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ABSTRACT 

 

Composition and structure of lotic ecosystems can be affected by substrate instability. 

Consequently stream ecologists have used various methods to determine bed stability 

characteristics. However, the link between community composition and these 

measurements varies because benthic biota often respond to combinations of bed 

stability characteristics. This paper presents a protocol to determine reach-scale 

stream bed stability in mountain streams which is relevant for invertebrate 

communities (Stream Bed Stability for Invertebrates, SBSI). The approach is 

calibrated on community composition response to bed stability but does not measure 

any single bed stability characteristic per se. It consists of 13 parameters that are 

assessed once at each reach with minimal instrumentation and low interference with 

the substrate. These 13 parameters cover aspects of sediment supply from banks, 

transport capacity and substrate erodibility as well as effects of particle transport on 

channel bottom structures, substrate assemblage and single grains. Application of the 

SBSI protocol improved the relationship between bed stability and community 

diversity compared to when conventional bed stability measures were employed. The 

SBSI protocol provides a cost- and time-effective assessment method for bed stability 

and its application can facilitate research on invertebrate community response to 

physical disturbance. 
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INTRODUCTION 

 

Flow influences many important structural attributes of stream ecosystems such as 

substrate stability, habitat volume and channel morphology (Poff and Ward, 1989). 

Variation in discharge is recognised as one of the fundamental determinants of 

structure and function of benthic communities in lotic ecosystems (Resh et al., 1988; 

Reice et al., 1990; Lake, 2000; Death, 2008). Floods can cause movement of coarse 

bed substrate which can affect composition of periphyton (Biggs et al., 1999), 

invertebrate (Cobb et al., 1992; Death and Winterbourn, 1995; Holomuzki and Biggs, 

2000), bryophyte (Suren and Duncan, 1999) and macrophyte communities (Riis et al., 

2008). However, different groups of biota respond to different aspects of bed stability 

on a range of scales. For instance the reaction to patchy scour or fill varied between 

invertebrate taxa while on a larger scale stable patches might migitate the effects 

substrate instability (Matthaei and Townsend, 2000). Bed stability is a characteristic 

feature of alluvial channels comprising aspects like entrainment, transport and 

deposition of substrate as well as abrasion by suspended material on scales ranging 

from a single particle to an entire reach. These bed stability characteristics might 

affect sessile organisms in different ways than more mobile groups of biota (Downes, 

1990; Englund, 1991; Holomuzki and Biggs, 2000; McAuliffe, 1984). Consequently 

some methods to quantify bed stability perform well with one group of organisms but 

show only a weak connection with other groups (Duncan et al., 1999; Schwendel et 

al., 2011a). This in turn is reflected in the wide variety of bed stability measurements 

used by stream ecologists to examine the effects of flow disturbance (Schwendel et 

al., 2010).  

The effects of substrate movement on stream invertebrate communities via 

habitat alteration, displacement and death of individuals, and changes in their food 

sources are widely recognised (e.g. Townsend et al., 1997; Matthaei and Townsend, 

2000; Effenberger et al., 2006; Death, 2008; Schwendel et al., 2011b). Different 

levels of bed stability, e.g. apparent in depth and pattern of disturbance or in transport 

distance of particles, are reflected in invertebrate community composition for instance 

via recolonisation abilities of individual taxa (Death, 2008). The methods employed to 

assess bed stability in relation to invertebrate community metrics are reviewed in 

Schwendel et al. (2010) and include calculation of critical shear stress (Newbury, 

1984; Cobb et al., 1992; Death and Winterbourn, 1995), FST-hemispheres (Dittrich 
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and Schmedtje, 1995; Merigoux and Doledec, 2004), scour chains (Palmer et al., 

1992; Matthaei and Townsend, 2000; Effenberger et al., 2006), scour plates (Palmer 

et al., 1992), tracer stones (Death and Winterbourn, 1994; Townsend et al., 1997; 

Death and Zimmermann, 2005; Barquin and Death, 2006), morphological budgeting 

(Schwendel et al., 2011a) and the Pfankuch Stability Index (Pfankuch, 1975; Death 

and Winterbourn, 1995; Townsend et al., 1997; Death, 2002). Each of these methods 

can only assess a distinct set of bed stability characteristics and the strength of the 

relationship with invertebrate diversity and community composition varies 

(Schwendel et al., 2011a). The need of site specific calibration (e.g. bedload transport 

formulae and acoustics sensors) and interference with the substrate (e.g. scour plates 

and bedload traps) can constrain application for multi site studies and concomitant 

invertebrate sampling respectively (Schwendel et al., 2010). Insufficient spatial (e.g. 

bedload samplers) or temporal coverage (e.g. FST-hemispheres) for reach-wide, long-

term bed stability assessment can be an additional problem. Further, time and cost 

constraints can often prevent application of elaborate methods. Visual surveys of 

stream bed properties such as the Pfankuch Stability Index can circumvent some of 

these limitations but they can potentially be biased by observers or regional factors 

such as substrate lithology. 

Thus a technique that combines the strengths of elaborate bed stability 

measurements with the easy application of a visual approach would facilitate research 

on stream invertebrates and increase comparability between studies. Consequently, 

this paper presents a straightforward survey protocol specifically calibrated for the 

assessment of reach-scale stream bed stability relevant for invertebrate community 

composition (SBSI). It needs to be pointed out that the SBSI survey does not measure 

any single aspect of bed stability per se but determines a characteristic response of 

invertebrate community composition to a combination of bed stability characteristics. 

The SBSI was validated at independent sites using in situ marked tracer stones and the 

bottom component of the Pfankuch Index, two techniques that were shown to be well 

related to invertebrate community metrics (Schwendel et al., 2011a). Additionally the 

connection between bed stability measured with SBSI and community metrics was 

explored. 

Application for the SBSI method may include scientific studies of disturbance-

diversity relationships and habitat characteristics as well as assessment of the 

potentially confounding effects of bed instability on invertebrate community 
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composition when the latter is employed to determine water quality or environmental 

status of a stream. 

 

METHODS 

 

Study sites 

 

Data for calibration and validation of SBSI protocol were collected between October 

2007 and March 2010 from 54 mountain stream reaches in the southern part of the 

North Island of New Zealand. They were located in the axial Tararua (n = 12) and 

Ruahine Ranges (n = 11), the Central Volcanic Plateau (n = 13) and around Mt. 

