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Collapsing of non-centered parameterised MCMC algorithms

with applications to epidemic models

Peter Neal (Lancaster University) and Fei Xiang (University of Cambridge)
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Running title: Collapsing of MCMC algorithms

Abstract

Data augmentation is required for the implementation of many MCMC algorithms. The inclusion

of augmented data can often lead to conditional distributions from well-known probability distribu-

tions for some of the parameters in the model. In such cases, collapsing (integrating out parameters)

has been shown to improve the performance of MCMC algorithms. We show how integrating out

the infection rate parameter in epidemic models leads to efficient MCMC algorithms for two very

different epidemic scenarios, final outcome data from a multitype SIR epidemic and longitudinal data

from a spatial SI epidemic. The resulting MCMC algorithms give fresh insight into real life epidemic

data sets.

Keywords: Collapsing; measles; non-centred MCMC algorithms; spatial epidemics; stochastic epidemic

models.

1 Introduction

A key aim of parametric Bayesian statistics is, given data x which are assumed to arise from a modelM

with unknown parameters θ, to obtain the posterior distribution of θ, π(θ|x). For all, but the simplest of

problems this is not analytically tractable and often an MCMC algorithm is used to obtain samples from

π(θ|x). Furthermore, the implementation of an MCMC algorithm will often require data augmentation,

y, with the resulting algorithm producing samples from π(θ,y|x) with the marginal distribution π(θ|x)

of primary interest. This raises the question of how to construct an efficient MCMC algorithm to obtain

samples from π(θ,y|x)?

One approach which can assist in developing an efficient MCMC algorithm is collapsing, Liu (1994), that

is, to integrate out some of the parameters from the model and construct an MCMC algorithm for a

subset of the parameters. Specifically, suppose that θ = (λ,φ) and that the conditional distribution of λ
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given φ and x, π(λ|φ,y,x) is known. In this case, we can simply integrate out λ to leave π(φ|x). In Liu

(1994) particular focus is placed upon collapsing for the Gibbs sampler but the approach can easily be

applied to any MCMC algorithm, where π(λ|φ,y,x) is known, see, for example Neal and Roberts (2005)

for an epidemic example.

In this paper λ is the infection rate of an epidemic model. For a number of epidemic models the augmented

data can be chosen independently of λ leading to a non-centered parameterisation, Papaspiliopoulos et

al. (2003). We show how the augmented data can be chosen to give a straightforward to compute

likelihood. Then by integrating out not only λ but also a subset of the augmented data we obtain a

tractable likelihood which can be utilised within an efficient MCMC algorithm. The generic approach is

introduced in Section 2 with the details being model specific. The methodology is illustrated with two

distinct epidemic models; final outcome data from a multitype SIR epidemic (Section 3) and longitudinal

data from a spatial SI epidemic (Section 4). These highlight the ease with which the collapsing of the

MCMC algorithm can be implemented and the significant efficiency gains that it offers. Finally, we briefly

summarise the findings of the paper in Section 5.

2 Generic collapsing setup

In this Section we outline the generic collapsing approach taken in this paper. This allows us to highlight

the key elements in choosing the data augmentation and implementing the collapsing for epidemic models.

Let θ = (λ,φ) and y = (v,w) denote the parameters of the model and the augmented data, respectively.

The parameters and augmented data are each divided into two sets with λ and v denoting parameters

and augmented data which are to be integrated out and φ and w denoting the remaining parameters and

augmented data. Throughout this Section we assume that λ is one-dimensional, for ease of exposition

and since this is the case in the examples in Sections 3 and 4 and generally likely to be the case in

practice. However, the following discussion straightforwardly extends to λ being multidimensional and

even in the one-dimensional case the effect on the performance of the MCMC algorithm can be dramatic

as we highlight in Section 3.

The joint posterior distribution of θ and y satisfies

π(θ,y|x) ∝ π(x|y,θ)π(y|θ)π(θ). (2.1)

We make a few assumptions about the form of the righthand side of (2.1) in order to implement the

collapsing. Firstly, that the priors on λ and φ are independent. Secondly, that the augmented data
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y = (v,w) is independent of λ. Thirdly, that the augmented data to be integrated out, v is independent

of φ and w. Under these assumptions (2.1) satisfies

π(λ,φ,v,w|x) ∝ π(x|v,w, λ,φ)π(v,w|λ,φ)π(λ,φ)

∝ π(x|v,w, λ,φ)π(w|φ)π(v)π(φ)π(λ). (2.2)

The final assumption that we make regards the form of π(x|v,w, λ,φ), we assume that there exists a

deterministic function h(·, ·, ·, ·) such that, if V and W are drawn from π(v) and π(w|φ), respectively,

h(λ,φ,V,W) gives a realisation of X from the modelM with parameters θ = (λ,φ). Note that different

realisations of the process can be generated by changing some or all of λ, φ, V and W. In this case

π(x|λ,φ,v,w) = 1{h(λ,φ,v,w)=x}. (2.3)

This is a general situation observed in both Sections 3 and 4. The discontinuous density in (2.3) can make

constructing an efficient MCMC algorithm difficult, see for example Neal et al. (2012). The integration

out of v and λ gives

P (φ,w) =

∫
λ

∫
v

1{h(λ,φ,v,W)=x}π(λ)π(v) dv dλ, (2.4)

the probability that, given φ and w, λ and v sampled from π(λ) and π(v), respectively, will result in

h(λ,φ,v,w) = x. Note that the inclusion of augmented data v into the model to then simply integrate

it out again may seem unnecessary but it is helpful in understanding the model dynamics and enabling

us to exploit (2.3) directly. By constructing an MCMC algorithm based on (2.4) rather than (2.3), we

are exploiting a Rao-Blackwellisation, see, for example, Smith and Roberts (1993). Specifically, we are

replacing an unbiased, indicator function estimate of the likelihood (E[1{h(λ,φ,V,W)=x}|λ,φ] = π(x|λ,φ))

by an unbiased, probability estimate of the likelihood (E[P (φ,W)|φ] = π(x|φ)). As we shall observe in

Section 3 this substantially improves the performance of the MCMC algorithm.

