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Platonic Solids

Platonic Solid Group root system

Tetrahedron A3 Cuboctahedron
A3
1 Octahedron

Octahedron B3 Cuboctahedron
Cube +Octahedron

Icosahedron H3 Icosidodecahedron
Dodecahedron

Platonic Solids have been known for
millennia

Described by Coxeter groups
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Root systems

α1

α2

−α1

−(α1 + α2)

α1 + α2

−α2

Root system Φ: set of
vectors α in a vector
space with an inner
product such that

1. Φ∩Rα = {−α,α} ∀ α ∈ Φ

2. sα Φ = Φ ∀ α ∈ Φ

Simple roots: express
every element of Φ via a
Z-linear combination.

reflection/Coxeter groups sα : v → sα (v) = v −2
(v |α)

(α|α)
α
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The Icosahedron

Rotational icosahedral group is I = A5 of order 60

Full icosahedral group is H3 of order 120 (including
reflections/inversion); generated by the root system
icosidodecahedron
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Non-crystallographic Coxeter groups H2 ⊂ H3 ⊂ H4

α1

τα1+α2

τ(α1+α2)
α1+ τα2

α2

−α1

−(τα1+α2)

−τ(α1+α2)

−(α1+ τα2)

−α2

H2 ⊂ H3 ⊂ H4: 10, 120, 14,400 elements, the only Coxeter groups
that generate rotational symmetries of order 5

linear combinations now in the extended integer ring

Z[τ] = {a+ τb|a,b ∈ Z} golden ratio τ =
1

2
(1 +
√

5) = 2cos
π

5

x2 = x + 1 τ
′ = σ =

1

2
(1−
√

5) = 2cos
2π

5
τ + σ = 1,τσ =−1
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Cartan-Dynkin diagrams

Coxeter-Dynkin diagrams: node = simple root, no link = roots
orthogonal i.e. angle π

2 , simple link = roots at angle π

3 , link with
label m = angle π

m .

A2 H2
5

I2(n)
n

A3 B3
4

H3
5

D4 F4
4

H4
5

E8
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H3 – the icosahedral group 5

α1 = (0,1,0), α2 =−1

2
(−σ ,1,τ), α3 = (0,0,1)

T5 = (τ,−1,0), T3 = (τ,0,σ), T2 = (1,0,0)

Icosahedron, Dodecahedron, Icosidodecahedron (H3 root system)
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Platonic Solids

Concatenating reflections gives Clifford
spinors (binary polyhedral groups)

These induce 4D root systems
R = a0 +a1e2e3 +a2e3e1 +a3e1e2⇒
RR̃ = a20 +a21 +a22 +a23
4D analogues of the Platonic Solids and
give rise to 4D Coxeter groups
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Clifford Algebra and orthogonal transformations

Geometric Product for two vectors ab ≡ a ·b+a∧b
Inner product is symmetric part a ·b = 1

2(ab+ba)

Reflecting a in n is given by a′ = a−2(a ·n)n =−nan (n and

−n doubly cover the same reflection)

Via Cartan-Dieudonné theorem any orthogonal transformation
can be written as successive reflections, which are doubly
covered by Clifford versors/pinors A

x ′ =±n1n2 . . .nkxnk . . .n2n1 =:±AxÃ
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Clifford Algebra of 3D

E.g. Pauli algebra in 3D (likewise for Dirac algebra in 4D) is

{1}︸︷︷︸
1 scalar

{e1,e2,e3}︸ ︷︷ ︸
3 vectors

{e1e2,e2e3,e3e1}︸ ︷︷ ︸
3 bivectors

{I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

We can multiply together root vectors in this algebra αiαj . . .

A general element has 8 components, even products
(rotations/spinors) have four components:

R = a0 +a1e2e3 +a2e3e1 +a3e1e2⇒ RR̃ = a20 +a21 +a22 +a23

So behaves as a 4D Euclidean object – inner product

(R1,R2) =
1

2
(R2R̃1 +R1R̃2)
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Spinors from reflections

The 6 roots (±1,0,0) and permutations in A1×A1×A1

generate 8 spinors:

±e1, ±e2, ±e3 give the 8 spinors ±1,±e1e2,±e2e3,±e3e1
This is a discrete spinor group isomorphic to the quaternion
group Q.

As 4D vectors these are (±1,0,0,0) and permutations, the 8
roots of A1×A1×A1×A1 (the 16-cell).
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Induction Theorem – root systems

Induction Theorem: Every rank-3 root system induces a
rank-4 root system (and thereby Coxeter groups) via these 3D
spinor groups.

