
Level

Breast Cancer (Wu et al., 
2025)

Treatment-response prediction during 
neoadjuvant chemotherapy using MRI- 
based digital twins that model tumour 
growth dynamics and optimise dosing 
schedules

MRI imaging, tumour 
volume kinetics, regimen 
type, treatment cycles

Retrospective / proof-of- 
concept validation in triple- 
negative breast cancer; AUC 
≈ 0.82

Pilot programmes in 
research settings

Intermediate

Glioblastoma (High-Grade 
Glioma) (Chaudhuri 
et al., 2023)

Predictive DTs for radiotherapy 
optimisation under uncertainty, 
integrating patient-specific growth 
models and imaging data

MRI features, tumour 
heterogeneity, 
mechanistic growth 
equations

In silico cohort validation; 
demonstrates feasibility and 
clinical potential

Research / academic 
centres

Early- 
Intermediate

Colorectal Cancer (Li et al., 
2022b)

Deep-learning prognostic “molecular 
twin” models predicting survival benefit 
from adjuvant chemotherapy in stage II/ 
III CRC

Histology (H&E), clinical 
variables, survival 
outcomes

Retrospective internal/ 
external validation on multi- 
institutional datasets

Research setting Early- 
Intermediate

Prostate Cancer (
Camacho-Gomez et al., 
2025)

Physics-informed ML DT reconstructing 
tumour growth trajectories from PSA 
kinetics for therapy monitoring

PSA kinetics, tumour 
vascularity, patient- 
specific parameters

Retrospective validation in 
clinical PSA datasets

Early adopter 
institutions

Early

Melanoma (Gschwind and 
Ossowski, 2025; Abbott 
et al., 2021)

Multi-omics and radiomic twin-like 
models predicting immune-checkpoint 
inhibitor response

TMB, PD-L1 expression, 
neoantigen burden, 
radiomic features

Retrospective cohorts; early 
prospective studies 
underway

Academic oncology 
centres

Early- 
Intermediate

Pancreatic Cancer (Osipov 
et al., 2024)

“Molecular twin” platform integrating 
multi-omic profiles to simulate therapy 
outcomes and survival prediction

Genomic and 
transcriptomic 
signatures, CA19–9, 
clinical outcomes

Proof-of-concept; validated 
retrospectively on trial 
datasets

Research programmes Early- 
Intermediate

Ovarian, Pancreatic or 
Breast Cancer (Cavallo, 
2024; Griffiths et al., 
2024)

Simulation of therapeutic responses to 
chemotherapy using FarrSight®-Twin 
across historical trial data

Clinical data, large gene 
panels, whole-exome and 
transcriptome sequencing

Retrospective validation 
using blinded and unblinded 
simulations across 8 phase 
II/III trials

Research / pilot phase; 
simulation-based 
validation only

Early
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4.5. Surgical oncology and operative planning

Surgical oncology has benefited from DT technology through 
enhanced preoperative planning and intraoperative guidance. Patient- 
specific 3D models, reconstructed from CT or MRI imaging, allow sur
geons to visualise tumour location, size, and relationship to critical 
structures such as blood vessels and nerves. For hepatobiliary cancers, 
where tumour proximity to vascular structures determines resectability, 
DTs enable detailed assessment of surgical anatomy and prediction of 
postoperative liver complications (Golse et al., 2021).

Augmented reality (AR) integration with DTs has revolutionised 
intraoperative navigation. Surgeons wearing AR headsets can visualise 
the patient's digital twin superimposed on the operative field, providing 
real-time guidance during tumour resection. This technology has proven 
particularly valuable in minimally invasive surgery (Doornbos et al., 
2024), where tactile feedback is limited and spatial orientation chal
lenging. Future applications in surgery could explore AR-guided DT 
navigation with a view to improving resection margins and reducing 
operative time.

Predictive modelling of surgical complications represents another 
application domain. DT frameworks are being proposed that could 
integrate patient comorbidities, tumour characteristics, and surgical 
complexity to simulate or predict postoperative physiological outcomes 
and risks of complications. For example, DT models have been used to 
forecast post-hepatectomy portal hypertension (Golse et al., 2021). 
Similarly, deep learning models combining multidimensional patient 
data accurately predict complication risk across different types of liver 
pathology including liver malignancy following major liver resection 
(Xu et al., 2023). This information facilitates shared decision-making, 
allowing patients to make informed choices about surgical versus 
non-surgical treatment options based on personalised risk assessments.

