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Reflection groups: a new approach

α1

α2
sα (v) = v −2 (v |α)

(α|α)α =

−αvα =−(−α)v(−α)

Work at the level of root systems (which define reflection
groups)

Interested in non-crystallographic root systems e.g. viruses,
fullerenes etc. But: no Lie algebra, so conventionally less
studied

Clifford algebra is a uniquely suitable framework for reflection
groups/root systems: reflection formula, spinor double covers,
complex/quaternionic quantities arising as geometric objects
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Main results

Framework for reflection, conformal, modular and braid groups

New view on the geometry of the Coxeter plane

Induction of exceptional root systems and ADE from Platonic
symmetries

Naturally defines a range of representations
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Platonic Solid Group root system

Tetrahedron A3 Cuboctahedron
A3
1 Octahedron

Octahedron B3 Cuboctahedron
Cube +Octahedron

Icosahedron H3 Icosidodecahedron
Dodecahedron

Platonic Solids have been known for
millennia

Described by Coxeter groups
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4D analogues of the Platonic Solids

The 16-cell, 24-cell, 24-cell and dual 24-cell, the 600-cell and
the 120-cell

In higher dimensions there are only hypersimplices and
hypercubes/octahedra (An and Bn)
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Platonic Solids

Abundance of 4D root systems –
exceptional

Concatenating 3D reflections gives 4D
Clifford spinors (binary polyhedral groups)

These induce 4D root systems
R = a0 +a1e2e3 +a2e3e1 +a3e1e2⇒
RR̃ = a20 +a21 +a22 +a23
This construction accidental to 3D
perhaps explains the unusual abundance
of 4D root systems
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Root systems

α1

α2

−α1

−(α1 + α2)

α1 + α2

−α2

Root system Φ: set of
vectors α in a vector
space with an inner
product such that

1. Φ∩Rα = {−α,α} ∀ α ∈ Φ

2. sα Φ = Φ ∀ α ∈ Φ

reflection groups

sα : v → sα (v) = v −2
(v |α)

(α|α)
α

Simple roots: express every element of Φ via a Z-linear
combination with coefficients of the same sign.
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The Icosahedron

Rotational icosahedral group is I = A5 of order 60

Full icosahedral group is H3 of order 120 (including
reflections/inversion); generated by the root system
icosidodecahedron
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Non-crystallographic Coxeter groups H2 ⊂ H3 ⊂ H4

α1

τα1+α2

τ(α1+α2)
α1+ τα2

α2

−α1

−(τα1+α2)

−τ(α1+α2)

−(α1+ τα2)

−α2

H2 ⊂ H3 ⊂ H4: 10, 120, 14,400 elements, the only Coxeter groups
that generate rotational symmetries of order 5.

Linear combinations now in the extended integer ring

Z[τ] = {a+ τb|a,b ∈ Z} golden ratio τ =
1

2
(1 +
√

5) = 2cos
π

5

x2 = x + 1 τ
′ = σ =

1

2
(1−
√

5) = 2cos
2π

5
τ + σ = 1,τσ =−1
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Cartan-Dynkin diagrams

Coxeter-Dynkin diagrams: node = simple root, no link = roots
orthogonal i.e. angle π

2 , simple link = roots at angle π

3 , link with
label m = angle π

m .

A2 H2
5

I2(n)
n

A3 B3
4

H3
5

D4 F4
4

H4
5

E8
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Clifford Algebra and orthogonal transformations

Geometric Product for two vectors ab ≡ a ·b+a∧b
Inner product is symmetric part a ·b = 1

2(ab+ba)

Reflecting a in n is given by a′ = a−2(a ·n)n =−nan (n and

−n doubly cover the same reflection)

Via Cartan-Dieudonné theorem any orthogonal transformation
can be written as successive reflections, which are doubly
covered by Clifford versors/pinors A

x ′ =±n1n2 . . .nkxnk . . .n2n1 =:±AxÃ
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Clifford Algebra of 3D: the relation with 4D and 8D

Clifford (Pauli) algebra in 3D is

{1}︸︷︷︸
1 scalar

{e1,e2,e3}︸ ︷︷ ︸
3 vectors

{e1e2,e2e3,e3e1}︸ ︷︷ ︸
3 bivectors

{I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

We can multiply together root vectors in this algebra αiαj . . .

