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Abstract    To realize the commercialize of rechargeable Zn-air battery (RZAB), developing metal-

free bifunctional electrocatalysts with satisfactory activity for ORR (oxygen reduction reaction) and OER 

(oxygen evolution reaction) is one of the emerging issues. Herein, a prawn shells-derived N-enriched 

porous carbon (PSNC) is synthesized via an ion exchange coupled biomimetic self-sacrificing template 

strategy. The resulting PSNC displays unique functional components, including the interconnected 

macro-meso-micropores structure to shorten charge and mass transfer pathway, high content of pyridinic 

and graphitic nitrogen to construct rich catalytic active site and improve conductivity. As electrocatalysts 

in alkaline condition, the optimized PSNC-0.8 achieves excellent bifunctional catalytic propriety with a 

narrow potential gap (ΔE) value of 0.80 V. Meanwhile, PSNC-0.8 based RZAB displays a high peak 

power density of 176.5 mW·cm-2 and considerable cycling durability with a small battery efficiency 

delay of 6.5% after 480 cycles (320 h). This study enlightens a simple and effective conception to design 

high performance metal-free bifunctional electrocatalysts from seafood waste. 

Keywords  Rechargeable Zn-air battery (RZAB); Bifunctional electrocatalyst; N-enriched porous 

carbon; Biomineral self-sacrificial template; Ion exchange 

 

1 Introduction 

 
With the increasing demands of energy and environmental sustainability, extensive attention has been 

focused on the renewable and clean energy [1-5]. Consequently, exploiting the high energy density 

storage and conversion system has become an inevitable choice [6-11]. Among these systems, 

rechargeable Zn-air battery (RZAB) displays tremendous application foreground due to various merits, 

including the eco-friendly, low-cost and high energy density [12-14]. However, the electrochemical 

performance of RZAB is primarily limited by the sluggish ORR (oxygen reduction reaction) and OER 

(oxygen evolution reaction) dynamics process [15-17]. The noble metal-based catalysts, such as Pt/C or 

RuO2, exhibit well ORR or OER catalytic activity [18]. But their large-scale application is still subject 

to the scarcity nature and insufficient bifunctional catalytic properties.  

Up to now, the heteroatom-doped porous carbon materials (HPCMs) have been widely regards as the one 

of the most promising electrocatalysts for RZAB considering their high surface area, environmental 

acceptability, high electric conductivity and excellent catalytic performance, as well as considerable 



stability [19]. The theoretical calculations and experimental studies have demonstrated that the 

heteroatom (e.g. N, S, P) can effectively improve the oxygen catalytic activity of carbon [20-22]. For N-

doped carbon, the higher electronegativity of N can change the surface charge distribution of C atoms, 

which can create rich catalytic active sites and form strong N-C bonds [23]. Specially, the graphitic-N 

and pyridinic-N (i.e., C-N bonding as active sites) are believed to play a crucial key role in improving 

ORR and OER process because of the enhanced π bonding [24]. Besides, the porosity of carbon material 

also plays a vital role in enhancing oxygen catalytic activity [25]. Particularly constructing a macro-

meso-micropores structure in carbon material is an effective strategy to reduce O2 and electrolyte 

diffusion and mass-transfer resistance [26,27]. Meanwhile, the above hierarchical porous structure can 

largely expose the catalytic sites for oxygen conversion. Hard templates strategy is one of the most 

popular methods for synthesizing HPCMs [28-30]. For instance, colloidal silica particles have been 

widely adopted as template for ordered mesopore carbon [31,32]. But the removal of silica template is 

environmentally unfriendly because of the corrosive HF or concentrated alkali solution. For comparison, 

some biomineral materials, such as CaCO3, have been considered as a more suitable option because of 

the well-tunable morphology, greenness, and simplicity of removing templates [33]. In addition, the 

pyrolysis ash (CaO) can also play a role in regulating pore structure. Significantly, the uniform dispersion 

and content of CaCO3 can largely affect the distribution of pore structure and N atom. Therefore, how to 

maintain the uniform dispersion and accurate content of CaCO3 is an essential issue needed to address to 

construct high-performance HPCMs electrocatalyst. 

Ingeniously, some seafood waste (e.g. prawn shells) possesses unique component characteristics [34,35]. 

