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Efficient and Secure Data Sharing for 5G Flying
Drones: A Blockchain-Enabled Approach

Chaosheng Feng, Keping Yu, Member, IEEE, Ali Kashif Bashir, Senior Member, IEEE, Yasser D. Al-Otaibi, Yang
Lu, Shengbo Chen, and Di Zhang, Senior Member, IEEE

Abstract—The drone’s open and untrusted environment may
create problems for authentication and data sharing. To address
this issue, we propose a blockchain-enabled efficient and se-
cure data-sharing model for 5G flying drones. In this model,
blockchain and attribute-based encryption (ABE) are applied to
ensure the security of instruction issues and data sharing. The
authentication mechanism in the model employs a smart contract
for authentication and access control, public-key cryptography
for providing accounts and ensuring accounts security, and a
distributed ledger for security audit. In addition, to speed up
outsourced computations and reduce electricity consumption,
an ABE model with parallel outsourced computation (ABEM-
POC) is constructed, and a generic parallel computation method
for ABE is proposed. The analysis of the experimental results
shows that parallel computation significantly improves the speed
of outsourced encryption and decryption compared with serial
computation.

Index Terms—Blockchain, Drones, Attribute-based encryption,
Cybersecurity.

I. INTRODUCTION

Drones are an ideal solution for environmental monitor-
ing due to their survivability, mobility, time savings, and
cost-effective benefits. Empowered by fifth-generation (5G)
technology, which aims to connect anything anywhere and
anytime, the capabilities of drones have been significantly
enhanced. The high bandwidth provided by 5G technology
enables drones to access the Internet at high speed. Its high
reliability and low delay make it possible to perform real-
time measurement, control, and data analysis for drones. 5G-
enabled drones have been increasingly employed in geodis-
persed applications such as environmental monitoring, res-
cue operation monitoring, traffic surveillance, natural disaster
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monitoring, crop analysis, and consumer product delivery.
With the assistance of 5G technology, drones play irreplace-
able roles in information collection and delivery, especially in
geographically dispersed and inaccessible scenarios. However,
drones typically work in open and untrusted environments
where drone networks can be easily hacked by malicious users
and identity authentication becomes very difficult. All these
problems make it a challenge for the information security and
privacy of drone-based transmission.

While drones send information in plaintext format directly
to the control nodes and the cloud through air interfaces,
information leakage might occur. Once sensitive information
such as drone instructions and coordination instructions among
drones is leaked, serious consequences may occur. To prevent
information leakage, some early attempts tried to encrypt the
data and instructions before uploading them [1]. However,
how to effectively share these ciphertexts is still a challenge.
Some traditional schemes, whether symmetric or asymmetric,
can be used to share the ciphertext. However, they are of
low efficiency because the data owner must simultaneously
share the public or symmetric key. This will result in the
encryption time increasing linearly with the number of shared
users, which is sometimes impractical.

A more feasible approach for preventing information leak-
age is to use attribute-based encryption (ABE). Generally,
ABE [2]-[4] is considered a promising ciphertext sharing
method since it can provide fine-grain access control, ex-
pressive access policy, one-to-many encryption, and so on.
However, encryption and decryption in ABE involve expen-
sive computations, which are difficult for resource-constrained
terminals (e.g., drones). In addition, the computational time
grows with the number of access policy attributes, which
makes ABE encryption and decryption consume more power
and take a longer time. To fill this gap, some amended
ABE schemes with outsourced encryption or decryption were
proposed. These schemes outsource the majority of decryp-
tion computations to the cloud or the fog. Thus, the com-
puting overhead at terminals and the consumed power are
significantly reduced. Nevertheless, outsourced encryption or
decryption in these schemes still adopts a serial computing
mode with slower computing speed, which fails to provide
excellent experiences for resource-constrained terminal users.

To solve the problems mentioned above, a blockchain-
enabled data-sharing model for drones is introduced in this
paper. The blockchain is useful for building trust mechanisms
for application environments without any trusted third party
or with a trusted third party, but privacy protection is required
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Fig. 1. A blockchain-enabled efficient and secure data-sharing framework for drones

[5] [6]. Drones work in such an environment where there is
no trusted third party, and privacy protection is essential and
required. We then introduce a smart contract for blockchain-
enabled authentication and access control, public-key cryp-
tography is used to ensure accounts security, and we employ
the distributed ledger for security auditing. To speed up the
outsourced computations, we adopt a parallel computing mode
in the ABE model and propose a model called ABEM-POC,
in which a generic parallel computing method for ABE is
adopted. In other words, an ABE scheme constructed based
on the proposed ABEM-POC will support parallel outsourced
encryption and decryption. If an existing ABE scheme with
serial outsourced computation can also be modified according

to the ABEM-POC, the modified scheme will be featured with
parallel outsourced computations.

