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ARTICLE INFO ABSTRACT

Keywords: The digital twin (DT) concept, originating from engineering disciplines, has emerged as a transformative tech-
Digital twin nology in healthcare, particularly in oncology. A digital twin creates a dynamic, virtual replica of a patient's
Oncology

physiological and pathological state, integrating multi-dimensional data to enable personalised cancer care.
Despite growing interest, comprehensive reviews examining the breadth of DT applications in oncology remain
limited. This narrative review aims to synthesise current evidence on digital twin applications in oncology,
evaluate their potential to transform cancer care delivery, and identify challenges hindering clinical translation.
A comprehensive literature search was conducted across PubMed, Scopus, Web of Science, and IEEE Xplore
databases from inception to September 2025. Studies describing DT development, validation, or application in
any cancer type were included. Grey literature, conference proceedings, and expert commentaries were also
reviewed to capture emerging trends. Digital twins demonstrate applications across the cancer care continuum,
including precision treatment selection, radiotherapy optimisation, drug development, immuno-oncology
modelling, surgical planning, and survivorship care. Integration of multi-omics data, imaging biomarkers, and
artificial intelligence enables dynamic simulation of tumour behaviour and treatment response. However,
challenges persist in data integration, model validation, computational scalability, and ethical governance.
Digital twin technology holds substantial promise for advancing precision oncology through predictive, per-
sonalised, and adaptive care strategies. Addressing current limitations through interdisciplinary collaboration
and regulatory framework development is essential for clinical implementation.

Precision medicine
Artificial intelligence
Predictive modelling

1. Introduction outcomes and optimising therapeutic strategies remain formidable

challenges in contemporary oncology practice.

The heterogeneous nature of cancer characterised by diverse mo-
lecular profiles, varying treatment responses, and unpredictable disease
trajectories, presents significant challenges in clinical management.
Traditional one-size-fits-all treatment approaches have gradually given
way to precision oncology, which seeks to tailor interventions based on
individual patient characteristics. However, despite advances in mo-
lecular diagnostics and targeted therapies, predicting treatment

The advent of digital health technologies has revolutionised
healthcare delivery, with data-driven approaches increasingly inform-
ing clinical decisions. The integration of genomics, proteomics, radio-
mics, and electronic health records has generated unprecedented
volumes of patient data. Yet, translating these complex, multi-
dimensional datasets into actionable clinical insights remains a bottle-
neck for clinicians (Matheny et al., 2020). Conventional predictive
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models, whilst useful, are often static and fail to capture the dynamic
nature of cancer progression and treatment response (Olawade et al.,
2025). There is an urgent need for innovative computational frame-
works that can synthesise diverse data streams, simulate disease tra-
jectories, and enable real-time adaptation of treatment strategies.

Digital twin (DT) technology, originally developed in aerospace and
manufacturing industries, has emerged as a promising solution to these
challenges. A digital twin is defined as a dynamic, virtual representation
of a physical entity in this case, a cancer patient that evolves in parallel
with its real-world counterpart (Jones et al., 2020; Katsoulakis et al.,
2024). In oncology, DTs aim to integrate multi-omics data, clinical
history, imaging findings, and lifestyle factors to create patient-specific
models that simulate tumour growth, predict therapeutic responses, and
enable scenario testing. Unlike traditional predictive models, oncology
DTs have the potential to continuously update based on new patient
data, offering a dynamic framework for personalised cancer care (Jones
et al.,, 2020). This paradigm shift from static prediction to dynamic
simulation represents a fundamental advancement in precision
oncology.

Recent years have witnessed growing interest in DT applications
across medical specialties, with oncology emerging as a particularly
promising domain. The complexity and heterogeneity of cancer, com-
bined with the availability of rich multi-modal datasets, make oncology
an ideal testing ground for DT technology. Pilot and proof-of-principle
studies (especially in breast cancer) have demonstrated the feasibility
of tumour- or patient-specific digital twins in predicting treatment re-
sponses and optimising treatment schedules (Wu et al., 2025). Artificial
intelligence (AI) and machine-learning methods enhance the predictive
capabilities of such DTs by enabling integration of imaging, mathe-
matical modelling, and sometimes early-treatment data. However, evi-
dence is limited for their use across all common cancer types, especially
in terms of toxicity mitigation, and their translation into routine clinical
practice remains constrained by technical, ethical, regulatory, and data
challenges.

Current oncology practice lacks comprehensive, dynamic tools that
can integrate diverse patient data to predict treatment outcomes and
optimise therapeutic strategies in real time. Whilst precision medicine
has made significant strides, most predictive models remain static and
fail to capture the evolving nature of cancer. Digital twin technology
offers a novel solution by creating dynamic, patient-specific models that
aim to continuously update based on new data. However, evidence on
DT applications in oncology is scattered across multiple disciplines, and
a comprehensive synthesis of current applications is lacking. This
narrative review addresses this gap by systematically examining DT
applications across the cancer care continuum, from diagnosis to sur-
vivorship. The novelty of this review lies in its comprehensive coverage
of diverse DT applications, critical evaluation of technical and ethical
challenges, and identification of pathways for clinical translation. The
primary aim is to synthesise evidence on digital twin applications in
oncology, evaluate their transformative potential, and identify barriers
to implementation. Specific objectives include: (1) describing the con-
ceptual framework of oncology DTs; (2) reviewing current applications
across cancer care domains; (3) analysing technical, ethical, and regu-
latory challenges; and (4) proposing future directions for research and
clinical implementation.

2. Methods
2.1. Search strategy

A comprehensive literature search was conducted across four major
databases: PubMed/MEDLINE, Scopus, Web of Science, and IEEE
Xplore. The search covered all publications from database inception to
September 2025. The search strategy employed a combination of Med-
ical Subject Headings (MeSH) terms and free-text keywords related to
digital twins and oncology. The core search string was: ("digital twin*"
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OR "virtual patient*" OR "in silico model*" OR "computational model
OR '"patient-specific model*"') AND ("oncology" OR '"cancer' OR
"neoplasm*" OR "tumour" OR "tumor" OR "malignancy") AND ("precision
medicine" OR "personalised medicine" OR "treatment planning" OR
"predictive model*").

