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Introduction
Coxeter and Clifford

Moonshine and Outlook

The general theme: Geometry & Symmetry and their
Applications

Worked on a few different things: HEP – strings, particles and
cosmology, pure maths and mathematical biology and Clifford
algebras and mathematical physics

Unifying themes of symmetry and geometry (euclidean,
conformal, hyperbolic, spherical)

Continuous Lie groups, e.g. for modeling cosmological
spacetimes (Bianchi models)

Discrete Coxeter groups and Kac-Moody algebras describe
gravitational singularities/hidden symmetries in HEP theory,
viruses, fullerenes, &c

Mathematical frameworks of Coxeter groups and Clifford
algebras
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Root systems – A2

α1

α2

−α1

−(α1 + α2)

α1 + α2

−α2

Root system Φ: set of
vectors α such that

Φ∩Rα = {−α,α} ∀ α ∈ Φ

and sα Φ = Φ ∀ α ∈ Φ

Simple roots: express
every element of Φ via a
Z-linear combination

(with coefficients of the
same sign).
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Cartan Matrices

Cartan matrix of αi s is Aij = 2
(αi ,αj )

(αi ,αi )
= 2
|αj |
|αi |

cosθij

cos2 θij =
1

4
AijAji l2j =

Aij

Aji
l2i

Aii = 2 Aij ∈ Z≤0 Aij = 0⇔ Aji = 0 .

A2: A =

(
2 −1
−1 2

)
Coxeter-Dynkin diagrams: node = simple root, no link = roots

orthogonal, simple link = roots at π

3 , link with label m = angle π

m .

A2 H2
5

I2(n)
n
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Coxeter groups

A Coxeter group is a group generated by some involutive

generators si ,sj ∈ S subject to relations of the form (si sj )
mij = 1

with mij = mji ≥ 2 for i 6= j .

The finite Coxeter groups have a geometric representation where
the involutions are realised as reflections at hyperplanes through
the origin in a Euclidean vector space E . In particular, let (·|·)

denote the inner product in E , and v , α ∈ E .
The generator sα corresponds to the reflection

sα : v → sα (v) = v −2
(v |α)

(α|α)
α

at a hyperplane perpendicular to the root vector α.
The action of the Coxeter group is to permute these root vectors.
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Coxeter groups vs Lie groups vs Lie algebras vs root
systems

Lie group = group and manifold

Lie algebra = bilinear, antisymmetric bracket and Jacobi
identity

Lie algebras are infinitesimal version of Lie group = near the
identity

Can be more comprehensive e.g. 2D conformal algebra vs 2D
conformal group

But finite group transformation laws can be easier than
linearising

‘Nice’ Lie algebras have triangular decomposition:
N−⊕H ⊕N+
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Coxeter groups vs Lie groups vs Lie algebras vs root
systems

‘Nice’ Lie algebras have triangular decomposition:
N−⊕H ⊕N+

H is the Cartan subalgebra (maximal commuting = quantum
numbers)

Creation and annihilation algebras N form root lattice

Symmetry group is called Weyl group and is a crystallographic

Coxeter group: An,Bn/Cn,Dn,G2,F4,E6,E7,E8

So Coxeter groups in theoretical physics always

crystallographic! Neglect I2(n),H3,H4 .

Useful Lie algebras are (semi-)simple LA (determinant of
Cartan matrix is positive), affine LA (determinant is 0),
Kac-Moody algebras, Borcherd’s algebras...
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Kac-Moody algebras

Kac-Moody algebras A of rank N are defined by generalised
Cartan (N×N) matrices with Aii = 2, Aij ∈ Z−(i 6= j) and
Aij 6= 0⇒ Aji 6= 0

3N generators hi ,ei , fi satisfy Chevalley-Serre relations
[hi ,hj ] = 0 [hi ,ej ] = Aijej , [hi , fj ] =−Aij fj , [ei , fj ] = δijhi

[ei , [ei , [. . . , [ei ,ej ]]] . . . ]︸ ︷︷ ︸
1−Aij times

= 0, [fi , [fi , [. . . , [fi , fj ]]] . . . ]︸ ︷︷ ︸
1−Aij times

= 0

Simple roots αi are [h,ei ] = αi (h)ei
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Example – A1, SU(2), Angular Momentum

L+

L−

Cartan subalgebra = Quantum
number: Lz

N+: raising operator L+ = α

N−: lowering operator L− =−α

(L2 is Casimir/commutes with all
algebra elements, is however not
actually in the algebra!)
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Example – A1, SU(2), Electroweak

W+

W−

Cartan subalgebra – Quantum
number: A

N+: raising operator W+ = α

N−: lowering operator W− =−α

(Since SM electroweak is actually
SU(2)×U(1), U(1) gives another
field i , such that physical Z 0 and γ are
superpositions of A and i)

Also W± now charged and
self-interact, unlike QED
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Affine extensions

An affine Coxeter group is the extension of a Coxeter group by an
affine reflection in a hyperplane not containing the origin saff

α0

whose geometric action is given by

saff
α0

v = α0 + v − 2(α0|v)

(α0|α0)
α0

Non-distance preserving: includes the translation generator

Tv = v + α0 = saff
α0

sα0v
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Affine extensions – A2
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Affine extensions – A2

Affine extensions of crystallographic Coxeter groups lead to a
tessellation of the plane and a lattice.

Pierre-Philippe Dechant What Clifford algebra can do for Coxeter groups and root systems



Introduction
Coxeter and Clifford

Moonshine and Outlook

Coxeter groups and root systems
Clifford algebras

Non-crystallographic Coxeter groups H2 ⊂ H3 ⊂ H4

α1

τα1+α2

τ(α1+α2)
α1+ τα2

α2

−α1

−(τα1+α2)

−τ(α1+α2)

−(α1+ τα2)

−α2

H2 ⊂ H3 ⊂ H4: 10, 120, 14,400 elements, the only Coxeter groups
that generate rotational symmetries of order 5

linear combinations now in the extended integer ring

Z[τ] = {a+ τb|a,b ∈ Z} golden ratio τ =
1

2
(1 +
√

5) = 2cos
π

5

x2 = x + 1 τ
′ = σ =

1

2
(1−
√

5) = 2cos
2π

5
τ + σ = 1,τσ =−1
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What’s new?

