Lu, Yang ORCID logoORCID:

https://orcid.org/0000-0002-0583-2688 (2022) Privacy-preserving access control in electronic health record linkage. In: International Population Data Linkage Network, September 7-9, 2022, Edinburgh, UK.

Downloaded from: https://ray.yorksj.ac.uk/id/eprint/7663/

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY

Research at the University of York St John For more information please contact RaY at <u>ray@yorksj.ac.uk</u>

PRIVACY-PRESERVING ACCESS CONTROL IN ELECTRONIC HEALTH RECORD LINKAGE

Yang Lu York St John University

Est. 1841 | YORK ST JOHN UNIVERSITY

Outline

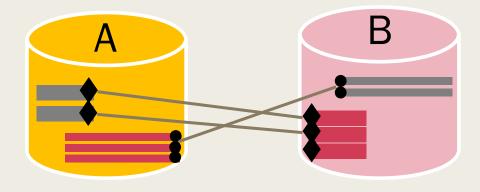
Background

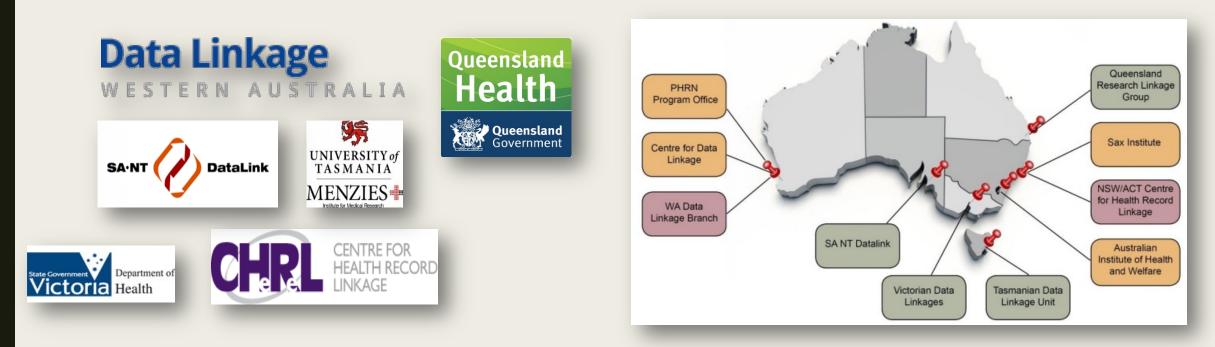
- Method
- > Experiment
- Conclusion

BACKGROUND

Health Record Linkage

Record linkage refers to the technique matching <u>records</u> about same entities across sources (e.g. data files, books, websites, and databases).





Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage. Journal of the American Statistical Association, 64(32&), 1183-1210.

Protected Personal Information

Eliminating <u>18 identifiers</u> from personal health information to ensure no one can be identified

Australian Government National Health and Medical Research Council Patient identifiers are categorised into *individually identifiable*, <u>re-</u> <u>identifiable</u> and <u>non-identifiable</u>.

GDPR applies to any information relating to an identified or identifiable natural person HIPAA protected health information

	iniomation			
1	Names			
2	Zip Code			
3	Dates MM/DD/YYYY			
4	Phone numbers			
5	Fax numbers			
6	E-mail address			
7	SSNs			
8	MRN numbers			
9	Insurance ID #s			
10	Account #s			
11	Certificate / License			
12	Serial #s			
13	Device #s			
14	URL			
15	IP address			
16	Biometrics			
17	Photos			
18	Other			
	5			