A general element has 8 components: 8D

even products (rotations/spinors) have four components:

R = a0 +a1e2e3 +a2e3e1 +a3e1e2⇒ RR̃ = a20 +a21 +a22 +a23

So behaves as a 4D Euclidean object – inner product

(R1,R2) =
1

2
(R2R̃1 +R1R̃2)
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Spinors from reflections: easy example

The 6 roots (±1,0,0) and permutations in A1×A1×A1

±e1, ±e2, ±e3 generate group of 8 spinors

±1,±e1e2,±e2e3,±e3e1
This is a discrete spinor group isomorphic to the quaternion
group Q.
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Pinors from reflections: easy example

{±1}︸ ︷︷ ︸
1 scalar

{±e1,±e2,±e3}︸ ︷︷ ︸
3 vectors

{±e1e2,±e2e3,±e3e1}︸ ︷︷ ︸
3 bivectors

{±I ≡ e1e2e3}︸ ︷︷ ︸
1 trivector

The pin group also of course contains ±e1, ±e2, ±e3 and

±e1e2e3
So total pin group is a group of order 16

Since e1, e2, e3 generate the inversion e1e2e3, actually the 8
elements in the even subalgebra and the other 8 elements in
the other 4D can be ‘Hodge’ dualised

So when the group contains the inversion Pin = Spin×Z2
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Spinors from reflections: icosahedral case

The H3 root system has 30 roots e.g. simple roots

α1 = e2,α2 =−1

2
((τ−1)e1 + e2 + τe3) and α3 = e3 .

Subgroup of rotations A5 of order 60 is doubly covered by 120

spinors of the form α1α2 =−1

2
(1− (τ−1)e1e2 + τe2e3) ,

α1α3 = e2e3 and α2α3 =−1

2
(τ− (τ−1)e3e1 + e2e3) .

The inclusion of the H3 inversion doubles this
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Polyhedral groups as multivector groups

Group Discrete subgroup Order Action Mechanism

SO(3) rotational (chiral) |G | x → R̃xR

O(3) reflection (full/Coxeter) 2|G | x →±ÃxA
Spin(3) binary 2|G | (R1,R2)→ R1R2

Pin(3) pinory (?) 4|G | (A1,A2)→ A1A2

e.g. the chiral icosahedral group has 60 elements, encoded by
120 spinors, which form the binary icosahedral group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H3 in 120 elements doubly covered by 240 pinors
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Some Group Theory: chiral, full, binary, pin

Easy to calculate conjugacy classes etc

Chiral (binary) polyhedral groups have irreps

tetrahedral (12/24): 1, 1′, 1′′, 2s , 2′s , 2′′s , 3

octahedral (24/48): 1, 1′, 2, 2s , 2′s , 3, 3′, 4s

icosahedral (60/120): 1, 2s , 2′s , 3, 3̄, 4, 4s , 5, 6s

All binary are discrete subgroups of SU(2) and all thus have a
2s spinor irrep

Connection with Trinities and the McKay correspondence
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Tetrahedral group A3: rotational group R̃xR

Simple roots for A3:
α1 = 1√

2
(e2− e1), α2 = 1√

2
(e3− e2) and α3 = 1√

2
(e1 + e2)
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Tetrahedral group A3: spinor group R1R2
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Tetrahedral group A3: pin group A1A2

Doubly covers A3.
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The Coxeter Plane

Every (for our purposes) Coxeter group has a Coxeter plane.

A way to visualise Coxeter groups in any dimension by
projecting their root system onto the Coxeter plane
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Coxeter Elements, Degrees and Exponents

Like the symmetric group, Coxeter groups can have invariant
polynomials. Their degrees d are important invariants/group
characteristics.

Turns out that actually degrees d are intimately related to
so-called exponents m m = d −1 .
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Coxeter Elements, Degrees and Exponents

A Coxeter Element is any combination of all the simple
reflections w = s1 . . .sn , i.e. in Clifford algebra it is encoded

by the versor W = α1 . . .αn acting as v → wv =±W̃ vW .
All such elements are conjugate and thus their order is
invariant and called the Coxeter number h.

The Coxeter element has complex eigenvalues of the form

exp(2πmi/h) where m are called exponents:

wx = exp(2πmi/h)x

Standard theory complexifies the real Coxeter group situation
in order to find complex eigenvalues, then takes real sections
again.
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Coxeter Elements, Degrees and Exponents

The Coxeter element has complex eigenvalues of the form

exp(2πmi/h) where m are called exponents

Standard theory complexifies the real Coxeter group situation
in order to find complex eigenvalues, then takes real sections
again.

In particular, 1 and h−1 are always exponents

Turns out that actually exponents and degrees are intimately
related ( m = d −1 ). The construction is slightly roundabout
but uniform, and uses the Coxeter plane.
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The Coxeter Plane

In particular, can show every (for our purposes) Coxeter group
has a Coxeter plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of mutually commuting
generators



Polyhedral groups, Platonic solids and root systems
Reflection groups with Clifford algebras

Conclusions

A Clifford way of doing orthogonal transformations
The geometry of the Coxeter plane
Root system induction and ADE correspondences
Representations from multivector groups
Conformal, modular and braid groups

The Coxeter Plane

Existence relies on the fact that all groups in question have
tree-like Dynkin diagrams, and thus admit an alternate
colouring

Essentially just gives two sets of orthogonal = mutually
commuting generators but anticommuting root vectors αw

and αb (duals ω)

Cartan matrices are positive definite, and thus have a
Perron-Frobenius (all positive) eigenvector λi .