In the natural condition, CaCO3 component is evenly distributed in prawn shells to maintain the stability 

of shell structure. And edetate disodium (EDTA-2Na) solution can be used as an ion exchanger to precise 

regulate the content of CaCO3 via the strong coordination between EDTA-2Na and Ca2+. Additionally, 

prawn shells are also rich in protein and chitin, which can be served as nitrogen source [36]. According 

to the above discussion, it can enlighten that the prawn shells can be served as a fine and cheap precursor 

of HPCMs, and then synchronously realize the uniform design of pore structure and N-doping. 

Furthermore, as an abundant and cheap renewable resource, the prawn shells is mainly treated by sanitary 

landfill [37]. The resource utilization rate of prawn shells is far from satisfactory. Hence, exploring the 

potential application of prawn shells waste in the field of electrocatalysis may be a viable option. 

In this work, we introduce an ion exchange coupled biomineral self-sacrificing template approach to 

precisely design prawn shells-derived N-enriched porous carbon (PSNC) as an effective metal-free 

bifunctional electrocatalyst for RAZB. The resulting PSNC samples possess unique structural 

characteristics, including interconnected macro-meso-micropores structure distribution to provides a 

high infiltrated area to fully exposed catalytic active site and shorten O2 and electrolyte diffusion pathway, 

the high content of pyridinic-N and graphitic-N to construct rich catalytic active site to strengthen the 

catalytic activity as well as optimize the charge transfer. As a bifunctional electrocatalyst, the optimized 

PSNC-0.8 displays excellent ORR/OER catalytic activity, and the PSNC-0.8 based RZAB displays a 

high peak power density and considerable cycling stability. 

2 Experimental 

2.1 Material synthesis 

The synthesis process of PSNC is described as follows: 5 g pre-dried prawn shells powder (300 mesh) 



was dispersed into 100 ml EDTA-2Na aqueous solution with an aqueous solution concentration range 

(0-0.15 mol·L-1) to remove CaCO3 partly. After stirring for 0.5 h, the filter residue was rinsed with 

deionized H2O and then freeze-dired. Subsequently, the obtained filter residue was transferred to a 

pyrolysis furnace to anneal at 750 °C for 2 h (Ar, 5 °C·min-1). After that, the product was further purified 

by HCl solution (0.5 mol·L-1) to obtain the PSNC sample. According to the percentage of CaCO3 in filter 

residue, the as-made PSNC samples were named PSNC-0.2, PSNC-0.5, PSNC-0.8 and PSNC-1.0. 

2.2 Apparatus/Instrumentation 

The morphological structures analysis was performed by FEI Tecnai G2 F20 transmission electron 

microscopy (TEM) and Zeiss SIGMA 300 scanning electron microscopy (SEM). The crystal structure of 

as-made sample was studied by X‘Pert Pro MPD X-ray diffraction (XRD, λ=0.154056 nm, Cu Kα 

radiation ) and LabRAM HR Evolution Raman spectroscopy (532 nm). The N2 adsorption-desorption 

test was carried out on a Micromeritics ASAP 2020 instrument.  XPS spectrometer (Thermo ESCALAB 

250X) was used to analyze the binding environments of elements. 

2.3 Electrochemical measurement 

All the electrochemical tests were carried out via three-electrode cell design, including an Al2O3-polished 

glass carbon electrode (GC disk area: 0.196 cm2) loaded catalyst ink as working electrode, a platinum 

wire as counter electrode and a Hg/HgO electrode (1 mol-1·L KOH) as reference electrode. The ORR 

measurements were performed in 0.1 mol·L-1 O2/N2-saturated KOH solution, while OER measurements 

were carried out in N2-saturated KOH solution. And the scan rate was kept at 5 mV·s-1 for linear sweep 

voltammetry (LSV). Additionally, the current-time (i-t) chronoamperometric measurement was also 

conducted to evaluate the durability of catalyst. It is worth noting that all the potential values were quoted 

versus RHE by the equation: E(RHE)= E(Hg/HgO) + 0.059×pH + 0.098, and the current density was 

calculated to the geometric area of working electrode. 

The working electrode was prepared as follows: firstly, 5 mg catalyst power was dispersed into water 

and 1 ml 1:1 (volume ratio) water/ethanol solvent containing 50 μl Nafion solution (5%) and 

ultrasonicated for 60 min to formed a homogenous ink. Secondly, 10 μl ink was dropped on the Al2O3-

polished glass carbon electrode surface and then natural drying to form the working electrode with a 

catalyst loading of 0.256 mg·cm-2.  