Check axioms:
1. Φ∩Rα = {−α,α} ∀ α ∈ Φ

2. sα Φ = Φ ∀ α ∈ Φ

Proof: 1. R and −R are in a spinor group by construction
(double cover of orthogonal transformations), 2. closure under
reflections is guaranteed by the closure property of the spinor
group (with a twist: −R1R̃2R1)
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Spinors from reflections

Symmetry groups of the Platonic Solids:

The 6/12/18/30 reflections in A1×A1×A1/A3/B3/H3

generate 8/24/48/120 spinors.

The discrete spinor group is isomorphic to the quaternion
group Q / binary tetrahedral group 2T/ binary octahedral
group 2O/ binary icosahedral group 2I ).
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Spinors and Polytopes

Can reinterpret spinors in R3 as vectors in R4

Give (exceptional) root systems (D4,F4,H4)

They constitute the vertices of the 16-cell, 24-cell, 24-cell and
dual 24-cell and the 600-cell

These are 4D analogues of the Platonic Solids. Strange
symmetries better understood in terms of 3D spinors

Pierre-Philippe Dechant A systematic construction of representations of quaternionic type



Polyhedral groups, Platonic solids and root systems
A Clifford way of doing orthogonal transformations

Clifford algebra and quaternions
Representations from multivector groups: representations of quaternionic type

Conclusions

Root systems in three and four dimensions

The spinors from the reflections in the rank-3 Coxeter group via
the geometric product are the binary polyhedral groups Q, 2T , 2O

and 2I , which generate (mostly exceptional) rank-4 groups, but
not known why, and why the ‘mysterious symmetries’.

rank-3 group diagram binary rank-4 group diagram

A1×A1×A1 Q A1×A1×A1×A1

A3 2T D4

B3
4

2O F4
4

H3
5

2I H4
5
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Quaternion groups via the geometric product

The 8 quaternions of the form (±1,0,0,0) and permutations
are the Lipschitz units,the quaternion group in 8 elements.

The 8 Lipschitz units together with 1
2(±1,±1,±1,±1) are the

Hurwitz units, the binary tetrahedral group of order 24.
Together with the 24 ‘dual’ quaternions of the form
1√
2

(±1,±1,0,0), they form the binary octahedral group of

order 48.

The 24 Hurwitz units together with the 96 unit quaternions of
the form (0,±τ,±1,±σ) and even permutations, are called
the Icosians. The icosian group is isomorphic to the binary
icosahedral group with 120 elements.

The unit spinors {1;e2e3;e3e1;e1e2} of Cl(3) are isomorphic
to the quaternion algebra H.
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H4 from icosahedral spinors

The H3 root system has 30 roots e.g. simple roots
α1 = e2,α2 =−1

2((τ−1)e1 + e2 + τe3) and α3 = e3.

The subgroup of rotations is A5 of order 60

These are doubly covered by 120 spinors of the form
α1α2 =−1

2(1− (τ−1)e1e2 + τe2e3), α1α3 = e2e3 and
α2α3 =−1

2(τ− (τ−1)e3e1 + e2e3).

As a set of vectors in 4D, they are

(±1,0,0,0) (8 permutations) ,
1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±σ ,±τ) (96 even permutations) ,

which are precisely the 120 roots of the H4 root system.
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Systematic construction of the polyhedral groups

Multiplying together root vectors in the Clifford algebra gave
a systematic way of constructing the binary polyhedral groups
as 3D spinors = quaternions.

The 6/12/18/30 roots in A1×A1×A1/A3/B3/H3 generate
8/24/48/120 spinors.

The discrete spinor group is isomorphic to the quaternion
group Q / binary tetrahedral group 2T/ binary octahedral
group 2O/ binary icosahedral group 2I ).
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Quaternionic representations of 3D and 4D Coxeter groups

Groups E8, D4, F4 and H4 have representations in terms of
quaternions

Extensively used in the high energy
physics/quasicrystal/Coxeter/polytope literature and thought
of as deeply significant, though not really clear why

e.g. H4 consists of 120 elements of the form (±1,0,0,0),
1
2(±1,±1,±1,±1) and (0,±τ,±1,±σ)

Seen as remarkable that the subset of the 30 pure quaternions
is a realisation of H3 (a sub-root system)

Similarly, B3 and A1×A1×A1 have representations in terms
of pure quaternions

Clifford provides a much simpler geometric explanation
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Quaternionic representations in the literature

e1 e2 e3 1 e1 e2 e3

A1 ×A1 ×A1 A1 ×A1 ×A1 ×A1

e1 + e2 e3 − e2 e2 − e1 e1 1
2 (1− e1 − e2 − e3) e2

e3

A3 = D3 D4

e1 − e2 e2 − e3
√
2e3

4

1
2 (1− e1 − e2 − e3) e3 1

2 (e2 − e3)
1
2 (e1 − e2)