II. RELATED WORK

Identity-based encryption (IBE) generally has poor error
tolerance in practical applications. To address this problem,
Sahai and Waters [2] proposed a new vision of encryption
called ABE under fuzzy IBE. Goyal et al. [3] presented the
first key-policy attribute-based encryption (KP-ABE) scheme,
in which an encrypted message is associated with a set
of attributes and a user private key is associated with an
access policy or structure. Bethencourt et al. [4] proposed
the first ciphertext-policy attribute-based encryption (CP-ABE)
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scheme. As opposed to the KP-ABE scheme, the CP-ABE
scheme labels a user’s private key with a set of attributes and
associates a ciphertext with an access policy. All these schemes
represent access policies with trees as access structures. Due to
the lack of satisfaction with Bethencourt et al.’s scheme, which
is secure in the generic group model, Water [7] implemented
a CP-ABE system in the standard model. The most unique
aspect in Water’s scheme is the linear secret sharing scheme
(LSSS) instead of the conventional tree-like access structures
to represent the access policies. Afterward, Rouselakis and
Waters proposed two large-universe attribute-based encryption
constructions in [8]. In a large-universe ABE construction, any
string can be used as an attribute, and attribute enumeration
is not necessary at the system setup step. To provide cloud
users with shared access to privileges, Ahuja et al. proposed
a scalable attribute-based access control scheme for cloud
storage [9]. Based on a key encapsulation mechanism (KEM),
Lin et al. [10] and Qin et al. [11] constructed an ABE model
with verifiable outsourced decryption. The model in [10] also
ensures the security of outsourced decryption with all or
nothing transforms (AONTS). In addition, Mao et al. [12] pro-
posed a generic construction of chosen-plaintext attack (CPA)-
secure and replayable chosen ciphertext attack (RCCA)-secure
ABE systems with verifiable outsourced decryption from CPA-
secure ABE systems with outsourced decryption. Although
these ABE constructions outsource the decryption to the cloud
or the fog, all outsourcing decryptions adopt serial computing.

As an emerging and promising technique in digital currency
systems, blockchain can share data even without a credible
central server with its advantages of transaction anonymity,
credibility, tamper resistance, and high distribution. Gao et al.
[13] proposed a blockchain-based privacy-preserving payment
mechanism for vehicle-to-grid (V2G) networks, which ensures
the anonymity of user payment data. Shen et al. [14] proposed
a blockchain-based system for medical image retrieval with
privacy protection. Xia et al. [15] implemented a secure
fine-grain access control system for outsourced data, which
supports data read and write operations. Moreover, blockchain
technologies are also utilized to enhance traceability and
visibility.

III. BLOCKCHAIN-ENABLED EFFICIENT AND SECURE
DATA-SHARING FRAMEWORK FOR DRONES

In this section, a blockchain-enabled efficient and secure
data-sharing framework for drones is proposed, as shown in
Fig. 1. In this framework, the 5G-enabled flying automation
layer provides drones with five core services: identity authen-
tication, operation management, security auditing, instruction
issues, and ciphertext sharing. Specifically, the first three are
mainly implemented based on blockchain, and the remain-
ing two are mainly implemented based on ABE. To reduce
the transmission latency, all the time-consuming and power-
consuming computational tasks are outsourced to edge com-
puting devices. To accelerate the encryption and decryption of
ABE, a Spark platform is deployed on the edge network so that
the encryption and decryption tasks outsourced by drones are
carried out in parallel computation on the Spark platform. The

public cloud provides data storage and analysis and supports
decision making by managers. Note that the collected large-
sized data are stored in the public cloud rather than the
blockchain. Only the small-sized data for authentication and
sharing, such as identity information, shared metadata, and
operation information, are stored in the blockchain. The 5G-
enabled flying automation layer consists of blockchain, edge
networks and devices, the Spark platform, and the cloud. The
following are the implementation principles of the five services
mentioned above.