In HEP, mostly come from Lie groups, then Lie algebras, then
their Weyl groups and root systems

This only gives the crystallographic Coxeter groups

Do the non-crystallographic Coxeter groups have something
interesting to offer? In particular, affine extensions?

Interesting connections between the geometries of different
dimensions: Relation between crystallographic and
non-crystallographic (E8 and H4) and my spinor construction
(3 & 4D)

Both could have interesting consequences for HEP (4D groups
and E8 feature heavily) and other applications (viruses,
quasicrystals, proteins, fullerenes...)
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Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Affine extensions of non-crystallographic root systems

Translation of length τ = 1
2(1 +

√
5)≈ 1.618 (golden ratio)

T

G

Looks like a virus or carbon onion
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More Blueprints
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Road Map
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Applications of affine extensions of non-crystallographic
root systems

Journal of
Mathematical Physics

September 2013 Volume 54 Number 9

jmp.aip.org

Acta Crystallographica Section A

Foundations and
Advances
Editors: S. J. L. Billinge and J. Miao

journals.iucr.org

International Union of Crystallography
Wiley-Blackwell

ISSN 2053-2733

Volume 70

Part 2

March 2014

There are interesting applications to quasicrystals, viruses or
carbon onions, but here concentrate on the mathematical aspects
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Basics of Clifford Algebra I

Form an algebra using the Geometric Product
ab ≡ a ·b+a∧b for two vectors

Extend via linearity and associativity to higher grade elements
(multivectors)

For an n-dimensional space generated by n orthogonal unit
vectors ei have 2n elements

Then eiej = ei ∧ ej =−ejei so anticommute (Grassmann
variables, exterior algebra)

Unlike the inner and outer products separately, this product is
invertible

This feeds through to the differential structure of the theory
with more powerful Greens functions methods ∇−1

Pierre-Philippe Dechant What Clifford algebra can do for Coxeter groups and root systems



Introduction
Coxeter and Clifford

Moonshine and Outlook

Coxeter groups and root systems
Clifford algebras

Basics of Clifford Algebra II

These are known to have matrix representations over the
normed division algebras R, C and H ⇒ Classification of
Clifford algebras

E.g. Pauli algebra in 3D (likewise for Dirac algebra in 4D) is

{1}︸︷︷︸
1 scalar

{e1,e2,e3}︸ ︷︷ ︸
3 vectors

{e1e2,e2e3,e3e1}︸ ︷︷ ︸
3 bivectors

{I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

These have the well-known matrix representations in terms of
σ - and γ-matrices

Working with these is not necessarily the most insightful thing
to do, so here stress approach to work directly with the algebra

Naturally have things that square to −1, e.g.

(e1e2)2 = e1e2e1e2 =−e1e1e2e2 =−1 , and non-trivial
commutation properties
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Reflections

Clifford algebra is very efficient at performing reflections

Consider reflecting the vector a in a hypersurface with unit
normal n:

a′ = a⊥−a‖ = a−2a‖ = a−2(a ·n)n

c.f. fundamental Weyl reflection si : v → si (v) = v −2 (v |αi )
(αi |αi )

αi

But in Clifford algebra have n ·a = 1
2(na+an) so reassembles

into sandwiching

a′ =−nan

So both Coxeter and Clifford frameworks are ideally suited to
describing reflections – first to combine the two
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Reflections and Rotations

Generate a rotation when compounding two reflections wrt n
then m (Cartan-Dieudonné theorem):

a′′ = mnanm ≡ RaR̃

where R = mn is called a rotor and a tilde denotes reversal of
the order of the constituent vectors (RR̃ = 1)

Now neat thing is all multivectors transform covariantly e.g.

MN → (RMR̃)(RNR̃) = RMR̃RNR̃ = R(MN)R̃

so transform double-sidedly

Rotors form a group, the rotor group, which gives a
representation of the Spin group Spin(n) – they transform
single-sidedly (obvious now it’s a double (universal) cover)
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Artin’s Theorem and orthogonal transformations

Artin: every isometry is at most d reflections

Since have a double cover of reflections (n and −n) we have a
double cover of O(p,q): Pin(p,q)

x ′ =±n1n2 . . .nkxnk . . .n2n1

Pinors/versors = products of vectors n1n2 . . .nk encode
orthogonal transformations via ‘sandwiching’

Cartan-Dieudonné: rotations are an even number of
reflections: Spin(p,q) doubly covers SO(p,q)

The conformal group C (p,q)∼ SO(p+ 1,q+ 1) so can use
these for translations, inversions etc as well
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Spinor techniques

Of course there is a matrix representation R for the action of

a spinor: Rx = RxR̃

This is the usual rotation matrix R in SO(p,q)

Having the spin double cover/square root of the rotation
matrix can be convenient

E.g. can get differential equations for spinor R that are easier
to solve, then can reconstitute R if necessary
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3D Platonic Solids

There are 5 Platonic solids

Tetrahedron (self-dual) (A3)

Dual pair octahedron and cube (B3)

Dual pair icoshahedron and dodecahedron
(H3)

Only the octahedron is a root system
(actually for (A3

1))
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Clifford and Coxeter: Platonic Solids

Platonic Solid Group root system

Tetrahedron A3 Cuboctahedron
A3
1 Octahedron

Octahedron B3 Cuboctahedron
Cube +Octahedron

Icosahedron H3 Icosidodecahedron
Dodecahedron

Platonic Solids have been known for
millennia

Described by Coxeter groups
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Clifford and Coxeter: Platonic Solids

Platonic Solids have been known for
millennia; described by Coxeter groups

Concatenating reflections gives Clifford
spinors (binary polyhedral groups)

These induce 4D root systems
ψ = a0 +ai Iei ⇒ ψψ̃ = a20 +a21 +a22 +a23
4D analogues of the Platonic Solids and
give rise to 4D Coxeter groups
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4D ‘Platonic Solids’

In 4D, there are 6 analogues of the Platonic Solids:

5-cell (self-dual) (A4)

24-cell (self-dual) (D4) – a 24-cell and its dual together are
the F4 root system

Dual pair 16-cell and 8-cell (B4)

Dual pair 600-cell and 120-cell (H4)

24-cell, 16-cell and 600-cell are all root systems, as is the
related F4 root system

8-cell and 120-cell are dual to a root system, so in 4D out of 6
Platonic Solids only the 5-cell (corresponding to An family) is
not related to a root system!