4.6. Survivorship care and long-term monitoring

The growing population of cancer survivors, especially those living 
beyond five years after diagnosis, faces ongoing risks of recurrence, 
secondary malignancies, and treatment-related late effects. DTs and 
related AI/digital health technologies are being investigated to support 
survivorship care via integration of imaging biomarkers, clinical and 
biomarker data, and patient-reported outcomes in order to improve 
detection of relapse or complications.

Wearable devices and mobile health applications have demonstrated 
benefits in survivorship care in areas such as increasing physical activ
ity, improving quality of life, and monitoring symptoms, though real- 
time incorporation into DTs to detect recurrence has not yet been 
robustly validated. For instance, wearable physical activity trackers in 
breast cancer survivors improve activity levels and health-related out
comes (Pan et al., 2023). More sophisticated models have been devel
oped to track the risk of breast cancer recurrence. For example, 
radiomics models using mammography (and combining imaging fea
tures with clinical risk factors) have been developed to predict recur
rence risk (Mao et al., 2021), though not yet in a framework clearly 
labelled as a "digital twin" integrating continuous wearable / 
patient-reported outcome (PRO) data with imaging and biomarkers.

Similarly, in colorectal cancer surveillance, AI-aided detection 
(AIAD) methods during colonoscopy increase adenoma detection rates, 
which could influence the timing of subsequent surveillance intervals 
(Ashat et al., 2021). However, evidence of DTs incorporating serial 
biomarker (carcinoembryonic antigen) (CEA) measurements plus colo
noscopy findings explicitly predicting new lesions is not yet clearly 
established.

Quality of life (QoL) prediction is being explored: digital health tools 
are being used to track patient-reported outcomes, treatment side ef
fects, fatigue, and physical function in survivorship (Pan et al., 2022), 
but modelling trajectories for specific toxicities (e.g., neuropathy after 
chemotherapy or radiotherapy) within DT systems remains 

underexplored.

5. Challenges and limitations in digital twin implementation

The implementation of digital twins in oncology faces multiple 
interconnected challenges (Fig. 3), requiring coordinated technical, 
regulatory, and organisational solutions across different timeframes.

5.1. Data integration, quality, and interoperability

The promise of oncology DTs hinges on seamless integration of 
diverse data sources, yet significant barriers impede this goal. Electronic 
health record (EHR) systems remain fragmented, with limited interop
erability across institutions and countries. Data formats vary widely: 
genomic data may be stored in VCF files, imaging data in DICOM format, 
and clinical data in proprietary EHR schemas. Harmonising these het
erogeneous data streams requires substantial computational infrastruc
ture and adherence to data standards such as Fast Healthcare 
Interoperability Resources (FHIR) and Health Level Seven (HL7).

Data quality poses an equally significant challenge. Missing data are 
ubiquitous in clinical datasets, with incomplete follow-up, inconsistent 
recording practices, and variable data capture across institutions. 
Oncology DTs are sensitive to data quality issues, as missing or erro
neous inputs can propagate through computational models and generate 
inaccurate predictions (Katsoulakis et al., 2024). Rigorous data curation, 
validation protocols, and imputation strategies are essential but 
resource-intensive. Furthermore, historical biases in clinical data, such 
as underrepresentation of certain ethnic groups or socioeconomic strata, 
can be perpetuated by DT models, raising concerns about equitable ac
cess to precision oncology.

Real-time data capture presents additional technical hurdles. For DTs 
to function as truly dynamic systems, they must receive continuous 
updates from multiple sources: imaging scans, laboratory results, 
patient-reported symptoms, and wearable device outputs. Establishing 
automated data pipelines that feed information into DT platforms in real 
time requires investment in information technology infrastructure and 
integration with existing clinical workflows. Many healthcare in
stitutions, particularly in resource-limited settings, lack the technical 
capacity to implement such systems.