By integrating out λ and v, it follows from (2.2) and (2.4) that

π(φ,w|x) ∝ P (φ,w)π(w|φ)π(φ). (2.5)

Therefore it is straightforward to construct an MCMC algorithm which alternates between updating the

parameters φ and the augmented data w. However, we want samples from π(λ,φ|x). This can easily be

done using a sample (φ,w) from π(φ,w|x). Then

π(λ|φ,w,x) ∝ π(λ)

∫
v

1{h(λ,φ,w,v)=x}π(v) dv, (2.6)

and we can sample λ using (2.6) provided that the integral can be computed. The sampling of a one-

dimensional parameter λ is usually straightforward. For the examples considered in Sections 3 and 4

direct simulation from the conditional distribution is possible using a sample v from π(v).
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We summarise the generic MCMC algorithm with details being model specific and given in Sections 3

and 4.

MCMC algorithm

i) Propose φ′ from qφ(φ, ·) and accept the proposed move with probability

π(φ′,w|x)qφ(φ′,φ)

π(φ,w|x)qφ(φ,φ′)
∧ 1.

ii) Propose w′ from qw(w, ·) and accept the proposed move with probability

π(φ,w′|x)qw(w′,w)

π(φ,w|x)qw(w,w′)
∧ 1.

iii) Sample π(λ|φ,w,x) using (2.6).

iv) Store θ = (λ,φ) as a sample from π(θ|x).

In practice steps (i) and (ii) of the algorithm might comprise multiple steps for updating different sets

of parameters and augmented data, respectively.

In the examples considered in Sections 3 and 4, λ represents the infection rate and the integrating out

the infection rate allows the MCMC algorithm to move efficiently to effectively determine an appropriate

infection rate given the other parameters and the augmented data. In both examples the augmented

data w consists of ω, the order of infection, L, the additional infectious pressure required for successive

infections and for the measles example in Section 3 the infectious periods I. In both cases the data v is

a subset of the infectious pressures L, chosen to ensure that the correct number of infections take place.

The other parameters (φ) are model specific, vaccine efficacy in the measles example in Section 3 and

spatial and background risk to infection in the spatial SI epidemic in Section 4.

3 Final size epidemic data

In this Section we illustrate collapsing of an MCMC algorithm using a non-centered parameterisation

for final size epidemic data. The motivating example is the outbreak of measles in a Finnish school (a

small, assumed to be homogeneously mixing, community), Paunio et al. (1998), where individuals are

grouped by vaccination status. A second measles example where there is missing vaccination statuses of

individuals (van Boven et al. (2010)) is considered in the supplementary material. We start by describing

the data. The data are analysed using a Sellke (Sellke (1983)) construction of the epidemic process. This
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involves extending the non-centered parameterisation for SIR epidemic models employed in Neal (2012),

Section 3 to multiple types of individuals.

The data consist of how many school pupils were infected in a measles outbreak in Honkajoki, a small

rural Finnish municipality in 1989, Paunio et al. (1998). Pupils belong to one of three types, 0, 1 or 2,

where a type k (k = 0, 1, 2) individual has received k doses of measles vaccines. Let xk and nk denote

the total number of infected individuals and the total number of individuals of type k, respectively, with

m = x0 + x1 + x2 and N = n0 + n1 + n2. The data are summarised in Table 1.

Table 1 about here.

A vaccine can affect both an individual’s susceptibility to and infectivity with a disease, Halloran et

al. (2010). Given the data, there is insufficient information to model both variable susceptibility and

infectivity, see, for example, van Boven et al. (2010), and therefore we assume that the vaccine only

affects an individual’s susceptibility to the disease. Therefore the model is as follows. The epidemic is

an SIR epidemic in a closed, homogeneously mixing population of size N . That is, apart from the initial

infective who introduces the disease to the school, nobody is infected from outside the school and we do

not model infectious contacts made by pupils with individuals outside of the school. The epidemic is

initiated by a single infective with the extension to multiple initial infectives trivial. Whilst infectious, an

individual makes infectious contacts at the points of a homogeneous Poisson process with rate λ, with the

individual contacted chosen uniformly at random from the population. If the individual contacted by an

infective is a susceptible individual of type k, they become infected with probability qk, where q0 = 1 and

(q1, q2) are unknown parameters to be estimated. Therefore, for k = 1, 2, 1 − qk denotes the protective

benefit of being vaccinated k times. Infectious contacts with non-susceptible individuals have no affect

on the recipient. That is, individuals can be infected at most once. The infectious periods of infected

individuals are assumed to be independent and identically distributed according to a random variable I.

Final size data contains no temporal information about the epidemic and is invariant to replacing (λ, I)

by (cλ, I/c) for any c > 0 (Ball and O’Neill (1999), van Boven et al. (2010), Neal (2012)). Therefore

without loss of generality, we take I to have mean 1, so that λ denotes the basic reproduction of the

epidemic. We assume U(0, 1) priors for q1 and q2 and a Gamma(a, b) prior for λ. (Setting a = 1 and

b = 0 gives an improper uniform prior for λ.)