Egmont (n = 18) (Figure 1). The former ranges consist of uplifted folded and faulted 

Mesozoic greywacke and argillite whereas the other mountains are composed of 

Quaternary andesitic volcanic deposits. Catchment vegetation was dominated by 

native broadleaf-podocarp forests, scrub and tussock grassland and anthropogenic 

influence is relatively small (e.g. <0.1% urban land use, 0-45% non-intensive pasture 

and no infrastructure upstream of sites). Consequently water quality was expected to 

be relatively unimpaired. The studied stream reaches varied considerably in substrate 

assemblage, width, channel form (Table I) and sediment supply (Schwendel and 

Fuller, in press). Substrate composition ranged between gravels and cobbles although 

some sites contained a considerable proportion of boulders. Riparian vegetation was 

variable with native forest, willows and poplars, native scrub, non-intensive pasture, 

tussock and bare ground present. Some of the reaches were laterally confined by 

vegetated banks, whereas others migrated within a wide active channel zone. 

 

Invertebrate communities 

 

Five Surber samples (500 µm mesh, 0.1 m
2
) were collected from riffles during periods 

of baseflow at least two weeks after the last spate to ensure a characteristic species 

assemblage was collected. Seasonal variability in New Zealand stream invertebrate 

communities is generally low (Towns, 1981; Winterbourn, 2000) however, this was 

tested and confirmed at 18 of the sites where samples were taken three times 

throughout the year (Schwendel et al., 2011a and J. Tonkin, unpublished data). 

Samples were stored in 4% formalin or >60% isopropyl alcohol and later sorted. Very 
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abundant taxa (>300 individuals per sample) were subsampled following Vinson and 

Hawkins (1996): samples expected to contain large numbers were divided in equal 

subsamples of which one was initially searched for invertebrates. Only those taxa 

which number of individuals did not exceed 300 in the first subsample were searched 

for in the second subsample. Invertebrates were identified to the lowest possible 

taxonomic level using the keys in McFarlane (1951), Winterbourn (1973), Towns and 

Peters (1996) and Winterbourn et al. (2006). Invertebrates were sampled where 

applicable from riffles because community composition there is likely to reflect 

gradations in substrate stability and on a larger scale instability in riffles affects also 

pools, e.g. via bedload transport. 

 

Periphyton and habitat parameters 

 

At each invertebrate sampling point depth, wetted stream width and near-bottom flow 

velocity were measured. The latter was recorded over 60 s with an electromagnetic 

flow meter (Model 801, Valeport Ltd., Devon, UK) 0.05 m above the stream bed. At 

each site pH and temperature corrected conductivity were measured using Eutech 

pHtestr2 and ECScan Low+ (Eutech Instruments, Singapore) respectively. Percentage 

aerial cover of riparian land use categories (native vegetation, pasture and willows) 

within a strip of approximately 5 m and the fraction of dry active channel bare of 

vegetation under base flow conditions was estimated visually. 

Chlorophyll a pigment concentration on five gravel-sized stones that were 

collected beside invertebrate samples was assessed as a measure of periphyton 

biomass. The stones were transported in the dark in cooled stream water before 

storing them at -18° C. Pigments were extracted in 90% acetone for 18 h at 5° C in the 

dark before the chlorophyll a absorption was measured using a Cary 50 Conc UV-

Visible spectrometer (Varian, Mulgrave, Australia). Chlorophyll a pigment 

concentration was calculated (Steinman and Lamberti, 1996; APHA, 1998) and 

corrected for stone surface area which was estimated based on measurement of the a-, 

b- and c-axes of the gravels with a sliding calliper following Graham et al. (1988). 

Substrate composition of riffles was assessed by measuring the b-axis of >100 

randomly collected particles (Wolman, 1954) and classifying them according to a 

modified Wentworth scale. 
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Bed stability 

 

Substrate stability was assessed with two established reference measures: tracer 

particles and the Pfankuch Stability Index. For the development of the new approach a 

set of 38 candidate variables (Table II) were selected from a large array of parameters 

potentially related to stream bed stability (Knighton, 2008; Petts and Foster, 1985) in 

respect to importance and practicability of assessment with minimal instrumentation 

in the field. These candidate variables were evaluated at stream sections with a length 

of approximately 5 – 7 times stream width to include, where present at least one riffle-

pool unit (Keller and Melhorn, 1978). 

Candidate variables are associated with the riparian environment (denoted A), 

the cross (B) and longitudinal profile (C) of the channel, the channel bottom structure 

(D) and the substrate (E). The density and composition of the riparian vegetation 

within a 5 m-strip along the active channel zone (A1, A3) reflects bank stabilisation 

by roots, pressure from land use and frequency and magnitude of flood disturbance. 

Together with bank erosion (B2) and deposition of derived fine sediments (B3) these 

parameters indicate sediment supply from banks and slopes. These processes 

influence substrate characteristics (E3-6) which can be relevant for bed stability. 

Transport capacity is assessed in terms of available potential energy (slope) (C1), 

expenditure on roughness elements (D6), channel adjustments (C2, D4) and flood 

regime (A2). The channel dynamics resulting from sediment supply and transport 

capacity are reflected in channel form (B1), structures (D1, D3-5), aquatic vegetation 

(D2) and substrate characteristics (E1-4, E7). Additionally lithology of the substrate, 

weather (sunny, overcast or rain) and state of the floodplain substrate (dry or wet) 

were recorded because these factors could potentially interfere with visual evaluation 

methods such as the Pfankuch Index (A. C. Schwendel, unpublished data). 

Tracer particles were used to assess stream bed stability. Five randomly selected 

tracer stones in each of three size classes (D50, D70 and D90) were marked with radio-

frequency identification (RFID) tags (23 mm glass tags, Texas Instruments, Dallas, 

USA) which were attached in situ to stones in riffles using wet curing epoxy-concrete 

(K273, Nuplex Construction Products, Hamilton, New Zealand). When high 

turbulence or fast flow velocity prevented underwater application (11% of particles), 

stones were removed from the river bed for tag attachment and afterwards carefully 

re-embedded. The percentage of entrained in situ-marked tracer stones and re-
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embedded tracers was significantly correlated (Spearman-rank correlation, R = 0.70, 

df = 26, p = 0.0001). Relocation and identification of each tracer stone was carried out 

contactless using a portable antenna and datalogger (OregonRFID, Portland, USA). 