The 4D Platonic solids are not normally thought to be related
to the 3D ones except for the boundary cells
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Spinorial Symmetries of 4D Polytopes

Spinorial symmetries
rank 3 |Φ| |W | rank 4 |Φ| Symmetry

A3 12 24 D4 24-cell 24 2 ·242 = 576

B3 18 48 F4 lattice 48 482 = 2304

H3 30 120 H4 600-cell 120 1202 = 14400

A3
1 6 8 A4

1 16-cell 8 3! ·82 = 384

A1⊕A2 8 12 A2⊕A2 prism 12 122 = 144

A1⊕H2 12 20 H2⊕H2 prism 20 202 = 400

A1⊕ I2(n) n+ 2 2n I2(n)⊕ I2(n) 2n (2n)2

Similar for Grand Antiprism (H4 without H2⊕H2) and Snub
24-cell (2I without 2T ).
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Induction Theorem

Theorem: 3D spinor groups are root systems (R and −R are
in a spinor group by construction, and closure under reflections
is guaranteed by the closure property of the spinor group)

Induction Theorem: Every rank-3 root system induces a
rank-4 root system.

Counterexample: not every rank-4 root system is induced in
this way

Spinor group is trivially closed under conjugation, left and
right multiplication. Results in non-trivial symmetries when
viewed as a polytope/root system.

Now explains symmetry of the polytopes/root system and
thus the order of the rank-4 Coxeter group
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Induction Theorem

So induced 4D polytopes are actually root systems.

Clear why the number of roots |Φ| is equal to |G |, the order
of the spinor group

Theorem: The automorphism group of the induced root
system contains two factors of the respective spinor group
acting from the left and the right.

Only remaining cases in 3D are A1⊕ I2(n), which give
I2(n)⊕ I2(n)
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General Case of Induction

Only remaining case is what happens for A1⊕ I2(n) - this gives a
doubling I2(n)⊕ I2(n)
rank 3 rank 4

A3 D4

B3 F4
H3 H4

A3
1 A4

1

A1⊕A2 A2⊕A2

A1⊕H2 H2⊕H2

A1⊕ I2(n) I2(n)⊕ I2(n)
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Spinorial Symmetries of 4D Polytopes

Spinorial symmetries
rank 3 |Φ| |W | rank 4 |Φ| Symmetry

A3 12 24 D4 24-cell 24 2 ·242 = 576

B3 18 48 F4 lattice 48 482 = 2304

H3 30 120 H4 600-cell 120 1202 = 14400

A3
1 6 8 A4

1 16-cell 8 3! ·82 = 384

A1⊕A2 8 12 A2⊕A2 prism 12 122 = 144

A1⊕H2 12 20 H2⊕H2 prism 20 202 = 400

A1⊕ I2(n) n+ 2 2n I2(n)⊕ I2(n) 2n (2n)2

Similar for Grand Antiprism (H4 without H2⊕H2) and Snub
24-cell (2I without 2T ). Additional factors in the automorphism

group come from 3D Dynkin diagram symmetries!
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Some non-Platonic examples of spinorial symmetries

Grand Antiprism: the 100 vertices achieved by subtracting 20
vertices of H2⊕H2 from the 120 vertices of the H4 root
system 600-cell – two separate orbits of H2⊕H2

This is a semi-regular polytope with automorphism symmetry
Aut(H2⊕H2) of order 400 = 202

Think of the H2⊕H2 as coming from the doubling procedure?
(Likewise for Aut(A2⊕A2) subgroup)

Snub 24-cell: 2T is a subgroup of 2I so subtracting the 24
corresponding vertices of the 24-cell from the 600-cell, one
gets a semiregular polytope with 96 vertices and
automorphism group 2T ×2T of order 576 = 242.
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Sub root systems

The above spinor groups had spinor multiplication as the
group operation

But also closed under twisted conjugation – corresponds to
closure under reflections (root system property)

If we take twisted conjugation as the group operation instead,
we can have various subgroups

These are the remaining 4D root systems e.g. A4 or B4
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What’s new?

Novel connection between geometry of 3D and 4D

In fact, 3D seems more fundamental – contrary to the usual
perspective of 3D subgroups of 4D groups

Spinorial symmetries

Clear why spinor group gives a root system and why two
factors of the same group reappear in the automorphism group

Novel spinorial perspective on 4D geometry

Accidentalness of the spinor construction and exceptional 4D
phenomena

Connection with Arnold’s trinities, the McKay correspondence
and Monstrous Moonshine
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Recap: Clifford algebra and reflections & rotations

Clifford algebra is very efficient at performing reflections via
sandwiching

a′ =−nan

Generate a rotation when compounding two reflections wrt n
then m (Cartan-Dieudonné theorem):

a′′ = mnanm ≡ RaR̃

where R = mn is called a rotor and a tilde denotes reversal of
the order of the constituent vectors (RR̃ = 1)
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From the Coxeter simple roots to the root system

Take the A1×A1×A1 simple roots (1,0,0), (0,1,0), (0,0,1)
⇒ under reflections get (−1,0,0), (0,−1,0), (0,0,−1), the
vertices of an octahedron.
Take the three simple roots of A1×A1×A1/A3/B3/H3.
Closure under Clifford reflections generate the whole root
system of 6/12/18/30 vertices of an
octahedron/cuboctahedron/ cuboctahedron with an
octahedron/ icosidodecahedron).
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Spinors from reflections

These are the 3D Coxeter groups that are symmetry groups of
the Platonic Solids (tetrahedron and octahedron are similar
but simpler than the icosahedron)

The 6/12/18/30 reflections in A1×A1×A1/A3/B3/H3

generate 8/24/48/120 rotors.

E.g. (±1,0,0), (0,±1,0), (0,0,±1) give the 8 permutations
of (±1;0,0,0) (scalar and bivector parts, the notation will
become clear later).