In order to implement a non-centered parameterisation it is convenient to use a Sellke type construction,

Sellke (1983) of the epidemic process, see for example Neal (2012). The construction differs slightly from

Neal (2012) in that we have multiple types of individuals. For j = 0, 1, 2 and i = 1, 2, . . ., let sj,i denote

the total number of susceptibles of type j after the ith infection with sj,0 = nj . For i = 1, 2, . . ., let
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αi =
∑2
j=0 sj,iqj/N , the probability that following the ith infection, an infectious contact will result in

infection (a contact is with a susceptible and that the contact is successful). We augment the observed

data x by ω = (ω1, ω2, . . . , ωm), I = (I1, I2, . . . , Im) and L = (L1, L2, . . . , Lm) defined as follows. Let ω

denote the order in which individuals are infected with ωj = k if the jth individual infected is of type k.

Let Ij denote the infectious period of the jth individual. Finally, the Lj ’s are independent and identically

distributed according to L1 ∼ Exp(1), and their role will be discussed in detail below.

We assume that ω is consistent with the data, that is, xk elements of ω are equal to k (k = 0, 1, 2). Then

π(ω|q) =

m∏
i=1

sωi,i−1qωi∑2
k=0 sk,i−1qk

, (3.1)

where q0 = 1. Thus the order ω explicitly depends on the parameters q. Given that i infections have

taken place Li/(αiλ) denotes the additional infectious pressure (units of infection) needed to ensure that

the (i+ 1)st individual is infected. This is consistent with infectives making infectious contacts at rate λ

with success probability αi. Thus, given ω, q, L and I, the epidemic infects m individuals of types x, if

for all 1 ≤ k ≤ m− 1,

1

λ

k∑
i=1

Li
αi
≤

k∑
i=1

Ii, (3.2)

and

1

λ

m∑
i=1

Li
αi

>

m∑
i=1

Ii. (3.3)

Let h(λ,q,ω,L, I) denote the epidemic process generated by the first m infections. Then if ω is consistent

with the data and (3.2) and (3.3) are satisfied, we have that h(λ,q,ω,L, I) = x. We can construct an

MCMC algorithm which moves around the joint space of (λ,q,ω,L, I) but we collapse the algorithm by

integrate out λ and Lm. That is, in the notation of Section 2, φ = q, w = (ω,L1:m−1, I) and v = Lm,

where L1:m−1 = (L1, L2, . . . , Lm−1). By integrating out Lm, a simple conditional distribution for λ,

λ|ω,q,L1:m−1, I,x, exists. From (3.2) and (3.3), we require that

Hm = max
1≤k≤m−1

∑k
i=1 Li/αi∑k
i=1 Ii

≤ λ <
∑m
i=1 Li/αi∑m
i=1 Ii

. (3.4)

Thus λ > Hm and Lm > αm{λ
∑m
i=1 Ii −

∑m−1
i=1 Li/αi} = Jm, say, gives

P (q,ω,L1:m−1, I|x) ∝
∫ ∞
0

∫ ∞
0

π(x|λ,q,ω,L, I)π(λ)π(q)π(ω|q)π(L)π(I) dLm dλ

∝
∫ ∞
Hm

∫ ∞
Jm

exp(−Lm)dLm
λa−1

Γ(a)
exp(−λb)dλπ(ω|q)π(L1:m−1)π(I)

= exp

(
αm

m−1∑
i=1

Li/αi

)
π(ω|q)π(L1:m−1)π(I)

×
∫ ∞
Hm

exp

(
−λαm

m∑
i=1

Ii

)
λa−1

Γ(a)
exp(−λb)dλ (3.5)
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The integral on the righthand side of (3.5) is P (Z > Hm)/(b+ αm
∑m
i=1 Ii)

a, where Z ∼ Gamma(a, b+

αm
∑m
i=1 Ii). Thus if a ∈ N, corresponding to an Erlang prior (Gamma distribution with integer shape

parameter) on λ, it follows from (3.5) that

P (q,ω,L1:m−1, I|x) =

{
a−1∑
k=0

(b+ αm
∑m
i=1 Ii)

k−a

k!

}
π(ω|q)π(L1:m−1)π(I)

× exp

(
−αm

{
Hm

m∑
i=1

Ii −
m−1∑
i=1

Li/αi

})
. (3.6)

We are now in position to describe a collapsed MCMC algorithm based upon (3.5) for obtaining samples

from π(λ,q|x). The acceptance probability for each step is straightforward to compute using (3.5) and

(3.1). Below we describe the steps per iteration with (λ,q) stored at the end of each iteration.

MCMC algorithm

i) Update (q1, q2) using random walk Metropolis. We propose q′k ∼ N(qk, σ
2
q ) (k = 1, 2), with reflection

at the boundaries 0 and 1 to ensure that 0 ≤ q′1, q′2 ≤ 1.

ii) Update in turn the augmented data w = (ω,L1:m−1, I) as follows

(a) Update ω using an independence sampler with ω′ sampled uniformly at random from the set

of possible orderings consistent with the data.

(b) Update L1:m−1 by proposing to update a random subset P of the thresholds, where |P| = p.

If i ∈ P, draw L′i ∼ Exp(1), otherwise set L′i = Li.

(c) Update I by proposing to update a random subset R of the infection periods, where |R| = r.

If i ∈ R, draw I ′i ∼ I, otherwise set I ′i = Ii.

iii) Draw λ|ω,q,L1:m−1, I,x from its conditional distribution, which is Gamma(a, b + αm
∑m
i=1 Ii)

conditioned to be greater than Hm. If a = 1, we can exploit the memoryless property of the

exponential random variable to give

λ|ω,q,L1:m−1, I,x ∼ Hm + Exp

(
b+ αm

m∑
i=1

Ii

)
. (3.7)

iv) Store θ = (λ,q) as a sample from π(θ|x).