5.2. Model validation and clinical acceptance

A critical barrier to DT adoption in clinical oncology is the lack of 
robust validation frameworks. Whilst many DT models demonstrate 
impressive performance on retrospective datasets, their accuracy in 
prospective, real-world settings remains uncertain. Clinical validation 
requires demonstrating that DT-guided decisions improve patient out
comes compared to standard care, a time-consuming and expensive 
process. Randomised controlled trials comparing DT-guided treatment 
selection against conventional approaches are scarce, and those that 
exist have shown mixed results (Wu et al., 2025; Kovatchev et al., 2025).

Clinicians remain cautious about adopting DT recommendations 
without understanding the underlying reasoning. Black-box machine 
learning models, whilst often accurate, lack transparency and input from 
experts, making it difficult for oncologists to trust their predictions 
(Mohamed et al., 2024). Explainable AI (XAI) techniques, which aim to 
provide interpretable explanations for model outputs, are increasingly 
being integrated into DTs to enhance clinical acceptance. However, 
balancing model accuracy with interpretability remains a fundamental 
trade-off in DT design.

Regulatory pathways for DT systems are still evolving. In practice, 
DTs and other AI/machine learning (ML)-driven clinical decision- 
support tools are generally treated under existing Software as a Medi
cal Device (SaMD) framework, which requires risk classification, clinical 
evaluation, and post-market surveillance. Regulators are increasingly 
emphasising total-product-lifecycle approaches (including pre-market 
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evidence plus post-market monitoring and change-control plans) for AI- 
enabled software rather than a single, one-time approval. For example, 
the U.S. FDA has issued draft guidance on AI-enabled device software 
functions that stresses lifecycle management and marketing-submission 
recommendations, while international bodies and national agencies 
(EMA, IMDRF, MHRA) have published reports and position papers 
calling for iterative evaluation, good machine-learning practice, and 
stronger post-market oversight of continuously updating algorithms 
(FDA, 2024; European Medicines Agency, 2025; Dubowik, 2024). 
Nevertheless, no single consensus standard yet exists for validation of 
continuously learning DTs (e.g., how to demonstrate ongoing safe
ty/effectiveness after model updates), and regulators continue to refine 
expectations for change control, transparency, and real-world perfor
mance monitoring.

5.3. Computational complexity and scalability

The computational demands of patient-specific oncology DTs are 
substantial. High-fidelity simulation of tumour growth, treatment 
response, and immune interactions requires significant processing 
power, memory, and storage capacity. For institutions serving large 
patient populations, creating and maintaining individualised DTs for 
every cancer patient is computationally prohibitive. Cloud computing 
and high-performance computing clusters offer potential solutions, but 
concerns about data security and privacy in cloud environments (Sun 
et al., 2014) have slowed adoption.

Model complexity also affects runtime, a critical consideration for 
clinical decision-making. Clinicians require timely predictions ideally 
within hours or days to inform treatment planning. However, detailed 
mechanistic models incorporating multi-omics data and spatiotemporal 
tumour dynamics may take days or weeks to run. Balancing model fi
delity with computational efficiency is an ongoing challenge. Reduced- 
order models and surrogate modelling techniques offer compromise 
solutions by simplifying complex simulations whilst retaining predictive 
accuracy (Es-haghi et al., 2024).

Scalability extends beyond computation to encompass personnel 
requirements. Developing, maintaining, and interpreting DTs demands 

expertise in oncology, computational biology, data science, and soft
ware engineering (Giansanti and Morelli, 2025). Few institutions 
possess the multidisciplinary teams needed to support DT initiatives, 
and training programmes to build this workforce capacity are nascent. 
Without addressing these human resource challenges, widespread DT 
implementation will remain limited to a handful of well-resourced ac
ademic centres.

5.4. Ethical, legal, and governance considerations

The use of DTs in oncology raises complex ethical questions around 
data privacy, informed consent, and algorithmic bias. Patient data used 
to construct DTs are highly sensitive, encompassing genomic informa
tion, medical history, and lifestyle factors. Ensuring robust data pro
tection mechanisms that comply with regulations such as the General 
Data Protection Regulation (GDPR) in Europe and the Health Insurance 
Portability and Accountability Act (HIPAA) in the United States is 
paramount (Shah, 2023). However, the dynamic nature of DTs, where 
data are continuously updated and shared across platforms complicates 
traditional consent frameworks, which assume static data collection at a 
single time point.

