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1. Introduction
The future evolution of the Greenland Ice Sheet (GrIS) is of global concern because its meltwater runoff will 
contribute tens to hundreds of millimeters of sea level rise through the next century (Goelzer et al., 2020; Hofer 
et al., 2020; Pattyn et al., 2018; Shepherd et al., 2020; Slater et al., 2020). Especially prominent changes are occur-
ring along the GrIS ice margin as runoff accumulates and the ice margin retreats across complex topography, 
leading to the formation of more ice-marginal proglacial lakes (Carrivick & Quincey, 2014; How et al., 2021; 
Shugar et al., 2020). The observed increase in the number and size of lakes is concerning, as transition from 
land-to lake-terminating ice margins can accelerate ice flow through reductions in longitudinal buttressing force 
and basal drag near the ice margin due to buoyancy effects (e.g., Carrivick et al., 2020 and references therein). 
Increases in lake-terminating ice-marginal environments will also increase potential for more rapid ice sheet 
mass loss through both iceberg calving and lake-enhanced melt of the ice margin itself (e.g., Schomacker, 2010). 
Ice-marginal lakes have also been invoked as a potential catalyst for inducing exceptionally rapid ice margin 
retreat (Carrivick et al., 2020; Hinck et al., 2020; Quiquet et al., 2021; Sutherland et al., 2020), especially where 
there is progressive ice-margin retreat down a retrograde bed slope (Truffer and Motyka, 2016) in a manner 
highlighted for marine termini by Crawford et al.  (2021). These effects of ice-marginal lakes are not directly 
incorporated into projections of long term GrIS change.

There has been a recent upturn in the attention afforded to ice-marginal lakes as the importance of glacier-lake 
interactions has become clearer (Carrivick et al., 2020). How et al.  (2021) provided a comprehensive and 
robust inventory of ice-marginal lakes across Greenland and Mallalieu et  al.  (2021) provided compelling 
evidence that lakes have a disproportionate impact on ice margin retreat; along a 5,000 km stretch of the 
western margin of the GrIS margin, retreat between 2010 and 2015 was >4 times greater at lake-terminating 
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margins than that at land-terminating margins. However, glacier terminus recession at lake-terminating 
margins is typically an order of magnitude lower than at marine-terminating glaciers, as shown by 
comparing Mallalieu et  al.  (2021: their Table 4) to the hundreds of meters of retreat per year (between 
1985 and 2018) reported for hundreds of tidewater glaciers by both King et al., (2020, their Figure 2) and  
Fahrner et al. (2021).

Though retreat rates of lake margins are less than marine margins, the length of the ice-margin that lakes occupy 
has not been analyzed, meaning their relative importance is currently unknown. Furthermore, ice discharge into 
these ice-marginal lake systems is unquantified, especially relative to their marine- and land-terminating coun-
terparts. Perhaps most crucially, the likely evolution of these lakes as the ice margin retreats and thins has not 
been considered, leaving an open question of how ice-marginal lakes will affect future GrIS recession, mass loss 
and runoff. Regarding sea level contributions, more lakes and larger lakes could most simply act as bigger water 
storages if they are endorheic (i.e., have no terrestrial outflow to a river/ocean). However, it is most likely that 
lakes will fill up to a spillway threshold and then drain freely.

Runoff into the North Atlantic affects ocean circulation and hence the climate of western Europe, which has 
feedback on human health, behavior and economy (McMichael et al., 2006; Siegert et al., 2020). In Greenland, 
runoff locally affects the downstream ecosystems, landscape evolution, and the residing population and economy, 
including hunting, fishing, mining, and hydropower. The aim of this study is therefore to quantify the present 
status of ice-marginal lakes across Greenland and suggest a possible future state of lakes, ultimately to inform 
inclusion of ice-marginal lakes with GrIS evolution simulations.

2. Datasets and Methods
The inventory of ice-marginal lakes by How et al. (2021) was taken to be the most contemporary and internally 
consistent data set available for our analysis and pertains to the year 2017. An ice-margin for the GrIS was derived 
from the glacier catchments/basins data set of Mouginot and Rignot (2019) and from our own 30 m resolution 
semi-supervised landcover classification derived from Landsat 8 Operational Land Imager imagery from the 
summer seasons (July–September) of 2016 to 2019 inclusive. We also herein use the Mouginot and Rignot (2019) 
basin delineations to aggregate our results by major regions of Greenland (Figure 1). A Greenland coastline for 
year 2017 was derived from the 150 m resolution land mask BedMachine (v3) datasets and updated for glacier 
front positions in 2017 by Gerrish (2020).