Take linear combinations of components of this eigenvector as
coefficients of two vectors from the orthogonal sets
vw = ∑λwωw and vb = ∑λbωb

Their outer product/Coxeter plane bivector BC = vb ∧vw
describes an invariant plane where w acts by rotation by 2π/h.
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Clifford Algebra and the Coxeter Plane – 2D case

I2(n)
n

For I2(n) take α1 = e1, α2 =−cos π

n e1 + sin π

n e2

So Coxeter versor is just

W = α1α2 =−cos
π

n
+ sin

π

n
e1e2 =−exp

(
−πI

n

)
In Clifford algebra it is therefore immediately obvious that the
action of the I2(n) Coxeter element is described by a versor
(here a rotor/spinor) that encodes rotations in the
e1e2-Coxeter-plane and yields h = n since trivially

W n = (−1)n+1 yielding wn = 1 via wv = W̃ vW .
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Clifford Algebra and the Coxeter Plane – 2D case

Coxeter versor W =−cos
π

n
+ sin

π

n
e1e2 =−exp

(
−πI

n

)
I = e1e2 anticommutes with both e1 and e2 such that

sandwiching formula becomes

v → wv = W̃ vW = W̃ 2v = exp

(
±2πI

n

)
v immediately

yielding the standard result for the complex eigenvalues in real
Clifford algebra without any need for artificial complexification

The Coxeter plane bivector BC = e1e2 = I gives the complex
structure

The Coxeter plane bivector BC is invariant under the Coxeter
versor W̃BCW =±BC .
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Clifford algebra: no need for complexification

Turns out in Clifford algebra we can factorise W into
orthogonal (commuting/anticommuting) components

W = α1 . . .αn = W1 . . .Wn with Wi = exp(πmi Ii/h)

Here, Ii is a bivector describing a plane with I 2i =−1

For v orthogonal to the plane descrbed by Ii we have

v → W̃ivWi = W̃iWiv = v so cancels out

For v in the plane we have

v → W̃ivWi = W̃ 2
i v = exp(2πmi Ii/h)v

Thus if we decompose W into orthogonal eigenspaces, in the
eigenvector equation all orthogonal bits cancel out and one
gets the complex eigenvalue from the respective eigenspace
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Clifford algebra: no need for complexification

For v in the plane we have

v → W̃ivWi = W̃ 2
i v = exp(2πmi Ii/h)v

So complex eigenvalue equation arises geometrically without
any need for complexification

Different complex structures immediately give different
eigenplanes

Eigenvalues/angles/exponents given from just factorising
W = α1 . . .αn

E.g. H4 has exponents 1,11,19,29 and
W = exp

(
π

30BC

)
exp
(
11π

30 IBC

)
Here we have been looking for orthogonal eigenspaces, so
innocuous – different complex structures commute

But not in general – naive complexification can be misleading
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4D case: D4

E.g. D4 has exponents 1,3,3,5
Coxeter versor decomposes into orthogonal components
W = α1α2α3α4 = e1e2e3e4− e2e3− e1e2 + e1e3

=
1

2
(
√

3−BC )IBC = exp
(

π

6
BC

)
exp

(
3π

6
IBC

)
BC = 1/

√
3(e1 + e2 + e3)e4; IBC = (e1 + e2−2e3)(e1− e2)
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4D case: F4

E.g. F4 has exponents 1,5,7,11

Coxeter versor decomposes into orthogonal components

W = α1α2α3α4 = exp
(

π

12
BC

)
exp

(
5π

12
IBC

)
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4D case: H4

E.g. H4 has exponents 1,11,19,29

Coxeter versor decomposes into orthogonal components

W = α1α2α3α4 = exp
(

π

30
BC

)
exp

(
11π

30
IBC

)
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Clifford Algebra and the Coxeter Plane – 4D case summary

rank 4 exponents W-factorisation

A4 1,2,3,4 W = exp
(

π

5BC

)
exp
(
2π

5 IBC

)
B4 1,3,5,7 W = exp

(
π

8BC

)
exp
(
3π

8 IBC

)
D4 1,3,3,5 W = exp

(
π

6BC

)
exp
(

π

2 IBC

)
F4 1,5,7,11 W = exp

(
π

12BC

)
exp
(
5π

12 IBC

)
H4 1,11,19,29 W = exp

(
π

30BC

)
exp
(
11π

30 IBC

)
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8D case: E8

E.g. H4 has exponents 1,11,19,29, E8 has
1,7,11,13,17,19,23,29

Coxeter versor decomposes into orthogonal components

W = α1 . . .α8 = exp(
π

30
BC )exp(

7π

30
B2)exp(

11π

30
B3)exp(

13π

30
B4)
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8D case: E8

E.g. H4 has exponents 1,11,19,29, E8 has
1,7,11,13,17,19,23,29

Coxeter versor decomposes into orthogonal components

W = α1 . . .α8 = exp(
π

30
BC )exp(

7π

30
B2)exp(

11π

30
B3)exp(

13π

30
B4)
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Imaginary differences – different imaginaries

So what has been gained by this Clifford view?