Statistical Disclosure Control

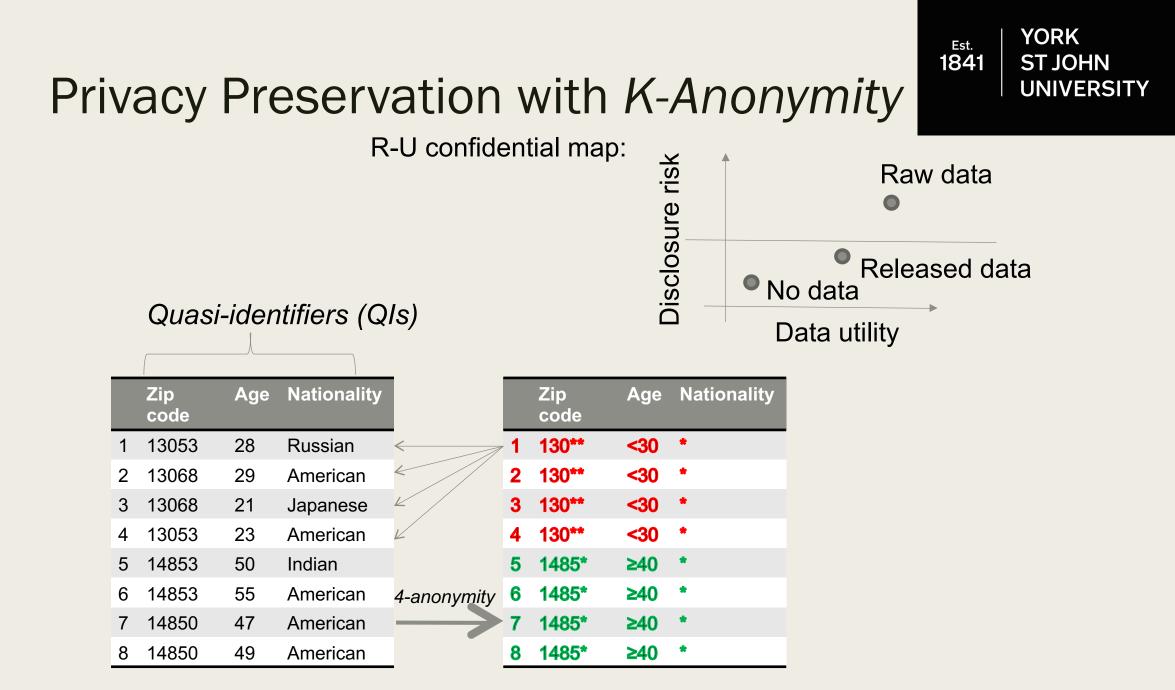
- "Individuals should not be uniquely identified"
- 87% of the US population could be re-identified by combining de-identified data sets (Sweeney, 2000)
- Statistical Disclosure Control (SDC) refers to a family of statistic-based technique are studied to ensure no individual can be re-identified.
 - ➢ K-anonymity and its variants
 - Differential privacy

Est. 1841 | YORK 1841 | ST JOHN UNIVERSITY

Challenges

Delay

- Decentralisation?
- Opaque
 - Transparent, verifiable, quantifiable?
- Priori knowledge
 - (non-malicious) Disclosure risk detection
 - Minimizing utility loss



Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05), 557-570.

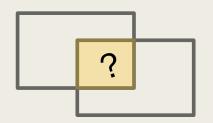
	Raw records					Released records			Est. 1841	YORK ST JOHN UNIVERSITY	
	Zip code	Age	Nationality			Zip	Age	Nationality			
1	13053	28	Russian	<		code					
2	13068	29	American		1	130**	<30	*			
3	13068	21	Japanese	K /	2	130**	<30	*			
4	13053	23	American	2	3	130**	<30	*			
5	14853	50	Indian		4	130**	<30	*			
6	14853	55	American		5	1485*	≥40	*			
7	14850	47	American	4-anonymity	6	1485*	≥40	*			
8	14850	49	American		7	1485*	≥40	*			
-				-	8	1485*	≥40	*			

The "presence" of individuals is **KNOWN** in k-anonymity case

Linkage disclosure - "presence" is unknow

Weak k-anonymity (Atzori, 2006)