In this study, these ice sheet and ice-marginal lakes datasets were intersected and the ice sheet and the coastline 
were intersected to delineate our lake boundaries and marine termini, respectively (Figure SI_1 in Supporting 
Information S1). We computed the number and length of glacier-lake boundaries for the GrIS and for the periph-
eral mountain glaciers and ice caps (PGICs), the total area of lakes adjoining glaciers, the ice discharge (as a 
function of the velocity and ice thickness) through each lake boundary and the drainage basin/catchment area for 
each lake. PGICs were those in Randolph Glacier Inventory v6 obtained from GLIMS (2021) (Raup et al., 2007). 
Boundaries were represented as points with 200 m spacing to ensure consistency with the resolution of the ice 
margin of Mouginot and Rignot (2019), which we relied on for our length calculations, and to match the resolu-
tion of the velocity grids of Joughin (2020). Ice discharge was calculated as the product of the ice thickness from 
BedMachine v4 (Morlighem et al., 2021) and ice velocity, for which we computed the mean of five ice sheet wide 
200 m resolution annual datasets from December 2014 to November 2019 by Joughin (2020). The drainage basin/
catchment for each lake was determined using hydrological analysis of the ice surface data set of BedMachine 
v4. Catchments were estimated via computation of a flow direction grid that was derived from a digital elevation 
model (DEM) from BedMachine v4 (Morlighem et al., 2021), smoothed using a moving window of 10 cells, 
and then filled local depressions. More details of all the datasets we used and generated and our methods are in 
Supporting Information S1.

We also considered possible locations and size of lakes in the future by analyzing topographic basins, or subgla-
cial overdeepenings, that will become revealed and available to hold meltwater as the GrIS margin retreats 
inland. We generated a future GrIS outline by subtracting the mean ice thickness change as suggested by multiple 
models at 5 km resolution in the ensemble study of ISMIP6 (Goelzer et al., 2020; see their Figure 6a) from the 
BedMachine v4 ice thickness. We determined overdeepenings by filling local depressions in the BedMachine v4 
(Morlighem et al., 2021) bed topography data set. Overdeepenings were filtered for >0.1 km 2 to be mindful of the 
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resolution of the datasets and uncertainty within them (see our Supporting 
Information S1). Those overdeepenings intersecting the coastline and below 
sea level were interpreted as fjord troughs and excluded from our reported 
statistics of possible future lakes (Figure 4). We are unable to consider the 
rate of lake growth or whether lakes might drain, for example,

3. Results
How et al. (2021) identified 2,399 ice-marginal lakes >0.05 km 2 on the GrIS 
and 948 on PGICs, with a total area of 3,214 and 761  km 2, respectively. 
This study finds a total lake-glacier boundary length of 3,176  km (Table 
SI_1 in Supporting Information S1), which means that on average 10% of 
the GrIS has an ice-marginal lake boundary, and there is one lake every 
13  km length of the GrIS ice margin. For PGICs, ∼5% of those margins 
terminate in an ice-marginal lake. Ice-marginal lake environments therefore 
substantially exceed those of marine termini, which total 1,698 km or 5% 
of the GrIS margin length, and they total 615 km on PGICs (Table SI_1 in 
Supporting Information S1). Marine termini occupy 486 km, or 12% of the 
regional ice margin length in the north-west (NW) region, 8% in central-west 
(CW) and 6% in north (NO) and south-east (SE) (Table SI_1 in Supporting 
Information S1).

In the NO region 15% of PGICs have lakes. Four regions stand out for 
containing the greatest number and total size of ice-marginal lakes; namely 
NO PGICs with 28% of the total PGICs lake number and 17% of the total 
PGICs area, NE GrIS with 24% of the total GrIS lakes number and 35% of 
the total GrIS area, NE PGICs with 25% of the total PGICs number and 38% 
of the total PGICs area, and south west (SW) GrIS with 28% of the total GrIS 
number and 29% of the total area of ice-marginal lakes on the GrIS (Figure 1; 
Table SI_1 in Supporting Information S1).

