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Abstract

Background: Body weight variability (BWV) is common in the general population and may act as a risk factor for obesity or
diseases. The correct identification of these patterns may have prognostic or predictive value in clinical and research settings.
With advancements in technology allowing for the frequent collection of body weight data from electronic smart scales, new
opportunities to analyze and identify patterns in body weight data are available.

Objective: This study aims to compare multiple methods of data imputation and BWV calculation using linear and nonlinear
approaches

Methods: In total, 50 participants from an ongoing weight loss maintenance study (the NoHoW study) were selected to develop
the procedure. We addressed the following aspects of data analysis: cleaning, imputation, detrending, and calculation of total and
local BWV. To test imputation, missing data were simulated at random and using real patterns of missingness. A total of 10
imputation strategies were tested. Next, BWV was calculated using linear and nonlinear approaches, and the effects of missing
data and data imputation on these estimates were investigated.

Results: Body weight imputation using structural modeling with Kalman smoothing or an exponentially weighted moving
average provided the best agreement with observed values (root mean square error range 0.62%-0.64%). Imputation performance
decreased with missingness and was similar between random and nonrandom simulations. Errors in BWV estimations from
missing simulated data sets were low (2%-7% with 80% missing data or a mean of 67, SD 40.1 available body weights) compared
with that of imputation strategies where errors were significantly greater, varying by imputation method.

Conclusions: The decision to impute body weight data depends on the purpose of the analysis. Directions for the best performing
imputation methods are provided. For the purpose of estimating BWV, data imputation should not be conducted. Linear and
nonlinear methods of estimating BWV provide reasonably accurate estimates under high proportions (80%) of missing data.

(JMIR Mhealth Uhealth 2020;8(9):e17977) doi: 10.2196/17977
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Introduction

Background
Recently, the idea of remote health care monitored through a
network of internet-connected devices, termed The (Medical)
Internet of Things [1-3], has become popular, and in 2020, it is
thought that 40% of internet of things–related technology is
health related, accounting for US $117 billion [4]. With this
information, precision medicine will become the future of health
care. Frequently tracked body weight data are likely to become
a valuable prognostic tool. We have already seen the
incorporation of Wi-Fi–connected smart scales into research
environments [5-7] accompanied by an increase in popularity
and a decrease in costs among the general public. In weight
management interventions, 80% and 60% of successful weight
loss maintainers report self-weighing weekly and daily,
respectively [8]. Regular self-weighing in research environments
using tracking technologies will allow for more accurate
recognition of body weight patterns, which are currently not
well understood.

Body weight variability (BWV), that is, the variability around
the overall trend in body weight, can be quantified from frequent
body weight measures. Several recent studies have associated
BWV with outcomes such as all-cause mortality [9-11], type 2
diabetes incidence [12], cardiovascular morbidity or mortality
[13,14], and cancer [15]. Further indications suggest that BWV
may serve as a potential prognostic tool for obesity [16,17] and
as a risk factor in patients with heart failure [18]. However,
significant heterogeneity exists in the methods used to process
body weights and define BWV.

Although body weight is a reliable, valid, and simple metric to
measure, its short-term dynamics are not well understood
because, until recently, it has been difficult and time-consuming
to make frequent longitudinal measures from an objective (ie,
not self-reported) source, and previous studies estimating BWV
generally use infrequent measurements (eg, every 6-12 months).
Limitations in the methodologies used may contribute to the
poor replicability of the results drawn from differing studies
and populations: (1) definitions used and statistical inferences
drawn from longitudinal weight data are extremely
heterogeneous, (2) body weight changes are often measured
retrospectively (by self-report) and/or infrequently (12 months
apart), (3) overall trends in body weight (eg, weight increase or
decrease) are often not addressed appropriately and may
confound independent effects of BWV, and (4) missing data
are often not appropriately addressed. Simple linear approaches
to the measurement of BWV (such as root mean square error
[RMSE] around the linear trend) are not able to fully
differentiate the overall trend from the variability component.
New strategies must be developed to improve the estimation of
BWV.