Identity authentication: The drone registers an account in
the blockchain, and it can be authorized by a smart contract.
When authenticating a drone, the smart contract determines
whether the authentication request issued by the account meets
the criteria. If so, the blockchain returns certain credentials;
otherwise, it discards this request.

Operation management: For each instruction to be exe-
cuted, the drone must authenticate both the instruction issuer
and the integrity of the instruction.

Instruction issue: Operation instructions are sensitive in-
formation and must be sent in ciphertext format. In most cases,
the console or drones send instructions with the characteristics
of the "one-to-many", i.e., an instruction is executed by many
drones. Considering this characteristic, the ABE is adopted to
improve the efficiency of encryption. ABE realizes ciphertext
sharing by efficient key distribution. To ensure the security
of the instruction issue, each instruction is encrypted before
it is sent. Meanwhile, the key for encryption is distributed
efficiently using ABE.

Ciphertext sharing: If the data collected by drones are also
sensitive, encryption is required before uploading to the cloud.
Such data are usually analyzed by multiple users with the
same attributes before decision making. Since the encryption
process also features "one-to-many" sharing and fine-grained
access control is demanded, ABE is also adopted.

Security audit: To facilitate the security audit and account-
ability, instruction issues, instruction execution, data sharing,
and other important operations are written into the distributed
ledger in the transaction form.

IV. BLOCKCHAIN-ENABLED IDENTITY AUTHENTICATION
MECHANISM FOR DRONES

A blockchain-enabled identity authentication mechanism
is built in this section, as shown in Fig. 2. The proposed
mechanism consists of the following components.

Smart contract for identity management: The contract
is an n-m multisignature smart contract created by the autho-
rization center. It is created by m administrators and requires
the authorization of n administrators to invoke contract man-
agement. The contract is used to hold the access control list
(including the trusted list and the revocation list), which can
only be signed by n administrators to invoke the add function.
Multiple signatures can prevent the leakage risks caused by
the loss of a single administrator’s private key or excessive
permissions.

Registration: Users (e.g., drones, control centers, and in-
telligent receiving stations) can apply for accounts in the
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Fig. 2. Blockchain-enabled identity authentication mechanism for drones

blockchain and locally store the encrypted private key. Users
submit their account address to the administrator through a
secure channel. After verifying the registration requested by
the user, the administrator adds the address to a trusted list
in the smart contract. In contrast, for the users who apply for
account cancellation or loss, their addresses are added to the
revocation list of the smart contract.

Identity authentication: When a user authenticates other
users, he/she requests a small number of designated coins to
transfers to their accounts. After receiving the coins, they look
up the address from the access control list. If Records (trusted
list) > Records (revocation list) (this condition allows the user
to repeatedly register and log out), the identity is legal.

V. BLOCKCHAIN-ENABLED SECURE DATA SHARING FOR
DRONES

In this section, a blockchain-enabled secure data-sharing
model and an ABE model with parallel outsourced compu-

tations are constructed. Furthermore, a generic parallel com-
puting method for ABE is proposed.

A. Blockchain-enabled Secure Data-Sharing Model

As shown in Fig. 3, the Blockchain-enabled secure data-
sharing model for drones consists of the following 5 compo-
nents.

Drones: When a drone registers a blockchain account, it
obtains a unique identifier. For the 5G drone, there are two
methods for encrypting collected data before it is uploaded
to the cloud. One is that the drone encrypts the data using a
symmetric key assigned in advance and sends the ciphertext
to the node manager. Then, the node manager uses ABE to
encrypt the key. The other is that the drone generates a key
randomly, encrypts the data with this key and then uses ABE
to encrypt the key. The 5G drone mainly adopts the latter.

Trusted authority (TA): The TA as the central point
can perform operations such as initialization and secret key
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Fig. 3. Blockchain-enabled secure data sharing for drones

generation, generate the system public key, and the system
master secret key.

Cloud: The cloud stores and analyzes the data collected by
drones.

Blockchain: The blockchain is responsible for identity
authentication and recording operations.

Data consumer (DC): The DC refers to a user who can
decrypt and read instructions and collected data.