The total length of glacier – lake boundaries is 3,176 km on the GrIS, which 
is 10% of the total GrIS ice margin, and 795  km on PGICs. The greatest 
proportions of the GrIS with lake boundaries occur in the NE (26% of the 
region ice margin length), SW (17%), CW (16%) and NO (11%) (Table SI_1 
in Supporting Information S1). Glacier – lake boundary lengths do not vary 
greatly between regions and have a median length of ∼0.5 km long on both 

the GrIS and on PGICs (Figure 2a). They are unusually long and >1 km in the SE PGICs (Figure 2a). In contrast, 
the length of marine termini do vary greatly between regions, and tend  to be longer on the GrIS than on PGICs 
and are greatest (median >3 km) in the NW, NO, NE and CW regions (Figure 2a).

Ice velocity at lake boundaries is greater than at land boundaries for all regions of the GrIS (Figure 2b). With all 
regions combined the lower quartile, median, and upper quartile of ice velocity for lake boundaries is 25%, 25% 
and 30% greater than for on land, respectively. The lakes - land difference (both absolutely and proportionally) is 
most pronounced in the CE and CW regions (Figure 2b). In comparison, our marine boundaries have a median 
velocity of 158 m.yr −1 (the skewed distribution has a mean of 678 m.yr −1) and so with the flux gate analysis 
of tidewater glaciers by Mouginot et  al.  (2019), which shows typical ice velocities of hundreds to thousands 
of meters per year, it can be inferred that ice velocities into lakes, whilst enhanced relative to land-terminating 
margins, are one to two orders of magnitude lower than at marine boundaries.

The total drainage basin area/catchment size of ice-marginal lakes across Greenland has an upper limit of between 
408,880 and 497,600 km 2, or 24%–29% of the total GrIS area (Figure 3a). Given that we used hydrological 
analysis on a smoothed 150 m DEM and Mankoff, Noël, et al.  (2019) used different hydrological tools on a 
100 m DEM it is encouraging to see broad agreement in our lake catchment estimates and their land catchments 
(Figure 3a); they did not discriminate lakes. It is perhaps useful to note that the hydrological outlets and basins 
datasets of Mankoff, Noël et  al.  (2019, see their Figure  1) suggest a total drainage basin/catchment area of  

Figure 1. Overview of location and number of ice-marginal proglacial lakes 
(IMLs) and marine termini discriminated per region both on the edge of the 
Greenland Ice Sheet (GrIS) and on peripheral ice caps and glaciers (PGICs). 
Regions are those by Mouginot and Rignot (2019), where NO denotes North, 
NE north east, CE central east, SE south east, SW south west, CW central west 
and NW north west.



Geophysical Research Letters

CARRIVICK ET AL.

10.1029/2022GL099276

4 of 9

land-terminating (including lakes) parts of the GrIS to be 589,700 km 2, or 34% (Figure 3a). Our lower estimate 
is without any leniency for error in the boundary positions and mindful of the 200 m velocity grid resolution, 
whilst the higher estimate is more lenient by allowing a 500 m tolerance in boundary position and in ice drain-
age routing (which is in part derived from the velocity grid). The reason for suggesting that this estimate of 
drainage basin/catchment areas to ice-marginal lakes is an upper limit is because low-order drainage lines (in 
the vicinity of lakes) link to higher-order lines (in outlet glaciers) and knowing where to limit the extent of the 
analysis is a very subjective decision. Nonetheless, some ice-marginal lakes have drainage basins/catchments that 
might stretch into the interior of the GrIS (Figure 3); although if so, they considerably overlap marine-termini 
catchments. Some overlap is possible between lake and marine catchments with our method because not all 
ice-marginal lakes are at glacier termini; some are on flanks of outlet glaciers. The median size of an ice-marginal 
lake drainage basin, using our most conservative or least lenient method, is 159 km 2 (Figure 3b), but there is a 
large inter-quartile range of 26–839 km 2. For comparison and as will be discussed later, Mouginot (2019) states 
that ∼ 86% of the GrIS drains through marine termini.

