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Motivation: Viruses

Geometry of polyhedra described by Coxeter groups

Viruses have to be ‘economical’ with their genes

Encode structure modulo symmetry

Largest discrete symmetry of space is the icosahedral group

Many other ‘maximally symmetric’ objects in nature are also
icosahedral: Fullerenes & Quasicrystals

But: viruses are not just polyhedral – they have radial
structure. Affine extensions give translations
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Root systems – A2

α1

α2

−α1

−(α1 + α2)

α1 + α2

−α2

Root system Φ: set of
vectors α such that

Φ∩Rα = {−α,α} ∀ α ∈ Φ

and sα Φ = Φ ∀ α ∈ Φ

Simple roots: express
every element of Φ via a
Z-linear combination

(with coefficients of the
same sign).
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Cartan Matrices

Cartan matrix of αi s is Aij = 2
(αi ,αj )

(αi ,αi )
= 2
|αj |
|αi |

cosθij

angles cos2 θij =
1

4
AijAji lengths l2j =

Aij

Aji
l2i

Aii = 2 Aij ∈ Z≤0 Aij = 0⇔ Aji = 0 .

A2: A =

(
2 −1
−1 2

)

Coxeter-Dynkin diagrams: node = simple root, no link = roots
orthogonal, simple link = roots at π

3 , link with label m = angle π

m .

A2 H2
5

I2(n)
n
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Coxeter groups

A Coxeter group is a group generated by some involutive

generators si ,sj ∈ S subject to relations of the form (si sj )
mij = 1

with mij = mji ≥ 2 for i 6= j .
The finite Coxeter groups have a geometric representation where
the involutions are realised as reflections at hyperplanes through
the origin in a Euclidean vector space E . In particular, let (·|·)

denote the inner product in E , and v , α ∈ E .
The generator sα corresponds to the reflection

sα : v → sα (v) = v −2
(v |α)

(α|α)
α

at a hyperplane perpendicular to the root vector α.
The action of the Coxeter group is to permute these root vectors.
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Affine extensions

An affine Coxeter group is the extension of a Coxeter group by an
affine reflection in a hyperplane not containing the origin saff

α0

whose geometric action is given by

saff
α0

v = α0 + v − 2(α0|v)

(α0|α0)
α0

Non-distance preserving: includes the translation generator

Tv = v + α0 = saff
α0

sα0v
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Affine extensions – A2
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Affine extensions – A2
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Affine extensions – A2

Affine extensions of crystallographic Coxeter groups lead to a
tessellation of the plane and a lattice.
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Affine extensions of crystallographic groups A4, D6 and E8

α0

α1 α2 α3 α4

α0 α1 α2 α3 α4 α5

α6 α0

α1 α2 α3 α4 α5

α6

α0 α1 α2 α3 α4 α5

α6

α0 α1 α2 α3 α4 α5 α6 α7

α8
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Non-crystallographic Coxeter groups H2 ⊂ H3 ⊂ H4

α1

τα1+α2

τ(α1+α2)
α1+ τα2

α2

−α1

−(τα1+α2)

−τ(α1+α2)

−(α1+ τα2)

−α2

H2 ⊂ H3 ⊂ H4: 10, 120, 14,400 elements, the only Coxeter groups
that generate rotational symmetries of order 5

linear combinations now in the extended integer ring

Z[τ] = {a+ τb|a,b ∈ Z} golden ratio τ =
1

2
(1 +
√

5) = 2cos
π

5

x2 = x + 1 τ
′ = σ =

1

2
(1−
√

5) = 2cos
2π

5
τ + σ = 1,τσ =−1
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Affine extensions of non-crystallographic root systems

Unit translation along a vertex of a unit pentagon

G

T

G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Unit translation along a vertex of a unit pentagon
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G

A random translation would give 5 secondary pentagons, i.e. 25
points. Here we have degeneracies due to ‘coinciding points’.
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Affine extensions of non-crystallographic root systems

Translation of length τ = 1
2(1 +

√
5)≈ 1.618 (golden ratio)

T

G

Looks like a virus or carbon onion
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More Blueprints
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Extend icosahedral group with distinguished translations

Radial layers are simultaneously constrained by affine
symmetry

Affine extensions of the icosahedral group (giving translations)
and their classification.
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Applications of affine extensions of non-crystallographic
root systems
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There are interesting applications to quasicrystals, viruses or carbon
onions later, concentrate on the mathematical aspects for now
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Kac-Moody approach

Can recover these directly at the Cartan matrix level:
Kac-Moody-type affine extension Aaff of a Cartan matrix is an
extension of the Cartan matrix A of a Coxeter group by further

rows v and columns w such that:

Aaff =

(
2 vT

w A

)
Aaff

ii = 2 Aaff
ij ∈ Z[·]

Aaff
ij ≤ 0 moreover, Aaff

ij = 0⇔ Aaff
ji = 0

determinant constraint detAaff = 0
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Kac-Moody approach to H2
5

α1

α2

α1 = (1,0), α2 =
1

2
(−τ,

√
3− τ)

a1
5

a2
A =




2 · ·
· 2 −τ

· −τ 2
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Extension along the highest root