A homemade Zn-air cell was assembled to further demonstrate the bifunctional catalytic activity of as-

made sample with the Pt/C+RuO2 as the reference. Typically, the air electrode was comprised of nickel 

screen with a catalyst layer and a gas-diffusion layer. A polished Zn plate and mix solution (6 mol·L-1 

KOH+ 0.2 mol·L-1 Zn(CH3COO)2) were served as the anode and electrolyte, respectively. A LAND 

CT2001A testing station was used to measure the cycling reversibility and discharge performance with 

the current density of 10 mA·cm-2. The discharge-charge polarization data was collected by a CHI660 

electrochemical working station. All the performance tests were conducted at room temperature, and the 

detailed tests process was given in our previous publication [14, 35]. 

3 Results and discussion 

3.1 Physical characterization of PSNC samples 

The fabrication procedures of PSNC sample are illustrated in Fig. 1a. Before the pyrolysis process, the 

content of CaCO3 of prawn shells is first precisely regulated by virtue of the strong coordination between 

EDTA-2Na and Ca2+. During the pyrolysis process, the residual CaCO3 component is used as the hard 

template and pore-forming material to regulate the pore structure distribution. Meanwhile, the in-situ N-



doping was realized by the nitrogen rich components (chitin and protein). Then the ash was removed by 

HCl solution, the PSNC sample is successfully synthesized. 

From XRD patterns in Fig. 1b, all four PSNC samples display two broad characteristic diffraction peaks 

at 25° and 43°, which are related to (002) and (100) planes of carbon material [38]. In addition, Raman 

spectra of PSNC samples exhibit two distinct peaks (Fig. 1c). One peak located ~1340 cm-1 belongs to 

D band for the disordered carbon atoms, and the other peak at ~1580 cm-1 corresponds to G band for 

graphitic carbon [39,40]. The defective degree of carbon material can be evaluated by intensity ratios 

(IG/ID ). In general, a smaller IG/ID value tend to display more defects and disorders. PSNC-0.8 exhibits 

a smaller IG/ID value of 0.514 than other PSNC samples. This represents more defects and disorders are 

existed in PSNC-0.8, which are favorable for accelerating the oxygen electrocatalytic process. Besides, 

Nitrogen sorption measurement of PSNC samples deliver a pronounced hysteresis loop at relative 

pressure (P/P0) >0.45 (Fig. 1d), indicating the typical mesoporous nature [41]. Meanwhile, a distinct 

nitrogen uptake also observed at P/P0 <0.1, implying the existence of micropore structure. Furthermore, 

comparing with other PSNC samples (Table S1), PSNC-0.8 delivers the largest BET surface area and 

total pore volume of 395.7 m2·g-1 and 0.413 cm·g-1, respectively. The above result indicates moderate 

CaCO3 content can effectively regulate BET surface area. The above result can be further conformed by 

the pore size distribution in Fig. 1e. It is significant that PSNC-0.8 display more mesoporous and 

micropore structure than other samples. The rich mesoporous and micropore structure can provide fast 

O2 diffusion transfer paths and more electrode/ electrolyte interface to fully explore catalytic sites, which 

all in favour of the ORR/OER catalytic activity. 

 

Fig. 1 a Schematic synthesis process of PSNC; b XRD, c Raman spectra, d N2 adsorption-desorption 

isotherm and e pore size distribution of all PSNC samples 

In addition, XPS was also conducted to analyse the surface chemical structure of PSNC samples. As 

anticipated, only C 1s, N 1s and O 1s peaks are observed in the full XPS spectrum (Fig. 2a), and the 

content of N in PSNC samples is almost same with a high value of ~8.30% (Table S2). The presence of 

O (Fig. S1a) can be largely attributed to physic-chemical adsorption between porous carbon material and 

some oxygen species [42]. From Fig. 2b, N 1s spectra can be fitted in three peaks, which are 



corresponding to pyridinic N (398.5 eV), pyrrolic-N (400.4 eV) and graphitic-N (401.5 eV) [43,44]. Note 

that pyridinic-N and graphitic-N play an important part in constructing catalytic active sites [45,46]. 