There are different entities that serve as unit imaginaries

They have a geometric interpretation as an eigenplane of the
Coxeter element

These don’t need to commute with everything like i (though
they do here – at least anticommute. But that is because we
looked for orthogonal decompositions)

But see that in general naive complexification can be a
dangerous thing to do – unnecessary, issues of commutativity,
confusing different imaginaries etc
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Exceptional E8 (projected into the Coxeter plane)

E8 root system has 240 roots, H3 has order 120
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Order 120 group H3 doubly covered by 240 (s)pinors in 8D
space

With (somewhat counterintuitive) reduced inner product this
gives the E8 root system

E8 is actually hidden within 3D geometry!

α1 α2 α3 τα4 τα3 τα2 τα1

α4
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Induction Theorem – root systems

Induction Theorem: every 3D root system gives a 3D spinor
group which gives a 4D root system.

Check axioms:
1. Φ∩Rα = {−α,α} ∀ α ∈ Φ

2. sα Φ = Φ ∀ α ∈ Φ

Proof: 1. R and −R are in a spinor group by construction
(double cover of orthogonal transformations), 2. closure under
reflections is guaranteed by the closure property of the spinor
group (with a twist: −R1R̃2R1)

In 2D, the space of spinors is also 2D and the root systems
are self-dual under an analogous construction
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reflections is guaranteed by the closure property of the spinor
group (with a twist: −R1R̃2R1)

In 2D, the space of spinors is also 2D and the root systems
are self-dual under an analogous construction
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Spinors from reflections: easy example

The 6 roots (±1,0,0) and permutations in A1×A1×A1

generate 8 spinors:

±e1, ±e2, ±e3 give the 8 spinors ±1,±e1e2,±e2e3,±e3e1
This is a discrete spinor group isomorphic to the quaternion
group Q.

As 4D vectors these are (±1,0,0,0) and permutations, the 8
roots of A1×A1×A1×A1 (the 16-cell).
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H4 from H3

The H3 root system has 30 roots e.g. simple roots

α1 = e2,α2 =−1

2
((τ−1)e1 + e2 + τe3) and α3 = e3 .

Subgroup of rotations A5 of order 60 is doubly covered by 120

spinors of the form α1α2 =−1

2
(1− (τ−1)e1e2 + τe2e3) ,

α1α3 = e2e3 and α2α3 =−1

2
(τ− (τ−1)e3e1 + e2e3) .

(±1,0,0,0) (8 perms) ,
1

2
(±1,±1,±1,±1) (16 perms)

1

2
(0,±1,±σ ,±τ) (96 even perms),

As 4D vectors are the 120 roots of the H4 root system.
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Spinors and Polytopes

Can reinterpret spinors in R3 as vectors in R4

Give (exceptional) root systems (D4,F4,H4)

They constitute the vertices of the 16-cell, 24-cell, 24-cell and
dual 24-cell and the 600-cell

These are 4D analogues of the Platonic Solids. Strange
symmetries better understood in terms of 3D spinors
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Trinity of 4D Exceptional Root Systems

Exceptional phenomena: D4 (triality, important in string
theory), F4 (largest lattice symmetry in 4D), H4 (largest
non-crystallographic symmetry); Exceptional D4 and F4 arise
from series A3 and B3; A1× I2(n)→ I2(n)× I2(n)

rank-3 group diagram binary rank-4 group diagram

A1×A1×A1 Q A1×A1×A1×A1

A3 2T D4

B3
4

2O F4
4

H3
5

2I H4
5
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Arnold’s indirect connection between Trinities (A3,B3,H3)
and (D4,F4,H4)

Arnold had noticed a handwavey connection:

Decomposition of 3D groups in terms of number of Springer
cones matches what are essentially the exponents of the 4D
groups:

A3: 24 = 2(1 + 3 + 3 + 5) – D4: (1,3,3,5)

B3: 48 = 2(1 + 5 + 7 + 11) – F4: (1,5,7,11)

H3: 120 = 2(1 + 11 + 19 + 29) – H4: (1,11,19,29)
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Arnold’s indirect connection between Trinities

rank 4 exponents W-factorisation

A4 1,2,3,4 W = exp
(

π

5BC

)
exp
(
2π

5 IBC

)
B4 1,3,5,7 W = exp

(
π

8BC

)
exp
(
3π

8 IBC

)
D4 1,3,3,5 W = exp

(
π

6BC

)
exp
(

π

2 IBC

)
F4 1,5,7,11 W = exp

(
π

12BC

)
exp
(
5π

12 IBC

)
H4 1,11,19,29 W = exp

(
π

30BC

)
exp
(
11π

30 IBC

)
The remaining cases in the root system induction construction

work the same way, not just this Trinity! So more general
correspondence:

(A1× I2(n),A3,B3,H3) → (I2(n)× I2(n),D4,F4,H4)
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The countably infinite family I2(n) and Arnold’s
construction

For A3
1 can see immediately 8 = 2(1 + 1 + 1 + 1)

Simple roots α1 = e1, α2 = e2, α3 = e3, α4 = e4 give
W = e1e2e3e4 = (cos π

2 + sin π

2 e1e2)(cos π

2 + sin π

2 e3e4) =
exp( π

2 e1e2)exp( π

2 e3e4)