A =




2 x x
y 2 −τ

y −τ 2


 xy = 2− τ = σ

2

symmetric x = y = σ = 1− τ recovers Haff
2 from Twarock et al

new asymmetric e.g. (x ,y) = (τ−2,−1) or (x ,y) = (−1,τ−2)

Write x = (a+ τb) and y = (c + τd) with a,b,c ,d ∈ Z, i.e. Haff
2 is

(a,b;c ,d) = (1,−1;1,−1).
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Fibonacci scaling

The (non-trivial) units in Z[τ] are τk , k ∈ Z
Can generate all solutions to the determinant constraint xy = σ

2

by

scaling x → τ
−kx ,y → τ

ky : xy invariant (giving the angle),

but different lengths
√

x
y →

√
x
y τ−k

Fibonacci scaling
(a,b;c ,d)→ (b,a+b;d − c ,c) for multiplication by (τ,τ−1) and

(a,b;c,d)→ (b−a,a;d ,c +d) for multiplication by (τ−1,τ)(
a′

b′

)
=

(
0 1
1 1

)(
a
b

)

Swapping x ↔ y generates another solution, but here symmetric
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Extension along a bisector

A =




2 x 0
y 2 −τ

0 −τ 2


 xy = 3− τ

(x ,y) = (τ−3,−1) or (x ,y) = (−1,τ−3)
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Projection and Diagram Foldings

α1 α2 α3 α4 α5 α6 α7

α8

a1 a2 a3

5

a4

⇓ fold ⇑ Z → Z[τ ]

α1 α2 α3 α4

α7 α6 α5 α8

π‖

⇒
project

a1 a2 a3 τa4

τa1 τa2 τa3 a4

sβ1
= sα1sα7 , sβ2

= sα2sα6 , sβ3
= sα3sα5 , sβ4

= sα4sα8 ⇒ H4

E8 has two H4-invariant subspaces – blockdiagonal form
D6 has two H3-invariant subspaces
A4 has two H2-invariant subspaces
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Recap: Affine extensions of crystallographic groups

α0

α1 α2 α3 α4

α0 α1 α2 α3 α4 α5

α6 α0

α1 α2 α3 α4 α5

α6

α0 α1 α2 α3 α4 α5

α6

α0 α1 α2 α3 α4 α5 α6 α7

α8
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Affine extensions – E=
8

α0 α1 α2 α3 α4 α5 α6 α7

α8

−α0 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

AKA E+
8 and along with E++

8 and E+++
8 thought to be the

underlying symmetry of String and M-theory

Also interesting from a pure mathematics point of view: E8 lattice,
McKay correspondence and Monstrous Moonshine.
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Affine extensions – simply-laced D=
6 , A=

4

α0

α1 α2 α3 α4 α5

α6

A (D=
6 ) =




2 0 −1 0 0 0 0
0 2 −1 0 0 0 0
−1−1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1−1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2




−α0 = α1 + 2α2 + 2α3 + 2α4 + α5 + α6

α0

α1 α2 α3 α4

A (A=
4 ) =




2 −1 0 0 −1
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
−1 0 0 −1 2




−α0 = α1 + α2 + α3 + α4
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Affine extensions – D<
6 and D>

6

α0 α1 α2 α3 α4 α5

α6

A (D<
6 ) =




2 −2 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1−1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2




α0 α1 α2 α3 α4 α5

α6

A (D>
6 ) =




2 −1 0 0 0 0 0
−2 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1−1
0 0 0 0 −1 2 0
0 0 0 0 −1 0 2




−α0 = α1 + α2 + α3 + α4 +
1

2
α5 +

1

2
α6

−α0 = 2α1 + 2α2 + 2α3 + 2α4 + α5 + α6
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Induced affine roots: H=
4 from E=

8

−α0 = 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

−a0 = π‖(−α0) = 2(1 + τ)a1 + (3 + 4τ)a2 + 2(2 + 3τ)a3 + (3 + 5τ)a4

(a1|a2) =−1

2
, (a2|a3) =−1

2
, (a3|a4) =−τ

2
,

A(H=
4 ) :=




2 τ−2 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −τ

0 0 0 −τ 2




induced affine root of lengths τ and 1/τ along the highest root
αH = (1,0,0,0) of H4
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Induced affine extensions: H=
i from A=

4 , D=
6 and E=

8

affine extensions of lengths τ and 1/τ along the highest root αH of
Hi

A(H=
4 ) :=




2 τ−2 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −τ

0 0 0 −τ 2




A(H=
3 ) :=




2 0 τ−2 0
0 2 −1 0
−1 −1 2 −τ

0 0 −τ 2




A(H=
2 ) :=




2 τ−2 τ−2
−1 2 −τ

−1 −τ 2
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Induced affine extensions: three H+
3 from D+

6

A(H=
3 ) :=




2 0 τ−2 0
0 2 −1 0
−1 −1 2 −τ

0 0 −τ 2




A(H<
3 ) :=




2 4
5(τ−3) 0 0

−1 2 −1 0
0 −1 2 −τ

0 0 −τ 2




A(H>
3 ) :=




2 2
5(τ−3) 0 0

−2 2 −1 0
0 −1 2 −τ

0 0 −τ 2
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Comparison with DBT1