Further analysis has revealed that the percentage of pyridinic-N and graphitic-N is closely related to with 

the content of CaCO3 (Table S2). PSNC-0.8 possesses a high amount of pyridinic-N and graphitic-N 

(55.92%), while the value for PSNC-1.0, PSNC-0.5 and PSNC-0.2 is only 49.68%, 40.37% and 38.65%, 

respectively. Ingeniously, the specific surface area and pore size distribution also have the same variation 

tendency (Fig. 1c, d). The above results have enlightened that the pyridinic-N and pyrrolic-N may be 

precisely regulated by the formation process of pore structure. Besides, in C 1s spectrum (Fig. 2c), the 

subpeak at 286.5 eV is related to C-N bond, further confirmed the carbon matrix is doped by N atoms 

[42]. 

 

Fig. 2 a XPS survey spectrum and b N 1s for PSNC samples; c C 1s for PSNC-0.8 

The morphological and structural characteristics of PSNC-0.8 are further investigated by SEM and TEM. 

In Fig. 3a-e, typical SEM and TEM images display that PSNC-0.8 delivers a continuous macro-meso-

micropores frame structure, connected by the closely parked N-doping carbon nanoparticles. The above 

porous frame structure is beneficial for O2 transport and electrolyte diffusion, as well as exposes more 

electrocatalytic active sites. Meanwhile, EDX elemental mapping further confirms the N-doping nature 

(Fig. 3f). Benefiting from continuous macro-meso-micropores structure and uniform N doping nature, 

the PSNC-0.8 is believed to deliver well oxygen electrocatalytic property. 



 

Fig. 3 a, b SEM, c-e TEM images, and f EDX elemental mapping of PSNC-0.8 

3.2 Electrocatalytic property of ORR and OER 

From CV tests in Fig. S2a,b, compared with N2 atmosphere, a well-defined cathodic reduction peak is 

observed in O2-saturated electrolyte, and the corresponding peak potential increases first and then 

reduces as the content of CaCO3 increases. PSNC-0.8 achieves the most positive peak potential of 0.78 

V with the best ORR activity. In addition, a same tendency is also presented in LSV tests. As shown in 

Fig. 4a, PSNC-0.8 displays a high onset potential (0.95 V) and half-wave potential (E1/2=0.80 V) with 

the best ORR performance in all PSNC samples. And these values are even very close to those of Pt/C 

(0.96 and 0.805 V).  Meanwhile, from the Tafel plots in Fig. 4b, PSNC-0.8 delivers the minimal Tafel 

slope of 62.7 mV·dec-1, suggesting a faster catalytic reaction kinetics occurring in the surface of catalytic 

material, further demonstrating the superior ORR performance of PSNC-0.8. Besides, with the rotating 

rate from 400 to 2500 r·min-1, the rise of current density rate implies a first-order reaction to ORR for 

PSNC-0.8 (Fig. 4c). From Koutecky-Levich ( K-L )plots in Fig. 4d, the average electron transfer number 

is calculated to 3.78-3.86, indicating a well four-electron selectivity for PSNC-0.8. Furthermore, i-t 

chronoamperometric measurement was conducted at 0.80 V to assess ORR catalytic durability. After 

12,000 s test period, the initial ORR current density retention for PSNC-0.8 and Pt/C is 85.61% and 

72.48%, respectively (Fig. S2c), indicating PSNC-0.8 have an excellent ORR stability. 

In addition to ORR performance, OER property were also evaluated with RuO2 as the benchmark (Fig.4e). 

Ordinarily, the potential at 10 mA cm-2 (Ej=10) is often as the key parameter to estimate the OER activity. 