2.2. Inclusion and exclusion criteria

Studies were included if they: (1) described the development, vali-
dation, or application of digital twin technology in any cancer type; (2)
reported on computational modelling approaches for patient-specific
cancer care; (3) discussed integration of multi-omics, imaging, or clin-
ical data for cancer prediction; or (4) addressed technical, ethical, or
regulatory aspects of DT implementation in oncology. Both original
research articles and review papers were included. Exclusion criteria
comprised: (1) studies focusing solely on population-level models
without patient-specific components; (2) articles describing only general
computational techniques without oncology applications; and (3) pub-
lications not available in English.

2.3. Data extraction and synthesis

Following duplicate removal, titles and abstracts were screened for
relevance. Full-text articles of potentially eligible studies were retrieved
and assessed against inclusion criteria. Given the narrative nature of this
review, a qualitative synthesis approach was employed. Data extracted
included: study design, cancer type, DT components (data sources,
computational methods), clinical applications, validation approaches,
reported outcomes, and identified challenges. Grey literature, including
conference proceedings, technical reports, and expert commentaries,
was also reviewed to capture emerging trends and ongoing initiatives.
Thematic analysis was used to organise findings into coherent domains
of DT application in oncology.

3. Concept and framework of digital twin in oncology
3.1. Defining digital twin in cancer care

The digital twin concept in oncology extends beyond simple pre-
dictive modelling to create a comprehensive, dynamic virtual repre-
sentation of an individual patient's cancer journey. An oncology DT aims
to integrate multiple data layers, genomic and molecular profiles,
tumour histopathology, radiological imaging, clinical history, treatment
records, and lifestyle factors, into a unified computational framework.
This integration has the potential to enable the simulation of tumour
behaviour under various scenarios, including different treatment regi-
mens, timing of interventions, and disease progression pathways (Jones
et al., 2020).

Central to the DT paradigm is the concept of bidirectional data flow.
Unlike conventional models that provide one-time predictions, DTs aim
to continuously receive real-world data from the patient and update
their internal representations accordingly (Katsoulakis et al., 2024).
When a patient undergoes imaging, receives treatment, or experiences
disease progression, these data are fed back into the DT, refining its
accuracy and enabling more precise predictions over time. This iterative
refinement process mirrors the biological evolution of cancer and cre-
ates a learning system that becomes increasingly personalised to the
individual patient. Fig. 1 illustrates the conceptual framework of digital
twin technology in oncology, demonstrating how diverse data streams
are integrated to create a dynamic virtual patient representation.

3.2. Technical architecture and data integration
The technical architecture of an oncology DT typically comprises

three core components: the data layer, the computational layer, and the
interface layer. The data layer aggregates information from electronic



D.B. Olawade et al.

Data Acquisition Data Integration

& Preprocessing

o - ®,
° ) ¢
% o ]
a
o — v —
Data cleaning
Wearable  Motion

Sensor fusion
IMUs capture
Interoperability layer

Digital Twin
Construction

Critical Reviews in Oncology / Hematology 220 (2026) 105171

Clinical Decision
& Feedback

¢

Simulation &
Prediction Layer

¢ Outcome simulation '
—P . Risk prediction T {

¢ Optimal exercise
intensity modeling

R )

¢ Personalised

i Outcome prescription
/ simulation . o
’ = ¢ Real-time monitoring
A = . ; Risk prediction
S Smartoh ¢ Biomechanical model ¢ Adaptive progression
EMG martphone R o T Optimal exercise
sensors camera ySIOIOg

intensity modeling

¢ Machine-learning

components

Fig. 1. Conceptual framework of digital twin technology in oncology showing bidirectional data flow between the real patient and virtual representation. The system
integrates multi-omics data, clinical records, imaging, and lifestyle factors through computational layers to enable predictive modeling and personalized treatment
optimization. Not all components are currently implemented in all oncology digital twin platforms; the figure represents an aspirational integrated framework.

health records, laboratory information systems, picture archiving and
communication systems (PACS), genomic databases, and patient-
reported outcomes. Data harmonisation and standardisation are crit-
ical at this stage, as information originates from heterogeneous sources
with varying formats and quality (Mollica et al., 2024).

The computational layer employs a hybrid approach combining
mechanistic modelling and machine learning. Mechanistic models,
based on biological principles and differential equations, simulate
tumour growth dynamics, drug pharmacokinetics, and radiation dose-
response relationships (Laubenbacher et al., 2024; Kolokotroni et al.,
2024; Coveney et al., 2025). Machine learning algorithms, including
deep neural networks and ensemble methods, complement mechanistic
models by identifying complex patterns in high-dimensional data and
making predictions where biological mechanisms are incompletely un-
derstood (Mollica et al., 2024; Stefaniga et al., 2024). The integration of
these approaches aims to create a robust framework capable of both
interpretable simulation and accurate prediction.

A critical consideration in DT architecture is uncertainty quantifi-
cation and error propagation. Given that digital twins integrate data
from diverse sources, each with inherent measurement errors, missing
values, and variability, understanding how uncertainties propagate
through the computational models is essential for reliable clinical
decision-making (Kemkar et al., 2024; Giansanti and Morelli, 2025).
Probabilistic methods, Bayesian inference frameworks, and ensemble
modelling approaches are increasingly being incorporated to charac-
terise prediction uncertainty and provide confidence intervals alongside
point estimates (Dhiman et al., 2022; Amasiadi et al., 2025). Without
explicit uncertainty quantification, clinicians may be unable to assess
the reliability of DT predictions, potentially leading to inappropriate
clinical decisions. Future DT systems must implement robust uncertainty
propagation methods to ensure that confidence in predictions aligns
with their actual accuracy.

The interface layer provides clinicians with intuitive visualisations
and decision-support tools. Interactive dashboards display tumour pro-
gression trajectories, treatment response predictions, and risk stratifi-
cation results. Scenario-testing modules allow oncologists to explore
"what-if" questions, such as the predicted outcome of delaying surgery or
switching from chemotherapy to immunotherapy (Wentzel et al., 2024).

This layer translates complex computational outputs into actionable
clinical insights, facilitating shared decision-making between healthcare
providers and patients.