Algorithmic bias represents another ethical concern (Huang et al., 
2022). If training datasets used to develop DT models disproportionately 
represent certain demographics, the resulting systems may perform 
poorly for underrepresented groups. For example, if a DT is trained 
primarily on data from Caucasian patients, its predictions may be less 
accurate for patients of African, Asian, or Hispanic descent. This could 
exacerbate existing health disparities rather than alleviate them. 
Ensuring diverse and representative training datasets, along with 
ongoing monitoring for bias, is essential for equitable DT 
implementation.

Liability issues arise when autonomous systems like DT-guided de
cisions influence patient care (Vellinga, 2023). If a DT recommends a 
treatment that results in adverse outcomes, determining responsibility is 
complex. Is the clinician liable for following the DT's recommendation? 
Is the institution responsible for deploying an insufficiently validated 
system? Or does liability rest with the DT developers or algorithm 

Fig. 3. Major challenges in digital twin implementation and potential solution pathways. The framework categorises barriers into six domains: data integration and 
interoperability, model validation and clinical acceptance, computational complexity, ethical governance, clinical workflow integration, and equity considerations. 
Each challenge domain is paired with corresponding technical and organisational solutions, with implementation timelines indicated. Current implementation 
maturity varies significantly across domains.
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providers? Legal frameworks have not kept pace with these technolog
ical advances, creating uncertainty that may discourage DT adoption.

6. Future directions and emerging trends

6.1. Integration with advanced artificial intelligence

The next generation of oncology DTs will leverage cutting-edge AI 
architectures, including transformer models, graph neural networks, 
and reinforcement learning. Transformer models, which have revolu
tionised natural language processing, are being adapted for analysing 
sequential clinical data such as longitudinal imaging and treatment 
histories (Nerella et al., 2024). These models can identify subtle patterns 
in disease progression that escape traditional statistical methods. Graph 
neural networks excel at modelling molecular interactions and biolog
ical pathways, making them ideal for integrating multi-omics data into 
DTs (Isah et al., 2024).

Reinforcement learning, where algorithms learn optimal strategies 
through trial-and-error simulation, holds particular promise for treat
ment optimisation. A reinforcement learning-based DT could simulate 
thousands of treatment scenarios, learning which sequences of therapies 
maximise survival whilst minimising toxicity. For example, a study 
developed a DT model for head-and-neck cancer that utilised sequential 
deep reinforcement learning to personalise treatment plans, balancing 
tumour control and toxicity risk (Wentzel et al., 2024). Additionally, 
another study applied deep Q-network-based reinforcement learning to 
automate proton therapy replanning for head-and-neck cancer patients, 
achieving improved plan quality compared to manual methods 
(Madondo et al., 2025). As these technologies mature, their integration 
into clinical DTs will enable more sophisticated decision support.

Federated learning represents another transformative development. 
This approach allows DT models to be trained across multiple in
stitutions without sharing raw patient data, addressing privacy concerns 
whilst enabling learning from diverse populations (Sheller et al., 2020). 
Federated oncology DTs could aggregate knowledge from thousands of 
patients across different hospitals and countries, improving model 
generalisability and reducing bias.

6.2. Real-world data and continuous learning systems

Future DTs will increasingly aim to incorporate real-world data from 
sources beyond traditional clinical systems. Wearable devices that 
monitor heart rate, activity levels, and sleep patterns have the potential 
to provide continuous physiological data that reflect treatment tolerance 
and recovery. Smartphone applications enable patient-reported 
outcome capture, documenting symptoms, functional status, and qual
ity of life in real time. Social determinants of health, such as housing 
stability, nutrition access, and environmental exposures, are increas
ingly recognised as critical factors influencing cancer outcomes and 
should be integrated into comprehensive DTs.

Population cancer registries and observational databases offer 
valuable real-world evidence for DT training and validation. These 
datasets capture outcomes from diverse patient populations treated in 
routine practice, complementing the highly selected cohorts typical of 
clinical trials. Linkage between DT platforms and national cancer reg
istries could enable continuous model refinement as new treatment 
patterns and outcomes emerge.

The vision of a continuously learning DT system, one that improves 
its predictions as it accumulates experience, requires careful gover
nance. Mechanisms for version control, model retraining triggers, and 
re-validation thresholds must be established to ensure that model up
dates enhance rather than degrade performance. Regulatory frame
works that accommodate continuous learning whilst maintaining 
patient safety are essential for realising this vision.