PSNC-0.8 displays a small Ej=10 of 1.60 V, which is more negative than that of PSNC-1.0 (1.63 V), PSNC-

0.5 (1.65 V), PSNC-0.2 (1.67 V) and RuO2 (1.605 V). The results have demonstrated that PSNC-0.8 also 

shows an excellent OER performance. Moreover, from i-t chronoamperometric measurement at 1.60 V 

(Fig. S2d), PSNC-0.8 achieves a more OER catalytic stability than RuO2 (84.76% vs 74.75%). The 

potential gap (ΔE=Ej=10-E1/2) is an essential parameter to measure bifunctional electrocatalytic activity 

of a catalyst. A smaller ΔE value signifies a better bifunctional electrocatalytic activity. Clearly, PSNC-

0.8 exhibits the minimum ΔE value of 0.80 V (Fig. 4f), which is also superior to most of reported carbon 



based bifunctional electrocatalysts [38, 40, 47-52] (Fig. 4g).  The excellent bifunctional electrocatalytic 

activity of PSNC-0.8 can be largely attributed to the synergistic effect of interconnected macro-meso-

micropores structure to shorten O2, electrolyte transmission pathway, and high amount of pyridinic-N 

and graphitic-N to provide abundant catalytic active sites as well as improve electron transfer (Fig. S1b). 

 

Fig. 4 a ORR polarization curves of PSNC samples and Pt/C; b Tafel plots derived from a; c ORR polarization 

curves of PSNC-0.8 from 400-2500 r·min-1. d K-L plots at 0.2-0.5 V; e OER polarization profiles of PSNC 

samples and RuO2; f overpotential differences between E1/2 and Ej=10 of PSNC samples, Pt/C and RuO2. g ΔE 

value of recently reported carbon-containing electrocatalysts and PSNC-0.8 

3.3 RZAB performance of PSNC-0.8 

A home-made RZAB is assembled to further confirm the electrocatalytic property of PSNC-0.8 (Fig. 5a). 

As shown in Fig. 5b, the open circuit voltage for PSNC-0.8 is 1.49 V, which is 20 mV positive than 

Pt/C+RuO2 (1.47 V). In addition, from the discharge-charge curves and power density plots in Fig. 5c, 

PSNC-0.8 delivers a large current density of 351.2 mA·cm-2 at 0.5 V, and the corresponding peak power 

density is about 176.5 mW·cm-2. For comparison, a weaken electrochemical property (222 mA·cm-2 and 

110.3 mW·cm-2) is presented by Pt/C+RuO2. Meanwhile, PSNC-0.8 exhibits a narrow charge-discharge 

voltage gab, indicating that PSNC-0.8 possesses a fast transfer rate for charge and oxygen species during 

the charge-discharge process. From the discharge curves in Fig. 5d, PSNC-0.8 achieves a stable discharge 

platform of 1.21 V. Calculating by Zn consumption, the specific discharge capacity for PSNC-0.8 is about 

781.9 mAh·gZn
-1. To Pt/C+RuO2, the discharge platform and specific capacity is only 1.20 V and 778.5 

mAh·gZn
-1, respectively. More importantly, from the long-term cyclic life in Fig. 5e, PSNC-0.8 displays 

an excellent cycle stability. After continued running for 320 h (480 cycles), the decay of battery efficiency 

is only 6.5%, and the voltage gap increasing is about 0.13 V. In contrast, the voltage gap increasing for 

Pt/C+RuO2 is over 1.20 V only after 308 cycles. Additionally, the cycle property of PSNC-0.8 also 

surpasses other most recently reported RZAB (Table S3). The long-term cycling test results further 

demonstrates the superior ORR and OER catalytic activity for PSNC-0.8. 



 

Fig. 5 a scheme of a RZAB; b open circuit voltage plots of different cathode catalyst based RZAB; c charge-

discharge polarization curves and corresponding power density plots; d discharge curves at 10 mA·cm-2; e 

galvanostatic long-term cycling test at 10 mA·cm-2 with 20 min discharge and 20 min charge 

4 Conclusion 

In conclusion, a prawn shells derived N-enriched porous carbon has been successfully synthesized by an 

ion exchange coupled biomimetic mineral self-sacrificing template assisted strategy. The optimized 

PSNC-0.8 delivers an outstanding ORR and OER catalytic activity with a small ΔE of 0.80 V. Meanwhile, 

PSNC-0.8 based RZAB presents a satisfactory long-term cycle stability with a low voltage gap increasing 

of 0.13 V after 480 cycles. The superior ORR/OER performance of PSNC-0.8 are largely put down to 

synergistic effect of interconnected macro-meso-micropores structure and high content of pyridinic and 

graphitic nitrogen, including abundant catalytic active sites and shortening charge and mass transfer 

pathway. This work inspires a simple and effective conception to design metal-free electrocatalysts for 

rechargeable metal-air battery, and also expands a new way for high value application of seafood waste. 
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