We briefly comment upon the algorithm for the Honkajoki data. For updating q, we want an acceptance

rate of approximately 35% to optimise the random walk Metropolis. This is achieved by choosing σq =

0.15. More generally, σq can be chosen adaptively using an adaptive MCMC scheme, see, for example
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Xiang and Neal (2014). The independence sampler for ω has a high acceptance rate of 90%, which

shows that the order of infection is largely irrelevant. If the data are such that the order of ω is more

important an updating scheme along the lines of that used in Section 4 could alternatively be used. For

updating L1:m−1, we choose p = 15, which results in an acceptance rate of 33%. There is a compromise

here as increasing p decreases the acceptance rate and maximise p times the acceptance rate gives close

to optimal behaviour, see Xiang and Neal (2014). We choose π(λ) ∝ 1 (λ > 0) corresponding to an

improper Gamma(1, 0) prior. Finally, we consider three scenarios for I; I ≡ 1, I ∼ Gamma(2, 2) and

I ∼ Gamma(exp(γ), exp(γ)) with γ unknown. Except in the case where I ≡ 1, we updated r = 15

infection times together at each iteration. In the case of unknown γ we assigned an Exp(1) prior (this

ensures that the shape parameter on the Gamma distribution is greater than or equal to 1) and added a

random walk step to the MCMC algorithm to update γ with proposal standard deviation 1.

For all three scenarios the algorithm was run for 110000 iterations with the first 10000 iterations discarded

as burn-in. The initial values for q, ω and L1:m−1 were drawn from the prior on q, a random permutation

of the m infections and Exp(1), respectively. The initial values for I are drawn from the appropriate

distribution with γ = 1 in the third scenario. The burn-in is excessive with convergence appearing to

be almost instantaneous, except for γ. Autocorrelation function plots show that for all the parameters,

except γ, the correlation is decaying rapidly and is approximately 0 by lag-30. The estimated posterior

means, standard deviations and effective sample sizes for (λ,q, γ) are given in Table 2. The poor mixing

in γ is due to the lack of information in the final size data about the infectious period distribution,

highlighted by the variability in γ and the similar parameter estimates for all three scenarios with I ≡ 1

corresponding to the limit as γ →∞ of I ∼ Gamma(exp(γ), exp(γ)).

Table 2 about here.

For comparison we ran the corresponding MCMC algorithms without λ and Lm integrated out for 110000

iterations with the first 10000 iterations discarded as burn-in. We initialised with λ = 3 and simulated

q, ω, L and I until we obtained an epidemic consistent with the data. The modifications to the above

algorithm are that L is updated in place of L1:m−1 and λ drawn uniformly from(
max

1≤k≤m−1

{
k∑
i=1

Li
αi
/

k∑
i=1

Ii

}
,

m∑
i=1

Li
αi
/
m∑
i=1

Ii

)
,

which ensures that (3.2) and (3.3) are satisfied. To optimise performance we set σq = 0.05, p = 5 and

r = 5. The estimated posterior means and standard deviations are similar to those reported in Table 2 for

the collapsed MCMC algorithm but the mixing is far worse. The estimated effective sample sizes for q1,

q2, λ and γ for the non-collapsed MCMC algorithm are also given in Table 2. The effective sample sizes
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with the exception of γ are in all cases at least 18 times higher for the corresponding collapsed MCMC

algorithm and since both the collapsed and non-collapsed MCMC algorithms have virtually identical

running times this represents a very significant improvement. The similar performance in the mixing of

γ in the algorithms is due to the updating of γ only depending on I and thus is largely unaffected by the

inclusion of collapsing.

The choice of an improper Gamma(1, 0) prior in the above analysis makes implementing the MCMC algo-

rithm particularly straightforward as the first term on the right hand side of (3.6) is simply 1/(αm
∑m
i=1 Ii)

and (3.7) can be exploited to sample λ. For an Erlang prior distribution, Gamma(a, b) with a ∈ N, on λ

we can still use (3.6) and sample λ from a truncated Gamma distribution. This involves minor adjust-

ments to the code with very similar results in terms of mixing but with the code taking between 5− 10%

and 10− 15% longer to run with Gamma(2, 2) and Gamma(10, 10) priors, respectively, on λ.

Finally, in van Boven et al. (2010) there are other measles data sets which the above MCMC algorithm

can be applied to. Moreover, there are data from a measles outbreak from a school in Duisburg, Germany

with missing vaccination status for approximately 30% of the population. Details of how to extend the

MCMC algorithm to incorporate missing information and the corresponding analysis are given in the

supplementary material.

4 Spatial epidemic

In this Section we consider spatial S → I epidemic models where individuals start off susceptible but once

they become infected they remain so forever. A spatial S → I epidemic model is appropriate for many

agricultural diseases, for example, citrus tristeza virus (CTV) in a citrus orchard, Gibson (1997a), Gibson

(1997b), and the spread of Sugarcane yellow leaf virus (SCYLV) on a sugarcane plantation, Daugrois et

al. (2011) Brown et al. (2014). In the above papers the plants are located on a 2-dimensional rectangular

lattice, L, although the approach is not limited to this case. We continue by describing the infectious

process in the spatial S → I epidemic model, and typical longitudinal data for such scenarios. The

starting point for our research is the MCMC algorithm of Gibson (1997a) which captures the spatial

spread of the disease, but not the rate of infection. We extend the MCMC algorithm of Gibson (1997a)

to incorporate estimation of the infection rate parameter and as in Section 3 we integrate out the infection

parameter. The result is an efficient MCMC algorithm which can be used for forward (and backward)

prediction of cases. Moreover, we show that by ignoring the rate of transmission of the disease the MCMC

algorithm of Gibson (1997a) can induce a slight bias into the estimation of the spatial parameter. We
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highlight the differences and advantages of this approach to that taken in Brown et al. (2014) where

estimation of both the spatial spread of the disease and the infection rate is performed. Finally, we

employ the new MCMC algorithm to the CTV data, Gibson (1997a) and the spread of SCYLV, Daugrois

et al. (2011), Brown et al. (2014).