3.3. Multi-omics integration and systems biology

Modern oncology DTs increasingly aim to incorporate multi-omics
data, reflecting the multi-layered complexity of cancer biology
(Kolokotroni et al., 2024; Moztarzadeh et al., 2023). Genomic, tran-
scriptomic, proteomic, and metabolomic data each contribute distinct
biological insights: genomic data identify driver mutations, copy num-
ber variations, and mutational signatures that influence therapeutic
vulnerability, whilst transcriptomic analysis reveals gene expression
patterns associated with treatment response and resistance mechanisms
(Kolokotroni et al., 2024). Proteomic and metabolomic data provide
insights into functional consequences of genetic alterations and meta-
bolic reprogramming within tumours (Aghamiri and Amin, 2025).

Integrating these diverse omics layers requires systems biology ap-
proaches that model molecular interactions, signalling pathways, and
regulatory networks. Pathway analysis tools identify dysregulated bio-
logical processes, whilst network modelling reveals potential thera-
peutic targets and combination strategies (Aghamiri and Amin, 2025).
The incorporation of single-cell sequencing data has added another
dimension, enabling DTs to capture intra-tumoural heterogeneity and
predict the emergence of resistant subclones under therapeutic pressure
(Li et al., 2022a). These advances are exemplified by recent Al-driven
Molecular Twin platforms that integrate multi-omic data to predict
outcomes and therapeutic responses in cancer (Osipov et al., 2024).

4. Applications of digital twins in oncology

The following sections examine how digital twin technology is being
applied across different stages of cancer care, from initial treatment
selection through long-term survivorship monitoring. Digital twins
demonstrate applications across the cancer care continuum (Fig. 2),
with the potential to enable precision medicine approaches from initial
diagnosis through long-term survivorship.
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Fig. 2. Digital twin applications across the cancer care continuum. Six key application domains are illustrated: (A) Precision treatment selection with drug response
prediction, (B) Radiotherapy planning and dose optimization, (C) Drug development through in silico trials, (D) Immuno-oncology modeling of tumor microenvi-
ronment, (E) Surgical planning with 3D visualization, and (F) Survivorship care with long-term monitoring. The figure illustrates potential applications currently at
varying stages of development and clinical validation.
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4.1. Precision oncology and personalised treatment selection

One of the most promising applications of DT technology lies in
precision treatment selection, where virtual simulations aim to guide
therapeutic decision-making. By integrating a patient's molecular profile
with tumour growth kinetics and treatment response data, DTs have the
potential to predict the efficacy and toxicity of various therapeutic op-
tions. In breast cancer, DTs have been developed to simulate responses
to different chemotherapy regimens and targeted agents. For example,
an MRI-based digital twin calibrated to individual imaging data pre-
dicted pathological complete response (pCR) in triple-negative breast
cancer and was used to optimise neoadjuvant chemotherapy schedules
for each patient (Wu et al., 2025). These models typically incorporate
tumour receptor status, genomic alterations, and clinical covariates to
rank treatment options by predicted outcome (Mollica et al., 2024).

In lung cancer, DTs are being explored for modelling response to
targeted therapies (e.g., EGFR inhibitors) by integrating mutation pro-
files, imaging, and resistance mechanisms (Gevaert et al., 2017; Wang
et al., 2019). Preliminary systems point toward the ability to anticipate
treatment failure or suggest optimal sequencing of lines of therapy.
However, large prospective validations comparing DT-guided selection
versus standard care remain scarce.

Beyond regimen selection, DTs also have the potential to enable dose
optimisation by simulating relationships between drug exposure, organ
function, and therapeutic effect. For patients with renal or hepatic
impairment, DT-based pharmacokinetic models aim to personalise
dosing schedules to maintain efficacy while minimising toxicity,
particularly for narrow-therapeutic-index drugs such as platinum-based
agents and combination therapies (Prunella et al., 2025).

A landmark adaptive clinical trial in metastatic castrate-resistant
prostate cancer (mCRPC) illustrated how DT-inspired adaptive therapy
principles can improve outcomes. During this trial, abiraterone treat-
ment was halted once prostate-specific antigen (PSA) levels decreased
by 50 % and restarted when PSA levels returned to baseline (Zhang
et al., 2022). This cyclical, feedback-controlled approach maintained
competition between drug-sensitive and resistant tumour populations,
delaying resistance and extending disease control. This finding demon-
strates how mechanistic evolutionary DT models could capture indi-
vidual tumour growth dynamics, interactions with therapy, and
simulation of retreatment timing.Tables 1-3

4.2. Radiotherapy planning and optimisation
Radiation oncology has emerged as a frontrunner in clinical DT

implementation, given its quantitative nature and reliance on imaging
and computational dose calculation. Modern DTs in radiotherapy

Table 1
Applications of Digital Twins Across the Oncology Care Continuum.
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integrate anatomical imaging (CT, MRI), functional imaging (PET),
tumour delineation, and normal tissue constraints to optimise treatment
planning (Chaudhuri et al., 2023). By simulating thousands of potential
dose distributions, these systems identify plans that maximise tumour
coverage whilst sparing critical organs such as the heart, lungs, and
spinal cord.

Adaptive radiotherapy, a key application of DT technology, enables
real-time plan modification based on changes in tumour size, shape, or
position during treatment. For patients with head and neck cancer,
significant weight loss during radiotherapy can alter the relationship
between the tumour and surrounding anatomy (Noble et al., 2019). DTs
continuously monitor these changes through repeat imaging and auto-
matically generate revised treatment plans that maintain optimal dose
distribution. This approach has been shown to reduce acute toxicity and
improve local control rates.

DTs also have the potential to facilitate prediction of radiation-
induced toxicity by modelling dose-response relationships for normal
tissues (Chaudhuri et al., 2023). For breast cancer patients receiving
radiotherapy, cardiac dose is a critical concern for long-term cardio-
vascular health. DTs aim to estimate the lifetime risk of coronary events
based on individualised heart dose distributions, patient age, and car-
diovascular risk factors (Thangaraj et al., 2024). This enables clinicians
to balance oncological benefit against potential late toxicity, particu-
larly in young patients with excellent prognosis.