Using frequent body weight measurements, few studies have
examined weekly [19-21] or seasonal [21-23] patterns in body
weight, although no study to our knowledge has estimated total
BWV over the long term. In future, tracking technologies will
become increasingly popular and accompanied by the acquisition

of dense and complex data. Appropriate, validated, and
accessible data processing methodologies must be devised to
deal with such data. Such protocols have been developed for
activity tracking [24-26], although they lack body weight
tracking.

Objectives
Recently, we collected body weight data from Wi-Fi–connected
smart scales in individuals engaged in a weight loss maintenance
trial (the NoHoW trial [27]) over 12 months. Therefore, we
aimed to develop and evaluate a statistical protocol for analyzing
frequent weight data by outlining an approach to cleaning,
imputation, detrending, and estimating BWV using frequent
body weight data to better inform future practices and quantify
the magnitude of errors potentially associated with BWV
estimates.

Methods

Materials and Subjects
For the purpose of this analysis, a subsample of 50 individuals
were selected from the 1627 participants in the NoHoW trial.
The NoHoW study is a 2×2 randomized controlled trial (RCT)
testing the efficacy of an information and communications
technology–based toolkit for delivering a weight loss
maintenance intervention structured around evidence-based
strategies related to self-regulation and emotion regulation in
the United Kingdom (Leeds), Denmark (Copenhagen), and
Portugal (Lisbon). Full inclusion and exclusion criteria and
procedures can be found elsewhere [27]. Individuals who
participated in the trial had reported ≥5% body weight loss in
the 12 months before recruitment. The trial was registered with
the ISRCTN registry (ISRCTN88405328). The study was
conducted in accordance with the Helsinki Declaration. Ethical
approval was granted by local institutional ethics committees
at the University of Leeds (17-0082; February 27, 2017), the
University of Lisbon (17/2016; February 20, 2017), and the
Capital Region of Denmark (H-16030495; March 8, 2017).

The selection of the 50 participants for this analysis was based
on those who had the greatest number of weight measurements
in the first 12 months of the trial. Selecting those with the
greatest completeness of data allowed for (1) better ability to
simulate missingness and test imputation performance and (2)
more valid baseline estimation of BWV, which can be used to
test the agreement with other estimations (in comparison with
missing simulated and imputed data). Although the study was
an RCT, the structure of the RCT was not used, and all its arms
were collapsed. Only 50 individuals were chosen to limit
missingness in the observed data, which increases with sample
size. All participants were provided with a Fitbit Aria (Fitbit
Inc) body weight scale linked to a personalized Fitbit account,
and the data were retrieved via the Fitbit app programming
interface to a web-based data hub. The device has been shown
previously by others to have excellent agreement with a
calibrated research-grade SECA 769 scale [28]. Participants
were instructed to weigh themselves at least twice per week for
the duration of the trial. The characteristics of the participants
are presented in Table 1.
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Table 1. Participant characteristics (N=50).

ValuesCharacteristics

Gender, n (%)

15 (30)Male

35 (70)Female

49.2 (9.3)Age (years), mean (SD)

81.9 (15.4)Weight (kg), mean (SD)

29.3 (6.8)BMI (kg/m2), mean (SD)

336.0 (9.1)Number of weight measurements, mean (SD)

Analysis Overview
All statistical analyses were conducted using R version 3.5.1.
All statistical codes used can be found in GitHub [29]. A flow
diagram of the study is shown in Figure 1. First, we removed
outliers based on the limits of physiological plausibility (detailed
in Multimedia Appendix 1). Next, we used an amputation and
imputation strategy outlined previously [30,31], which involved
the simulation of missing data by 2 mechanisms: (1) removal
completely at random and (2) removal informed by true patterns
of missingness, followed by imputation using univariate and

multivariate methods and performance testing using RMSE.
Next, we calculated BWV in observed, simulated (ie, inserted
missingness), and imputed data sets. This was done to test the
accuracy of BWV estimation under conditions of incrementally
missing data and when missing data were imputed. BWV was
estimated using a commonly used linear approach (RMSE) and
a nonlinear approach (nonlinear mean deviation, NLMD)
devised for this analysis. Finally, we compared the agreement
between BWV estimates from observed weight with those
generated by simulated and imputed data sets under different
conditions of missingness.