The discrete spinor group is isomorphic to the quaternion
group Q / binary tetrahedral group 2T/ binary octahedral
group 2O/ binary icosahedral group 2I ).
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A unified framework for polyhedral groups

Group Discrete subgroup Action Mechanism

SO(3) rotational (chiral) x → R̃xR

O(3) reflection (full/Coxeter) x →±ÃxA
Spin(3) binary (R1,R2)→ R1R2

Pin(3) pinor (A1,A2)→ A1A2

e.g. the chiral icosahedral group has 60 elements, encoded in
Clifford by 120 rotors, which form the binary icosahedral group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H3 in 120 elements (with 240 versors)

all three are interesting groups, e.g. in neutrino and flavour
physics for family symmetry model building
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Spinors and Polytopes

The space of Cl(3)-spinors and quaternions have a 4D
Euclidean signature: ψ = a0 +ai Iei ⇒ ψψ̃ = a20 +a21 +a22 +a23
Can reinterpret spinors in R3 as vectors in R4

Then the spinors constitute the vertices of the 16-cell, 24-cell,
24-cell and dual 24-cell and the 600-cell

These are 4D analogues of the Platonic Solids: regular convex
4-polytopes
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Spinors, Polytopes and Root systems

The 16-cell, 24-cell, 24-cell and dual 24-cell and the 600-cell
are in fact the root systems of A1×A1×A1×A1, D4, F4 and
H4

Exceptional phenomena: D4 (triality, important in string
theory), F4 (largest lattice symmetry in 4D), H4 (largest
non-crystallographic symmetry)

Exceptional D4 and F4 arise from series A3 and B3

In fact, can strengthen this statement on inducing polytopes
to statement on inducing root systems
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Root systems in three and four dimensions

The spinors generated from the reflections contained in the
respective rank-3 Coxeter group via the geometric product are
realisations of the binary polyhedral groups Q, 2T , 2O and 2I ,

which were known to generate (mostly exceptional) rank-4 groups,
but not known why, and why the ‘mysterious symmetries’.

rank-3 group diagram binary rank-4 group diagram

A1×A1×A1 Q A1×A1×A1×A1

A3 2T D4

B3
4

2O F4
4

H3
5

2I H4
5
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Arnold’s Trinities

Arnold’s observation that many areas of real mathematics can be
complexified and quaternionified resulting in theories with a similar

structure.

The fundamental trinity is thus (R,C,H)

The projective spaces (RPn,CPn,HPn)

The spheres (RP1 = S1,CP2 = S2,HP1 = S4)

The Möbius/Hopf bundles (S1→ S1,S4→ S2,S7→ S4)

The Lie Algebras (E6,E7,E8)

The symmetries of the Platonic Solids (A3,B3,H3)

The 4D groups (D4,F4,H4)

New connections via my Clifford spinor construction (see
McKay correspondence)
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Platonic Trinities

Arnold’s connection between (A3,B3,H3) and (D4,F4,H4) is
very convoluted and involves numerous other trinities at
intermediate steps:

Decomposition of the projective plane into Weyl chambers
and Springer cones

The number of Weyl chambers in each segment is
24 = 2(1 + 3 + 3 + 5),48 = 2(1 + 5 + 7 + 11),120 =
2(1 + 11 + 19 + 29)

Notice this miraculously matches the quasihomogeneous
weights ((2,4,4,6),(2,6,8,12),(2,12,20,30)) of the Coxeter
groups (D4,F4,H4)

Believe the Clifford connection is more direct
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Some Group Theory: chiral, full, binary, pin

Easy enough to calculate conjugacy classes etc of versors in
Clifford

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 1′, 1′′, 2s , 2′s , 2′′s , 3

octahedral (24/48): 1, 1′, 2, 2s , 2′s , 3, 3′, 4s

icosahedral (60/120): 1, 2s , 2′s , 3, 3̄, 4, 4s , 5, 6s

All binary are discrete subgroups of SU(2) and all thus have a
2s spinor irrep

Connection with the McKay correspondence!
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Affine extensions – E=
8

α0 α1 α2 α3 α4 α5 α6 α7

α8

−α0 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

AKA E+
8 and along with E++

8 and E+++
8 thought to be the

underlying symmetry of String and M-theory

Also interesting from a pure mathematics point of view: E8 lattice,
McKay correspondence and Monstrous Moonshine.
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The McKay Correspondence
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The McKay Correspondence
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The McKay Correspondence

More than E-type groups: the infinite family of 2D groups, the
cyclic and dicyclic groups are in correspondence with An and Dn,
e.g. the quaternion group Q and D+

4 . So McKay correspondence
not just a trinity but ADE-classification. We also have I2(n) on top

of the trinity (A3,B3,H3)
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4D geometry is surprisingly important for HEP

4D root systems are surprisingly relevant to HEP

A4 is SU(5) and comes up in Grand Unification

D4 is SO(8) and is the little group of String theory

In particular, its triality symmetry is crucial for showing the
equivalence of RNS and GS strings

B4 is SO(9) and is the little group of M-Theory

F4 is the largest crystallographic symmetry in 4D and H4 is
the largest non-crystallographic group

The above are subgroups of the latter two

Spinorial nature of the root systems could have surprising
consequences for HEP
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Quaternions and Clifford Algebra

The unit spinors {1; Ie1; Ie2; Ie3} of Cl(3) are isomorphic to the
quaternion algebra H (up to sign)

The 3D Hodge dual of a vector is a pure bivector which
corresponds to a pure quaternion, and their products are
identical (up to sign)
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Discrete Quaternion groups

The 8 quaternions of the form (±1,0,0,0) and permutations
are called the Lipschitz units, and form a realisation of the
quaternion group in 8 elements.

The 8 Lipschitz units together with 1
2(±1,±1,±1,±1) are

called the Hurwitz units, and realise the binary tetrahedral
group of order 24. Together with the 24 ‘dual’ quaternions of
the form 1√

2
(±1,±1,0,0), they form a group isomorphic to

the binary octahedral group of order 48.