4

B3 F4

5

−e1
1
2 (τe1 + e2 + σe3) −e2

5

−e1
1
2 (τe1 + e2 + σe3) −e2

1
2 (σ + e2 + τe3)

H3 H4

Pure quaternions = Hodge dualised root vectors
Quaternions = spinors
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Demystifying Quaternionic Representations

Pure quaternion subset of 4D groups only gives 3D group if
the 3D group contains the inversion/pseudoscalar I

e.g. does not work for the tetrahedral group A3, but A3→ D4

induction still works, with the central node essentially
‘spinorial’

In fact, it goes the other way around: the 3D groups induce
the 4D groups via spinors

The rank-4 groups are also generated (under quaternion
multiplication) by two quaternions we can identify as
R1 = α1α2 and R2 = α2α3

Can see these are ‘spinor generators’ and how they don’t
really contain any more information/roots than the rank-3
groups alone
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Quaternions vs Clifford versors

Sandwiching is often seen as particularly nice feature of the
quaternions giving rotations

This is actually a general feature of Clifford algebras/versors
in any dimension; the isomorphism to the quaternions is
accidental to 3D

However, the root system construction does not necessarily
generalise

2D generalisation merely gives that I2(n) is self-dual

Octonionic generalisation just induces two copies of the above
4D root systems, e.g. A3→ D4⊕D4

Recently constructed E8 from the 240 pinors doubly covering
120 elements of H3 in 23 = 8-dimensional 3D Clifford algebra
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Polyhedral groups as multivector groups

Group Discrete subgroup Order Action Mechanism

SO(3) rotational (chiral) |G | x → R̃xR

O(3) reflection (full/Coxeter) 2|G | x →±ÃxA
Spin(3) binary 2|G | (R1,R2)→ R1R2

Pin(3) pinory (?) 4|G | (A1,A2)→ A1A2

e.g. the chiral icosahedral group has 60 elements, encoded in
GA by 120 rotors, which form the binary icosahedral group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H3 in 120 elements doubly covered by 240 pinors
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Some Group Theory: chiral, full, binary, pin

Easy to calculate conjugacy classes etc of versors in GA

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 1′, 1′′, 2s , 2′s , 2′′s , 3

octahedral (24/48): 1, 1′, 2, 2s , 2′s , 3, 3′, 4s

icosahedral (60/120): 1, 2s , 2′s , 3, 3̄, 4, 4s , 5, 6s

All binary are discrete subgroups of SU(2) and all thus have a
2s spinor irrep

Connection with Trinities and the McKay correspondence
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Representations from Clifford multivector groups

The usual picture of orthogonal transformations on an
n-dimensional vector space is via n×n matrices acting on
vectors, immediately making connections with representations
= matrices satisfying the group multiplication laws.

Easy to construct representations with (s)pinors in the
2n-dimensional Clifford algebra as reshuffling components.

Spinors leave the original n-dimensional vector space invariant,
reshuffle the components of the vector.

But can also consider various representation matrices acting
on different subspaces of the Clifford algebra.
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Representations from Clifford multivector groups – trivial,
parity, rotation representations

The scalar subspace is one-dimensional. R̃1R = R̃R = 1 gives
the trivial representation, and likewise pinors A give the parity.
The double-sided action R̃xR of spinors R on a vector x in
the n-dimensional vector space gives an n×n-dimensional
representation, which is just the usual rotation matrices.
E.g. e1e2 acting on x = x1e1 + x2e2 + x3e3 gives
e2e1xe1e2 =−x1e1−x2e2 + x3e3 which could also be

expressed as

−1 0 0
0 −1 0
0 0 1

x1
x2
x3

 =

−x1−x2
x3


If the spinors were acting as RxR̃ would give a potentially
different representation.
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Characters, their norm, and the Frobenius-Schur indicator

Similarity transformed representations are also good
representations, but are not fundamentally different: they are
equivalent.

So want a measure for a representation that is invariant under
similarity transformations, e.g. the trace aka the character χ

of a matrix

A class function i.e. the same within a conjugacy class
because of the cyclicity of the trace

The character norm ||χ||2 := 1
|G | ∑g∈G |χ(g)|2

The Frobenius-Schur indicator ν := 1
|G | ∑g∈G χ(g2)
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Real representations of real, complex, and quaternionic
type

||χ||2 = 1
|G | ∑g∈G |χ(g)|2 = 1: representation of real type

||χ||2 = 1
|G | ∑g∈G |χ(g)|2 = 2: representation of complex type

||χ||2 = 1
|G | ∑g∈G |χ(g)|2 = 4: representation of quaternionic

type

Theorem: A complex representation is irreducible if and only
if ||χ||2 = 1.