Gives exponents (1,1,1,1) (from h−1 = 2−1)
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The countably infinite family I2(n) and Arnold’s
construction

For A1× I2(n) one gets the same decomposition
4n = 2(1 + (n−1) + 1 + (n−1)) = 2 ·2n
Simple roots α1 = e1, α2 =−cos π

n e1 + sin π

n e2, α3 = e3,
α4 =−cos π

n e3 + sin π

n e4 give W = exp
(
−πe1e2

n

)
exp
(
−πe3e4

n

)
Gives exponents (1,(n−1),1,(n−1))
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The countably infinite family I2(n) and Arnold’s
construction

So Arnold’s initial hunch regarding the exponents extends in
fact to my full correspondence

McKay correspondence is a correspondence between even
subgroups of SU(2)/quaternions and ADE affine Lie algebras

In fact here get the even quaternion subgroups from 3D – link
to ADE affine Lie algebras via McKay?
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3D, 4D and ADE correspondences

McKay correspondence relates even SU(2) subgroups with
ADE Lie algebras (A2n−1,Dn+2,E6,E7,E8)

Induction theorem: get these as 2D/4D root systems
(I2(n)× I2(n),D4,F4,H4) from 2D/3D root systems
A1× I2(n),A3,B3,H3)

(2n+ 2,12,18,30) are numbers of roots, the sum of the
dimensions of the irreps and the ADE Coxeter number
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2D/3D, 2D/4D and ADE correspondences

McKay correspondence relates even SU(2) subgroups with
ADE Lie algebras (A2n−1,Dn+2,E6,E7,E8)

Induction theorem: get these as 2D/4D root systems
(I2(n)× I2(n),D4,F4,H4) from 2D/3D root systems
A1× I2(n),A3,B3,H3)

(2n+ 2,12,18,30) are numbers of roots, the sum of the
dimensions of the irreps and the ADE Coxeter number
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2D/3D, 2D/4D and ADE correspondences

McKay correspondence relates even SU(2) subgroups with
ADE Lie algebras (A2n−1,Dn+2,E6,E7,E8)

Induction theorem: get these as 2D/4D root systems
(I2(n), I2(n)× I2(n),D4,F4,H4) from 2D/3D root systems
(I2(n),A1× I2(n),A3,B3,H3)

(2n,2n+ 2,12,18,30) are numbers of roots, the sum of the
dimensions of the irreps and the ADE Coxeter number
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Is there a direct Platonic-ADE correspondence?
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A Trinity of root system ADE correspondences

2D/3D root systems (I2(n),A1× I2(n),A3,B3,H3)

2D/4D root systems (I2(n), I2(n)× I2(n),D4,F4,H4)

ADE root systems (An,Dn+2,E6,E7,E8)
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Polyhedral groups as multivector groups

Group Discrete subgroup Order Action Mechanism

SO(3) rotational (chiral) |G | x → R̃xR

O(3) reflection (full/Coxeter) 2|G | x →±ÃxA
Spin(3) binary 2|G | (R1,R2)→ R1R2

Pin(3) pinory (?) 4|G | (A1,A2)→ A1A2

e.g. the chiral icosahedral group has 60 elements, encoded by
120 spinors, which form the binary icosahedral group

together with the inversion/pseudoscalar I this gives 60
rotations and 60 rotoinversions, i.e. the full icosahedral group
H3 in 120 elements doubly covered by 240 pinors
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Representations from Clifford multivector groups

The usual picture of orthogonal transformations on an
n-dimensional vector space is via n×n matrices acting on
vectors, immediately making connections with representations
= matrices satisfying the group multiplication laws.

Easy to construct representations with (s)pinors in the
2n-dimensional Clifford algebra as reshuffling components.

Spinors leave the original n-dimensional vector space invariant,
reshuffle the components of the vector.

But can also consider various representation matrices acting
on different subspaces of the Clifford algebra.
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Representations from Clifford multivector groups – trivial,
parity, rotation representations

The scalar subspace is one-dimensional. R̃1R = R̃R = 1 gives
the trivial representation, and likewise pinors A give the parity.

The double-sided action R̃xR of spinors R on a vector x in
the n-dimensional vector space gives an n×n-dimensional
representation, which is just the usual rotation matrices.

E.g. e1e2 acting on x = x1e1 + x2e2 + x3e3 gives
e2e1xe1e2 =−x1e1−x2e2 + x3e3 which could also be

expressed as

−1 0 0
0 −1 0
0 0 1

x1
x2
x3

=

−x1−x2
x3


If the spinors were acting as RxR̃ would give a potentially
different representation.
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Characters, their norm, and the Frobenius-Schur indicator

Similarity transformed representations are also good
representations, but are not fundamentally different: they are
equivalent.