Initial and subsequent positions of tagged stones were surveyed using high precision 

differential GPS or marked on riparian vegetation and stable banks. Relocation 

surveys took place approximately every two months or after high discharge events 

over a total period of six months. The entire bed and active channel downstream of 

the last position of each tracer particle was searched intensively to the next local 

sediment trap (e.g. riffle) beyond a minimal distance of 50 m. Stones that could not be 

recovered were assigned a travel distance of 50 m. Although this was less then usually 

searched it accounted for tracers lost by deep burial (>0.6 m), storage in inactive parts 

of the floodplain, tag damage and malfunction. The travelled distance of the tracer 

particles was converted to an index of bed stability (TTM = sum of tracer movement) 

using the following approach: 

 

TTM = (d50*s50/n50 + d70*s70/n70 + d90*s90/n90) / (d50+d70+d90)   (1). 

 

The sum of the moved distance s of stones of a size class between the surveys is 

divided by the counted recoveries n and weighted by the geometric mean particle size 

d of that class.  

As a second independent measure of bed stability the bottom component of the 

Pfankuch Stability Index (BCP) (Pfankuch, 1975) was employed once at each site. 

The bottom component was preferred over the total index because in previous studies 

it showed a better relationship with other measures of bed stability (Death and 

Winterbourn, 1994) and is well related to biological data (Death and Winterbourn, 

1995; Suren, 1996). It involves allocation of an observer’s subjective visual 

evaluation of six attributes, including substrate brightness, angularity, consolidation of 

particles, percentage of stable materials, evidence of scouring and state of clinging 

aquatic vegetation, to four predetermined categories to which scores are weighted 

according to their perceived importance. The sum of the scores results in a stability 

index, where high values represent low stability. 

 

Data analysis 
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The collected data were examined in four steps: (1) analysis of invertebrate 

community composition and structure, (2) development of the SBSI protocol, (3) 

exploration of the relationship between SBSI, other measures of bed stability and 

community metrics and (4) validation of the SBSI protocol at independent sites in 

respect to other bed stability measures and relevance for invertebrate communities. 

The composition of the invertebrate community at 46 calibration sites (Figure 1) 

was explored with non-metric multidimensional scaling (NMDS) in PC-ORD 5.0 

(MjM Software, Gleneden Beach, USA) using standardised (by maximum) 

invertebrate taxa abundance. Association of the derived axis scores with measured 

environmental parameters and selected variables from the Freshwater Environments 

of New Zealand (FWENZ) database (Wild et al., 2005) was assessed using Pearson’s 

correlation. The axis that was best correlated to conventional bed stability measures 

TTM and BCP was selected for calibration of the SBSI. Community diversity 

(Brillouin Index), taxa number, rarefied taxa number (for 200 individuals following 

Sanders (1968) and Hurlbert (1971)) and mean number of individuals per 0.1 m
2
 were 

calculated for all sites in PRIMER v6 (Plymouth Marine Laboratory, Plymouth, UK). 

The SBSI was developed with linear best subset regression (Statistix 9.0, 

Analytical Software, Tallahassee, USA) using the selected NMDS axis as dependent 

variable and the 38 parameters assessed in the field (Table II) as independent 

variables. Adjusted R
2
, residual mean square error, Mallows’ Cp, predicted residual 

sum of squares and Akaike’s Information Criterion for small samples (AICc) were 

used to compare models. 

The relationship between the SBSI site scores, bed stability measured with 

tracer stones and the bottom component of the Pfankuch Index, and invertebrate 

community metrics was assessed with Spearman rank correlation to account for the 

non-normal distribution of variables. This was accomplished for the 46 sites used for 

SBSI calibration to show the relevance of the SBSI for invertebrate communities and 

separately for the eight validation sites. The latter consisted of four randomly selected 

reaches in each of the two bedrock regions (volcanic and sedimentary) in order to 

account for variations in shape and colour of the substrate. Significance from the 

multiple correlations was adjusted using false discovery rate correction (Benjamini 

and Hochberg, 1995). 

 

RESULTS 
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Invertebrate community 

 

A total of 127 invertebrate taxa were collected across the 46 SBSI calibration sites 

with a mean number of individuals per 0.1 m
2
 of 194 consisting of on average 33 taxa. 

Overall Trichoptera comprised the largest number of taxa (35%), followed by Diptera 

(25%) but the samples were numerically dominated by Ephemeroptera larvae (45% of 

individuals) of which Deleatidium was most common (100% of sites) and abundant 

(42% of individuals). 

Ordination (2D stress 0.16) revealed that only one axis was strongly correlated 

with bed stability measured with tracer stones and the bottom component of the 

Pfankuch Index (Table III). This axis was also associated with periphyton biomass 

and the fraction of the active channel bare of vegetation (Figure 2). It was 

subsequently used to calibrate the SBSI. Sites associated with low bed stability were 

found in the Ruahine Ranges and around Mt. Egmont and were dominated by 

Deleatidium. In contrast very stable sites were located mostly on the Central Plateau 

and had a richer fauna and higher number of individuals. 

 

SBSI protocol 

 

Any intercorrelated variables of assessed reach properties were removed from further 

analysis (Table II). Weather and substrate surface wetness were not significantly 

correlated with other variables but substrate lithology (andesite and greywacke) was 

significantly correlated to grain angularity (E11) (Spearman’s R 0.82, df = 45, p = 

0.0001). Andesitic stones were more rounded than greywacke clasts prior to fluvial 

transport. Consequently scores for grain angularity were raised by one class at sites 

with greywacke dominated substrate. Best subset regression, using the NMDS axis 

best correlated to bed stability measures as dependent variable and the refined set of 

reach properties as independent variables, led to the identification of an optimal 

model (Table IV). This model of stream bed stability relevant for invertebrates (SBSI) 

comprises 13 variables which reflect mostly direct effects of channel dynamics 

observed on the banks and at the channel bottom. Sediment supply and transport 

capacity are represented with two variables each which are assessed on the banks and 

the longitudinal channel profile. Substrate parameters (size and compaction) 
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constitute a second group mirroring effects of sediment dynamics such as sorting. 