Let x,y ∈ L denote the location of two individuals on a subset of R2 with typically L being a lattice. Once

individual x is infected it makes infectious contacts with individual y at the points of an inhomogeneous

Poisson point process with rate k(t)Fα(x − y), where k(t) represents an underlying infection rate (non-

negative and possibly time varying) and Fα(·) is a non-negative function (parameterised by α) which

characterises the force of infection from x and y. Throughout this paper, and in line with previous work,

the force of infection between two individuals will depend upon their Euclidean distance and Fα(·) will be

a monotonically decreasing function of distance. If individual y is susceptible when individual x makes

infectious contact it becomes infected (and immediately infectious), otherwise the infectious contact has

no affect on individual y as it is already infectious. We follow Brown et al. (2014), by assuming that k(t)

is constant (k(t) = λ for all t). (Note that Brown et al. (2014) uses β rather than λ for the infection rate.)

The extension to piecewise constant infection rates with change points corresponding to the observation

times is trivial. Finally, it is commonplace, see, Gibson (1997b) and Brown et al. (2014), to assume that

there is an external background risk to infection, k(t)r. Thus if I denotes the set of location of infectives

at times t, the infectious exposure that an individual y is subjected to at time t is λ{r+
∑

x∈I Fα(x−y)}.

The observed data are assumed to be snapshots of the S → I epidemic at a discrete set of time points.

Let t0(= 0) < t1 < . . . < tm denote times at which the infectious status of all individuals are known. For

i = 0, 1, . . . ,m, let Si and Ii denote the set of susceptible and infected individuals, respectively at time

point ti. For i = 1, 2, . . . ,m, let Wi = Ii\Ii−1, the set of individuals infected between time points ti−1

and ti with ni = |Wi|. In Gibson (1997a), m = 1 and the two time points correspond to dates a year

apart. In Brown et al. (2014), m = 6 with t = (0, 6, 10, 14, 19, 23, 30) and time units of a week. (Note

that in this case t should be (0, 6, 11, 15, 19, 23, 30), see Daugrois et al. (2011).)

In order to construct a tractable likelihood we need to use data augmentation. We begin by following

Gibson (1997a) by specifying the order in which infections occur in a given interval. Let yω(i,j) denote

the jth individual infected in the ith time interval. Let Qi,j denote the length of time from the (j − 1)st

infection in time interval i until the jth infection, where the time of the 0th infection is taken to be ti−1

and the time of the (ni + 1)st is taken to be after time ti. Then if Ii,j−1 and Si,j−1 are the sets of
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infectives and susceptibles, respectively, after the j − 1st infection in time interval i,

Qi,j ∼ Exp

λ ∑
y∈Si,j−1

r +
∑

x∈Ii,j−1

Fα(x− y)




=

λ ∑
y∈Si,j−1

r +
∑

x∈Ii,j−1

Fα(x− y)



−1

Exp(1)

= {λhi,j(α, r,ω)}−1 Li,j , say, (4.1)

where ω and ωi denote the total set of infection orderings and the total set of infection orderings in

time interval i, respectively. We will primarily use Li,j rather than Qi,j in the data augmentation since

a priori Li,j ∼ Exp(1), a non-centered parameterisation. Note that Li,j has the same distribution to Li

in Section 3 and plays the same role in defining the additional infectious pressure required for the next

infection. Let Li = (Li,1, . . . , Li,ni+1) and L = (L1, . . . ,Lm). Then exploiting the independence of the

epidemic process between different time intervals,

π(I,ω,L|r, α, λ) =

m∏
i=1

π(Ii|ωi,Li, α, λ)

=

m∏
i=1

1{Ui}

ni∏
j=1

(
r +

∑
x∈Ii,j−1

Fα(x− yω(i,j))

hi,j(α, r,ω)

)
ni+1∏
j=1

exp(−Li,j)

 , (4.2)

where Ui denotes the event that ni infections take place in interval i with

1{Ui} = 1{∑ni
j=1 Li,j/(λhi,j(α,r,ω))≤ti−ti−1<

∑ni+1

j=1 Li,j/(λhi,j(α,r,ω))
}. (4.3)

Note that the ni+ 1st infection after time ti corresponds to the first infection after time ti+1. We include

both Li,ni+1 and Li+1,1 in the likelihood, as we explicitly use Li+1,1 for the time of the first infection

in interval i + 1 and integrate out Li,ni+1 to ensure that ni infections occur in interval i. Moreover,

the condition (4.3) mirrors the conditions for fixing the size of the measles epidemic, (3.2) and (3.3),

in that we require λ to be large enough, so that ni infections occur in interval i, but also to be small

enough that no more infections take place. Thus mirroring Section 3 we seek to integrate out λ and

(L1,n1+1, . . . , Lm,nm+1), the additional infectious pressure to the next infection.

From (4.2), we have that

π(ω,L, r, α, λ|I) ∝ π(I,ω,L|r, α, λ)π(r)π(α)π(λ). (4.4)

We proceed by integrating out λ and (L1,n1+1, . . . , Lm,nm+1) before outlining the MCMC algorithm for

obtaining samples from π(r, α, λ|I). We begin with the special case m = 1 (the situation considered in

Gibson (1997a)) and an improper uniform prior on λ, π(λ) ∝ 1 (λ > 0). In this case π(λ|r, α, I) can be
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sampled at each iteration as an add-on to the MCMC algorithm of Gibson (1997a). This corresponds to

fully integrating out L in the updating of r, α and ω. Details of the generalisation to m > 1 and a Gamma

prior on λ, where full integration out of L is not possible are given in the supplementary material.