So want a measure for a representation that is invariant under
similarity transformations, e.g. the trace aka the character χ

of a matrix

A class function i.e. the same within a conjugacy class
because of the cyclicity of the trace

The character norm ||χ||2 := 1
|G | ∑g∈G |χ(g)|2

The Frobenius-Schur indicator ν := 1
|G | ∑g∈G χ(g2)
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Real representations of real, complex, and quaternionic
type

||χ||2 = 1
|G | ∑g∈G |χ(g)|2 = 1: representation of real type

||χ||2 = 1
|G | ∑g∈G |χ(g)|2 = 2: representation of complex type

||χ||2 = 1
|G | ∑g∈G |χ(g)|2 = 4: representation of quaternionic

type

Theorem: A complex representation is irreducible if and only
if ||χ||2 = 1.

Theorem: A real representation is irreducible if and only if

||χ||2 + ν(χ) = 2 , e.g. 4−2 = 2 or 1 + 1 = 2.
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Representations from Clifford multivector groups – 8×8
and 4×4 (whole algebra / even subalgebra)

Rather than restricting oneself to the n-dimensional vector
space, one can also define representations by 2n×2n-matrices
acting on the whole Clifford algebra, i.e. any element acting
on an arbitrary elemtent, e.g. here 8×8.

Likewise, one can define 2(n−1)×2(n−1)-dimensional spinor
representations as acting on the even subalgebra.

3D spinors have components in (1, e1e2, e2e3, e3e1),
multiplication with another spinor e.g. e1e2 will reshuffle these
components (e1e2, −1, −e3e1, e2e3)

This reshuffling can therefore be described by a 4×4-matrix.
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4×4 – explicit example: A3
1

E.g. ±e1, ±e2, ±e3 give the 8 spinors

±1,±e1e2,±e2e3,±e3e1 , or (±1,0,0,0) (8 permutations)

||χ||2 = 32/8 = 4, ν =−2 and ||χ||2 + ν = 2 i.e. real
irreducible of quaternionic type



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,



−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 ,



0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 ,



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

,



0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

 ,



0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 ,



0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

 ,



0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0


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Character table of Q

Q 1 −1 ±e1e2 ±e2e3 ±e3e1
1 1 1 1 1 1
1′ 1 1 −1 −1 1
1′′ 1 1 −1 1 −1
1′′′ 1 1 1 −1 −1
2 2 −2 0 0 0

4H 4 −4 0 0 0
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4×4 – explicit example: A3

As a set of vectors in 4D, they are
(±1,0,0,0) (8 permutations) , 1

2(±1,±1,±1,±1) (16 permutations)

Conjugacy classes:
1 ·42 + 1 · (−4)2 + 6 ·02 + 8 ·22 + 8 · (−2)2 = 32 + 32 + 32 = 96

||χ||2 = 96/24 = 4, ν =−2 and ||χ||2 + ν = 2 i.e. real
irreducible of quaternionic type.
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3×3 – explicit example: H3

Icosahedral spinors are

(±1,0,0,0) (8 permutations) ,
1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±σ ,±τ) (96 even permutations) ,

E.g. the rotation matrices corresponding to α1α2 and α2α3

via R̃xR are

1

2

 τ τ−1 −1
1− τ −1 −τ

−1 τ 1− τ

 and
1

2

 τ 1− τ −1
1− τ 1 −τ

1 τ τ−1

 .

The characters χ(g) are obviously 0 and τ

||χ||2 = 120/120 = 1, ν = 1 and ||χ||2 + ν = 2 i.e. real
irreducible of real type
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3×3 – explicit example: H3 other way

If the spinors were acting as RxR̃, then

1

2

 τ 1− τ −1
τ−1 −1 τ

−1 −τ 1− τ

 and
1

2

 τ 1− τ 1
1− τ 1 τ

−1 −τ τ−1

 ,

with the same characters as before. Swapping the action of
the spinor can change the representation.
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4×4 – explicit example: H3

Spinors α1α2 and α2α3 multiplying a generic spinor
R = a0 +a1e2e3 +a2e3e1 +a3e1e2 from the left reshuffles the
components (a1,a2,a3,a0) with the matrices given as

1

2


−1 τ−1 0 −τ

1− τ −1 −τ 0
0 τ −1 τ−1
τ 0 1− τ −1

 ,
1

2


−τ 0 1− τ −1
0 −τ −1 τ−1

τ−1 1 −τ 0
1 1− τ 0 −τ

 ,

with characters −2 and −2τ.
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4×4 – explicit example H3: quaternionic type

120 4×4 matrices – 9 conjugacy classes, with pairs that have
±2χ3 so gives 4 times that of the 3×3 case

|G | · ||χ||2 = 1 ·42 + 1 · (−4)2 + 12 · (−2τ)2 + 12 · (2τ)2 + 12 ·
(−2σ)2 + 12 · (2σ)2 + 20 · (−2)2 + 20 · (2)2 + 30 ·02 = 480

||χ||2 = 480/120 = 4, ν =−2 and ||χ||2 + ν = 2 i.e. real
irreducible of quaternionic type
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Character table of I = A5

I 1 20C3 15C2 12C5 12C 2
5

1 1 1 1 1 1
3 3 0 −1 τ σ

3̄ 3 0 −1 σ τ

4 4 1 0 −1 −1
5 5 −1 1 0 0
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Character table of 2I