Figure 1. Study flow diagram. Outline of the study detailing the simulation validation study aimed to test imputation performance and calculation of
linear and nonlinear body weight variability under conditions of true, missing, and imputed data sets with associated comparisons. BWV: body weight
variability; MCAR: missing completely at random; NLMD: nonlinear mean deviation; RMSE: root mean square error; RPM: real patterns of missingness.
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Data Cleaning
Data outliers may be present for numerous reasons such as (1)
decalibration of electronic scales, (2) inconsistent weighing
conditions (eg, clothed vs unclothed or morning vs night), (3)
weighing of another person of similar weight (which may
register as a rapid weight change on the same Fitbit account),
and (4) incorrect manual entry of body weight. We defined the
limits of physiological plausibility for weight change over given
periods, which can be seen in Multimedia Appendix 1. These
limits were informed by substantial weight changes reported
during rapid weight loss, such as those achieved by a very
low–calorie diet [32,33], and rapid weight gain observed in
intentional overfeeding studies [34,35]. It was deemed preferable
to remove data based on these plausible limits than
risk-removing potentially correct data.

Data Removal
Typically, self-weighing is irregular, and thus, missing data are
common. Missing data are generally categorized into missing
at random (MAR), missing completely at random (MCAR), or
not MAR [36]. Absence of body weight data may have
identifiable mechanisms, for example, breaks in self-weighing
may be indicative of weight gain [37]; however, these patterns
may not be consistent between and within individuals. Data
described as MCAR has no mechanism of missingness; however,
data that are MAR are not related to the missing data but may
be partially explained by the observed data. The data removal
processes are described in detail in Multimedia Appendix 2.
Briefly, to simulate missing data, we used 2 strategies. First,
we inserted data using an MCAR strategy in increments of 20%,
40%, 60%, and 80%. For each of the 50 participants, we
simulated 20 data sets per increment of missingness within each
participant’s data, resulting in 4000 total MCAR-simulated data
sets. One potential concern is that missing data in observed data
are not entirely MCAR; therefore, MCAR simulation may not
be representative of true missingness. To address this, we
selected 20 random participants (for each increment of
missingness) from our entire NoHoW study sample of 1627
individuals with approximately 20%, 40%, 60%, and 80%
missing data and imposed these missing patterns on our
50-participant sample (with a near-complete data), resulting in
4000 simulated data sets with real patterns of missingness
(RPM) data. Removing 20%, 40%, 60%, and 80% data left a
mean of 255 (SD 54.5), 209 (SD 36.2), 144.8 (SD 50.1), and

67 (SD 40.1) available data points within a year (bearing in
mind some data was missing in the original samples).

Data Imputation
Data imputation can be broadly divided into univariate and
multivariate approaches. Univariate methods impute missing
data based on information gained from a single variable (in this
case, a time series [TS] of body weights), whereas multivariate
algorithms can be used to infer predictive value from related
variables [38] through regression, clustering, or even advanced
deep learning techniques. In a remote health care setting, many
potentially useful variables for imputing weight data may not
be collected (eg, information on psychology and behavior or
physiological features), in which case univariate imputation
may be necessary. The imputation of univariate TS data lends
itself to a limited number of techniques that have been reviewed
previously [30].

In total, 7 univariate imputation algorithms and 3 multivariate
analyses were run on all missingness-simulated data sets.
Univariate methods included (1) linear interpolation; (2) cubic
spline interpolation; (3) Stine interpolation; (4) exponentially
weighted moving average (EWMA); (5) structural modeling
with Kalman smoothing (SMKS); (6) AutoRegressive Integrated
Moving Average (ARIMA) state-space representation and
Kalman smoothing (ASSRKS), all from the impute TS package
[39]; and finally (7) an approach using the Friedman super
smoother on nonseasonal data or seasonal decomposition on
seasonal data followed by interpolation (TsClean) from the
forecast package [40]. Each method is described briefly in
Textbox 1. Illustrated examples using a single participant,
showing imputation of 40% and 80% missingness by each
imputation method, are provided in Multimedia Appendix 3.
Multivariate imputation techniques, namely, 2 machine learning
techniques (a K-nearest neighbors [KNN] method from the Data
Mining with R (DMwR) package [41] and a random forest [RF]
method from the MissForest package [42]) and a
regression-based technique using predictive means matching
(PMM) from the multivariate imputation by the chained
equations (MICE) package [43] are described in Textbox 1. To
maximize the usability of these methods where further
information on participants were not available, we used only
the day number and the day of the week as predictive variables
for multivariate imputation.
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Textbox 1. Description of univariate time series imputation methods used.