The 24 Hurwitz units together with the 96 unit quaternions of
the form (0,±τ,±1,±σ) and even permutations, are called
the Icosians. The icosian group is isomorphic to the binary
icosahedral group with 120 elements.
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Quaternionic representations of 3D and 4D Coxeter groups

Groups E8, D4, F4 and H4 have representations in terms of
quaternions

Extensively used in the high energy
physics/quasicrystal/Coxeter/polytope literature and thought
of as deeply significant, though not really clear why

e.g. H4 consists of 120 elements of the form (±1,0,0,0),
1
2(±1,±1,±1,±1) and (0,±τ,±1,±σ)

Seen as remarkable that the subset of the 30 pure quaternions
is a realisation of H3 (a sub-root system)

Similarly, A3, B3, A1×A1×A1 have representations in terms
of pure quaternions

Will see there is a much simpler geometric explanation
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Quaternionic representations used in the literature

e1 e2 e3 1 e1 e2 e3

A1 ×A1 ×A1 A1 ×A1 ×A1 ×A1

e1 + e2 e3 − e2 e2 − e1 e1 1
2 (1− e1 − e2 − e3) e2

e3

A3 = D3 D4

e1 − e2 e2 − e3
√
2e3

4

1
2 (1− e1 − e2 − e3) e3 1

2 (e2 − e3)
1
2 (e1 − e2)

4

B3 F4

5

−e1
1
2 (τe1 + e2 + σe3) −e2

5

−e1
1
2 (τe1 + e2 + σe3) −e2

1
2 (σ + e2 + τe3)

H3 H4
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Demystifying Quaternionic Representations

3D: Pure quaternions = Hodge dualised (pseudoscalar) root
vectors

In fact, they are the simple roots of the Coxeter groups

4D: Quaternions = disguised spinors – but those of the 3D
Coxeter group i.e. the binary polyhedral groups!

This relation between 3D and 4D via the geometric product
does not seem to be known

Quaternion multiplication = ordinary Clifford reflections and
rotations
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Demystifying Quaternionic Representations

Pure quaternion subset of 4D groups only gives 3D group if
the 3D group contains the inversion/pseudoscalar I

e.g. does not work for the tetrahedral group A3, but A3→ D4

induction still works, with the central node essentially
‘spinorial’

In fact, it goes the other way around: the 3D groups induce
the 4D groups via spinors

The rank-4 groups are also generated (under quaternion
multiplication) by two quaternions we can identify as
R1 = α1α2 and R2 = α2α3

Can see these are ‘spinor generators’ and how they don’t
really contain any more information/roots than the rank-3
groups alone
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Quaternions vs Clifford versors

Sandwiching is often seen as particularly nice feature of the
quaternions giving rotations

This is actually a general feature of Clifford algebras/versors
in any dimension; the isomorphism to the quaternions is
accidental to 3D

However, the root system construction does not necessarily
generalise

2D generalisation merely gives that I2(n) is self-dual

Octonionic generalisation just induces two copies of the above
4D root systems, e.g. A3→ D4⊕D4
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Coxeter Elements, Degrees and Exponents

Like the symmetric group, Coxeter groups can have invariant
polynomials. Their degrees d are important invariants/group
characteristics.

Turns out that actually degrees d are intimately related to
so-called exponents m m = d −1 .
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Coxeter Elements, Degrees and Exponents

A Coxeter Element is any combination of all the simple
reflections w = s1 . . .sn , i.e. in Clifford algebra it is encoded

by the versor W = α1 . . .αn acting as v → wv =±W̃ vW .
All such elements are conjugate and thus their order is
invariant and called the Coxeter number h.

The Coxeter element has complex eigenvalues of the form

exp(2πmi/h) where m are called exponents.

Standard theory complexifies the real Coxeter group situation
in order to find complex eigenvalues, then takes real sections
again (the unfortunate standard procedure in many situations)
– without any insight into the complex structure (or in fact,
there are different ones).
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Coxeter Elements, Degrees and Exponents

The Coxeter element has complex eigenvalues of the form

exp(2πmi/h) where m are called exponents

Standard theory complexifies the real Coxeter group situation
in order to find complex eigenvalues, then takes real sections
again (the unfortunate standard procedure in many situations)
– without any insight into the complex structure(s)

In particular, 1 and h−1 are always exponents

Turns out that actually exponents and degrees are intimately
related ( m = d −1 ). The construction is slightly roundabout
but uniform, and uses the Coxeter plane.
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The Coxeter Plane

Can show every (for our purposes) Coxeter group has a
Coxeter plane.

A way to visualise Coxeter groups in any dimension by
projecting their root system onto the Coxeter plane
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The Coxeter Plane

Obvious from Clifford point of view, that Coxeter element has
eigenspaces (eigenblades) rather than just eigenvectors

In particular, can show every (for our purposes) Coxeter group
has a Coxeter plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of mutually commuting
generators

α1 α2 α3 α4 α5 α6 α7

α8

Pierre-Philippe Dechant What Clifford algebra can do for Coxeter groups and root systems



Introduction
Coxeter and Clifford

Moonshine and Outlook

The Induction Theorem – from 3D to 4D
The Coxeter Plane
Conformal Geometry
Some Group Theory

The Coxeter Plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of orthogonal = mutually
commuting generators but anticommuting root vectors αw

and αb (duals ω)

Cartan matrices are positive definite, and thus have a
Perron-Frobenius (all positive) eigenvector λi .

Take linear combinations of components of this eigenvector as
coefficients of two vectors from the orthogonal sets
vw = ∑λw ωw and vb = ∑λbωb

Their outer product/Coxeter plane bivector BC = vb ∧vw

describes an invariant plane where w acts by rotation by 2π/h.
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Clifford Algebra and the Coxeter Plane – 2D case

For I2(n) take α1 = e1, α2 =−cos π

n e1 + sin π

n e2

So Coxeter versor is just

W = α1α2 =−cos
π

n
+ sin

π

n
e1e2 =−cos

π

n
+ sin

π

n
I =−exp

(
−πI

n

)
In Clifford algebra it is therefore immediately obvious that the
action of the I2(n) Coxeter element is described by a versor
(here a rotor/spinor) that encodes rotations in the
e1e2-Coxeter-plane and yields h = n since trivially

W n = (−1)n+1 yielding wn = 1 via wv = W̃ vW .
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Clifford Algebra and the Coxeter Plane – 2D case

So Coxeter versor is just W =−exp

(
−πI

n

)
I = e1e2 anticommutes with both e1 and e2 such that

sandwiching formula becomes

v → wv = W̃ vW = W̃ 2v = exp

(
±2πI

n

)
v immediately

yielding the standard result for the complex eigenvalues in real
Clifford algebra without any need for artificial complexification

The Coxeter plane bivector BC = e1e2 = I gives the complex
structure

The Coxeter plane bivector BC is invariant under the Coxeter
versor W̃BCW =±BC .
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Clifford Algebra and the Coxeter Plane – 3D case

In 3D, A3, B3, H3 have {1,2,3}, {1,3,5} and {1,5,9}
Coxeter element is product of a spinor in the Coxeter plane
with the same complex structure as before, and a reflection
perpendicular to the plane