I 1 20C3 30C2 12C5 12C 2
5 −1 −20C3 −12C5 −12C 2

5

1 1 1 1 1 1 1 1 1 1
3 3 0 −1 τ σ 3 0 τ σ

3̄ 3 0 −1 σ τ 3 0 σ τ

4 4 1 0 −1 −1 4 1 −1 −1
5 5 −1 1 0 0 5 −1 0 0

2 2 −1 0 −σ −τ −2 1 σ τ

2 2 −1 0 −τ −σ −2 1 τ σ

4 4 1 0 −1 −1 −4 −1 1 1
6 6 0 0 1 1 −6 0 −1 −1

4H 4 −2 0 −2τ −2σ −4 2 2τ 2σ

4H̃ 4 −2 0 −2σ −2τ −4 2 2σ 2τ
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A general construction of representations of quaternionic
type – canonical representations

It had so far been overlooked that there is a systematic
construction of representations of quaternionic type for 3D
polyhedral groups

This is simply due to the fact that the spinors in 3D provide a
realisation of the quaternions

Therefore spinors provide 4x4 representations of quaternionic
type for all (though limited number of) possible groups

However, they are canonical for a choice of 3D simple roots,
i.e. there is a preferred amongst all similarity transformed
versions

These simple roots also determine the 3x3 rotation matrices
and their reversed representations in a similar canonical way
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Characters in general

For a general spinor R = a0 +a1e2e3 +a2e3e1 +a3e1e2 one has
3D character χ = 3a20−a21−a22−a23 and representation

1

2

a20 +a21−a22−a23 −2a0a3 + 2a1a2 2a0a2 + 2a1a3
2a0a3 + 2a1a2 a20−a21 +a22−a23 −2a0a1 + 2a2a3
−2a0a2 + 2a1a3 2a0a1 + 2a2a3 a20−a21−a22 +a23


and the 4D rep and character are

a0 a3 −a2 a1
−a3 a0 a1 a2
a2 −a1 a0 a3
−a1 −a2 −a3 a0

 ,


b1
b2
b3
b0

 and χ = 4a0.

Characters of the representations are all determined by the
spinor!
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Clifford Algebra and orthogonal transformations

Inner product is symmetric part a ·b = 1
2(ab+ba)

Reflecting a in b is given by a′ = a−2(a ·b)b =−bab (b and

−b doubly cover the same reflection)

Via Cartan-Dieudonné theorem any orthogonal
(/conformal/modular) transformation can be written as
successive reflections

x ′ =±n1n2 . . .nkxnk . . .n2n1 =±AxÃ

The conformal group C (p,q)∼ SO(p+ 1,q+ 1) so can use
these for translations, inversions etc as well
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Conformal Geometric Algebra

Go to e1,e2,e, ē, with e20 = 1,e2i =−1,e2 = 1, ē2 =−1

Define two null vectors n ≡ e + ē, n̄ ≡ e− ē

Can embed the 2D vector x = xµeµ = xe1 + ye2 as a null
vector in 4D (also normalise F (x) · e =−1)

F (x) =
1

λ 2−x2
(x2n+ 2λx−λ

2n̄)

So neat thing is that conformal transformations are now done
by rotors (except inversion which is a reflection) – distances
are given by inner products
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Conformal Transformations in CGA

F (x) =
1

λ 2−x2
(x2n+ 2λx−λ

2n̄)

Reflection: spacetime F (−axa) =−aF (x)a

Rotation: spacetime F (RxR̃) = RF (x)R̃, R = exp( ab
2λ

)

Translation: F (x +a) = RTF (x)R̃T for RT = exp( na
2λ

) = 1+ na
2λ

Dilation: F (eαx) = RDF (x)R̃D for RD = exp( α

2λ
eē)

Inversion: Reflection in extra dimension e: F ( x
x2

) =−eF (x)e
sends n↔ n̄

Special conformal transformation: F ( x
1+ax ) = RSF (x)R̃S for

RS = RIRTRI
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Modular group

Modular generators: T : τ → τ + 1, S : τ →−1/τ

〈S ,T |S2 = I ,(ST )3 = I 〉 CGA rotor version: RYXR̃Y

CGA: TX = exp(
ne1
2

) = 1 +
ne1
2

and SX = e1e (slight issue

of complex structure τ = complex number, not vector in the
2D real plane so map e1 : x1e1 +x2e2↔ x1 +x2e1e2 = x1 + ix2)

(SXTX )3 =−1 and S2
X =−1

So a 3-fold and a 2-fold rotation in conformal space
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Braid group

(SXTX )3 =−1 and S2
X =−1 is inherently spinorial

Of course Clifford construction gives a double cover

The braid group is a double cover

So Clifford construction gives the braid group double cover of
the modular group

σ1 = T̃X = exp(−ne1/2) and σ2 = TXSXTX = exp(−n̄e1/2)
satisfying σ1σ2σ1 = σ2σ1σ2 (= SX )

Nice symmetry between the roles of the point at infinity and
the origin

Might not be known? Spinorial techniques might make
awkward modular transformations more tractable?
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Clifford algebra provides a very general way of doing reflection
group theory (Cartan-Dieudonné)

Construction of the exceptional root systems from 3D root
systems

More geometric approach to the geometry of the Coxeter
plane, degrees and exponents

Geometry of 3D space systematically and canonically gives
representations of 4D root systems in terms of quaternions
and polyhedral representations of quaternionic type (among
others)
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Thank you!
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Quaternion groups via the geometric product

The 8 quaternions of the form (±1,0,0,0) and permutations
are the Lipschitz units,the quaternion group in 8 elements.