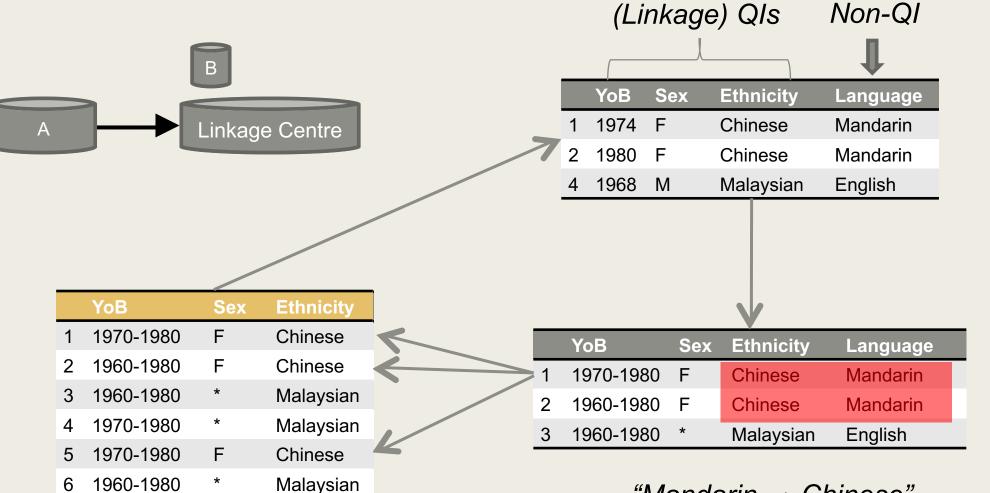
"having the same goal as k-anonymity: released tuples need to match at least *k* individuals back to original dataset."



Atzori, M. (2006, August). Weak k-anonymity: A low-distortion model for protecting privacy. In *International Conference on Information Security* (pp. 60-71). Springer, Berlin, Heidelberg.

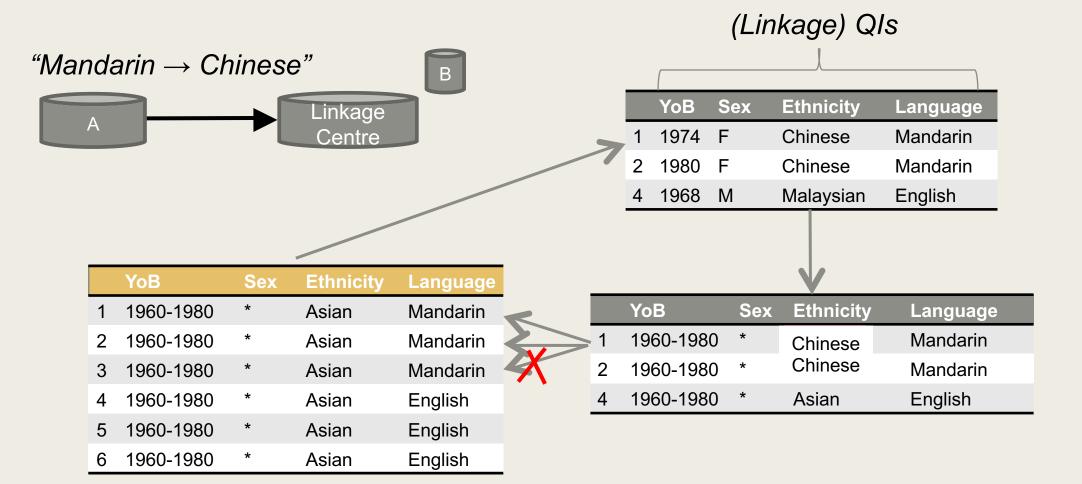
Linkage 3-Anonymity (Time n)