Linear interpolation

• This method looks for a straight line that passes between 2 values (Xa and Xb), where the imputed values are bound between Xa and Xb. It has
been demonstrated to be efficient when predicting values with constant rate of change [44], however, it tends to smooth data rather than impute
variability

Spline interpolation

• This method fits local polynomial functions, which are connected at each end to form a spline, creating a succession of cubic splines over
successive intervals of the data [45]. The order of the polynomial can be defined manually. The approach benefits from its nonlinear approach;
however, its ability to predict oscillations from univariate data is limited [46]

Stine interpolation

• This is an advanced interpolation method where interpolation occurs based on (1) whether values of the ordinates of the specified points change
monotonically and (2) the slopes of the line segments joining the specified points change monotonically. It produces a smoothed imputation
known to be robust against sporadic outliers and performs better than spline interpolations, where abrupt changes are observed [47]

Exponentially weighted moving average (EWMA)

• This approach calculates the EWMA by assigning the value of the moving average window, which is user defined; the mean, thereafter, is
calculated from equal number of observations on either side of a central missing value. The weighting factors decrease exponentially the greater
distance from the missing value

Structural modeling with Kalman smoothing

• This method aims to identify the structure (trend, seasonality, and error) in a time series (TS). Unlike AutoRegressive Integrated Moving Average
(ARIMA) state-space approaches where each component is eliminated, these components are used to inform imputation of missing data. Kalman
filter and smoothing works in 2 steps to (1) produce estimates of the current state variables, along with their uncertainties, and (2) update estimates
using a moving average to give a smoothing effect [48]. The Kalman smoother is given the entire sample and is not locally weighted. The Kalman
smoother is robust to disparate observation periods (eg, when observations are made weekly and monthly in one TS) [49]

ARIMA state-space representation and Kalman smoothing

• This method converts the TS to an ARIMA model by decomposing the trend, seasonality, and error through a differencing protocol, resulting in
a stationary TS where means and covariances would remain invariant over time [31]. Next, a Kalman smoother is applied as above

TsClean [40]

• This method first assesses evidence of seasonality. If present, a robust seasonal-trend decomposition for seasonal series is conducted followed
by linear interpolation. If no seasonality is present, Friedman’s super smoother [50] is applied followed by linear interpolation

K-nearest neighbors [41]

• For every observation to be imputed, this algorithm locates k closest observations based on the Euclidean distance [51] and computes the weighted
average (weighted based on distance) of these k observations

Random forest [42]

• This method is an extension of typical classification and regression, which generates predictive models that recursively subdivide the data based
on values of the predictor variables. It does not rely on parametric assumptions and can accommodate nonlinear interactions, although it may be
prone to overfitting [51]

Predictive means matching [43]

• For each missing entry, this method generates a small set of candidate donors from all complete cases that have predicted values closest to the
predicted value for the missing entry. One donor is randomly drawn from the candidates, and the observed value of the donor is taken to replace
the missing value. The assumption is the distribution of the missing cell is the same as the observed data of the candidate donors

Estimating Body Weight Variability
We estimated BWV using 2 discrete methods in the observed
data as well as in all simulated and imputed data sets. These
methods are illustrated in Figure 2 for linear (top) and nonlinear
(bottom) approaches. First, the RMSE method was used by
calculating the relative residual error of the linear relationship
between body weight and time (Figure 2). Relative residuals
were produced by dividing the centered weight by the observed