4.3. Drug development and in silico clinical trials

The pharmaceutical industry faces escalating costs and prolonged
timelines in oncology drug development, with the average cost of
bringing a new cancer drug to market exceeding $2 billion, which may
even fail to reach the market (Austin and Hayford, 2021). DT technology
offers a paradigm shift by enabling in silico clinical trials, where virtual
patient cohorts are used to test drug efficacy and toxicity before pro-
gressing to human trials. These virtual cohorts are generated by sam-
pling from distributions of patient characteristics derived from real
clinical data, creating diverse populations that reflect the heterogeneity
encountered in actual practice (Surendran et al., 2023).

In silico trials allow rapid exploration of multiple scenarios: different
dosing schedules, combination regimens, and patient selection criteria.
For example, DTs have been used to optimise the design of immuno-
therapy trials by identifying biomarkers that predict response to certain
chemotherapeutic agents (Giansanti and Morelli, 2025; Moingeon et al.,
2023). By simulating trial outcomes across various patient stratification
strategies, pharmaceutical companies can design more efficient trials
with higher success rates and smaller sample sizes. Regulatory agencies,
including the FDA and EMA, are increasingly receptive to incorporating

Clinical Domain

Specific Applications

Key Data Inputs

Computational Methods

Clinical Outcomes

Precision Treatment Selection (
Bordukova et al., 2023)

Radiotherapy Planning (Sumini
et al., 2024)

Drug Development (Jiang et al.,
2023; Chasseloup et al., 2023;
Kleeberger, 2025)

Immuno-oncology (Wang et al.,
2024)

Surgical Planning (Mekki et al.,
2025; Shu et al., 2023)

Survivorship Care (Sarp et al.,
2023)

Drug response prediction, regimen
ranking, dose optimization

Dose distribution optimisation,
normal tissue sparing, adaptive
planning

Virtual clinical trials, biomarker
identification, patient stratification

Checkpoint inhibitor response
prediction, combination therapy
design

Resection boundary planning,
complication prediction, operative
guidance

Recurrence/progression risk
assessment, toxicity monitoring,
quality of life prediction

Genomics, drug levels, tumour
kinetics, comorbidities

CT/MRI imaging, tumour
geometry, tissue density, organ
motion

Multi-omics data, clinical trial
databases, drug properties

Tumour microenvironment
profiling, immune markers,
imaging

3D imaging, tumour vasculature,
organ anatomy

Follow-up imaging, biomarkers,
patient-reported outcomes

Machine learning,
pharmacokinetic models, response
prediction algorithms

Monte Carlo simulation, dose-
volume modelling, optimisation
algorithms

Population modelling, Bayesian
inference, virtual cohort
generation

Agent-based modelling, immune
system simulation, network
analysis

Computational fluid dynamics,
biomechanical modelling,
augmented reality

Longitudinal modelling, risk
prediction algorithms, symptom
tracking

Improved progression-free
survival, reduced toxicity

Reduced radiation toxicity,
improved local control

Accelerated drug approval,
reduced trial costs

Enhanced immunotherapy
response rates

Reduced surgical
complications, improved
precision

Early response tracking,
improved quality of life
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Table 2
Major Challenges in Digital Twin Implementation and Potential Solutions.
Challenge Domain Specific Issues Technical Barriers Potential Solutions Timeframe
Data Integration (Mollica et al., EHR fragmentation, format heterogeneity, Limited interoperability, FHIR/HL7 standard adoption, federated 2-5 years
2024; HL7 International, 2024) missing data inconsistent standards learning, automated data pipelines
Model Validation (Rudin, 2019; Lack of prospective trials, black-box Computational cost, limited Explainable Al, adaptive licensing, 5-10 years
Fuse et al., 2025) algorithms, regulatory uncertainty interpretability prospective RCTs
Computational Resources (Es-haghi High processing demands, long runtimes, Scalability limitations, cloud High-performance computing, reduced- 3-7 years
et al., 2024) infrastructure costs security concerns order models, edge computing
Ethical Governance (Huang et al., Data privacy, algorithmic bias, informed Regulatory compliance, Diverse training data, continuous bias Ongoing
2022) consent representation gaps monitoring, dynamic consent frameworks
Clinical Acceptance (Zackoff et al., Healthcare providers and Patient Change management, User-friendly interfaces, clinical champion ~ 3-5 years
2024; Jawad et al., 2022) acceptance, workflow integration, training workforce capacity programmes, education initiatives
needs
Equity and Access (Strigari et al., Resource-limited settings, digital divide, cost ~ Infrastructure gaps, Open-source platforms, simplified models, 10 -+ years
2025) barriers affordability capacity-building programmes
Table 3
Cancer-Specific Digital Twin Applications and Maturity Levels.
Cancer Type Primary DT Applications Key Biomarkers Validation Status Clinical Maturity
Integrated Implementation Level
Breast Cancer (Wu et al., Treatment-response prediction during MRI imaging, tumour Retrospective / proof-of- Pilot programmes in Intermediate
2025) neoadjuvant chemotherapy using MRI- volume kinetics, regimen concept validation in triple- research settings
based digital twins that model tumour type, treatment cycles negative breast cancer; AUC
growth dynamics and optimise dosing ~ 0.82
schedules
Glioblastoma (High-Grade Predictive DTs for radiotherapy MRI features, tumour In silico cohort validation; Research / academic Early-
Glioma) (Chaudhuri optimisation under uncertainty, heterogeneity, demonstrates feasibility and centres Intermediate
et al., 2023) integrating patient-specific growth mechanistic growth clinical potential
models and imaging data equations
Colorectal Cancer (Li et al.,  Deep-learning prognostic “molecular Histology (H&E), clinical Retrospective internal/ Research setting Early-
2022b) twin” models predicting survival benefit  variables, survival external validation on multi- Intermediate
from adjuvant chemotherapy in stage I/ outcomes institutional datasets
III CRC
Prostate Cancer ( Physics-informed ML DT reconstructing PSA kinetics, tumour Retrospective validation in Early adopter Early
Camacho-Gomez et al., tumour growth trajectories from PSA vascularity, patient- clinical PSA datasets institutions
2025) kinetics for therapy monitoring specific parameters
Melanoma (Gschwind and Multi-omics and radiomic twin-like TMB, PD-L1 expression, Retrospective cohorts; early Academic oncology Early-
Ossowski, 2025; Abbott models predicting immune-checkpoint neoantigen burden, prospective studies centres Intermediate
et al., 2021) inhibitor response radiomic features underway
Pancreatic Cancer (Osipov “Molecular twin” platform integrating Genomic and Proof-of-concept; validated Research programmes Early-
et al., 2024) multi-omic profiles to simulate therapy transcriptomic retrospectively on trial Intermediate
outcomes and survival prediction signatures, CA19-9, datasets
clinical outcomes
Ovarian, Pancreatic or Simulation of therapeutic responses to Clinical data, large gene Retrospective validation Research / pilot phase; Early