The 8 Lipschitz units together with 1
2(±1,±1,±1,±1) are the

Hurwitz units, the binary tetrahedral group of order 24.
Together with the 24 ‘dual’ quaternions of the form
1√
2

(±1,±1,0,0), they form the binary octahedral group of

order 48.

The 24 Hurwitz units together with the 96 unit quaternions of
the form (0,±τ,±1,±σ) and even permutations, are called
the Icosians. The icosian group is isomorphic to the binary
icosahedral group with 120 elements.

The unit spinors {1;e2e3;e3e1;e1e2} of Cl(3) are isomorphic
to the quaternion algebra H.
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H4 from icosahedral spinors

The H3 root system has 30 roots e.g. simple roots
α1 = e2,α2 =−1

2((τ−1)e1 + e2 + τe3) and α3 = e3.

The subgroup of rotations is A5 of order 60

These are doubly covered by 120 spinors of the form
α1α2 =−1

2(1− (τ−1)e1e2 + τe2e3), α1α3 = e2e3 and
α2α3 =−1

2(τ− (τ−1)e3e1 + e2e3).

As a set of vectors in 4D, they are

(±1,0,0,0) (8 permutations) ,
1

2
(±1,±1,±1,±1) (16 permutations)

1

2
(0,±1,±σ ,±τ) (96 even permutations) ,

which are precisely the 120 roots of the H4 root system.
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Systematic construction of the polyhedral groups

Multiplying together root vectors in the Clifford algebra gave
a systematic way of constructing the binary polyhedral groups
as 3D spinors = quaternions.

The 6/12/18/30 roots in A1×A1×A1/A3/B3/H3 generate
8/24/48/120 spinors.

The discrete spinor group is isomorphic to the quaternion
group Q / binary tetrahedral group 2T/ binary octahedral
group 2O/ binary icosahedral group 2I ).
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Quaternionic representations of 3D and 4D Coxeter groups

Groups E8, D4, F4 and H4 have representations in terms of
quaternions

Extensively used in the high energy
physics/quasicrystal/Coxeter/polytope literature and thought
of as deeply significant, though not really clear why

e.g. H4 consists of 120 elements of the form (±1,0,0,0),
1
2(±1,±1,±1,±1) and (0,±τ,±1,±σ)

Seen as remarkable that the subset of the 30 pure quaternions
is a realisation of H3 (a sub-root system)

Similarly, B3 and A1×A1×A1 have representations in terms
of pure quaternions

Clifford provides a much simpler geometric explanation
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Quaternionic representations in the literature

e1 e2 e3 1 e1 e2 e3

A1 ×A1 ×A1 A1 ×A1 ×A1 ×A1

e1 + e2 e3 − e2 e2 − e1 e1 1
2 (1− e1 − e2 − e3) e2

e3

A3 = D3 D4

e1 − e2 e2 − e3
√
2e3

4

1
2 (1− e1 − e2 − e3) e3 1

2 (e2 − e3)
1
2 (e1 − e2)

4

B3 F4

5

−e1
1
2 (τe1 + e2 + σe3) −e2

5

−e1
1
2 (τe1 + e2 + σe3) −e2

1
2 (σ + e2 + τe3)

H3 H4

Pure quaternions = Hodge dualised root vectors
Quaternions = spinors
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Demystifying Quaternionic Representations

Pure quaternion subset of 4D groups only gives 3D group if
the 3D group contains the inversion/pseudoscalar I

e.g. does not work for the tetrahedral group A3, but A3→ D4

induction still works, with the central node essentially
‘spinorial’

In fact, it goes the other way around: the 3D groups induce
the 4D groups via spinors

The rank-4 groups are also generated (under quaternion
multiplication) by two quaternions we can identify as
R1 = α1α2 and R2 = α2α3

Can see these are ‘spinor generators’ and how they don’t
really contain any more information/roots than the rank-3
groups alone
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Quaternions vs Clifford versors

Sandwiching is often seen as particularly nice feature of the
quaternions giving rotations

This is actually a general feature of Clifford algebras/versors
in any dimension; the isomorphism to the quaternions is
accidental to 3D

However, the root system construction does not necessarily
generalise

2D generalisation merely gives that I2(n) is self-dual

Octonionic generalisation just induces two copies of the above
4D root systems, e.g. A3→ D4⊕D4

Recently constructed E8 from the 240 pinors doubly covering
120 elements of H3 in 23 = 8-dimensional 3D Clifford algebra
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