weight at each time point (Figure 2). This method is commonly
used to assess BWV in epidemiological research [16,52-56],
although it is limited by the assumption of linearity of body
weight change. For example, if an individual displays a
curvilinear weight trajectory (such as in Figure 2), then the
residuals from a linear trendline will be substantially different
from those from a nonlinear trendline. To overcome this, we
devised a nonlinear approach detailed below.
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First, the series of body weights was detrended for each
individual. Detrending is a necessary step in the decomposition
of a TS. It can be used to isolate the variability component of
the series from the overall trend, resulting in a combination of
seasonal patterns (eg, any repetitive patterns including
within-week) and random noise. First, a locally estimated
scatterplot smoothing (LOESS) regression was fitted to each
participant (Figure 2). LOESS regression is a nonlinear,
nonparametric smoothing tool. Owing to its nonparametric
approach, it does not assume previous specifications about the
structure of the data, thus allowing for visual representation of
relationships that do not conform to any structure [57]. LOESS
regressions were conducted with the stats package in R [58]. It
employs quadratic polynomial models on a moving collection
of data points (termed a neighborhood) in a TS [59]. The size
of the neighborhood is user defined and referred to as the span
of the LOESS model, with greater spans creating more smooth
trends because of using a wider collection of surrounding data

points, whereas shorter spans resulting in closer fitting to the
data. The span fits data based on the number of available data;
therefore, when fitting the LOESS to data with missingness,
the span must be reactive to the number of weight measurements
available. To address this, we generated a linear relationship
between the span and the number of available data, which
resulted in a similar BWV estimation under varying conditions
of missingness. Finally, a polynomial order of 2 was used in
the model based on the nonlinearity of body weight data, as
suggested previously [57].

The detrending process centers body weight around 0. The
centered weights were converted to relative centered weights
by dividing the centered weight by the observed weight at each
time point (Figure 2). This gives an estimate of the relative
deviation from the nonlinear trend. BWV was estimated by
taking the mean of the centered relative residuals (which act as
a proxy of the mean relative deviation from the trend on each
day).

Figure 2. Performance summaries of univariate and multivariate imputation. Boxplots of the errors associated with imputation of body weight data
collected by smart scales. Data was removed by a missing completely at random algorithm (left plots) and also informed by real patterns of missingness
(right plots) in increments of 20%, 40%, 60% and 80%. Imputation was done by 7 univariate methods (top plots) and 3 multivariate methods (bottom
plots). Root mean square error was used as the performance metric. ASSRKS: ARIMA state-space representation and Kalman smoothing; EWMA:
exponentially weighted moving average; KNN: K-Nearest neighbors; Lin Int: linear interpolation; PMM: predictive means matching; RF: random forest;
RMSE: root mean square error; SMKS: structural modelling with Kalman smoothing; Spline int: spline interpolation; Stine int: stine interpolation.
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Data Availability
There are legal restrictions on sharing data from this study that
contain potentially identifying or sensitive personal information.
The restrictions are imposed by the Danish Data Protection
Agency Data used in this study will be made available upon
request after application to the NoHoW data controller (the
James Hutton Institute). The application procedure can be
obtained from the James Hutton Institute (DPO@hutton.ac.uk)
or David Nutter (david.nutter@bioss.ac.uk).

Results

Imputation Performance
All imputation algorithms were run on each simulated data set,
generating 28,000 and 12,000 imputed data sets from MCAR
and RPM simulations, respectively (4000 imputed data sets per
imputation method). The performance of each imputed data set
in comparison with the observed weight data was evaluated
using the RMSE, which is commonly used for performance
evaluation [60]. The RMSE was calculated using the following
equation:

The results were grouped by imputation strategy and proportion
of missingness. A summary of the performances is illustrated
using the RMSE in Figure 3, and the full results are provided
in Multimedia Appendix 4. To further test the imputation
performance, we used the mean absolute percentage error and
mean absolute error, the results of which are shown in
Multimedia Appendix 5. The errors increased with greater
amounts of missing data. SMKS showed the lowest errors
overall, followed by EWMA, linear interpolation, and Stine
interpolation, though each of these methods were similar in
performance. Machine learning–based methods (RF and KNN)
generally performed worse than univariate methods, as did the
regression-based multivariate method PMM. The ASSRKS
method showed the greatest error, followed by the spline
interpolation. Imputation of MCAR-simulated data sets generally
showed lower errors than RPM-simulated data sets.

Figure 3. Illustration of linear and non-linear calculation of body weight variability. Scatterplots represent an example of a single participant with a
non-linear weight trajectory over 12-months. Figure (A) shows a linear trendline fitted to the data with (B) the trendline subtracted and the associated
residuals plotted. Figure (C) shows a non-linear locally estimated scatterplot smoothing regression fitted to the data with (D) the trendline subtracted
and the associated residuals plotted. RMSE: root mean square error.