6.3. Standardisation, interoperability, and regulatory pathways

Achieving wider uptake of DTs depends on establishing shared 
standards for data representation, device/software attributes, digital 
endpoints, and model performance metrics. For example, the Clinical 
Data Interchange Standards Consortium (CDISC) is developing stan
dards for digital health technologies in clinical research and has part
nered with the Digital Medicine Society (DiMe) to standardise device 
attributes, endpoints, and related best practices (CDISC, 2024).

Regulatory agencies face the challenge of evaluating technologies 
that evolve over time. Traditional regulatory models, based on fixed 
versions of medical devices or drugs, are ill-suited to adaptive DT sys
tems. The FDA's Digital Health Center of Excellence and the EMA's 
Innovation Task Force are exploring frameworks for continuous over
sight, including post-market surveillance mechanisms that monitor DT 
performance in real-world use (Gilroy et al., 2024). Collaborative ap
proaches involving regulators, healthcare providers, and DT developers 
will be essential for establishing efficient yet rigorous approval 
pathways.

Intellectual property considerations also merit attention. As DT 
technology matures, questions arise about ownership of patient-specific 
models, algorithm licensing, and data rights. Clear frameworks that 
balance innovation incentives with patient autonomy and data sover
eignty will facilitate sustainable DT ecosystem development.

6.4. Equity, access, and global health perspectives

Ensuring equitable access to DT technology is a moral imperative and 
practical necessity. Currently, DT development is concentrated in high- 
income countries with advanced research infrastructure. However, the 
global cancer burden disproportionately affects low- and middle-income 
countries (LMICs), where resources for cancer care are limited and 
mortality rates higher. Adapting DT frameworks for resource- 
constrained settings requires consideration of available infrastructure, 
data availability, and local capacity.

Simplified DT models that require less computational power and 
fewer data inputs may be more appropriate for LMICs. Mobile health 
platforms can facilitate data collection in settings where EHR systems 
are absent. Capacity-building initiatives that train local data scientists 
and clinicians in DT methodology will foster sustainable implementa
tion. International partnerships and open-source DT platforms can 
democratise access, ensuring that precision oncology benefits are not 
confined to affluent populations.

Addressing the digital divide within high-income countries is equally 
important. Vulnerable populations, including rural residents, elderly 
patients, and socioeconomically disadvantaged groups, may lack access 
to the technologies that enable DT-based care, such as smartphones, 
internet connectivity, and digital literacy. Health equity considerations 
must be embedded in DT design and deployment strategies to prevent 
technology from exacerbating existing disparities.

7. Limitations of this review

This narrative review has several limitations that should be 
acknowledged. First, the narrative review methodology, whilst appro
priate for synthesising broad and heterogeneous literature, lacks the 
systematic rigour and predefined protocols of systematic reviews. Se
lection bias may have influenced which studies were included, and the 
absence of quantitative synthesis limits the ability to draw definitive 
conclusions about DT effectiveness. Future systematic reviews with 
meta-analyses would provide more robust evidence on specific DT 
applications.

Second, the rapidly evolving nature of DT technology means that 
recent developments may not yet be reflected in published literature. 
Conference proceedings, preprints, and grey literature were included to 
capture emerging trends, but these sources may lack the peer-review 
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scrutiny of journal articles. Additionally, proprietary DT systems 
developed by commercial entities may not be fully described in the 
public domain, limiting a comprehensive assessment of the field's state.

Third, the review's scope, covering applications across the entire 
cancer care continuum, necessitated breadth over depth. Each applica
tion domain (radiotherapy, drug development, surgical planning, etc.) 
could warrant dedicated in-depth reviews. The high-level synthesis 
provided here may not capture all nuances and technical details relevant 
to specialists in each subdomain.

Fourth, most studies reviewed were retrospective or proof-of- 
concept investigations conducted in research settings. Evidence from 
prospective clinical trials demonstrating improved patient outcomes 
with DT-guided care remains limited. The translation gap between 
research prototypes and clinically validated systems is substantial, and 
this review cannot fully address whether DT technology will deliver on 
its promise in routine practice.

Fifth, the review focused predominantly on literature from high- 
income countries, reflecting the current geographical distribution of 
DT research. Perspectives from LMICs and underserved populations are 
underrepresented, limiting the generalisability of findings. Additionally, 
language restrictions (English-only publications) may have excluded 
relevant studies published in other languages.