The secure sharing process based on the blockchain for 5G
drones is as follows. The drone encrypts the collected data
in symmetric encryption (e.g., AES) and encrypts the corre-
sponding symmetric encryption key. Then, the drone sends
a data upload request to the blockchain. After receiving the
request, the blockchain validates the request with a preagreed
smart contract. If the request is valid, the blockchain returns a
credential to the drone. Once the drone receives the credential,
it uploads the ciphertext along with the credential to the
cloud. When the ciphertext is confirmed to be valid, the cloud
stores it and sends the storage confirmation message to the
blockchain. The blockchain writes the shared ciphertext data
into its distributed ledger in the transaction form. If a data
consumer (a drone or a user) wants to access the ciphertext, the
blockchain will use smart contracts to validate its identity and
check whether his/her attributes satisfy the access policy of the
ciphertext. If its identity is valid and his/her attributes satisfy
the policy, an access credential is returned to the consumer.

Then, the consumer can access the ciphertext in the cloud
with the credential. The distribution of communication keys
between drones has a similar process.

B. ABE Model With Parallel Outsourced Computations

To improve the encryption and decryption efficiency of
ABE and to reduce the drones’ power consumption, the
computations are outsourced to the Spark platform deployed
in edge devices where parallel computation is adopted.

The ABE model with parallel outsourced computation is de-
fined by the following polynomial-time algorithms, as shown
in Fig. 4. In this model, edge devices are assumed to be trusted.
For this reason, the verification of outsourced computations is
not considered. If edge devices are semitrusted or untrusted
in some application environments, the verification method is
given by the scheme instantiating the ABEM-POD.

(1) Setup. The setup algorithm takes a security parameter
and an attribute universe as input parameters. It then generates
a public key PK and a master secret key.

(2) KeyGen. The key generation algorithm outputs a private
key. In this part, a public key, the master secret key, and an
access structure for KP-ABE or an attribute set for CP-ABE
should be set as input parameters.

(3) Encrypt. The encryption process takes a public key,
a message, and an attribute set for KP-ABE or an access
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structure for CP-ABE as input parameters and finally outputs
the ciphertext.

(4) OutEncrypt. The outsourced encryption algorithm in-
puts parameters including a public key, a message, and an
access structure for CP-ABE. Finally, it outputs a partially
encrypted ciphertext. This algorithm runs on edge computing
servers and calls the generic algorithm of parallel computation
for ABE, which is presented later.

(5) ClientEncrypt. The algorithm first runs QutEncrypt
and then finishes the remaining computations. It outputs a
ciphertext.

(6) Decrypt. The decryption algorithm takes a private key
and a ciphertext as input and then outputs a message if the
attribute set matches the access policy.

(7) TKGen. The input parameter of the transformation key
generation algorithm is a private key. It outputs a transforma-
tion key and a corresponding retrieving key.

(8) OutDecrypt. The outsourced decryption algorithm’s
input includes a transformation key and a ciphertext. It outputs
a partially decrypted ciphertext. This algorithm runs on edge
computing servers and calls the generic parallel computation
algorithm in ABE.

(9) ClientDecrypt. The input of the client decryption
algorithm includes a retrieving key, a ciphertext, and a corre-
sponding partially decrypted ciphertext. It outputs a message
if the attribute set matches the access policy. This algorithm
runs on user terminals.

C. Generic Parallel Computation Method for ABE

As stated above, both the outsourced encryption function
OutEncrypt and the outsourced decryption function OutDe-
crypt employ the generic parallel computation method, which
applies the component MapReduce on Spark to speed up ABE
encryption and decryption. The generic parallel computation
method for ABE is shown in Fig.5 and described as follows.

Each node in the access tree is assigned a Map worker,
while each leaf node in the access tree is assigned a Reduce
worker. The Map procedure and the Reduce procedure corre-
sponding to a node are defined as follows.

Map Procedure

Case 1: The node is a nonleaf node.

Input: The input key is equal to the serial number of the
nonleaf node, and the input value is a set that consists of the
subsets of all the leaf nodes of each subtree of the nonleaf
node.

Process: For decryption, calculate the Lagrange coefficient
belonging to each leaf node. For encryption, select a polyno-
mial without a constant term at random and then calculate the
secret share belonging to each leaf node in each subtree.

Output: The output key is equal to the serial number of
the leaf. The output value is equal to the share of the secret
value for encryption or the Lagrange coefficients of all the
nodes but the root in the path from the root to the leaf node
for decryption.