Calculation of BWV
Next, we investigated the agreement between BWV estimations
from observed data sets and simulated and imputed data sets
for each participant. First, data sets simulated by MCAR and
RPM were combined. For simulated data sets (ie, those with
missing data), the errors were minimal, reaching an average of
7% (SD 15.4) and 3.2% (SD 19.5) disagreement between the
true weight variability (WV) estimates and estimates made on
80% missing data for nonlinear and linear BWV calculation
methods, respectively. At 60%, 40%, and 20% of missing data,

errors were 2.3% (SD 9.1) and 0.6% (SD 7.3), 1.3% (SD 6.4)
and 0.4% (SD 9.8), and 0.4% (SD 6.9) and 0.2% (SD 6.0) for
nonlinear and linear WV estimates, respectively, compared with
true estimates. The full results can be viewed in Multimedia
Appendix 6. When data were imputed, imputation introduced
substantial errors in BWV estimates (Figure 4). For most
methods, imputation resulted in underestimation of BWV, apart
from spline imputation, which overestimated BWV. Biases
increased with missingness and were generally greater for
NLMD than for RMSE.
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Figure 4. Influence of data imputation on linear and non-linear body weight variability estimates. Caption: Boxplots of the relative errors associated
with calculation of body weight variability in body weight data collected by smart scales when using 10 different imputation methods imputing data in
increments of 20%, 40%, 60%, and 80%. Errors represent the deviation from estimates made from observed data sets. ASSRKS: ARIMA state-space
representation and Kalman smoothing; EWMA: exponentially weighted moving average; KNN: K-nearest neighbors; NLMD: nonlinear mean deviation;
PMM: predictive means matching; RF: random forest; RMSE: root mean square error; SMKS: structural modeling with Kalman smoothing.

Discussion

In this study, we proposed a method for processing body weight
data acquired from electronic smart scales, with both general
and specific applications (to BWV). The analysis was produced
in response to the increasing use of smart scales in clinical and
research environments [24-26]. For the purposes of cleaning,
imputation, and detrending, this analysis can inform most
researchers dealing with body weight data from smart scales.
Furthermore, we provide specific validations on the estimation
of BWV using linear and nonlinear approaches and report the
errors associated with these estimations when (1) data are
missing and (2) data are imputed. We found that SMKS,
EWMA, and linear interpolation performed imputation best.
These methods are available to researchers through many
statistical packages [39]. For the purpose of estimating BWV,
we showed that leaving data as missing does not introduce
significant bias (only 3%-7% error with >80% data missing),
whereas calculating BWV on imputed data causes significant
underestimation and should be avoided.

Body Weight Imputation
We considered 7 univariate and 3 multivariate approaches to
imputation. As access to further individual-level information
(eg, participant characteristics or behavioral patterns and
psychological traits) may be unavailable, body weight data
collected by smart scales may be treated as univariate, and
therefore, the use of more advanced approaches to multivariate
imputation such as tree-based models, neural networks, and
KNN methods is limited. To test multivariate imputation

algorithms, we added day number (ie, day of trial) and day of
the week as predictive variables, as these can be automatically
collected in free-living environments without any participant
burden. Within-week (eg, weekday vs weekend) fluctuations
in body weight have been shown previously [19,20] and may
have predictive value in imputation. However, we found that
these methods, in the current circumstances, did not outperform
simple methods such as SMKS or EWMA on MCAR- or
RPM-simulated data sets. Indeed, machine learning methods
may perform better when trained on large, complete data sets
and then applied to missing data; however, in this analysis, we
did not have enough complete data sets to train machine learning
imputation models, and we chose to limit the variables used in
multivariate imputation to improve accessibility. This is the
first study to address the issue of missingness and imputation
in body weight tracking data; however, several studies have
addressed the tracking of physical activity from accelerometers
[25,61,62], often using similar simulation and validation
approaches with success.