So in 3D still completely determined by the plane

1 and h−1 are rotations in Coxeter plane

h/2 is the reflection (for v in the normal direction)

wv = W̃ 2 = exp(±2πI

h

h

2
) = exp(±πI )v =−v
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Clifford algebra: no need for complexification

Turns out in Clifford algebra we can factorise W into
orthogonal (commuting/anticommuting) components

W = α1 . . .αn = W1 . . .Wn with Wi = exp(πmi Ii/h)

Here, Ii is a bivector describing a plane with I 2i =−1

For v orthogonal to the plane descrbed by Ii we have

v → W̃ivWi = W̃iWiv = v so cancels out

For v in the plane we have

v → W̃ivWi = W̃ 2
i v = exp(2πmi Ii/h)v

Thus if we decompose W into orthogonal eigenspaces, in the
eigenvector equation all orthogonal bits cancel out and one
gets the complex eigenvalue from the respective eigenspace
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Clifford algebra: no need for complexification

For v in the plane we have

v → W̃ivWi = W̃ 2
i v = exp(2πmi Ii/h)v

So complex eigenvalue equation arises geometrically without
any need for complexification

Different complex structures immediately give different
eigenplanes

Eigenvalues/angles/exponents given from just factorising
W = α1 . . .αn

E.g. B4 has exponents 1,3,5,7 and W = exp
(

π

8 I1
)

exp
(
3π

8 I2
)

Here we have been looking for orthogonal eigenspaces, so
innocuous – different complex structures commute

But not in general – naive complexification can be misleading
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Clifford Algebra and the Coxeter Plane – 4D case

E.g. B4 has exponents 1,3,5,7

Coxeter versor decomposes into orthogonal components

W = α1α2α3α4 = exp
(

π

8
BC

)
exp

(
3π

8
IBC

)
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Clifford Algebra and the Coxeter Plane – 4D case

rank 4 exponents W-factorisation

A4 1,2,3,4 W = exp
(

π

5BC

)
exp
(
2π

5 IBC

)
B4 1,3,5,7 W = exp

(
π

8BC

)
exp
(
3π

8 IBC

)
D4 1,3,3,5 W = exp

(
π

6BC

)
exp
(

π

2 IBC

)
F4 1,5,7,11 W = exp

(
π

12BC

)
exp
(
5π

12 IBC

)
H4 1,11,19,29 W = exp

(
π

30BC

)
exp
(
11π

30 IBC

)
Actually, in 2, 3 and 4 dimensions it couldn’t really be any other

way
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Clifford Algebra and the Coxeter Plane – D6

For D6 one has exponents 1,3,5,5,7,9

Coxeter versor decomposes into orthogonal bits as

W =
1√
5

(e1 + e2 + e3− e4− e5)e6 exp
(

π

10
BC

)
exp

(
3π

10
B2

)
Now bivector exponentials correspond to rotations in
orthogonal planes

Vector factors correspond to reflections

For odd n, there is always one such vector factor in Dn, and
for even n there are two

Pierre-Philippe Dechant What Clifford algebra can do for Coxeter groups and root systems



Introduction
Coxeter and Clifford

Moonshine and Outlook

The Induction Theorem – from 3D to 4D
The Coxeter Plane
Conformal Geometry
Some Group Theory

Projection and Diagram Foldings

Compare with the ‘partial folding’ of E8 to H4

α1 α2 α3 α4 α5 α6 α7

α8

a1 a2 a3

5

a4

⇓ fold ⇑ Z → Z[τ ]

α1 α2 α3 α4

α7 α6 α5 α8

π‖

⇒
project

a1 a2 a3 τa4

τa1 τa2 τa3 a4

sβ1
= sα1sα7 , sβ2

= sα2sα6 , sβ3
= sα3sα5 , sβ4

= sα4sα8 ⇒ H4
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Imaginary differences – different imaginaries

So what has been gained by this Clifford view?

There are different entities that serve as unit imaginaries

They have a geometric interpretation as an eigenplane of the
Coxeter element

These don’t need to commute with everything like i (though
they do here – at least anticommute. But that is because we
looked for orthogonal decompositions)

But see that in general naive complexification can be a
dangerous thing to do – unnecessary, issues of commutativity,
confusing different imaginaries etc
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Conformal geometry and Clifford algebra

The conformal group C (p,q)∼ SO(p+ 1,q+ 1)

So can use versor representation of conformal transformations
in Clifford algebra (reflections, translations, inversions ...)

Treat all of them multiplicatively in terms of versors and use

sandwiching AxÃ

E.g. can generate a whole root lattice multiplicatively with
compact reflection part and translations
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Conformal Clifford Algebra

The conformal group C (n,p) is homomorphic to
Spin(n+ 1,p+ 1)
Go to e1,e2,e3,e, ē, with e2i = 1,e2 = 1, ē2 =−1
Define two null vectors n ≡ e + ē, n̄ ≡ e− ē
Can embed the 3D vector x = xµeµ = xe1 + ye2 + ze3 as a null

vector in 5D (X̂ ·n =−1)

F (x)≡ X̂ =
1

2λ 2
(x2n+ 2λx−λ

2n̄)

Essentially linear action of SO(n+ 1,p+ 1) in embedding
space induces a non-linear realisation of the conformal group
on the projective light cone (Dirac/Hestenes/Lasenby)
So neat thing is that conformal transformations are now done
by rotors (except inversion which is a reflection) – distances
are given by inner products
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Operations in Conformal Geometric Algebra

Amsterdam protocol: e = e+, ē = e−, n = n∞ and n̄ = n0.