Breast Cancer (Cavallo,
2024; Griffiths et al.,

chemotherapy using FarrSight®-Twin
across historical trial data

panels, whole-exome and
transcriptome sequencing

using blinded and unblinded
simulations across 8 phase

simulation-based
validation only

2024)

II/11I trials

in silico evidence into drug approval pathways, particularly for rare
cancers where large-scale trials are infeasible (Pappalardo et al., 2019).

Beyond clinical trial design, DTs have the potential to accelerate
biomarker discovery by identifying molecular signatures associated
with treatment response (Rodriguez et al., 2021). Machine learning
models analyse multi-omics data from virtual patient cohorts to predict
which genetic alterations, pathway activations, or immune profiles
correlate with drug sensitivity (Liu et al., 2025). These biomarkers can
then be validated in smaller, focused clinical studies, streamlining the
path to personalised therapy.

4.4. Immuno-oncology and tumour microenvironment modelling

The complexity of immune system-tumour interactions presents both
opportunities and challenges for DT development. Immunotherapy
response depends on multiple factors: tumour mutational burden, neo-
antigen presentation, immune cell infiltration, checkpoint molecule
expression, and immunosuppressive signals within the tumour micro-
environment. DTs in immuno-oncology aim to integrate these elements
to predict which patients will benefit from checkpoint inhibitors,
adoptive cell therapies, or cancer vaccines.

Agent-based modelling, a technique where individual cells (tumour
cells, T cells, macrophages) are simulated as discrete entities, has proven
valuable for immuno-oncology DTs. These models capture spatial re-
lationships, cell-cell interactions, and temporal dynamics of the immune
response. By simulating the effects of checkpoint inhibitors on the
tumour microenvironment, DTs have the potential to predict response
likelihood and optimal treatment timing. For example, Mongeon et al.
(2024) used a spatial agent-based model (ABM) initialised with
patient-derived data, oncolytic virus, and combination ther-
apies/immune checkpoint inhibitors to model immune responses in
glioblastoma. Their simulations identified factors that influenced the
success of immune checkpoint inhibitors and suggested how spatial
immune cell density could impact treatment efficacy. Other multiscale
ABMs have been developed to capture how neoantigen expression, im-
mune checkpoint signalling (e.g., PD-1/PD-L1), and tumour growth
affect response to immunotherapy. These models can also simulate the
effects of combination strategies, such as checkpoint inhibitors with
chemotherapy or oncolytic viruses (Gong et al., 2017; Norton et al.,
2019). Such modelling approaches offer a promising direction for
rational design of immuno-oncology trials by narrowing down treatment
combinations and patient selection strategies prior to human studies.
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4.5. Surgical oncology and operative planning

Surgical oncology has benefited from DT technology through
enhanced preoperative planning and intraoperative guidance. Patient-
specific 3D models, reconstructed from CT or MRI imaging, allow sur-
geons to visualise tumour location, size, and relationship to critical
structures such as blood vessels and nerves. For hepatobiliary cancers,
where tumour proximity to vascular structures determines resectability,
DTs enable detailed assessment of surgical anatomy and prediction of
postoperative liver complications (Golse et al., 2021).

Augmented reality (AR) integration with DTs has revolutionised
intraoperative navigation. Surgeons wearing AR headsets can visualise
the patient's digital twin superimposed on the operative field, providing
real-time guidance during tumour resection. This technology has proven
particularly valuable in minimally invasive surgery (Doornbos et al.,
2024), where tactile feedback is limited and spatial orientation chal-
lenging. Future applications in surgery could explore AR-guided DT
navigation with a view to improving resection margins and reducing
operative time.

Predictive modelling of surgical complications represents another
application domain. DT frameworks are being proposed that could
integrate patient comorbidities, tumour characteristics, and surgical
complexity to simulate or predict postoperative physiological outcomes
and risks of complications. For example, DT models have been used to
forecast post-hepatectomy portal hypertension (Golse et al., 2021).
Similarly, deep learning models combining multidimensional patient
data accurately predict complication risk across different types of liver
pathology including liver malignancy following major liver resection
(Xu et al., 2023). This information facilitates shared decision-making,
allowing patients to make informed choices about surgical versus
non-surgical treatment options based on personalised risk assessments.

4.6. Survivorship care and long-term monitoring

The growing population of cancer survivors, especially those living
beyond five years after diagnosis, faces ongoing risks of recurrence,
secondary malignancies, and treatment-related late effects. DTs and
related Al/digital health technologies are being investigated to support
survivorship care via integration of imaging biomarkers, clinical and
biomarker data, and patient-reported outcomes in order to improve
detection of relapse or complications.

Wearable devices and mobile health applications have demonstrated
benefits in survivorship care in areas such as increasing physical activ-
ity, improving quality of life, and monitoring symptoms, though real-
time incorporation into DTs to detect recurrence has not yet been
robustly validated. For instance, wearable physical activity trackers in
breast cancer survivors improve activity levels and health-related out-
comes (Pan et al., 2023). More sophisticated models have been devel-
oped to track the risk of breast cancer recurrence. For example,
radiomics models using mammography (and combining imaging fea-
tures with clinical risk factors) have been developed to predict recur-
rence risk (Mao et al., 2021), though not yet in a framework clearly
labelled as a "digital twin" integrating continuous wearable /
patient-reported outcome (PRO) data with imaging and biomarkers.