Consider the case m = 1 and π(λ) ∝ 1 (λ > 0). Then letting Ľ1 = (L1,1, . . . , L1,n1
), we have that

π(ω, Ľ1, r, α|I) ∝
∫
λ

∫
L1,n1+1

π(I,ω,L|r, α, λ)π(r)π(α)π(λ) dL1,n1+1 dλ

=

n1∏
j=1

(
r +

∑
x∈Ii,j−1

Fα(x− yω(i,j))

hi,j(α, r,ω)

)
n1∏
j=1

exp(−Li,j)π(r)π(α)

×
∫
λ

∫
L1,n1+1

exp(−L1,n1+1)1{U1} dL1,n1+1 dλ

= K

∫
λ

∫
L1,n1+1

exp(−L1,n1+1)1{U1} dL1,n1+1 dλ, say. (4.5)

Given λ, for 1{U1} to be equal to 1, we require that

L1,(n1+1) > λh1,n+1(α, r,ω)

t1 − 1

λ

n1∑
j=1

1

h1,j(α, r,ω)
L1,j

 > 0. (4.6)

Therefore it follows from (4.5) with

C =

λh1,n+1(α, r,ω)

t1 − 1

λ

n1∑
j=1

1

hi,j(α, r,ω)
L1,j

 ,∞


that

π(ω, Ľ1, r, α|I)

∝ K

∫
λ

1{λ>
∑n1
j=1

1
h1,j(α,r,ω)

L1,j/t1}

∫
L1,n1+1∈C

exp(−L1,n1+1) dL1,n1+1 dλ

= K

∫
λ

1{λ>
∑n1
j=1

1
h1,j(α,r,ω)

L1,j/t1} exp(−λh1,t+1(α, r,ω)t1)

× exp

h1,n1+1

n1∑
j=1

1

h1,j(α, r,ω)
L1,j

 dλ

= K exp

h1,n1+1(α, r,ω)

n1∑
j=1

1

h1,j(α, r,ω)
L1,j


×
[
− 1

h1,n1+1(α, r,ω)t
exp (−λh1,n1+1(α, r,ω)t1)

]∞
∑n1
j=1

1
h1,j(α,r,ω)

L1,j/t1

=

n1∏
j=1

(
r +

∑
x∈I1,j−1

Fα(x− yω(1,j))

h1,j(α, r,ω)

)
n1∏
j=1

exp(−L1,j)π(r)π(α)
1

h1,n1+1(α, r,ω)t1
.

(4.7)

Note that it follows from the third line of (4.7) that

λ|ω, Ľ1, r, α, I ∼
n1∑
j=1

L1,j

h1,j(α, r,ω)t1
+ Exp(h1,n1+1(α, r,ω)t1). (4.8)
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Furthermore in (4.7), the only term involving Ľ1 is
∏n1

j=1 exp(−L1,j). Therefore integrating out Ľ1 yields,

π(ω, r, α|I) ∝
n1∏
j=1

(
r +

∑
x∈I1,j−1

Fα(x− yω(1,j))

h1,j(α, r,ω)

)
π(r)π(α)

× 1

h1,n1+1(α, r,ω)
. (4.9)

We observe that (4.9) differs slightly to π(ω, r, α|I) given in Gibson (1997a) including the final term

1/h1,n1+1(α, r,ω). The difference is due to the slightly different scenarios considered. In Gibson (1997a),

the posterior is derived based upon, from time 0 the next n1 infections being the set of individuals W1,

regardless of the time taken. Since we are explicitly taking into account time, as well as requiring the

next n1 infections to be the set of individuals W1, we also require that no more infections take place.

Ignoring this leads to a slight bias in the estimation of α and r. The larger h1,n1+1(α, r,ω) is, the smaller

the range of λ values (combined with L1) which are consistent with exactly n1 infections taking place in

the time interval.

For m ≥ 1, we can update ω efficiently using a scheme based upon Gibson (1997a). Specifically, we

propose to switch (ωi,j , ωi,j+1) in a systematic manner. The key observation is that the changes in the

likelihood involved with switching (ωi,j , ωi,j+1), only depends upon who has been infected prior to the

jth infection in time interval i and not the order in which they were infected. Furthermore, the order of

infection of individuals (ωi,j , ωi,j+1) has no effect on any subsequent infections. Therefore for all i, we

can consider the switching the orders of infected pairs

(ωi,1, ωi,2), (ωi,3, ωi,4), . . . , (ωi,2mi−1, ωi,2mi), (4.10)

in parallel, where mi is the largest integer such that 2mi ≤ ni. Also for all i, the switches

(ωi,2, ωi,3), (ωi,4, ωi,5), . . . , (ωi,2ki , ωi,2ki+1) (4.11)

can be considered in parallel, where ki is the largest integer such that 2ki + 1 ≤ ni.

We are now in position to outline an iteration of the MCMC algorithm for m = 1 with (r, α, λ) stored at

the end of each iteration. The extension to m > 1 is given in the supplementary material.

MCMC algorithm

i) Update (r, α) using random walk Metropolis with a bivariate Gaussian proposal. Use (4.9) to

compute the acceptance probability.

ii) Update ω.
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(a) For l = 1, 2, . . . ,m1, propose to switch the order of infection for (ω1,2l−1, ω1,2l), sequentially

or preferably in parallel.

(b) For l = 1, 2, . . . , k1, propose to switch the order of infection for (ω1,2l, ω1,2l+1), sequentially or

preferably in parallel.

iii) Sample λ. Simply draw a new set Ľ1 and then sample λ|ω, Ľ1, r, α, I from its conditional distribu-

tion given by (4.8).

iv) Store (λ, r, α) as a sample from π(θ|x).