Low variance inflation factors (VIF) indicated that collinearity between the variables 

is low.  

Based on the regression model a field sheet (Appendix 1) was designed that 

facilitates recording of the variables and allows with the help of a pocket calculator 

rapid on-site assessment of bed stability. Channel, bank and substrate properties are to 

be recorded, noted in relevant fields and multiplied with their respective coefficient. 

The sum for each compartment (e.g. banks, longitudinal profile, channel bottom and 

substrate) is recorded on the right hand side of the sheet and this column is than added 

up to result in the SBSI site score. 

 

Bed stability and community metrics 

 

Correlation between the SBSI site scores and community diversity (Brillouin Index), 

taxa number, rarefied taxa number and mean number of individuals was highly 

significant (Table V). These community metrics were also correlated with bed 

stability measured with tracers (except taxa number) or the bottom component of the 

Pfankuch Index but the connection was always weaker than with the SBSI. 

The three measures of bed stability were intercorrelated with the strongest 

relationship apparent between the bottom component of the Pfankuch Index and SBSI 

site scores (Table VI). 

 

Validation at independent sites 

 

At eight randomly selected sites a linear relationship was found between bed stability 

assessed with the bottom component of the Pfankuch Index and the SBSI protocol 

(Table VI). In contrast the tracer measure was not correlated with any of the two 

former, however, correlation coefficients were similar or higher than at the sites used 

for SBSI calibration and the failure of detection of a significant relationship might be 

due to the low number of sites. Correlation between the Brillouin Index and SBSI site 

scores was stronger than with any of the other bed stability measures (Table V). In 

contrast taxa number, rarefied taxa number and the mean number of individuals were 

slightly better related to the bottom component of the Pfankuch Index. 
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DISCUSSION 

 

The presented protocol for assessment of bed stability relevant for invertebrates 

(SBSI) produces site scores highly related to invertebrate community diversity and 

structure. This connection is stronger than that of any traditional bed stability measure 

with community metrics at the calibration sites. The SBSI method is calibrated on the 

response of invertebrate communities, signified by a NMDS axis, to varying degrees 

of bed stability as measured with traditional techniques and compares well to the 

NMDS calibration axis (Table VI, Figure 3). The NMDS axis used for calibration of 

the SBSI is strongly associated with bed stability measures and periphyton biomass. 

Periphyton as a potential food source for invertebrates influences invertebrate 

community composition (Death, 2002) but biomass itself is affected by bed 

movement and can consequently be seen as a proxy for bed stability. The link of the 

NMDS calibration axis with the percentage of bare active channel reflects the flood 

regime which influences bed stability. Lack of vegetation on the banks can indicate 

regular inundation with flows competent to strip vegetation and to prevent perennial 

plant growth. Alternatively it can be caused by active bank erosion during lower 

discharges when undercutting of banks can lead to failure. This reflects a high degree 

of channel activity and sediment input and accordingly bed disturbance. Hence it is 

reasonable to interpret the NMDS axis as being dominated by bed stability. 

Validation at independent sites showed the applicability of the SBSI approach 

and its relevance for invertebrates. Connection with community diversity is improved 

when the SBSI is used compared to other bed stability measures but the bottom 

component of the Pfankuch Index performs slightly better with number of taxa and 

individuals (Figure 4). However, the SBSI approach can account for regional 

variation in parameters such as lithology and should be less affected by observer 

subjectivity than the purely visual assessment of the Pfankuch Index. 

The parameters of the SBSI model are summarised in Table VII. Theoretically 

the total SBSI score ranges between 19 (stable) and 201 (unstable) when extreme 

values for all parameters are assumed. However, the calibration sites which, according 

to the bed stability measurements, include both very stable and unstable reaches, 

cover a range of only 62 to 88. Thus values higher than 80 represent sites with low 

bed stability whereas SBSI smaller than 70 indicates high bed stability. The substrate 

sand fraction and homogeneity are potentially the most powerful parameters but their 
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extreme values seldom occur in mountain streams. At the calibration sites bank 

vegetation cover and abundance of multiple barforms had the highest mean scores 

(10.8 and 9.1 respectively) while slope, area of multiple barforms and sand fraction 

achieved lowest mean scores (<2.3). In the following section for each parameter the 

relation to bed stability is explored and assessment in the field with the help of the 

provided field sheet (Appendix 1) is described. 

Friction slope determines the total energy available for transport and 

entrainment of particles in a stream. Water surface or stream bed gradient is often 

used a as a surrogate because it is easier to measure (Schwendel et al., 2010). When 

the ratio of flow depth to roughness element height is high (e.g. during high 

discharge) this is an acceptable first-order approximation. Bed slope can be estimated 

in the field, if necessary with the help of an Abney level. 

The active channel includes the zone that is dry at baseflow stage but is subject 

to regular inundation. It is well coupled to the channel and it is involved in processes 

of sediment transport. In the field this zone can be determined by the absence or 

scarcity of perennial vegetation and the presence of recent flood debris. The ratio of 

the active channel width to wetted baseflow channel width is low (e.g. close to 1) for 

hydrologically stable streams with small variation in flows (e.g. lake fed). With 

increasing frequency and magnitude of floods a higher ratio is expected although local 

geomorphology can interfere (e.g. narrow valleys, bedrock constrictions and bank 

composition). Both this parameter and stream bed slope quantify potential transport 

capacity and are expressed on a continuous scale. Considering the potential range of 

values, bed slope has much less weight than the active channel to baseflow channel 

width ratio in the regression model. 

The sediment supply from banks and lateral channel erosion is represented by 

the categorical parameter bank erosion. It is evaluated in the field on a scale ranging 

from none over weak and moderate to strong. Strong bank erosion means that eroded 

surfaces or collapsed banks are present throughout the reach and that lateral erosion is 

severe. Moderate bank erosion depicts a state where either light and discontinuous 

bank erosion is common or locally bank erosion is strong. The category “weak bank 

erosion” is chosen when only patchy and light bank erosion occurs. Extrinsic causes 

for bank collapse such as trampling cattle or human interference are included in this 

parameter and are not separately assessed. 
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The percentage of riparian vegetation cover of the upper banks (above bankfull 

stage) specifies average vegetation density of the understorey (e.g. stems per m
2
), not 

the canopy cover along both sides of the reach. It was expected to be positively 

related to bed stability because vegetation reduces surface erosion and dense roots 

stabilise the banks. However, regression showed an inverse relationship to bed 

stability which can be explained by land use, altitude aspects and bank composition. 