Similarly, in colorectal cancer surveillance, Al-aided detection
(AIAD) methods during colonoscopy increase adenoma detection rates,
which could influence the timing of subsequent surveillance intervals
(Ashat et al., 2021). However, evidence of DTs incorporating serial
biomarker (carcinoembryonic antigen) (CEA) measurements plus colo-
noscopy findings explicitly predicting new lesions is not yet clearly
established.

Quality of life (QoL) prediction is being explored: digital health tools
are being used to track patient-reported outcomes, treatment side ef-
fects, fatigue, and physical function in survivorship (Pan et al., 2022),
but modelling trajectories for specific toxicities (e.g., neuropathy after
chemotherapy or radiotherapy) within DT systems remains
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underexplored.
5. Challenges and limitations in digital twin implementation

The implementation of digital twins in oncology faces multiple
interconnected challenges (Fig. 3), requiring coordinated technical,
regulatory, and organisational solutions across different timeframes.

5.1. Data integration, quality, and interoperability

The promise of oncology DTs hinges on seamless integration of
diverse data sources, yet significant barriers impede this goal. Electronic
health record (EHR) systems remain fragmented, with limited interop-
erability across institutions and countries. Data formats vary widely:
genomic data may be stored in VCF files, imaging data in DICOM format,
and clinical data in proprietary EHR schemas. Harmonising these het-
erogeneous data streams requires substantial computational infrastruc-
ture and adherence to data standards such as Fast Healthcare
Interoperability Resources (FHIR) and Health Level Seven (HL7).

Data quality poses an equally significant challenge. Missing data are
ubiquitous in clinical datasets, with incomplete follow-up, inconsistent
recording practices, and variable data capture across institutions.
Oncology DTs are sensitive to data quality issues, as missing or erro-
neous inputs can propagate through computational models and generate
inaccurate predictions (Katsoulakis et al., 2024). Rigorous data curation,
validation protocols, and imputation strategies are essential but
resource-intensive. Furthermore, historical biases in clinical data, such
as underrepresentation of certain ethnic groups or socioeconomic strata,
can be perpetuated by DT models, raising concerns about equitable ac-
cess to precision oncology.

Real-time data capture presents additional technical hurdles. For DTs
to function as truly dynamic systems, they must receive continuous
updates from multiple sources: imaging scans, laboratory results,
patient-reported symptoms, and wearable device outputs. Establishing
automated data pipelines that feed information into DT platforms in real
time requires investment in information technology infrastructure and
integration with existing clinical workflows. Many healthcare in-
stitutions, particularly in resource-limited settings, lack the technical
capacity to implement such systems.

5.2. Model validation and clinical acceptance

A critical barrier to DT adoption in clinical oncology is the lack of
robust validation frameworks. Whilst many DT models demonstrate
impressive performance on retrospective datasets, their accuracy in
prospective, real-world settings remains uncertain. Clinical validation
requires demonstrating that DT-guided decisions improve patient out-
comes compared to standard care, a time-consuming and expensive
process. Randomised controlled trials comparing DT-guided treatment
selection against conventional approaches are scarce, and those that
exist have shown mixed results (Wu et al., 2025; Kovatchev et al., 2025).

Clinicians remain cautious about adopting DT recommendations
without understanding the underlying reasoning. Black-box machine
learning models, whilst often accurate, lack transparency and input from
experts, making it difficult for oncologists to trust their predictions
(Mohamed et al., 2024). Explainable AI (XAI) techniques, which aim to
provide interpretable explanations for model outputs, are increasingly
being integrated into DTs to enhance clinical acceptance. However,
balancing model accuracy with interpretability remains a fundamental
trade-off in DT design.

Regulatory pathways for DT systems are still evolving. In practice,
DTs and other Al/machine learning (ML)-driven clinical decision-
support tools are generally treated under existing Software as a Medi-
cal Device (SaMD) framework, which requires risk classification, clinical
evaluation, and post-market surveillance. Regulators are increasingly
emphasising total-product-lifecycle approaches (including pre-market
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Fig. 3. Major challenges in digital twin implementation and potential solution pathways. The framework categorises barriers into six domains: data integration and
interoperability, model validation and clinical acceptance, computational complexity, ethical governance, clinical workflow integration, and equity considerations.
Each challenge domain is paired with corresponding technical and organisational solutions, with implementation timelines indicated. Current implementation

maturity varies significantly across domains.

evidence plus post-market monitoring and change-control plans) for Al-
enabled software rather than a single, one-time approval. For example,
the U.S. FDA has issued draft guidance on Al-enabled device software
functions that stresses lifecycle management and marketing-submission
recommendations, while international bodies and national agencies
(EMA, IMDRF, MHRA) have published reports and position papers
calling for iterative evaluation, good machine-learning practice, and
stronger post-market oversight of continuously updating algorithms
(FDA, 2024; European Medicines Agency, 2025; Dubowik, 2024).
Nevertheless, no single consensus standard yet exists for validation of
continuously learning DTs (e.g., how to demonstrate ongoing safe-
ty/effectiveness after model updates), and regulators continue to refine
expectations for change control, transparency, and real-world perfor-
mance monitoring.

5.3. Computational complexity and scalability

The computational demands of patient-specific oncology DTs are
substantial. High-fidelity simulation of tumour growth, treatment
response, and immune interactions requires significant processing
power, memory, and storage capacity. For institutions serving large
patient populations, creating and maintaining individualised DTs for
every cancer patient is computationally prohibitive. Cloud computing
and high-performance computing clusters offer potential solutions, but
concerns about data security and privacy in cloud environments (Sun
et al., 2014) have slowed adoption.

Model complexity also affects runtime, a critical consideration for
clinical decision-making. Clinicians require timely predictions ideally
within hours or days to inform treatment planning. However, detailed
mechanistic models incorporating multi-omics data and spatiotemporal
tumour dynamics may take days or weeks to run. Balancing model fi-
delity with computational efficiency is an ongoing challenge. Reduced-
order models and surrogate modelling techniques offer compromise
solutions by simplifying complex simulations whilst retaining predictive
accuracy (Es-haghi et al., 2024).