We estimate that ice discharge through ice-marginal lake boundaries totals 4.9 Gt.yr −1 and that the SW region 
contributes 37% of this total (Table SI_2 in Supporting Information S1). A large (∼30 km 2) lake at Uukkaasor-
suaq, which lies in the SW region of Greenland and ∼45 km east from the settlement of Paamiut stands out for 
receiving a relatively very large discharge of ice estimated at 0.74 Gt yr −1. Tininnilik in the CW region receives 
∼0.18 Gt yr −1. There are five lakes in total estimated to receive >0.1 Gt yr −1 and 84 lakes receiving >0.01 Gt yr −1. 
For our marine boundaries, we calculate a total of 426 Gt yr −1 ice discharge, which is in good agreement with the 
488 ± 49 Gt yr −1 reported for tidewater glaciers by Mankoff, Colgan, et al. (2019) but less than the 555 Gt yr −1 
reported by Mouginot et al. (2019) for the year 2018 (and mean 535 Gt yr −1 for 2009–2018). Our ice discharge  

Figure 2. Comparison of boundary length (a) and mean velocity with boundary type (b) discriminated by region both for the 
Greenland ice sheet (GrIS) and for PGICs. Inter-quartile range and maximum lake sizes are not displayed for clarity in panel 
(a) The inter-quartile range and median are represented in panel b by a bar and a horizontal line, respectively.
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through marine boundaries is in good agreement in pattern between regions 
with those of Mouginot et  al.  (2019; see our Table SI_3 in Supporting 
Information  S1). Therefore, our conservative estimate of the ice flux into 
ice-marginal lake margins is ∼1% of the marine total but given the ice thick-
ness uncertainty (see our Supporting Information S1) could be up to 3.2%.

In the future, up to the year 2100, proglacial lakes could form within 6,247 
topographic basins/overdeepenings >0.1  km 2 (Figure  4). Overdeepenings 
below sea level are not included in our statistics because once ice disappears 
from and exposes those troughs, they will become flooded by seawater as 
fjords (Figure 4). Assuming all these overdeepenings are simultaneously full, 
which is very unlikely as the ice margin will retreat progressively inland, then 
future lakes could total 7,404 km 2(Figure 4). The greatest changes in distribu-
tion of lakes between the present (Table SI_1 in Supporting Information S1) 
and those possible in the future (Table SI_3 in Supporting Information S1) 
could be in the CE region (+14% of the GrIS total) and the SW (−14%). The 
greatest changes in the total size/coverage of lakes per region could be in the 
CE (+18%) and in the NE, NO and SW regions (−15%, −10% and −24%, 
respectively). This spatial variability in possible lake formation is because 
the ice sheet margin in the west is not projected to retreat inland greatly 
(Figure 4), despite a lot of the ice being on a retrograde slope. In contrast, 
future lakes in the east could form abundantly within numerous deglaciated 
deep valleys (Figure 4). Some future lakes could be extremely large; 59 lakes 
>20, 14 lakes >50 and 3 lakes >100 km 2, with the largest being 161 km 2. 
Notwithstanding the fact that not all these lakes will co-exist, the median size 
of possible future lakes is 0.24 km 2, which is 50% greater than at present, and 
the inter-quartile range increases from 0.15 at present to 0.57 km 2.

4. Discussion
Ice-marginal lakes are ubiquitous and pervasive in all parts of Greenland, 
both on the GrIS and across Greenland PGICs (Figure 1) but studies of their 
evolution and ice-interactions tend to be on individual lakes only (e.g., Carriv-
ick & Tweed, 2019; Carrivick et al., 2017; Grinsted et al., 2017; Kjeldsen 
et al., 2017; Mallalieu et al., 2017, 2020; Weidick and Citterio, 2011; and 
references therein). As the quality and quantity of remotely-sensed imagery 
increases and as computing power expands, there is increasing ability to not 
only inventory these lakes (c.f. How et al., 2021) but also to capture their 
dynamics; for example, many lakes in Greenland often fill, drain, coalesce 
or become detached from ice margins (Carrivick & Quincey, 2014; Carrivick 
& Tweed, 2019).

The boundary between a glacier and a lake is the interface through which 
mass and energy interactions occur; most profoundly by water exchanges 
(e.g., runoff supraglacially and subglacially), sediment deposition, mechan-
ical forces (e.g., longitudinal stress, buoyancy) and thermal energy fluxes 
(e.g., direct melt of the ice margin and impacts on the proglacial water body) 
(Carrivick & Tweed, 2013; Carrivick et al., 2020; Truffer and Motyka, 2016). 
Therefore, the length of that boundary is a key parameter to determine to 
quantify any effects of that lake on glacier morphology and behavior. Other 

key properties are lake depth and lake water temperature (Carrivick et al., 2020), but these are rather more diffi-
cult to derive from remote sensing and field data on both is extremely sparse. Notably, some progress on deter-
mining ice-marginal lake surface temperatures has recently been made (Dye et al., 2021) but remotely-sensed 
surface temperatures are limited, as they do not effectively represent water temperature at depth, or temperature 
through the water column and associated seasonality (c.f. Sugiyama et al., 2021). The length (and thickness) of 

Figure 3. Catchment areas of ice-marginal lakes (a), where darker shades 
denote usage of a more lenient parameterization and each is in addition to 
the area estimated with the lower leniency. Land-terminating catchments 
in panel a are from Mankoff, Noël et al. (2019). Histogram analysis of the 
areal extent of the catchment areas highlights predominance of smaller lake 
catchments  (b).