The sites with low bank vegetation cover were either in high altitude locations on the 

Central Volcanic Plateau or natural vegetation was scarce. Anthropogenic land use 

practices like forestry or gravel mining on floodplains can cause low density of bank 

vegetation. They are only profitable on relatively stable ground thus reflecting bank 

stability. Altitude mirrors catchment size and is thus related to stream power. Hence 

high altitude sites above the tree line with low vegetation cover have usually more 

stable upper banks than low altitude sites. This parameter combines these two causes 

of bank vegetation cover while bank protection by roots is obviously of less 

importance on the infrequent flood-affected upper banks. We used an accuracy of 5% 

for bank cover estimations. 

Substrate size distribution reflects erosion, sedimentation and transport 

processes. Fine particles require less shear force for selective entrainment than coarse 

grains. Hiding and protrusion effects can prevent selective entrainment but visual 

surface substrate assemblage assessment does usually capture only patches dominated 

by sand and not hiding sand grains between larger particles. Thus the percentage of 

sand and smaller grain sizes present and the associated low critical shear stress can 

indicate high sediment mobility given sufficient transport capacity. Erosion and 

sedimentation of sandy substrate and associated changes in habitat can cause shifts in 

invertebrate community composition (Palmer et al., 1992; Downes et al., 2006). 

Substrate size homogeneity can be caused by sorting (e.g. downstream fining) 

but depends also on catchment substrate lithology and sediment sources (reworking of 

older alluvial deposits, hillslope collapses or fresh tributary inputs). However, in 

mountain streams where substrate variety is usually limited by catchment size, sorting 

can be instrumental for substrate size composition. Because sorting processes require 

substrate movement the parameter “substrate homogeneity” is positively related to 

instability. In the field it requires estimation of the percentage cover of the size classes 

silt (<0.063 mm), sand (0.063 mm – 2 mm), gravel (2 mm – 64 mm), cobble (64 mm 
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– 256 mm) and boulder (>256 mm). Then the aerial cover fraction of the dominant 

size class is divided by the number of classes present. 

Packing and compaction of particles is highly developed in stable substrate 

channels. It can be an effect of incompetent flows or lack of sediment supply. This 

parameter should not be confounded with overlap of particles because of the stone 

shape of some lithologies. It can easily be tested by walking in the bed and four 

categories are distinguished. Tight packing means that in the entire channel stones 

move only minimally when full body weight is applied and includes bedrock. Wedged 

packing depicts conditions where only parts of the channel have tight packing or 

where the entire substrate moves under the foot but does not principally change 

position (e.g. is entrained afterwards). The “moderately loose” category includes a 

mix of all four categories throughout the channel skewed towards looser conditions. 

Stones may change position when stepped on but should not be entirely dislodged. 

Loose packing means that the foot sinks into the substrate and particles move easily. 

The categorical parameter “Constitution of particle surface” has been modified 

from the categories of brightness defined by Pfankuch (1975). It incorporates surface 

roughness and brightness which can be effects of particle movement. However, it 

needs to be distinguished between different lithologies (e.g. limestone and volcanic 

rocks) which have varying spectra of colours and brightness. Particles of different 

geological origin can have variable surface roughness after the same transport length. 

Stains and plant growth on stones are dependent on temperature, light, nutrient levels 

and mineralisation. It is also advisable to allow for weather conditions and surface 

moisture when stones on the floodplain are investigated: Wet surfaces on a rainy day 

can appear much duller than in dry and sunny conditions. The categories range from 

more than 95% of stained particles with considerable organic film and growth, over 

“65 – 95% dull” and “35 – 65% dull” to less than 35% dull. 

The parameter “Grain angularity” was also adopted from the Pfankuch Index. It 

ideally expresses the amount of work performed on a particle during fluvial transport 

but the characteristic depends very much on lithology in terms of hardness, 

cleavability, stratification and mineral content as well as distance from source. Thus 

adjustment of the scores of sharp and angular rock types such as mudstone greywacke 

to the scores of particles that are already rounded prior to fluvial transport (e.g. some 

volcanic rocks) by the observer is recommended. The categories include particles well 

rounded in all dimensions with smooth surfaces, corners and edges well rounded in 

Page 15 of 32

http://mc.manuscriptcentral.com/rra

River Research and Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

two dimensions, corners and edges rounded combined with flat surfaces and sharp 

edges and corners with roughened surfaces. 

The percentage of reworked area describes the amount of obvious recent erosion 

(e.g. bright sections) and sedimentation (bars of fines, filled pools) of the channel 

bottom. A fraction of more than 80% is rated as very high, 50 – 80% as high, 20 – 

49% as intermediate and less than 20% as low.  

Multiple barforms are a feature of dynamic channels able to adjust to changing 

sediment supply and floods. However, over short-term they can be relatively stable 

channel structures creating various habitats and providing potential refugia during 

smaller spates. Surprisingly, the number of multiple barforms is positively related to 

bed stability in the SBSI model which might reflect habitat heterogeneity. In contrast 

their size as a fraction of the total bed area decreases with SBSI bed stability because 

large areas of multiple barforms indicate substantial channel dynamics. The number 

of multiple barforms is classified in six categories which are indexed from 0 to 5. 

Bedform clusters locally influence flow turbulence causing expenditure of 

energy which is not available to entrain substrate. They are commonly thought to be 

resistant to entrainment during high-discharge events (de Jong, 1992; Reid et al., 

1992) but depending on flood magnitude bed form clusters can be as unstable as 

single surface stones (Matthaei and Huber, 2002). Thus their suitability as refugia for 

invertebrates and periphyton varies and they do not necessarily support richer 

invertebrate faunas because of increased habitat heterogeneity (Biggs et al., 1997; 

Francoeur et al., 1998; Matthaei and Huber, 2002). For the SBSI protocol abundance 

of bedform clusters is estimated in the field visually and categorised in four classes 

ranging from none to abundant (e.g. > 5% aerial cover). 