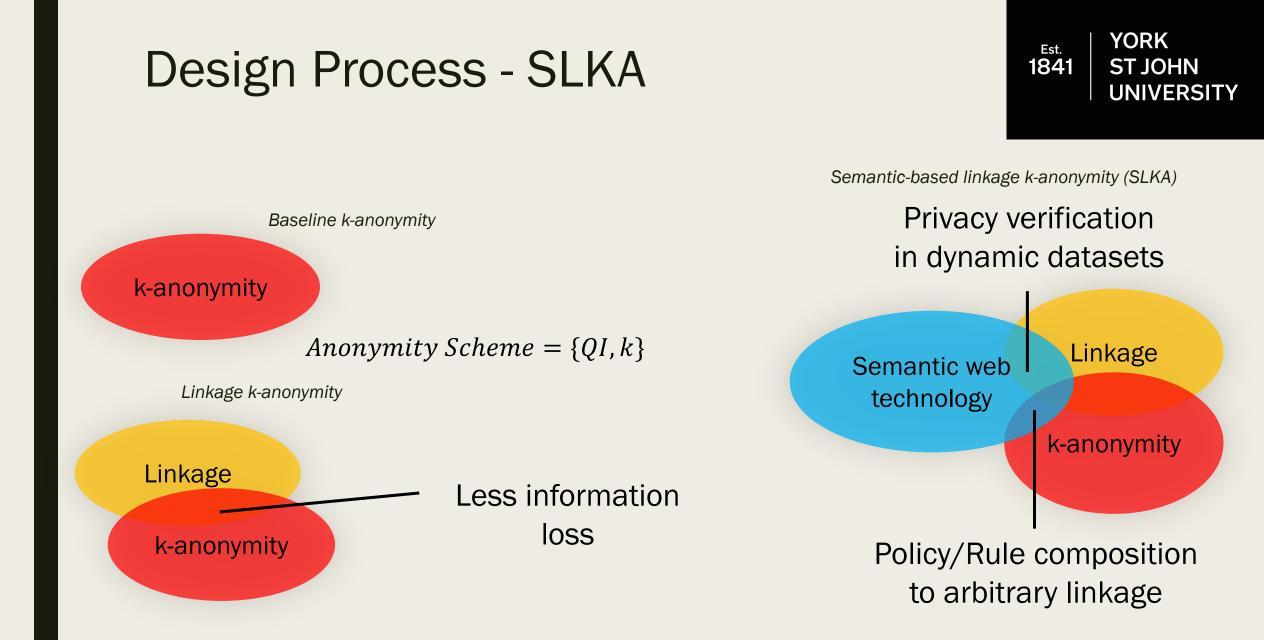
0 0



"Mandarin \rightarrow Chinese"

Linkage 3-Anonymity (*Time n+1*)