Geophysical Research Letters

CARRIVICK ET AL.

10.1029/2022GL099276

6 of 9

a glacier – lake boundary is important for controlling lake evolution. Specifically, it has been correlated with the 
rate of ice-margin change (and therefore lake evolution) in west Greenland (Mallalieu et al., 2021) and the Gulf of 
Alaska (Field et al., 2021). Given that we have established that 10% of the GrIS is presently in contact with a lake, 
and that individual glacier-lake boundaries can be many kilometres long (Figure 2), then greater attention needs 
to be given to these environments if the future evolution of the GrIS is to be better understood. How GrIS and 
PGIC ice discharge will evolve in response to the formation of (more and larger) ice-marginal lakes is unknown 
but will be dependent on location-specific topographic settings.

Comparing our catchments for lakes and those for land and marine-termini (Mouginot, 2019; Mankoff, Noël 
et al., 2019) shows some agreement (Figure 3a), some dependence on datasets and methods, but also considerable 
uncertainty in the accuracy of results. Catchments delineated using analysis of ice dynamics (c.f. Mouginot and 
Rignot, 2019) are too coarse for ice-marginal lake analysis owing in part to the method but also because catch-
ments for many parts of the land-terminating sectors of the ice sheet being aggregated by those authors. There is a 
clear need for refining the catchments of ice-marginal lakes to understand the inland/up-ice extent of glacier-lake 
boundary influences/effects. Price et  al.  (2008) have modeled ice-marginal perturbations propagating tens of 
kilometres inland or up-ice, which accords with longitudinal coupling being effective up-stream between four and 
10 times ice thickness (Cuffey & Paterson, 2010). The spatial scale of these effects for glaciers with ice-marginal 
lakes needs resolving because they are likely to be smaller and slower than that considered by Price et al. (2008). 

Figure 4. Location, number and size of overdeepenings, within which lakes could form in the future. Future 2,100 ice extent 
is the mean of several models at 5 km resolution evaluated and reported by Goelzer et al. (2020). Inset statistics are for the 
whole of the Greenland ice sheet (GrIS), not just the southern part, which is depicted here to highlight the spatial differences. 
Note that the possible future lakes are a maximum estimate because not all will be ice-marginal simultaneously; many 
will become detached from the ice margin, and because we cannot suggest if all overdeepenings will completely fill with 
meltwater and not drain.
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The presence/absence of a lake, water level, water temperature and any sudden changes in those lake properties 
could affect glacier dynamics within lake catchments. Importantly, the alpine literature (e.g., see citations within 
Carrivick et al., 2020) and numerical models (Hinck et al., 2020; Quiquet et al., 2021; Sutherland et al., 2020) 
show that these effects could persist many kilometres up-ice from those lakes, especially where glaciers sit on 
retrograde bed slopes (i.e., overdeepened valleys/basins).

Ice velocities on the edge of the GrIS are locally enhanced by ice-marginal lakes compared to those from land 
terminating margins (Figure 2b, Figure SI_1b in Supporting Information S1) typically by a factor of ∼+25%. The 
association of faster-flowing ice with ice-marginal lakes compared to glaciers terminating on land is relatively 
well-documented elsewhere (e.g., Baurley et al., 2020; Dell et al., 2019; King et al., 2018; Liu et al., 2020; Pronk 
et al., 2021; Sato et al., 2021; Sutherland et al., 2020; Tsutaki et al., 2013, 2019, 2011). However, for the GrIS, 
whilst ice velocities might be higher in the vicinity of lakes than at land-terminating ice-margins (Figure 2b, 
Figure SI_1b in Supporting Information  S1), this does not currently translate into receipt of very much ice 
(discharge) because; (a) whilst acknowledging the large uncertainty in the ice thickness data set especially on the 
margins of the GrIS the ice in those areas is thin, at least in comparison to the thickness of marine terminating 
outlet glaciers (Figure SI_1b and 1d in Supporting Information S1) and, (b) at present ice-marginal lakes on the 
GrIS are predominantly situated on the lateral margins of glaciers, that is, oblique to the main flow direction, 
rather than at termini (e.g., Figure SI_1a in Supporting Information S1).