 

CONCLUSIONS 

 

The method presented here for reach-scale assessment of bed stability relevant for 

invertebrate communities in upland streams seeks to combine statistically derived 

relationships between bed stability characteristics and the invertebrate community and 

causal connections. This distinguishes it from other approaches which aim to measure 

characteristics of bed stability per se but often are not very well related to responses 

of different groups of biota. The SBSI protocol provides a similar or stronger 

connection with community diversity and composition than traditional bed stability 
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measures. Index calibration was conducted in upland streams to avoid the 

confounding effects of water quality on invertebrate communities but potentially the 

SBSI protocol could be applied to a wide range of streams. The SBSI method is 

straightforward, cost- and time-effective and requires minimal instrumentation 

(Abney level and pocket calculator) and only one site visit is necessary. Interference 

with the substrate is low which facilitates concomitant invertebrate sampling and the 

stability score can be calculated on-site. It should suffer less from difficulties of 

purely visual assessments (such as the Pfankuch Index) and can account for regional 

differences (e.g. in lithology). However, observer bias potentially can be a problem. 

This and applicability at independent sites need to be tested to allow analysis of 

deficits and adjustments. 
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Table I. Abiotic characteristics of the study sites assessed between October 2007 and 

March 2010. Depth, width, velocity, conductivity, temperature and pH measurements 

are averaged from 5 readings taken concomitant with invertebrate sampling, TTM is 

an index of bed stability calculated from the movement of in situ marked tracer 

stones. Sites used for validation are in italics. 

site 

Stream 

order 

(Strahler 

1952) 

Mean 

depth 

(m) 

Mean 

width 

(m) 

Mean 

flow 

velocity 

(m*s
-1

) 

Mean 

conductivi

ty 

(µS*cm
-1

) 

 

Mean 

temper

ature 

(°C) 

Mean 

pH 

Substra

te D50 

(mm) 

TTM 

Tararua Range          

Waitohu 4 0.20 6.8 no data 84 11.5 7.5 86 39.94 

Waiotauru 5 0.26 17.4 0.716 68 11.3 7.7 84 38.57 

Waikawa 4 0.18 6.1 no data 76 13.2 7.5 99 36.78 

Panatewaewae 3 0.11 7.0 no data 74 13.1 7.6 103 31.21 

Kiriwhakapapa 3 0.15 6.5 0.603 64 9.7 7.2 59 20.43 

Ohau 4 0.24 14.0 0.694 72 12.7 7.6 64 14.30 

Pukeatua 3 0.18 9.7 0.720 80 12.4 7.7 84 12.50 

Makahika 4 0.17 6.3 no data 66 19.4 7.4 82 11.18 

Mangatainoka 4 0.17 11.7 0.694 52 13.3 7.1 108 7.67 

Rawnsley 2 0.11 5.1 0.422 48 13.5 6.9 159 4.74 

Tokomaru 4 0.14 14.6 0.707 81 17.5 6.9 85 3.07 

Kahuterawa 4 0.15 3.5 0.616 68 14.1 6.5 85 0.06 

Ruahine Range          

Waipawa 3 0.20 5.4 1.000 103 8.8 8.2 59 79.56 

Tamaki 2 0.17 3.3 0.811 64 10.8 7.6 35 64.46 

Mangapuaka 2 0.09 2.3 0.584 69 8.6 6.7 28 21.51 

Konewa 3 0.10 6.5 0.575 133 13.0 7.5 72 15.36 

Rokaiwhana 3 0.22 3.1 0.887 66 14.7 7.1 58 14.96 

Makawakawa 4 0.21 27.6 0.630 58 14.3 7.0 83 12.03 

Raparapawai 3 0.17 7.0 0.931 72 13.3 7.3 84 8.44 

Makiekie 2 0.19 5.7 0.646 51 10.9 7.3 109 4.86 

Coppermine 3 0.13 4.4 0.592 90 13.5 7.4 51 4.43 

Manawatu 3 0.20 4.3 0.603 66 9.4 7.8 65 3.85 

Cone 2 0.16 4.5 0.588 50 11.0 7.2 107 0.53 

Central Plateau          

Mangatoetoenui 4 0.26 8.6 0.597 139 7.1 8.0 97 18.70 

Waikato 3 0.14 3.2 no data 66 10.0 7.8 18 11.38 

Te Piripiri 3 0.19 2.0 0.742 69 8.5 7.7 35 2.09 

Wahianoa 3 0.26 6.3 0.967 70 12.8 7.4 145 1.73 

Whakapapaiti 4 0.28 15.8 0.976 138 11.8 8.2 125 1.02 

Oturere 4 0.42 9.4 0.859 112 10.2 8.6 131 0.59 

Makomiko 3 0.13 5.3 no data 27 11.3 7.5 107 0.07 

Makotuku 2 0.13 5.7 no data 30 9.2 7.4 116 0.03 

Waiharakeke 3 0.23 3.5 0.965 159 10.7 8.1 104 0.01 

Mangahuia 2 0.20 8.6 no data 38 9.9 7.1 147 0.01 

Poutu 5 0.44 7.7 1.053 71 10.6 8.0 80 0.00 

Orautoha 3 0.24 2.5 0.548 128 12.8 8.3 166 0.00 

Pukeonake 4 0.17 6.8 0.398 23 8.2 7.0 158 0.00 

Mt. Egmont          

Waiwhakaiho 3 0.25 13.8 0.614 109 16.6 7.9 100 50.00 

Timaru 2 0.12 3.6 0.295 69 14.6 6.9 213 34.04 

Kaiauahi 3 0.17 11.8 0.756 159 17.5 7.9 172 26.68 

Manganui 2 0.15 14.7 1.022 56 18.9 6.7 142 20.77 
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Waiongana 2 0.13 8.9 0.684 112 15.6 7.7 164 17.74 