Finally, the technical complexity of DT systems means that many 
implementation details, such as specific algorithms, validation methods, 
and computational architectures, were not fully accessible from pub
lished literature. This limits the ability to critically evaluate model 
robustness and reproducibility. Greater transparency in DT methodol
ogy, including code and data sharing, would enhance future reviews.

8. Conclusion

Digital twin technology represents a paradigm shift in oncology, 
offering a dynamic, personalised framework for cancer care that extends 
from diagnosis through treatment to long-term survivorship. By inte
grating multi-dimensional patient data, genomics, imaging, clinical 
history, and real-time monitoring with advanced computational 
modelling, DTs have the potential to enable predictive, adaptive, and 
participatory medicine. Industrial and research platforms such as 
SOPHiA DDM™ are already incorporating multimodal biological and 
clinical data to generate patient-specific digital twin models for simu
lating potential therapies and outcomes, illustrating the practical feasi
bility of this approach. The applications reviewed span the cancer care 
continuum: precision treatment selection that aims to optimise thera
peutic efficacy whilst minimising toxicity, radiotherapy planning that 
balances tumour control against normal tissue sparing, accelerated drug 
development through in silico trials, immuno-oncology modelling that 
aims to predict immunotherapy response, surgical planning that en
hances operative precision, and survivorship care that aims to detect 
recurrence early whilst monitoring quality of life.

Despite this transformative potential, substantial challenges must be 
addressed before DTs become integral to routine oncology practice. Data 
integration remains hampered by fragmented electronic health systems, 
inconsistent standards, and quality concerns. Model validation requires 
prospective clinical trials demonstrating improved outcomes, yet few 
such studies exist. Computational demands pose scalability barriers, 
particularly for resource-limited institutions. Ethical considerations 
around data privacy, informed consent, and algorithmic bias demand 
robust governance frameworks. Clinical acceptance depends on 
explainable models that enhance rather than replace clinical judgement, 
and regulatory pathways must evolve to accommodate continuously 
learning systems.

The path forward requires interdisciplinary collaboration among 
oncologists, data scientists, engineers, ethicists, and policymakers. 
Standardisation efforts must establish common frameworks for data 
representation and model validation. Investment in computational 
infrastructure and workforce training will build capacity for DT 

implementation. Regulatory innovation that balances rigorous oversight 
with flexibility for adaptive technologies will facilitate clinical trans
lation. Crucially, equity considerations must guide DT development to 
ensure that precision oncology's benefits reach all patients, regardless of 
geography or socioeconomic status.

As artificial intelligence continues to advance and real-world data 
sources proliferate, oncology DTs will become increasingly sophisticated 
and clinically valuable. The vision of a truly personalised, predictive, 
and participatory cancer care system, where each patient's unique 
biology, treatment response, and lived experience inform therapeutic 
decisions in real time, is within reach. Realising this vision demands 
sustained commitment, innovative thinking, and collaborative effort 
across the global oncology community. The digital twin may well 
become, in the coming decades, as fundamental to cancer care as mo
lecular profiling and precision medicine are today.
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Ștefănigă, S.A., Cordoș, A.A., Ivascu, T., Feier, C.V.I., Muntean, C., Stupinean, C.V., et al., 
2024. Advancing precision oncology with digital and virtual twins: a scoping review. 
Cancers 16 (22), 3817. https://doi.org/10.3390/cancers16223817.

Strigari, L., Schwarz, J., Bradshaw, T., Brosch-Lenz, J., Currie, G., El-Fakhri, G., et al., 
2025. Computational nuclear oncology toward precision radiopharmaceutical 
therapies: Ethical, regulatory, and socioeconomic dimensions of theranostic digital 
twins. J. Nucl. Med., jnumed.124.268186 https://doi.org/10.2967/ 
jnumed.124.268186.

Sumini, M., Teodori, F., Isolan, L., 2024. Digital twins in dosimetry and radiotherapy, a 
survey and some applications. Radiat. Phys. Chem. 218, 111649. https://doi.org/ 
10.1016/j.radphyschem.2024.111649.