Future lakes in west Greenland will probably remain restricted to the ice margin, which is not projected to change 
much in its position compared to the east (Figure 4). In contrast, in east Greenland the projected future deglaci-
ation of deeply incised valleys reveals a landscape conducive to retaining lakes that are both numerous and large 
(Figure 4), and these topographic settings will be conducive to a much higher proportion of those lakes (than at 
present) forming at glacier termini where they can have a much more profound impact on ice dynamics. Thus, 
the future of east Greenland in terms of ice-marginal lakes developing on glacier termini will become rather more 
like the situation for PGICs at present. Furthermore, our analysis shows how some marine-terminating outlet 
glaciers (in all regions of Greenland) will lose contact with the ocean/coastline and their termini will retreat 
inland to become land-terminating (Figure 4), as has already been happening over the last decades (Kochtitzky & 
Copland, 2022). Notwithstanding that lake effects on glaciers predominantly operate on time-scales of decades 
(Carrivick et al., 2020; Sutherland et al., 2020), which can be an order of magnitude less than effects of marine 
boundaries on ice sheets, these conditions of more and larger lakes (Figure 4) lead us to suggest that the relative 
importance of lakes on the GrIS could increase in the future.

5. Conclusions
Lake-terminating ice margins are approximately twice as extensive on the GrIS as their marine counterparts. 
Yet relatively little is known about them and how they might evolve in the future. Ice velocity into lakes is 
typically 25% greater than for glaciers that terminate onto land. The difference in velocity between lake- and 
land-terminating parts of the ice margin is most pronounced in the CE and CW regions. As much as 24% to 
34% of the GrIS area could now deliver ice into ice-marginal lakes, but these lake catchments overlap those of 
marine termini and they have a large uncertainty dependent on datasets and methods used. Ice discharge into 
ice-marginal lakes around the GrIS is estimated to be 4.9 Gt.yr, which is just 1% of that through marine termini 
at present. However, as many marine termini can be expected to become land-terminating in the future and as 
proglacial landscapes expand revealing overdeepenings into which meltwater will pond to form lakes, the relative 
importance of ice-marginal lakes on GrIS evolution can only be expected to increase. Resolving the importance 
of glacier – lake interactions for the future evolution of the GrIS requires intensive and extensive field data, 
spatio-temporal lake inventories, much better delineation of lake catchments, and incorporation of lake-glacier 
interactions as mechanistic processes and feedbacks into ice sheet models.

Data Availability Statement
Ice-marginal lakes are available from How et  al.  (2021). https://catalogue.ceda.ac.uk/uuid/7ea7540135f-
441369716ef867d217519. Greenland ice sheet catchments are available from Mouginot and Rignot (2019) http://
doi.org/10.7280/D1WT11. Hydrological catchments of the GrIS are available from Mankoff, Noël et al. (2019) 
https://dataverse01.geus.dk/dataverse/freshwater. A Greenland coastline is available from Gerrish (2020) http://

https://catalogue.ceda.ac.uk/uuid/7ea7540135f441369716ef867d217519
https://catalogue.ceda.ac.uk/uuid/7ea7540135f441369716ef867d217519
http://doi.org/10.7280/D1WT11
http://doi.org/10.7280/D1WT11
https://dataverse01.geus.dk/dataverse/freshwater
http://doi.org/10.5285/8CECDE06-8474-4B58-A9CB-B820FA4C9429
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doi.org/10.5285/8CECDE06-8474-4B58-A9CB-B820FA4C9429. PGICs are available from RGI v6 obtained 
from GLIMS (2021; Raup et al., 2007) http://glims.colorado.edu/glacierdata/. Annual ice velocity grids are avail-
able from Joughin (2020) https://nsidc.org/data/nsidc-0725/versions/2. Ice surface elevation, ice thickness, ice 
sheet bed topography from BedMachine v4 (Morlighem et al., 2021) http://doi.org/10.5067/VLJ5YXKCNGXO. 
Our shapefiles of lake and marine boundaries (lines), ice discharge into lakes (points), lake catchments (poly-
gons) and overdeepenings/possible future lakes (polygons) are available via the Research Data Leeds Repository 
http://doi.org/10.5518/1107.
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