Body Weight Variability Estimation
We proposed a method of estimating BWV using a nonlinear
approach, which we termed NLMD. This was devised to address
the assumption of linearity associated with RMSE estimations
commonly used. Using a nonlinear approach, the trendline is
fitted more closely to the data. The result is the ability to identify
day-to-day variability or within-week patterns. In contrast, in
the case of curvilinear weight trends, RMSE generates large
residual errors; this may be more suitable when the aim is to
detect larger fluctuations over several months or years. We
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found that BWV estimates from data sets with simulated
missingness were similar to true estimates, using both RMSE
and NLMD methods. Surprisingly, using our current methods,
BWV estimates were not greatly different between complete
and 80% missing data sets (3.2%, SD 0.2% and 7.0%, SD 0.2%
for RMSE and NLMD methods, respectively). However, when
these missing data were imputed, substantial biases were
introduced largely as underestimations, which increased for
each increment of imputed data. As such, although our
imputation-validation analysis may inform general imputation
of body weight data for numerous other purposes, for the
purpose of estimating BWV, we advise that data be left as
missing.

To our knowledge, no previous study has examined long-term
BWV from electronic smart scales, and only a few studies have
modeled frequent weight data using TS methods. A recent study
examining the effect of breaks in self-weighing on weight
outcomes used a linear mixed model approach using time and
weight as fixed predictor and response variables, respectively
[37]. However, the use of linear modeling when examining
BWV is not sensitive to the often-polynomial features of body
weight trajectories. In another study, the authors compared
differences in weekday and weekend body weights with
longer-term weight changes [20]; however, the data were not
detrended. Therefore, weekly weight patterns may potentially
be sensitive to overall weight change (particularly in individuals
with rapidly changing weight). In a study examining the effect
of season on weight patterns across several countries, the authors
fitted orthogonal polynomials to the weight data before
conducting a detrending process, which may help isolate
seasonal patterns from the overall trend (eg, loss or gain) of an
individual, showing clear seasonal patterns across the year in
different geographical regions [23]. Finally, in a recent study
investigating within-week patterns of BWV in 80 adults, the
authors took a comprehensive approach by applying
nonparametric smoothing techniques (similar to this study) and
removed the trend component of the TS using a moving average
approach, reporting significant weekly patterns within a week
characterized by weekend weight gain and weekday
compensation [19]. Recently, we used the present methods to
inform the description of weight fluctuation patterns across
weeks, years, and holidays [1] and to investigate the associations
between BWV and cardiometabolic health outcomes [2].

Strengths and Limitations
This study has several strengths. First, we developed our data
processing methods from true rather than simulated data, thus
increasing the validity of the analysis. Our simulation-imputation
analysis was comprehensive, including the generation of 8000
missingness-simulated data sets in total with varying levels of
missingness using both random and real-missingness informed
simulations, which resulted in 80,000 imputed data sets
produced using 10 univariate and multivariate algorithms. Next,
we described and compared both linear and nonlinear
approaches to estimating BWV under different conditions of
missingness and reported the errors produced in the common
case of missing data, which should inform the magnitude of
errors expected from missing data estimations in future studies.
Some limitations should also be addressed. First, all imputation
methods were deterministic, although body weight seems to be
a relatively stochastic (ie, randomly determined) process. The
resultant effect is that imputation may reduce the variability by
attempting to recognize predictive patterns that are not there.
We recommend that consideration should be given to whether
imputation is necessary. In some analyses, including instances
where machine learning algorithms are employed, complete
data are a necessity; therefore, imputation is required. Next, we
did not have entirely complete data by which to test imputation,
although we opted to use real rather than simulated data for
external validity.

Conclusions
BWV potentially represents (1) a significant health risk and (2)
a prognostic tool that is currently not well understood or well
measured. This study evaluated the performance of various
imputation methods applied to body weight data and presented
a protocol for estimating BWV under varying amounts of
missing data. We showed that structural modeling with a
Kalman smoother and EWMA performed an imputation most
effectively. However, in the case of estimating BWV, the
imputations generally produced large underestimations due to
the tendency to revert toward the mean. Furthermore, we
demonstrated the errors associated with BWV estimates at
varying levels of missing data, concluding that errors are small
when using both linear and nonlinear methods even under high
proportions of missingness. In future, the importance of both
frequent measurement of body weight and consistent and
appropriate methods of analyzing the data produced should be
underlined in the study of BWV.
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