Case 2: The node is a leaf node.
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Input: The input key is equal to the serial number of the
leaf, leaf. For encryption, the input value is related to the
special scheme. For decryption, the input key is the ordered
pair of the subciphertext and subprivate key.

Process: For encryption, all computations unrelated to the
secret are completed. For decryption, decrypt the leaf node
following the decryption algorithm for the leaf.

Output: The output key is equal to the number of leaves.
The output value is equal to the intermediate result of encryp-
tion or decryption.

Reduce Procedure

Input: The input key is equal to the serial number of the
leaf node, and the input value is the ordered pair of the share
for encryption (or the Lagrange coefficient for decryption) and
the intermediate result.

Process: Calculate the intermediate result corresponding to
the path from the root to the leaf.

Output: The output key is equal to the serial number of the
leaf node, and the output value is the encryption or decryption
result of the leaf.

Thus, the outsourced encryption is completed. For decryp-
tion, the root is also decrypted by the servers.

VI. EXPERIMENTS AND ANALYSIS

To evaluate the ABEM-POC, we conduct an experiment
using Spark and implement the two schemes in [8] and [9]
together with their modified schemes in Java, referencing
the Java pairing base class (JPBC) library and the CP-ABE
toolkit. The implementation uses a 160-bit elliptic curve group

based on the supersingular curve over a 1024-bit finite field.
The experimental environment consists of a Spark cluster to
simulate the edge computing environment, in which there are a
master node and ten worker nodes, and a server assembling all
the outputs of the function Reduce and making the relevant
calculation. The experimental terminals used for simulating
drones include a Lenovo PC with a dual Intel Core i5-6200U
CPU@2.4 GHz and 8 GB RAM, a ThinkPad Ultrabook with
an Intel Core 15-3337U CPU@1.8 GHz and 4 GB RAM, and
a HUAWEI Mate 10 smartphone with a Hisilicon Kirin 970
CPU and 4 GB RAM running Android OS 9. All the nodes in
the Spark cluster are performed by virtual machines equipped
with two Intel Core E5-2620 CPU@2.0 GHz, 4G RAM, and
running 64-bit CentOS6.5. The server is equipped with the
same as except for 2G RAM.

To compare the serial and parallel computations, two typical
ABE schemes are modified, and the logical operations of the
access policy are all set with AND. The access policies are
generated and expressed in the form of (A; and ...and A,),
where each represents an attribute. The number of attributes
of the first access policy is 1, and the number of attributes in
the remaining access policies increases from 10 to 100 every
10 intervals. Considering the dynamics of the experimental
machines, we repeat the experiments 50 times under the same
conditions and take the average value. As shown in Fig. 6, "Se-
rial" denotes that the servers compute with serial computation,
and "Parallel" refers to servers computing with parallel com-
putation. The results are shown in Fig. 6. Specifically, Fig. 6(a)
and Fig. 6(b) are the comparisons between serial encryption
and parallel encryption, while Fig. 6(c) and Fig. 6(d) are the
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comparisons between serial and parallel decryption. When the
number of attributes in the access policies is beyond a certain
threshold (e.g., 2 for encryption and 10 for decryption), the
computing time of the parallel computations is shorter than
that of the serial computations. As the number of attributes
increases, the gap in computing time between the parallel
computations and serial computations becomes increasingly
evident.

VII. CONCLUSIONS

Secure and efficient data sharing is a critical problem in
drone networks. In this article, a blockchain-enabled efficient
and secure data-sharing model is proposed. The model applies
a blockchain-enabled identity authentication mechanism and
a secure data-sharing model for drones. The authentication
mechanism uses a smart contract for authentication and ac-

cess control, public-key cryptography for account generation
and ensuring accounts security, and a distributed ledger for
a security audit. In addition, to accelerate the outsourced
computations, ABEM-POC is proposed based on the Spark
cluster and the MapReduce framework. If an ABE scheme is
constructed based on the ABEM-POC, it can support parallel
outsourced computations. If an existing ABE scheme with
serial outsourced computation is modified according to the
ABEM-POC, it will feature parallel outsourced computations.
The modification of two typical ABE schemes based on
ABEM-POC shows that ABEM-POC and generic methods are
effective and easy to use. The analysis of the experimental
results shows that the proposed ABEM-POC can significantly
improve the efficiency of outsourced computations.
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