Sun, Y., Zhang, J., Xiong, Y., Zhu, G., 2014. Data security and privacy in cloud 
computing. Int. J. Distrib. Sens. Netw. 10 (7), 190903. https://doi.org/10.1155/ 
2014/190903.

Surendran, A., Sauteur-Robitaille, J.L., Kleimeier, D., Gevertz, J., Wilkie, K., Jenner, A.L., 
et al., 2023. Approaches to generating virtual patient cohorts with applications in 
oncology. Springer eBooks, pp. 97–119. 〈10.1007/978-3-031-32614-18〉.

Thangaraj, P.M., Benson, S.H., Oikonomou, E.K., Asselbergs, F.W., Khera, R., 2024. 
Cardiovascular care with digital twin technology in the era of generative artificial 
intelligence. Eur. Heart J. 45 (45), 4808–4821. https://doi.org/10.1093/eurheartj/ 
ehae619.

Vellinga, N.E., 2023. Challenges posed by autonomous systems to liability regimes: 
finding a balance. Edward Elgar Publishing eBooks, pp. 456–475. 〈10.4337/97 
81800887374.00028〉.

Wang, H., Arulraj, T., Ippolito, A., Popel, A.S., 2024. From virtual patients to digital 
twins in immuno-oncology: lessons learned from mechanistic quantitative systems 
pharmacology modeling. npj Digit. Med. 7 (1), 171. https://doi.org/10.1038/ 
s41746-024-01188-4.

Wang, S., Shi, J., Ye, Z., Dong, D., Yu, D., Zhou, M., et al., 2019. Predicting EGFR 
mutation status in lung adenocarcinoma on computed tomography image using deep 
learning. Eur. Respir. J. 53 (3), 1800986. https://doi.org/10.1183/ 
13993003.00986-2018.

Wentzel, A., Attia, S., Zhang, X., Canahuate, G., Fuller, C.D., Marai, G.E., 2024. DITTO: A 
visual digital twin for interventions and temporal treatment outcomes in head and 
neck cancer. IEEE Trans. Vis. Comput. Graph 30, 1–11. https://doi.org/10.1109/ 
tvcg.2024.3456160.

Wu, C., Stowers, C.E., Xu, Z., Yam, C., Son, J.B., et al., 2025. MRI-based digital twins to 
improve treatment response of breast cancer by optimizing neoadjuvant 
chemotherapy regimens. npj Digit. Med. 8 (1), 4. https://doi.org/10.1038/s41746- 
025-01579-1.

Xu, X., Xing, Z., Xu, Z., Tong, Y., Wang, S., Liu, X., et al., 2023. A deep learning model for 
prediction of post hepatectomy liver failure after hemihepatectomy using 
preoperative contrast-enhanced computed tomography: a retrospective study. Front. 
Med. 10, 1154314. https://doi.org/10.3389/fmed.2023.1154314.

Zackoff, M.W., Davis, D., Rios, M., Sahay, R.D., Zhang, B., Anderson, I., et al., 2024. 
Tolerability and acceptability of autonomous immersive virtual reality incorporating 
digital twin technology for mass training in healthcare. Simul. Health 19 (5), 
e99–e116. https://doi.org/10.1097/SIH.0000000000000755.

Zhang, J., Cunningham, J., Brown, J.S., Gatenby, R.A., 2022. Evolution-based 
mathematical models significantly prolong response to abiraterone in metastatic 
castrate-resistant prostate cancer and identify strategies to further improve 
outcomes. eLife 11, e76284. https://doi.org/10.7554/elife.76284.

David B. Olawade (MPH, FRSPH, SFHEA): Senior Research and Innovation Project 
Facilitator in the UK (NHS), and a visiting university lecturer in the UK. His research 
expertise lies at the intersection of artificial intelligence, healthcare delivery, and health 
equity, with particular focus on AI implementation in clinical settings.

Emmanuel O. Oisakede, MBBS, M.Sc. (Human Physiology), MPH, PGDipMedEd, 
FHEA: Oncology resident doctor in the UK with research experience in Immunotherapy/ 
radiotherapy modelling, AI in oncology, new advances in oncology, infectious disease 
preparedness and medical education.

Oluwakemi Jumoke Bello: PhD researcher with a background in healthcare and inter
national business, bringing an interdisciplinary, systems-driven approach to health 
research. Experienced in healthcare environments and global organisational contexts, with 
developing specialist expertise in AI in healthcare, sustainable health systems, public 
health, and environmental epidemiology. Focused on bridging real-world healthcare 
practice with innovation, policy, and future-ready health solutions.