Scalability extends beyond computation to encompass personnel
requirements. Developing, maintaining, and interpreting DTs demands

expertise in oncology, computational biology, data science, and soft-
ware engineering (Giansanti and Morelli, 2025). Few institutions
possess the multidisciplinary teams needed to support DT initiatives,
and training programmes to build this workforce capacity are nascent.
Without addressing these human resource challenges, widespread DT
implementation will remain limited to a handful of well-resourced ac-
ademic centres.

5.4. Ethical, legal, and governance considerations

The use of DTs in oncology raises complex ethical questions around
data privacy, informed consent, and algorithmic bias. Patient data used
to construct DTs are highly sensitive, encompassing genomic informa-
tion, medical history, and lifestyle factors. Ensuring robust data pro-
tection mechanisms that comply with regulations such as the General
Data Protection Regulation (GDPR) in Europe and the Health Insurance
Portability and Accountability Act (HIPAA) in the United States is
paramount (Shah, 2023). However, the dynamic nature of DTs, where
data are continuously updated and shared across platforms complicates
traditional consent frameworks, which assume static data collection at a
single time point.

Algorithmic bias represents another ethical concern (Huang et al.,
2022). If training datasets used to develop DT models disproportionately
represent certain demographics, the resulting systems may perform
poorly for underrepresented groups. For example, if a DT is trained
primarily on data from Caucasian patients, its predictions may be less
accurate for patients of African, Asian, or Hispanic descent. This could
exacerbate existing health disparities rather than alleviate them.
Ensuring diverse and representative training datasets, along with
ongoing monitoring for bias, is essential for equitable DT
implementation.

Liability issues arise when autonomous systems like DT-guided de-
cisions influence patient care (Vellinga, 2023). If a DT recommends a
treatment that results in adverse outcomes, determining responsibility is
complex. Is the clinician liable for following the DT's recommendation?
Is the institution responsible for deploying an insufficiently validated
system? Or does liability rest with the DT developers or algorithm
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providers? Legal frameworks have not kept pace with these technolog-
ical advances, creating uncertainty that may discourage DT adoption.

6. Future directions and emerging trends
6.1. Integration with advanced artificial intelligence

The next generation of oncology DTs will leverage cutting-edge Al
architectures, including transformer models, graph neural networks,
and reinforcement learning. Transformer models, which have revolu-
tionised natural language processing, are being adapted for analysing
sequential clinical data such as longitudinal imaging and treatment
histories (Nerella et al., 2024). These models can identify subtle patterns
in disease progression that escape traditional statistical methods. Graph
neural networks excel at modelling molecular interactions and biolog-
ical pathways, making them ideal for integrating multi-omics data into
DTs (Isah et al., 2024).

Reinforcement learning, where algorithms learn optimal strategies
through trial-and-error simulation, holds particular promise for treat-
ment optimisation. A reinforcement learning-based DT could simulate
thousands of treatment scenarios, learning which sequences of therapies
maximise survival whilst minimising toxicity. For example, a study
developed a DT model for head-and-neck cancer that utilised sequential
deep reinforcement learning to personalise treatment plans, balancing
tumour control and toxicity risk (Wentzel et al., 2024). Additionally,
another study applied deep Q-network-based reinforcement learning to
automate proton therapy replanning for head-and-neck cancer patients,
achieving improved plan quality compared to manual methods
(Madondo et al., 2025). As these technologies mature, their integration
into clinical DTs will enable more sophisticated decision support.

Federated learning represents another transformative development.
This approach allows DT models to be trained across multiple in-
stitutions without sharing raw patient data, addressing privacy concerns
whilst enabling learning from diverse populations (Sheller et al., 2020).
Federated oncology DTs could aggregate knowledge from thousands of
patients across different hospitals and countries, improving model
generalisability and reducing bias.

6.2. Real-world data and continuous learning systems

Future DTs will increasingly aim to incorporate real-world data from
sources beyond traditional clinical systems. Wearable devices that
monitor heart rate, activity levels, and sleep patterns have the potential
to provide continuous physiological data that reflect treatment tolerance
and recovery. Smartphone applications enable patient-reported
outcome capture, documenting symptoms, functional status, and qual-
ity of life in real time. Social determinants of health, such as housing
stability, nutrition access, and environmental exposures, are increas-
ingly recognised as critical factors influencing cancer outcomes and
should be integrated into comprehensive DTs.

Population cancer registries and observational databases offer
valuable real-world evidence for DT training and validation. These
datasets capture outcomes from diverse patient populations treated in
routine practice, complementing the highly selected cohorts typical of
clinical trials. Linkage between DT platforms and national cancer reg-
istries could enable continuous model refinement as new treatment
patterns and outcomes emerge.

The vision of a continuously learning DT system, one that improves
its predictions as it accumulates experience, requires careful gover-
nance. Mechanisms for version control, model retraining triggers, and
re-validation thresholds must be established to ensure that model up-
dates enhance rather than degrade performance. Regulatory frame-
works that accommodate continuous learning whilst maintaining
patient safety are essential for realising this vision.
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6.3. Standardisation, interoperability, and regulatory pathways

Achieving wider uptake of DTs depends on establishing shared
standards for data representation, device/software attributes, digital
endpoints, and model performance metrics. For example, the Clinical
Data Interchange Standards Consortium (CDISC) is developing stan-
dards for digital health technologies in clinical research and has part-
nered with the Digital Medicine Society (DiMe) to standardise device
attributes, endpoints, and related best practices (CDISC, 2024).

Regulatory agencies face the challenge of evaluating technologies
that evolve over time. Traditional regulatory models, based on fixed
versions of medical devices or drugs, are ill-suited to adaptive DT sys-
tems. The FDA's Digital Health Center of Excellence and the EMA's
Innovation Task Force are exploring frameworks for continuous over-
sight, including post-market surveillance mechanisms that monitor DT
performance in real-world use (Gilroy et al., 2024). Collaborative ap-
proaches involving regulators, healthcare providers, and DT developers
will be essential for establishing efficient yet rigorous approval
pathways.