Reflections y ′ =−xyx since e and ē ⇒ n and n̄ are
orthogonal to x ⇒ anticommute −xnx = n and −xn̄x = n̄:

−xF (y)x = F (y ′) = F (−xyx)

Rotations y ′ = RyR̃ from reflections via Cartan-Dieudonné

RF (y)R̃ = F (y ′) = F (RyR̃)

Translations y ′ = y +a rotor Ta = exp
( na

2λ

)
= 1 +

na

2λ

TaF (y)T̃a = F (y ′) = F (y +a)
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Proof of Principle

Construction of root systems and quasicrystalline point arrays
carries through, e.g. here for H2 and a pentagon with translation
1/τ

α1

τα1+α2

τ(α1+α2)α1+ τα2

α2
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Benefits of this approach

Conceptual Unification of Rotations and Translations via
rotors

Construct root system from the simple roots as before, and
likewise for quasicrystalline point arrays

Increased numerical stability (not really an issue here) due to
projective representation
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A new set of Bianchi IX Killing Vectors

Used Conformal Clifford algebra setup to treat conformal
group C (1,3) as SO(2,4)

Stabiliser subgroup of a certain vector gives the de Sitter
group (Killing vectors)

Using a certain projection broke this down to two commuting
SU(2)×SU(2)

This is a new set of Bianchi IX Killing vectors with nice
symmetry properties
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A unified framework for polyhedral groups

Group Discrete subgroup Action Mechanism

SO(3) rotational (chiral) x → R̃xR

O(3) reflection (full/Coxeter) x →±ÃxA
Spin(3) binary (R1,R2)→ R1R2

Pin(3) pinor (A1,A2)→ A1A2

e.g. the chiral icosahedral group has 60 elements, encoded in
Clifford by 120 rotors, which form the binary icosahedral group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H3 in 120 elements (with 240 versors)

all three are interesting groups, e.g. in neutrino and flavour
physics for family symmetry model building
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Some Group Theory: chiral, full, binary, pin

Easy enough to calculate conjugacy classes etc of versors in
Clifford

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 1′, 1′′, 2s , 2′s , 2′′s , 3

octahedral (24/48): 1, 1′, 2, 2s , 2′s , 3, 3′, 4s

icosahedral (60/120): 1, 2s , 2′s , 3, 3̄, 4, 4s , 5, 6s

All binary are discrete subgroups of SU(2) and all thus have a
2s spinor irrep

See McKay correspondence

Interesting to look at spinors/binary groups in their own right
– see Induction Theorem
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Some Group Theory: chiral, full, binary, pin

Full (Coxeter) is just two copies of this (24/48/120 i.e. same
order as binary since both Spin(3) and O(3) are double covers
of SO(3))

Pin group is just 1 + I of this for B3 and H3, which contain
the inversion I

but not for A3! (which doesn’t – c.f. quaternionic reps)

Instead Pin(A3) has the same conjugacy classes as Spin(B3)
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Conjugacy Classes: Quaternion group Q

Five conjugacy classes: {1}, {−1}, {±e1e2}, {±e2e3},
{±e3e1}
Different conjugacy classes correspond to different geometric
subspaces in the Clifford algebra

Bit trivial for the quaternion group, but extends to arbitrary
dimension
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Conjugacy Classes: Binary octahedral group 2O

Eight conjugacy classes: {1}, {−1}, 6: bivectors

{±e1e2,±e2e3,±e3e1}; 6′: bivector exponentials exp6; 6′′:
exp−6; 8: spinors {1± e1e2± e2e3± e3e1, . . .}; 8′: −8; 12:
bivectors {e1(e2 + e3), . . .};
Turns out most of these are the same as for Pin(A3), and the
remaining ones can be mapped to each other

Though in Pin(A3) also have odd grade elements, so some of
the conjugacy classes are vector+trivector etc, i.e. different
geometric interpretation
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Character tables: Quaternion group Q (from A3
1→ A4

1)

Q 1 −1 ±i ±j ±k
1 1 1 1 1 1

1′ 1 1 1 −1 −1

1′′ 1 1 −1 1 −1

1′′′ 1 1 −1 −1 1

2 2 −2 0 0 0

4 4 −4 0 0 0
Latter is of quaternionic type – somehow seen as particularly

noteworthy
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Character tables: binary octahedral group 2O (from
B3→ F4)

2O 1 1 6 8 8 6 6 12

1 1 1 1 1 1 1 1 1

1′ 1 1 1 1 1 −1 −1 −1

2 2 2 2 −1 −1 0 0 0

3 3 3 −1 0 0 1 1 −1

3′ 3 3 −1 0 0 −1 −1 1

4 4 −4 0 2 −2 2
√

2 −2
√

2 0

4′ 4 −4 0 2 −2 −2
√

2 2
√

2 0

8 8 −8 0 −2 2 0 0 0
Again some of quaternionic type
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Representations

This Clifford multivector construction of the polyhedral groups
is a faithful realisation/representation, i.e. is essentially the
same as the abstract group

But can define several different representations from these
versor groups (may or may not be irreducible ones)

Representations: matrices D(R) such that

D(R1R2) = D(R1)D(R2)
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Representations

Representations: matrices D(R) such that

D(R1R2) = D(R1)D(R2)

Trivial representation: D(R) = R1R̃ = 1
Rotation representation: for nD vector x = ∑aiei :

D(R)x = RxR̃ usual SO(n) n×n-matrix

Full representation: for nD vector x = ∑aiei : D(A)x = AxÃ

usual O(n) n×n-matrix
Spinor representation: for nD spinor y (2n−1 components):

D(R)y = Ry a 2n−1×2n−1-matrix

Versor representation: for nD versor z (2n components):

D(A)z = Az a 2n×2n-matrix
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Character tables and Clifford reps: quaternion group Q

The spinor representation D(R)y = Ry of the quaternion group Q

gives the representation of quaternionic type. (The trace of D(R)
is the character.)
Again just seen to be a consequence of the accidental isomorphism
between 3D spinors and quaternions.

Q 1 −1 ±i ±j ±k
1 1 1 1 1 1

1′ 1 1 1 −1 −1

1′′ 1 1 −1 1 −1

1′′′ 1 1 −1 −1 1

2 2 −2 0 0 0

4 4 −4 0 0 0
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Character tables and Clifford reps: binary octahedral group
2O

The spinor representation D(R)y = Ry of the quaternion group

2O gives the irrep of quaternionic type.

The rotation representation D(R)x = RxR̃ gives 3 irrep.