Kapuni 3 0.14 10.7 0.649 61 14.2 7.2 82 14.46 

Punehu 4 0.21 4.9 0.706 98 13.4 7.7 77 11.91 

Mangorei 2 0.12 6.2 0.715 82 15.2 7.3 >300 10.07 

Katikara 2 0.11 2.6 0.403 55 15.5 6.8 168 8.81 

Waiaua 3 0.16 6.7 0.727 130 11.9 7.7 50 8.36 

Oakura 3 0.14 7.8 0.412 77 14.0 7.2 239 3.14 

Kiri 3 0.17 7.9 0.647 51 17.0 7.2 159 2.60 

Waiaua Forks 3 0.14 6.5 0.890 124 10.7 7.7 146 1.63 

Kaupokonui 3 0.18 7.4 0.580 79 18.1 7.5 150 1.56 

Oaonui 2 0.12 5.1 0.796 102 13.7 8.0 73 1.06 

Cold 1 0.21 3.4 0.797 80 10.0 7.3 74 0.98 

Patea 3 0.21 8.4 0.486 72 12.3 7.0 192 0.31 

Waiaua trib. 3 0.19 4.3 0.751 113 11.0 7.5 133 0.02 
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Table II. Assessed properties of the channel, banks and riparian environment 

potentially related to bed stability, categorical variables were rated at a scale from 1 

(associated with stable substrate) to 4 (associated with substrate instability), * variable 

removed because of intercorrelation. 

variable description 

Riparian environment 

A11 Fraction of pasture on riparian strip (%) 

A12 Fraction of native forest on riparian strip (%) 

A13 Fraction of exotic vegetation on riparian strip (%) 

A14 Fraction of scrub on riparian strip (%) 

A15 Fraction of other land cover (none, tussock, etc.) on riparian strip (%) 

A21 Ratio of floodplain width to active channel width (m/m) 

A22* Ratio of floodplain width to wet channel width (m/m) 

A23 Ratio of active channel width to wet channel width (m/m) 

A31 Percentage of high bank surface covered with vegetation (%) 

A32 Variation in species and age of high bank vegetation (categorical) 

Channel cross profile 

B11 Channel incision, ratio of width to depth (m/m) 

B21 Bank erosion (categorical) 

B22 Number of recent bank collapses 

B31 Number of recently deposited lateral bars of fine material (< coarse gravel) 

Channel longitudinal profile 

C11 Bed slope (m/m) 

C21 Sinuosity (categorical) 

Channel bottom 

D11 Fraction of area affected by erosion and deposition (%) 

D21 Occurrence and form of aquatic vegetation (categorical) 

D31 Number of multiple barforms 

D32 Fraction of area occupied by multiple barforms (%) 

D41 Number of riffle-pool and step-pool sequences 

D51 Occurrence of bedform clusters (categorical) 

D61 Fraction of area with supercritical flow (%) 

Substrate 

E11 Grain angularity (categorical) 

E21 Constitution of grain surface (categorical) 

E31 Interlock and overlap between particles (categorical) 

E41 Packing and compaction of particles (categorical) 

E51 Fraction of sand and smaller grain size (% area) 

E52 Fraction of gravels (% area) 

E53 Fraction of cobbles (% area) 

E54 Fraction of boulders (% area) 

E55 Homogeneity (% area of most abundant size class/ number of size classes present) 

E56* Size index (Sum of fractions weighted by their geometrical mean size of their size class) 

E57* Mean size index (Size index/ number of size classes present) 

E58* Fraction of cobbles and gravels (% area) 

E61 Fraction of stable material (large boulders and bedrock) (%) 

E71 Occurrence of an armour layer (categorical) 
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Table III. Correlation of bed stability measurements (total tracer movement – TTM, 

bottom component Pfankuch Index – BCP), measured (marked with *) environmental 

parameters and periphyton biomass and downstream variables, segment variables and 

runoff-weighted upstream catchment variables from the FWENZ database (Wild et 

al., 2005) with NMDS axes, significant correlations are marked bold (p < 0.01). 

Axis 1 2 

 Pearson’s R Pearson’s R 

Width* -0.06 0.06 

Depth* 0.33 -0.20 

Velocity* 0.12 -0.19 

Conductivity* 0.22 -0.03 

Temperature* -0.17 0.13 

pH* 0.33 -0.09 

Riparian Pasture* 0.18 0.25 

Riparian bare floodplain* -0.44 -0.33 

Periphyton biomass* 0.44 0.13 

Average slope of downstream network -0.31 0.09 

Maximum slope of downstream segments 0.18 -0.10 

Maximum segment slope based on 30 m grid 0.03 0.17 

Segment sinuosity -0.05 0.07 

Average segment slope -0.26 -0.12 

Shaded fraction of segment -0.02 0.06 

Percentage of the segment riparian area covered in scrub 0.20 0.13 

Upstream mean January air temperature 0.06 0.49 

Upstream catchment rain days > 15 mm/month -0.27 0.13 

Upstream lake index 0.19 0.00 

Percentage of upstream catchment annual runoff from alluvium 0.12 0.13 

Percentage of upstream catchment annual runoff from peat -0.12 -0.03 

Upstream average of calciferous regolith -0.19 0.14 

Upstream catchment average of regolith hardness -0.10 -0.06 

Upstream catchment average of particle size -0.05 0.04 

Percentage of upstream catchment consists of bare ground 0.15 -0.62 

Percentage of upstream catchment covered in exotic forest 0.25 -0.10 

Percentage of upstream catchment covered in indigenous forest -0.08 0.39 

Percentage of upstream catchment with pastoral landuse 0.17 0.09 

Percentage of upstream catchment covered in tussock -0.04 -0.25 

Percentage of upstream catchment consist of wetland 0.10 0.10 

Segment stream order 0.18 -0.02 

TTM -0.53 0.04 

BCP -0.57 0.09 

 

 

 

 

 

 

 

 

Page 25 of 32

http://mc.manuscriptcentral.com/rra

River Research and Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Table IV. Results of the regression analysis of the NMDS axis against 39 

characteristics of the channel and the riparian environment (R
2
 = 0.805, adjusted R

2
 = 

0.726), VIF – variance inflation factor. 