Intellectual property considerations also merit attention. As DT
technology matures, questions arise about ownership of patient-specific
models, algorithm licensing, and data rights. Clear frameworks that
balance innovation incentives with patient autonomy and data sover-
eignty will facilitate sustainable DT ecosystem development.

6.4. Equity, access, and global health perspectives

Ensuring equitable access to DT technology is a moral imperative and
practical necessity. Currently, DT development is concentrated in high-
income countries with advanced research infrastructure. However, the
global cancer burden disproportionately affects low- and middle-income
countries (LMICs), where resources for cancer care are limited and
mortality rates higher. Adapting DT frameworks for resource-
constrained settings requires consideration of available infrastructure,
data availability, and local capacity.

Simplified DT models that require less computational power and
fewer data inputs may be more appropriate for LMICs. Mobile health
platforms can facilitate data collection in settings where EHR systems
are absent. Capacity-building initiatives that train local data scientists
and clinicians in DT methodology will foster sustainable implementa-
tion. International partnerships and open-source DT platforms can
democratise access, ensuring that precision oncology benefits are not
confined to affluent populations.

Addressing the digital divide within high-income countries is equally
important. Vulnerable populations, including rural residents, elderly
patients, and socioeconomically disadvantaged groups, may lack access
to the technologies that enable DT-based care, such as smartphones,
internet connectivity, and digital literacy. Health equity considerations
must be embedded in DT design and deployment strategies to prevent
technology from exacerbating existing disparities.

7. Limitations of this review

This narrative review has several limitations that should be
acknowledged. First, the narrative review methodology, whilst appro-
priate for synthesising broad and heterogeneous literature, lacks the
systematic rigour and predefined protocols of systematic reviews. Se-
lection bias may have influenced which studies were included, and the
absence of quantitative synthesis limits the ability to draw definitive
conclusions about DT effectiveness. Future systematic reviews with
meta-analyses would provide more robust evidence on specific DT
applications.

Second, the rapidly evolving nature of DT technology means that
recent developments may not yet be reflected in published literature.
Conference proceedings, preprints, and grey literature were included to
capture emerging trends, but these sources may lack the peer-review
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scrutiny of journal articles. Additionally, proprietary DT systems
developed by commercial entities may not be fully described in the
public domain, limiting a comprehensive assessment of the field's state.

Third, the review's scope, covering applications across the entire
cancer care continuum, necessitated breadth over depth. Each applica-
tion domain (radiotherapy, drug development, surgical planning, etc.)
could warrant dedicated in-depth reviews. The high-level synthesis
provided here may not capture all nuances and technical details relevant
to specialists in each subdomain.

Fourth, most studies reviewed were retrospective or proof-of-
concept investigations conducted in research settings. Evidence from
prospective clinical trials demonstrating improved patient outcomes
with DT-guided care remains limited. The translation gap between
research prototypes and clinically validated systems is substantial, and
this review cannot fully address whether DT technology will deliver on
its promise in routine practice.

Fifth, the review focused predominantly on literature from high-
income countries, reflecting the current geographical distribution of
DT research. Perspectives from LMICs and underserved populations are
underrepresented, limiting the generalisability of findings. Additionally,
language restrictions (English-only publications) may have excluded
relevant studies published in other languages.

Finally, the technical complexity of DT systems means that many
implementation details, such as specific algorithms, validation methods,
and computational architectures, were not fully accessible from pub-
lished literature. This limits the ability to critically evaluate model
robustness and reproducibility. Greater transparency in DT methodol-
ogy, including code and data sharing, would enhance future reviews.

8. Conclusion

Digital twin technology represents a paradigm shift in oncology,
offering a dynamic, personalised framework for cancer care that extends
from diagnosis through treatment to long-term survivorship. By inte-
grating multi-dimensional patient data, genomics, imaging, clinical
history, and real-time monitoring with advanced computational
modelling, DTs have the potential to enable predictive, adaptive, and
participatory medicine. Industrial and research platforms such as
SOPHIiA DDM™ are already incorporating multimodal biological and
clinical data to generate patient-specific digital twin models for simu-
lating potential therapies and outcomes, illustrating the practical feasi-
bility of this approach. The applications reviewed span the cancer care
continuum: precision treatment selection that aims to optimise thera-
peutic efficacy whilst minimising toxicity, radiotherapy planning that
balances tumour control against normal tissue sparing, accelerated drug
development through in silico trials, immuno-oncology modelling that
aims to predict immunotherapy response, surgical planning that en-
hances operative precision, and survivorship care that aims to detect
recurrence early whilst monitoring quality of life.

Despite this transformative potential, substantial challenges must be
addressed before DTs become integral to routine oncology practice. Data
integration remains hampered by fragmented electronic health systems,
inconsistent standards, and quality concerns. Model validation requires
prospective clinical trials demonstrating improved outcomes, yet few
such studies exist. Computational demands pose scalability barriers,
particularly for resource-limited institutions. Ethical considerations
around data privacy, informed consent, and algorithmic bias demand
robust governance frameworks. Clinical acceptance depends on
explainable models that enhance rather than replace clinical judgement,
and regulatory pathways must evolve to accommodate continuously
learning systems.

The path forward requires interdisciplinary collaboration among
oncologists, data scientists, engineers, ethicists, and policymakers.
Standardisation efforts must establish common frameworks for data
representation and model validation. Investment in computational
infrastructure and workforce training will build capacity for DT
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implementation. Regulatory innovation that balances rigorous oversight
with flexibility for adaptive technologies will facilitate clinical trans-
lation. Crucially, equity considerations must guide DT development to
ensure that precision oncology's benefits reach all patients, regardless of
geography or socioeconomic status.

As artificial intelligence continues to advance and real-world data
sources proliferate, oncology DTs will become increasingly sophisticated
and clinically valuable. The vision of a truly personalised, predictive,
and participatory cancer care system, where each patient's unique
biology, treatment response, and lived experience inform therapeutic
decisions in real time, is within reach. Realising this vision demands
sustained commitment, innovative thinking, and collaborative effort
across the global oncology community. The digital twin may well
become, in the coming decades, as fundamental to cancer care as mo-
lecular profiling and precision medicine are today.
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