2O 1 1 6 8 8 6 6 12

1 1 1 1 1 1 1 1 1

1′ 1 1 1 1 1 −1 −1 −1

2 2 2 2 −1 −1 0 0 0

3 3 3 −1 0 0 1 1 −1

3′ 3 3 −1 0 0 −1 −1 1

4 4 −4 0 2 −2 2
√

2 −2
√

2 0

4′ 4 −4 0 2 −2 −2
√

2 2
√

2 0

8 8 −8 0 −2 2 0 0 0
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Clifford: groups and representations summary

Clifford algebra provides a unified framework for
chiral/full/binary/pin polyhedral groups all in the same
representation/realisation space/algebra (c.f. usual SO(3) vs
SU(2) representations)

Structure of the algebra ⇒ different conjugacy classes are
different kinds of objects in the algebra and are kept separate

Several representations follow, in particular have geometric
insight into complex and quaternionic representations
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Clifford summary

Interesting induction theorem linking geometry of 3D and 4D

Geometric complex structures and non-trivial commutativity
properties

Simple versor representation of orthogonal transformations

Conformal geometry

Some interesting new results on group and representation
theory

Lie algebras can be constructed in Clifford algebra as bivector
algebras, and Lie groups as spin groups (work with Phoenix)
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Monstrous Moonshine

Mysterious connection between two very different areas of
Mathematics

Modular forms (functions that live on a torus with complex
structure τ): Fourier expansion coefficients wrt (q = e2π iτ )

Finite simple groups: dimensions of irreducible representations

Monstrous Moonshine: The largest sporadic group, the
Monster M ({1,196883,21296876, . . .}) and the Klein j(τ)
modular function

j(τ) = q−1 + 744 + 196884q+ 21493760q2 + . . .

196884 = 196883 + 1, 21493760 = 21296876 + 196883 + 1, . . .
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Mathieu Moonshine

Similar Moonshine phenomenon

Modular form: elliptic genus of an N = 4 SCFT compactified
on a K3-surface

Finite simple group: Mathieu M24

({45,231,770,2277,5796 . . .})
Elliptic genus is

EK3(τ,z) =−2Ch(0;τ,z) + 20Ch(1/2;τ,z) + e(q)Ch(τ,z)

where all the coefficients in the q-series

e(q) = 90q+ 462q2 + 1540q3 + 4554q4 + 11592q5 + . . . are

twice the dimension of some M24 irrep
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Clifford and Moonshine

Looking at Wess-Zumino-Witten models, i.e. strings
propagating on a Lie group manifold

Condition of extended supersymmetry ultimately hinges on
classification of Clifford algebras – deep connection

Connections with binary polyhedral groups, Monstrous
Moonshine, McKay correspondence, lattices, affine extensions,
Lie groups/algebras etc

Elliptic genus is constant on (connected components of) the
moduli space: better understanding as a topological feature as
the index of a Dirac operator?
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Thank you!
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Back to the roots

Unifying principles of geometry and symmetry

Discrete groups (finite simple groups, polyhedral groups) and
continuous groups (string compactifications, non-linear
σ -models)

Exceptional phenomena: E8, H4/F4/D4 (spinorial), McKay
correspondence, Monster M, Mathieu M24 ...

Applications: from mundane (viruses, fullerenes, quasicrystals)
to exotic (HEP, Moonshine) – same mathematical tools:
Coxeter, Clifford, affine extensions etc
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Mathematical Aspects: Better understanding of
geometrical structures

Affine extensions and translations – lattices, quasicrystals and
projections

Coxeter groups and Kac-Moody theory

Euclidean, spherical, hyperbolic and conformal geometry

Clifford and spinorial geometry

Group theory, Lie groups and algebras (with Phoenix)

Mathieu Moonshine, McKay correspondence

Implications for the real world
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HEP

Gravitational and cosmological singularities – hidden
symmetries

New uses for non-crystallographic groups

Topological defects

Integrable systems

Family symmetries (flavour/neutrino physics)

4D groups: A4, B4, D4 – F4, H4?

Spinor geometry

E8 features prominently – relation with H4
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Projection and Diagram Foldings

α1 α2 α3 α4 α5 α6 α7

α8

a1 a2 a3

5

a4

⇓ fold ⇑ Z → Z[τ ]

α1 α2 α3 α4

α7 α6 α5 α8

π‖

⇒
project

a1 a2 a3 τa4

τa1 τa2 τa3 a4

sβ1
= sα1sα7 , sβ2

= sα2sα6 , sβ3
= sα3sα5 , sβ4

= sα4sα8 ⇒ H4

E8 has two H4-invariant subspaces – blockdiagonal form
D6 has two H3-invariant subspaces
A4 has two H2-invariant subspaces
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4D geometry is surprisingly important for HEP

4D root systems are surprisingly relevant to HEP

A4 is SU(5) and comes up in Grand Unification

D4 is SO(8) and is the little group of String theory

In particular, its triality symmetry is crucial for showing the
equivalence of RNS and GS strings

B4 is SO(9) and is the little group of M-Theory

F4 is the largest crystallographic symmetry in 4D and H4 is
the largest non-crystallographic group

The above are subgroups of the latter two

Spinorial nature of the root systems could have surprising
consequences for HEP
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Motivation: Viruses

Geometry of polyhedra described by Coxeter groups
Viruses have to be ‘economical’ with their genes
Encode structure modulo symmetry
Largest discrete symmetry of space is the icosahedral group
Many other ‘maximally symmetric’ objects in nature are also
icosahedral: Fullerenes & Quasicrystals
But: viruses are not just polyhedral – they have radial
structure. Affine extensions give translations
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Extend icosahedral group with distinguished translations

Radial layers are simultaneously constrained by affine
symmetry

Works very well in practice: finite library of blueprints

Select blueprint from the outer shape (capsid)

Can predict inner structure (nucleic acid distribution) of the
virus from the point array

Affine extensions of the icosahedral group (giving translations) and
their classification.
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Use in Mathematical Virology

Suffice to say point arrays work very exceedingly well in
practice. Two papers on the mathematical (Coxeter) aspects.

Implemented computational problem in Clifford – some very
interesting mathematics comes out as well (see later).
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Extension to fullerenes: carbon onions

Extend idea of affine symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover different shells with icosahedral symmetry from affine
approach: carbon onions (C60−C240−C540)
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Extension to fullerenes: carbon onions

Extend idea of affine symmetry to other icosahedral objects in
nature: football-shaped fullerenes

Recover different shells with icosahedral symmetry from affine
approach: carbon onions (C80−C180−C320)
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Applied areas (EPSRC proposal)

Viruses: Extend to large viruses; interesting results on
higher-order translations

Proteins: Extend affine symmetry to 2D and apply to (chiral)
proteins

Fullerenes: Extend to larger fullerenes, in particular chiral
carbon onions

Packings: Novel analytical and numerical approaches to
packings of polyhedral solids; with Colapinto (Santa Barbara),
Twarock (York) and Thorpe (Phoenix)
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