Variables Coefficient Std error T-test if slope ≠ 0 P value VIF 

Constant -6.31006 1.00297 -6.29 0 0 

A23 0.21652 0.06028 3.59 0.0011 2.1 

A31 0.01239 0.00375 3.31 0.0023 1.8 

B21 0.26123 0.06495 4.02 0.0003 2 

C11 0.05583 0.02096 2.66 0.012 1.3 

D11 0.29004 0.09619 3.02 0.005 3.2 

D31c 0.28711 0.07222 3.98 0.0004 3 

D32 0.012 0.00556 2.16 0.0385 1.9 

D51c 0.27049 0.07771 3.48 0.0015 1.6 

E11 0.2418 0.12253 1.97 0.0572 1.5 

E21 0.16677 0.09457 1.76 0.0874 2.6 

E41 0.25041 0.11964 2.09 0.0444 1.7 

E51 0.02885 0.00937 3.08 0.0042 2.2 

E55 0.0524 0.02019 2.6 0.0141 3.1 

 

 

 

Table V. Correlation of invertebrate community metrics with bed stability assessed 

with the SBSI protocol, in situ marked tracer stones (TTM) and the bottom 

component of the Pfankuch Stability Index (BCP) at 46 New Zealand streams used 

for SBSI calibration and at 8 independent sites from the same regions for validation. 

Significance from multiple correlations was adjusted using False Discovery Rate and 

is indicated by * for α = 0.05, ** for α = 0.005 and *** α = 0.001. 

 SBSI calibration sites  Validation sites 

 SBSI TTM BCP  SBSI TTM BCP 

Brillouin Index -0.75*** -0.52*** -0.68***  -0.81* -0.78* -0.73* 

Taxa number -0.56*** -0.27 -0.54***  -0.73* -0.34 -0.82* 

Rarefied taxa number for 

200 individuals 

-0.77*** -0.51*** -0.55***  -0.73* -0.40 -0.82* 

Mean number of 

individuals 

-0.75*** -0.35* -0.45**  -0.74* -0.34 -0.86* 
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Table VI. Correlation of bed stability assessed with the SBSI protocol, in situ marked 

tracer stones (TTM) and the bottom component of the Pfankuch Stability Index (BCP) 

at 46 New Zealand streams used for SBSI calibration and at 8 independent sites from 

the same regions for validation. Significance from multiple correlations was adjusted 

using False Discovery Rate and is indicated by * for α = 0.05, ** for α = 0.005 and 

*** α = 0.001. 

 SBSI calibration sites  Validation sites 

 TTM BCP  TTM BCP 

SBSI 0.48*** 0.66***  0.47 0.75* 

BCP 0.46**   0.67  

 

 

 

 

Table VII. Parameters of the stream Bed Stability for Invertebrates (SBSI) survey 

with weights and potential range of values (*extreme values estimated) and scores. 

 Parameter Weight Range Minimum 

score 

Maximum 

score 

C11 Bed slope 0.56 0.0001* – 1* 0.00006 0.56 

A23 Active /wet channel 2.17 1 – 10* 2.17 21.7 

B21 Bank erosion 2.61 1 – 4 2.61 10.44 

A31 Bank vegetation cover 0.12 0 – 100 0 12 

E51 Sand fraction 0.29 0 – 100 0 29 

E55 Substrate homogeneity 0.52 4 – 100 2.08 52 

E41 Packing and compaction 2.50 1 – 4 2.50 10.0 

E21 Particle surface 1.67 1 – 4 1.67 6.68 

E11 Grain angularity 2.42 1 – 4 2.42 9.68 

D11 Reworked area  2.90 1 – 4 2.90 11.60 

D31 Multiple barform number 2.87 0 – 5 0 14.35 

D32 Area of multiple barforms 0.12 0 – 100 0 12 

D51 Bedform clusters 2.70 1 – 4 2.70 10.80 

 Total SBSI   19.05 200.81 
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Figure 1. Stream reaches in the southern North Island of New Zealand studied for 

calibration of the Stream Bed Stability for Invertebrates protocol. Open circles denote 

the sites used for validation. 

 

Figure 2. Non-metric Multidimensional Scaling axes of 46 mountain stream 

invertebrate communities and correlated parameters (p < 0.01). Periphyt – periphyton 

biomass, usAveTWar - Upstream mean January air temperature, usIndigF - 

Percentage of upstream catchment covered in indigenous forest, TTM – total tracer 

movement, BCP – bottom component of Pfankuch Index, RipBareF - Dry active 

channel bare of vegetation under base flow conditions, usBare_q - Percentage of 

upstream catchment consisting of bare ground. 

 

Figure 3. Stream bed stability assessed with the Stream Bed Stability for Invertebrates 

Index (SBSI), in situ marked tracer stones (TTM) and the bottom component of the 

Pfankuch Stability Index (BCP) plotted against the NMDS axis used for calibration of 

the SBSI. 

 

Figure 4. Site scores of the Stream Bed Stability for Invertebrates Index (SBSI) 

plotted against conventional measures of bed stability: In situ marked tracer stones 

(TTM, closed symbols) and the bottom component of the Pfankuch Stability Index 

(BCP, open symbols). Sites used for validation are shown as triangles. 
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Figure 1. Stream reaches in the southern North Island of New Zealand studied for calibration of the 
Stream Bed Stability for Invertebrates protocol. Open circles denote the sites used for validation.  

150x120mm (600 x 600 DPI)  

 
 

Page 29 of 32

http://mc.manuscriptcentral.com/rra

River Research and Applications

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 2. Non-metric Multidimensional Scaling axes of 46 mountain stream invertebrate 
communities and correlated parameters (p < 0.01). Periphyt – periphyton biomass, usAveTWar - 
Upstream mean January air temperature, usIndigF - Percentage of upstream catchment covered in 
indigenous forest, TTM – total tracer movement, BCP – bottom component of Pfankuch Index, 

RipBareF - Dry active channel bare of vegetation under base flow conditions, usBare_q - Percentage 
of upstream catchment consisting of bare ground.  
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Figure 3 Stream bed stability assessed with the Stream Bed Stability for Invertebrates Index 
(SBSI), in situ marked tracer stones (TTM) and the bottom component of the Pfankuch Stability 

Index (BCP) plotted against the NMDS axis used for calibration of the SBSI.  
105x72mm (600 x 600 DPI)  
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Figure 4 Site scores of the Stream Bed Stability for Invertebrates Index (SBSI) plotted against 
conventional measures of bed stability: In situ marked tracer stones (TTM, closed symbols) and the 
bottom component of the Pfankuch Stability Index (BCP, open symbols). Sites used for validation 

are shown as triangles.  
105x72mm (600 x 600 DPI)  
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