Finally, before implementing the MCMC algorithm, we compare our approach to Brown et al. (2014),

where estimation of µ = λr, α and λ(= β) is performed. In Brown et al. (2014), the infection times τ

of the plants are imputed rather than the order of infection and the inter-infection time intervals. Note

that τ can easily be obtained from λ, ω and Ľ and visa-versa. The main disadvantage of the MCMC

algorithm of Brown et al. (2014) is that updating an element of τ has an effect on many components

of the likelihood (all subsequent infection times), whereas the update ω can, as noted above, be done

efficiently and quickly by switching the orders of infection.

We now employ the MCMC algorithm to estimate the parameters for the CTV data and the SCYLV data.

The CTV data introduced in Marcus et al. (1984) and analysed in Gibson (1997a) is used to illustrate

the methodology with m = 1, whilst the main emphasis is on the longitudinal analysis of the SCYLV

data experiment in Daugrois et al. (2011), analysed in Brown et al. (2014). The CTV data consist of the

locations of infected trees in a citrus orchard at two time points, 1 year apart. There are 131 infected

trees discovered at the first time point, 1981 with a further 45 trees infected by the second time point,

1982. In Gibson (1997a), there is assumed to be no background infection (r = 0) and two choices of

Fα(x−y) are considered; (a) exp(−α|y−x|) and (b) |y−x|−2α with α estimated on the basis of the 45

infections between the two observed time points. For both cases we estimated α and λ based on 50,000

iterations following a burn-in of 2,000 iterations. The posterior means (standard deviations) of α and λ

are, for case (a), 0.269 (0.0678) and 0.168 (0.113), respectively, and for case (b), 1.32 (0.158) and 3.05

(2.54), respectively. The estimates for α are consistent with those presented in Gibson (1997a) where a

discrete set of α values rather than the continuous model presented here are used. It should be noted

that the non-collapsed MCMC algorithm was not a practical alternative to the collapsed algorithm as

the key condition (4.3) was often violated, and proposed moves rejected, for all but very small moves in

θ = (λ, r, α) and L, even with longer runs of 106 iterations.

The estimation of λ combined with α allows for the prediction of the number and location of new cases
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in the forthcoming year. However, we use knowledge of λ to estimate the time of the introductory case of

CTV into the orchard. We follow Gibson (1997a) by modelling the first 176 infectious cases, assuming that

there is a single introductory case, whose location is unknown but is one of the 131 locations infected before

the end of 1981. The parameter α is estimated based on the full data, whereas the 45 infections occurring

between the two observation points allow us to estimate λ. Then for i = 2, 3, . . . , 131, we can simulate the

length of time, X0
i , between the (i− 1)st and ith infection with X0

i ∼ Exp(λ
∑
x∈I0,i−1

∑
y∈S0,i−1

Fα(x−

y)). Thus T0 =
∑131
i=2X

0
i represents an estimate of the time of the introductory case prior to the first

time point (1981). Using Fα(x − y) = exp(−α|y − x|), the posterior means (standard deviations) of α

and λ are 0.1071 (0.0141) and 0.0192 (0.0061), respectively. The estimate of α is again consistent with

corresponding analysis in Gibson (1997a). However, unlike Gibson (1997a), we can estimate T0 which is

found to have a posterior mean of 15.3 years with a standard deviation of 4.5 years.

In Brown et al. (2014) trial B from Daugrois et al. (2011) is analysed. Specifically, Daugrois et al. (2011)

details four trials of the spread of SCYLV in trial plantations which are initially disease-free. The SCYLV

is transmitted from plant to plant via aphids. The infectious status of all 1742 plants in trial B were

recorded at weeks 0,6,11,15,19,23 and 30. As noted above this differs slightly from Brown et al. (2014)

but this difference has very little effect on parameter estimates. We follow Brown et al. (2014) in taking

Fα(x−y) = 1
2πα2 exp(−|x−y|2/(2α2)), a Gaussian transmission kernel proposed in Brown et al. (2014) to

capture the diffusive movement of aphids. In Brown et al. (2014) µ is used to denote the background risk

of infection and this corresponds to r × λ in our parameterisation. We estimated the model parameters

based on both the full data and a single time interval, the process observed at weeks 0 and 30 only. We

choose improper, uniform priors for the parameters in contrast to the weak informative priors chosen

in Brown et al. (2014). The algorithms were run for 110,000 iterations with the first 10,000 iterations

discarded as burn-in. The proposal standard deviations for the random walk updates of r and α are 0.001

and 0.02, respectively, for the full data and 0.01 and 0.2, respectively for the single time interval. For the

full data, we repeated the process of proposing to update two randomly chosen L values ten times per

iteration. The time taken to run the algorithm was similar in both cases taking just under a day on a 8

core processor, which even without parallelisation is comparable with results given in Brown et al. (2014).

Based on the full data we obtain 0.0025 (0.00036), 1.19 (0.100) and 0.115 (0.0061) for the posterior means

and standard deviations of the parameters µ(= rλ), α and λ, respectively. These parameter estimates

are comparable with those presented in Brown et al. (2014). For the single time interval data, we obtain

0.0059 (0.0008), 0.777 (0.075) and 0.0624 (0.0074) for the posterior means and standard deviations of the

parameters µ(= rλ), α and λ, respectively. Therefore there is a considerable disparity in the parameter
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estimates based on the full data set as opposed to taking it as a single time interval with a clear loss of

information from not taking into account the temporal spread of the disease.

There are a couple of observations to make about the analysis of the data. Firstly, in the switching step

for updating ω the proportion of moves accepted was over 99% for all positions over both data sets. This

corresponds to their being little information in the data concerning the order of infection and is consistent

with the plots of the density of infection times in the first and last intervals presented in Brown et al.