Claret Chinenyenwa Analikwu: PhD researcher with a degree in biomedical sciences and 
a background in medical microbiology. Experienced in cell culture, microbiological 
techniques, histology and haematology. Research interests focus on biogenesis, micro
biome Engineering, global health challenges in health environment and ecological ap
proaches in understanding pathogenic diseases.

Eghosasere Egbon: PhD researcher with degree in Tissue Engineering and Regenerative 
Medicine and a background in medical biochemistry. Experienced in cell biology, mem
brane and lipid biology, and advanced in vitro model systems. Research interests focus on 
lysosomal biogenesis, membrane dynamics, and translational mechanisms underlying 
human disease.

Adeyinka Ojo: Manager within the Analytics and AI practice at Capgemini Invent, with 
extensive experience designing and delivering Data and AI transformation programmes 
from early mobilisation through to go-live across both public and private sector organi
sations. I have led multidisciplinary teams delivering secure data platforms, AI, GenAI, and 
Agentic AI solutions, as well as AI ethics and Responsible AI initiatives. My focus is on 
driving practical, measurable impact GenAI, and Agentic AI solutions with health industry.

D.B. Olawade et al.                                                                                                                                                                                                                             Critical Reviews in Oncology / Hematology 220 (2026) 105171 

12 

https://doi.org/10.1016/j.cmpb.2025.108919
https://doi.org/10.1038/s41467-021-21330-0
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/jbhi.2023.3299028
https://doi.org/10.22214/ijraset.2023.55551
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1038/s41598-020-69250-1
https://doi.org/10.1007/s11548-023-02863-9
https://doi.org/10.3390/cancers16223817
https://doi.org/10.2967/jnumed.124.268186
https://doi.org/10.2967/jnumed.124.268186
https://doi.org/10.1016/j.radphyschem.2024.111649
https://doi.org/10.1016/j.radphyschem.2024.111649
https://doi.org/10.1155/2014/190903
https://doi.org/10.1155/2014/190903
http://10.1007/978-3-031-32614-18
https://doi.org/10.1093/eurheartj/ehae619
https://doi.org/10.1093/eurheartj/ehae619
http://10.4337/9781800887374.00028
http://10.4337/9781800887374.00028
https://doi.org/10.1038/s41746-024-01188-4
https://doi.org/10.1038/s41746-024-01188-4
https://doi.org/10.1183/13993003.00986-2018
https://doi.org/10.1183/13993003.00986-2018
https://doi.org/10.1109/tvcg.2024.3456160
https://doi.org/10.1109/tvcg.2024.3456160
https://doi.org/10.1038/s41746-025-01579-1
https://doi.org/10.1038/s41746-025-01579-1
https://doi.org/10.3389/fmed.2023.1154314
https://doi.org/10.1097/SIH.0000000000000755
https://doi.org/10.7554/elife.76284

	Digital twins in oncology: From predictive modelling to personalised treatment strategies
	1 Introduction
	2 Methods
	2.1 Search strategy
	2.2 Inclusion and exclusion criteria
	2.3 Data extraction and synthesis

	3 Concept and framework of digital twin in oncology
	3.1 Defining digital twin in cancer care
	3.2 Technical architecture and data integration
	3.3 Multi-omics integration and systems biology

	4 Applications of digital twins in oncology
	4.1 Precision oncology and personalised treatment selection
	4.2 Radiotherapy planning and optimisation
	4.3 Drug development and in silico clinical trials
	4.4 Immuno-oncology and tumour microenvironment modelling
	4.5 Surgical oncology and operative planning
	4.6 Survivorship care and long-term monitoring

	5 Challenges and limitations in digital twin implementation
	5.1 Data integration, quality, and interoperability
	5.2 Model validation and clinical acceptance
	5.3 Computational complexity and scalability
	5.4 Ethical, legal, and governance considerations

	6 Future directions and emerging trends
	6.1 Integration with advanced artificial intelligence
	6.2 Real-world data and continuous learning systems
	6.3 Standardisation, interoperability, and regulatory pathways
	6.4 Equity, access, and global health perspectives

	7 Limitations of this review
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References