Haff
i was the symmetric special case of the Fibonacci ‘family’

of solutions

H=
i induced by projection of the affine extensions E=

8 , D=
6 ,

A=
4 is the ‘first asymmetric case’

Achieved by scaling the symmetric solution of Haff
i by (τ,τ−1)

Projection from D<
6 and D>

6 give extensions along 5-fold axes
of icosahedral symmetry, from D=

6 along 2-fold axes

These are exactly what we were looking for for icosahedral
applications!
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Extend icosahedral group with distinguished translations

Radial layers are simultaneously constrained by affine
symmetry

Works very well in practice: finite library of blueprints

Select blueprint from the outer shape (capsid)

Can predict inner structure (nucleic acid distribution) of the
virus from the point array

Affine extensions of the icosahedral group (giving translations) and
their classification.
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What’s the point?
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Use in Mathematical Virology

Suffice to say point arrays work very exceedingly well in
practice. Two papers on the mathematical (Coxeter) aspects.

Implemented computational problem in Clifford – some very
interesting mathematics comes out as well (see poster
‘Platonic solids generate their 4-dimensional analogues’).
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Use in Mathematical Virology

Suffice to say point arrays work very exceedingly well in
practice.

Implemented computational problem in Clifford algebra –
some very interesting mathematics comes out as well (see
poster ‘Platonic solids generate their 4-dimensional
analogues’).
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Constraints of carbon chemistry

Relevant carbon bonding here is trivalent

Bond lengths and angles need to be pretty uniform

For example, the well-known football-shaped Buckyball C60
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Strategy

Extend icosahedral shapes with a translation and take orbit
under the compact group

Select outer shells that are three-coordinated and uniform
enough

For the usual icosahedron, dodecahedron, icosidodecahedron
find few not very interesting possibilities

For C60 and C80 start, get a unique extension that exactly
give the known carbon onions C60−C240−C540 and
C80−C180−C320
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Fullerene cages derived from C60

Extend idea of affine symmetry to other objects in nature:
icosahedral fullerenes

Recover different shells with icosahedral symmetry from affine
approach starting with C60: carbon onion (C60−C240−C540)
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Fullerene cages derived from C80

Extend idea of affine symmetry to other objects in nature:
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Recover different shells with icosahedral symmetry from affine
approach starting with C80: carbon onion (C80−C180−C320)
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Growth of shells by a hexamer at a time

Hence, for C60 and C80 start, get a unique extension that
exactly give the known carbon onions C60−C240−C540 and
C80−C180−C320 by inserting an additional hexamer at each
step

Pierre-Philippe Dechant Affine symmetry principles for non-crystallographic systems & applications to viruses/carbon onions



Affine extensions
Applications
Conclusions

Virus Structure
Fullerenes and Carbon onions

Viruses and fullerenes – symmetry as a common thread?

Get nested arrangements like Russian dolls: carbon onions
(e.g. June: Nature 510, 250253)

Potential to extend to other known carbon onions with
different start configuration, chirality etc
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Conclusions

Novel mathematical structures

Interesting in their own right

Numerous applications to real systems: Viruses, Proteins,
Fullerenes, Quasicrystals, Tilings, Packings etc.

Potential applications to engineering and medicine:
nanotechnology and drug delivery
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Thank you!
(For a construction that induces from every rank 3 root system a

rank 4 root system via Clifford spinors, see my poster)
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Extension along the highest root – two-fold axis T2

α1 = (0,1,0), α2 =−1

2
(−σ ,1,τ), α3 = (0,0,1)

T2 = (1,0,0) A =




2 0 x 0
0 2 −1 0
y −1 2 −τ

0 0 −τ 2


 xy = σ

2 = 2− τ

Same solution as in the previous case of H2.
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Extension along a three-fold axis T3

α1 = (0,1,0), α2 =−1

2
(−σ ,1,τ), α3 = (0,0,1)

T3 = (τ,0,σ) A =




2 0 0 x
0 2 −1 0
0 −1 2 −τ

y 0 −τ 2


 xy =

4

3
σ
2

No longer Z[τ]-valued, and hence solutions do not exist in Z[τ].
What now? Allow Q[τ]? Write x = γ(a+ τb) and y = δ (c + τd)

with a,b,c,d ∈ Z and γ,δ ∈Q. Need γδ =
4

3
, then can recycle

integer solution
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Extension along a five-fold axis T5

α1 = (0,1,0), α2 =−1

2
(−σ ,1,τ), α3 = (0,0,1)

T5 = (τ,−1,0)
A =




2 x 0 0
y 2 −1 0
0 −1 2 −τ

0 0 −τ 2


 xy =

4

5
(3− τ)

Same solution (two series) as before in the case of H2, but this
time with the additional degree of freedom.
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Invariance under Dynkin diagram automorphisms

−α0 = α1 + α2 + α3 + α4

−α0 = α1 + 2α2 + 2α3 + 2α4 + α5 + α6

−α0 = 2α1 + 2α2 + 2α3 + 2α4 + α5 + α6
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