(2014), Figure 3. We applied the MCMC algorithm to a small simulated data set presented in Gibson

(1997a), Figure 3 with one initial infective and nine subsequent infections. Even in this case with clear

chains of infection the acceptance rates for all positions in updating ω were over 75%, increasing to 92%

for the final position. This all suggests that, if a reasonable initial choice of ω is made, decent parameter

estimates can be obtained even if ω is kept fixed (not updated). We proposed a fixed configuration for ω

chosen using r = 0.1 and α = 1.0 and then estimated the parameters µ, α and λ using a MCMC run of

110,000 iterations with the first 10,000 iterations discarded as burn-in and ω kept fixed. The algorithm

ran approximately four times as fast without the update of the ω and we obtained 0.0026 (0.00035), 1.17

(0.091) and 0.116 (0.0060) for the posterior means and standard deviations of the parameters µ(= rλ), α

and λ, respectively. Thus we obtain a reasonable approximation of the posterior distribution in this case.

Similar results were obtained starting from r = 0.001 and α = 2.0, details along with plots are presented

in the supplementary material. Secondly, the algorithm performs very well for a single time interval

with mixing worsening as the number of time intervals increases. The main reason for the algorithm

performing particularly well for a single time interval is the ability to full integrate out Ľ as evidenced

by the considerably larger proposal standard deviations used for a single time interval as opposed to that

used for the full data.

5 Conclusions

In this paper we have shown how non-centred parameterisations can be exploited to construct and then

collapse MCMC algorithms for epidemic models. Whilst the epidemic models and corresponding data

sets in the two examples appear quite different there are common features which are exploited. The key

feature is that in both cases an infectious individual, whilst infectious, makes infectious contacts at the

points of a homogeneous Poisson point process. This is often the case and the approach taken here could

be relaxed to inhomogeneous Poisson point processes, see, for example, Jewell et al. (2009) for an epidemic

example. Continuous time models which do not assume a Poisson point process for the infectious process

are rare, see Streftaris and Gibson (2012) for an exception. The superposition and decomposition of
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Poisson processes gives great flexibility in modelling the infectious process and in particular, leads to the

exponential tolerances, L exploited in both examples in this paper. Therefore the data augmentations

and collapsing developed in this paper should be applicable to a wider class of epidemic models than the

two presented here.

More generally, it is the Markov property of the Poisson process which is particularly useful here. In

Neal (2014) a simple reparameterisation of Markov processes is exploited to allow coupled simulations

of a Markov process. Specifically, if θ = (θ1, θ2, . . . , θp) represent rate parameters of a Markov process,

then we can reparameterise by setting λ = θp and φ = (θ1/θp, θ2/θp, . . . , θp−1/θp). Thus the components

of φ are the relative rates of parameters θ to λ = θp. For a Markov process it is φ and the state of

the system which determine the probability that a given transition takes place, whereas λ determines

the inter-arrival time between events. This is similar to the epidemic examples studied here, in that,

the infection rate λ determines the additional infectious pressure required for the next infection and the

other parameters and state of the population that determine who gets infected.

A simple example of a Markov process is the SIS epidemic model. Suppose that we have a population

of size n and let Y (t) denote the total number of infectives at time t. Since individuals can only be

susceptible or infectious, Y (t) defines the state of the system with n−Y (t) being the number the number

of susceptibles. Let infectious individuals make infectious contacts at the points of a homogeneous Poisson

point process with rate β and recover at rate γ (exponentially distributed infectious periods with mean

1/γ). Let λ = γ and φ = β/γ. Then at time t, the time until the next event (infection or recovery) is

Exp(βY (t)(n− Y (t))/n+ γY (t)) = Exp(φY (t)(n− Y (t))/n+ Y (t))/λ and the probability that the next

event is an infection is

βY (t)(n− Y (t))/n

βY (t)(n− Y (t))/n+ γY (t)
=

φ(n− Y (t))/n

φ(n− Y (t))/n+ 1
. (5.1)

Finally, in this paper we have exploited a Sellke threshold and the order of infections to construct efficient

MCMC algorithms for epidemic models. This approach could also be employed for temporal epidemic

data, for example, in situations where the removal times but not the infection times are observed (Neal

and Roberts (2005),Xiang and Neal (2014)). Specifically, we could augment the data with ω and L,

which will define the infection times of individuals, and hence I will follow. More detailed inference on

the parameters of the distribution of I are then possible and we can remove the restriction E[I] = 1 as

the distribution is now identifiable. This alternative approach for temporal data could be a promising

approach for epidemics in progress as an effective way of updating the number of unobserved infections

as existing algorithms (O’Neill and Roberts (1999),Jewell et al. (2009)) add or remove one unobserved
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infection time at a time leading to slow exploration of the space of the number of unobserved infectives.
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Type, k 0 1 2

Total number of infected individuals, xk 18 11 6

Total number of individuals, nk 79 189 149

Table 1. Honkajoki measles data set.
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Scenario Parameter λ q1 q2 γ

1 Mean 2.75 0.308 0.225 -

I ≡ 1 St. Dev. 0.947 0.121 0.107 -

Collapsed Eff. sample size 8285 8453 9376 -

Non-collapsed Eff. sample size 166 332 512 -

2 Mean 2.94 0.284 0.209 -

I ∼ Gamma(2, 2) St. Dev. 1.097 0.114 0.100 -

Collapsed Eff. sample size 13712 8991 9615 -

Non-collapsed Eff. sample size 141 324 436 -

3 Mean 2.96 0.284 0.205 1.055

I ∼ Gamma(exp(γ), exp(γ)) St. Dev. 1.286 0.113 0.096 1.044

Collapsed Eff. sample size 10547 9156 10220 216

Non-collapsed Eff. sample size 158 332 536 146

Table 2. Estimated posterior means, standard deviations and effective sample size (collapsed and

non-collapsed) λ, q and γ, for the three scenarios 1) I ≡ 1; 2) I ∼ Gamma(2, 2) and 3)

I ∼ Gamma(exp(γ), exp(γ)).
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