Theorem: A real representation is irreducible if and only if

||χ||2 + ν(χ) = 2 , e.g. 4−2 = 2 or 1 + 1 = 2.
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Representations from Clifford multivector groups – 8×8
and 4×4 (whole algebra / even subalgebra)

Rather than restricting oneself to the n-dimensional vector
space, one can also define representations by 2n×2n-matrices
acting on the whole Clifford algebra, i.e. any element acting
on an arbitrary elemtent, e.g. here 8×8.

Likewise, one can define 2(n−1)×2(n−1)-dimensional spinor
representations as acting on the even subalgebra.

3D spinors have components in (1, e1e2, e2e3, e3e1),
multiplication with another spinor e.g. e1e2 will reshuffle these
components (e1e2, −1, -e3e1, e2e3)

This reshuffling can therefore be described by a 4×4-matrix.
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4×4 – explicit example: A3
1

E.g. ±e1, ±e2, ±e3 give the 8 spinors

±1,±e1e2,±e2e3,±e3e1 , or (±1,0,0,0) (8 permutations)

||χ||2 = 32/8 = 4, ν =−2 and ||χ||2 + ν = 2 i.e. real
irreducible of quaternionic type



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,



−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 ,



0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 ,



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

,



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 ,



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 ,



0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


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Character table of Q

Q 1 −1 ±e1e2 ±e2e3 ±e3e1
1 1 1 1 1 1
1′ 1 1 −1 −1 1
1′′ 1 1 −1 1 −1
1′′′ 1 1 1 −1 −1

4H 4 −4 0 0 0
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4×4 – explicit example: A3

As a set of vectors in 4D, they are
(±1,0,0,0) (8 permutations) , 1

2(±1,±1,±1,±1) (16 permutations)

Conjugacy classes:
1 ·42 + 1 · (−4)2 + 6 ·02 + 8 ·22 + 8 · (−2)2 = 32 + 32 + 32 = 96

||χ||2 = 96/24 = 4, ν =−2 and ||χ||2 + ν = 2 i.e. real
irreducible of quaternionic type.

Pierre-Philippe Dechant A systematic construction of representations of quaternionic type



Polyhedral groups, Platonic solids and root systems
A Clifford way of doing orthogonal transformations

Clifford algebra and quaternions
Representations from multivector groups: representations of quaternionic type

Conclusions

3×3 – explicit example: H3

Icosahedral spinors are

(±1,0,0,0) (8 permutations) ,
1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±σ ,±τ) (96 even permutations) ,

E.g. the rotation matrices corresponding to α1α2 and α2α3

via R̃xR are

1

2

 τ τ−1 −1
1− τ −1 −τ

−1 τ 1− τ

 and
1

2

 τ 1− τ −1
1− τ 1 −τ

1 τ τ−1

 .

The characters χ(g) are obviously 0 and τ

||χ||2 = 120/120 = 1, ν = 1 and ||χ||2 + ν = 2 i.e. real
irreducible of real type
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3×3 – explicit example: H3 other way

If the spinors were acting as RxR̃, then

1

2

 τ 1− τ −1
τ−1 −1 τ

−1 −τ 1− τ

 and
1

2

 τ 1− τ 1
1− τ 1 τ

−1 −τ τ−1

 ,

with the same characters as before. Swapping the action of
the spinor can change the representation.
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4×4 – explicit example: H3

Spinors α1α2 and α2α3 multiplying a generic spinor
R = a0 +a1e2e3 +a2e3e1 +a3e1e2 from the left reshuffles the
components (a1,a2,a3,a0) with the matrices given as

1

2


−1 τ−1 0 −τ

1− τ −1 −τ 0
0 τ −1 τ−1
τ 0 1− τ −1

 ,
1

2


−τ 0 1− τ −1
0 −τ −1 τ−1

τ−1 1 −τ 0
1 1− τ 0 −τ

 ,

with characters −2 and −2τ.
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4×4 – explicit example H3: quaternionic type

120 4×4 matrices – 9 conjugacy classes, with pairs that have
±2χ3 so gives 4 times that of the 3×3 case

|G | · ||χ||2 = 1 ·42 + 1 · (−4)2 + 12 · (−2τ)2 + 12 · (2τ)2 + 12 ·
(−2σ)2 + 12 · (2σ)2 + 20 · (−2)2 + 20 · (2)2 + 30 ·02 = 480

||χ||2 = 480/120 = 4, ν =−2 and ||χ||2 + ν = 2 i.e. real
irreducible of quaternionic type
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Character table of I = A5

I 1 20C3 15C2 12C5 12C 2
5

1 1 1 1 1 1
3 3 0 −1 τ σ

3̄ 3 0 −1 σ τ

4 4 1 0 −1 −1
5 5 −1 1 0 0
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Character table of 2I

I 1 20C3 30C2 12C5 12C 2
5 −1 −20C3 −12C5 −12C 2

5

1 1 1 1 1 1 1 1 1 1
3 3 0 −1 τ σ 3 0 τ σ

3̄ 3 0 −1 σ τ 3 0 σ τ

4 4 1 0 −1 −1 4 1 −1 −1
5 5 −1 1 0 0 5 −1 0 0

2 2 −1 0 −σ −τ −2 1 σ τ

2 2 −1 0 −τ −σ −2 1 τ σ

4 4 1 0 −1 −1 −4 −1 1 1
6 6 0 0 1 1 −6 0 −1 −1

4H 4 −2 0 −2τ −2σ −4 2 2τ 2σ

4H̃ 4 −2 0 −2σ −2τ −4 2 2σ 2τ
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A general construction of representations of quaternionic
type – canonical representations

It had so far been overlooked that there is a systematic
construction of representations of quaternionic type for 3D
polyhedral groups
This is simply due to the fact that the spinors in 3D provide a
realisation of the quaternions
Therefore spinors provide 4x4 representations of quaternionic
type for all (though limited number of) possible groups
However, they are canonical for a choice of 3D simple roots,
i.e. there is a preferred amongst all similarity transformed
versions
These simple roots also determine the 3x3 rotation matrices
and their reversed representations in a similar canonical way
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Characters in general

For a general spinor R = a0 +a1e2e3 +a2e3e1 +a3e1e2 one has
3D character χ = 3a20−a21−a22−a23 and representation

1

2

a20 +a21−a22−a23 −2a0a3 + 2a1a2 2a0a2 + 2a1a3
2a0a3 + 2a1a2 a20−a21 +a22−a23 −2a0a1 + 2a2a3
−2a0a2 + 2a1a3 2a0a1 + 2a2a3 a20−a21−a22 +a23


and the 4D rep and character are

a0 a3 −a2 a1
−a3 a0 a1 a2
a2 −a1 a0 a3
−a1 −a2 −a3 a0

 ,


b1
b2
b3
b0

 and χ = 4a0.

Characters of the representations are all determined by the
spinor!
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General construction of 4D root systems from 3D root
systems – connections with McKay correspondence, Trinities,
Moonshine etc

Construction systematically and canonically gives
representations of 4D root systems and 3D root systems in
terms of (pure) quaternions

Construction systematically and canonically gives construction
of the polyhedral groups and their representations, in
particular trivial, rotation and spinor representations of
quaternionic type with relations among them and their
characters
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Arnold’s Trinities

Arnold noticed that often real, complex and quaternionic
versions of a theory are remarkably similar

Trinities (R,C,H)

(RPn,CPn,HPn), (RP1 = S1,CP2 = S2,HP1 = S4), the
Möbius/Hopf bundles (S1→ S1,S4→ S2,S7→ S4),
(E6,E7,E8)

New connection between (A3,B3,H3) and (D4,F4,H4) (and
(E6,E7,E8)!) via my Clifford spinor construction

Also (24,48,120), binary polyhedral groups (2T ,2O,2I ) and
(12,18,30) (see McKay correspondence)
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Some Group Theory: chiral, full, binary, pin

Easy to calculate conjugacy classes etc of versors in GA

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 1′, 1′′, 2s , 2′s , 2′′s , 3

octahedral (24/48): 1, 1′, 2, 2s , 2′s , 3, 3′, 4s

icosahedral (60/120): 1, 2s , 2′s , 3, 3̄, 4, 4s , 5, 6s

All binary are discrete subgroups of SU(2) and all thus have a
2s spinor irrep

Connection with Trinities and the McKay correspondence
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The McKay Correspondence

More than E-type groups: the infinite family of 2D groups, the
cyclic and dicyclic groups are in correspondence with An and Dn,
e.g. the quaternion group Q and D+

4 . So McKay correspondence
not just a trinity but ADE-classification. We also have I2(n) on top

of the trinity (A3,B3,H3)
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