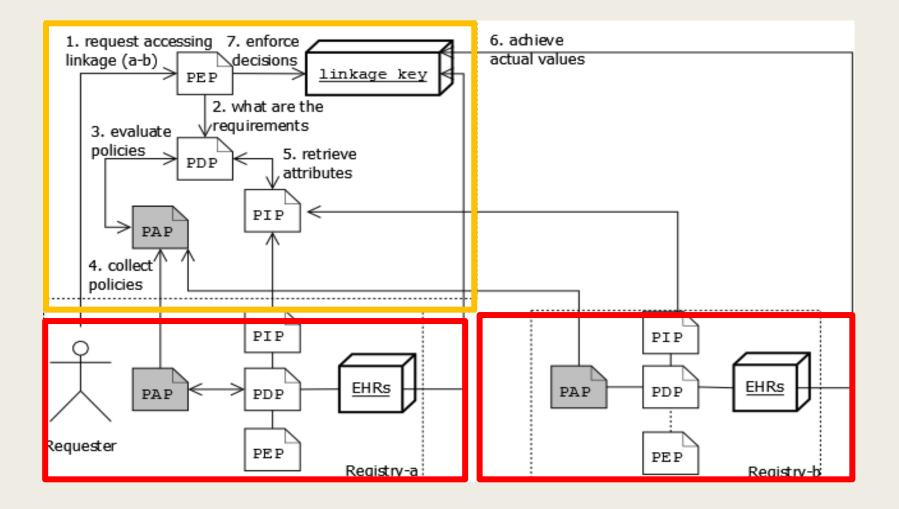


Anonymity Scheme = { LQI, k_{max} }

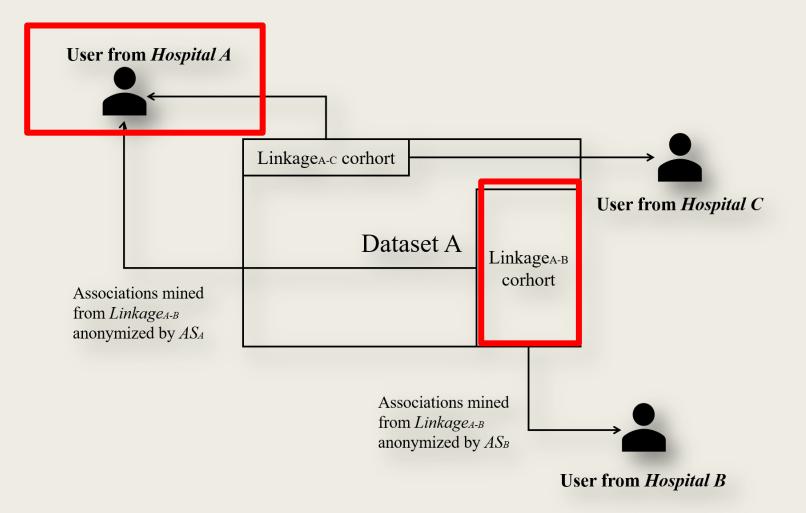
Anonymity Scheme = { $LQI, k_{max}, Associations$ }

METHOD

Extending XACML Framework

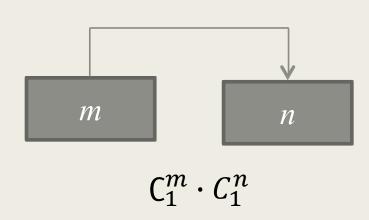


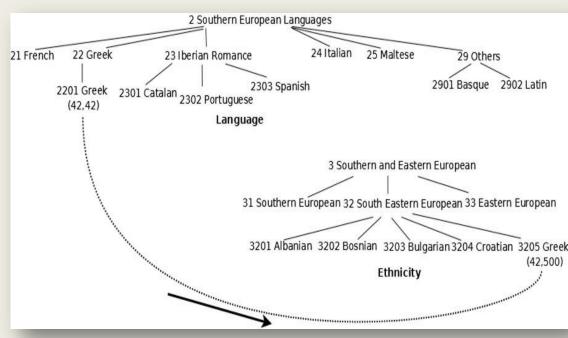
Role-based Knowledge Management



Semantic-based Inference Control

- > Mining associations Apriori
- Minimum Support (ms) and Confidence (mc)
- Conditionals NQI (m); Consequence LQI (n);





Agrawal, R., & Srikant, R. (1994, September). Fast algorithms for mining association rules. In *Proc. 20th int. conf. very large data bases, VLDB* (Vol. 1215, pp. 487-499). YORK

ST JOHN

UNIVERSITY

Est. 1841

Formalisation and Evaluation (1/2)

Requestor (role) \rightarrow Policy scheming

 \rightarrow Privacy verification

Property assertions: Clinician	Property assertions: Vic-ADDN	Property assertions: Req				
Object property assertions 🕂	Object property assertions 🕂	Object property assertions 🕂				
authenticateWith ADDN	IinkFrom VicHealth 🔶	hasAction Read				
hasRA RA1	hasRA RA_AB	hasSubject Clinician				
	linkFrom ADDN	hasResource Vic-ADDN				
	hasLinkageQI Postcode					
	hasLinkageQI Gender					
Property assertions: ano1 Object property assertions (+)	hasLinkageQI Language	Property assertions: ano2				
hasQI Language	hasAnonymity ano2	Object property assertions +				
hasQI Gender	hasAnonymity ano1	hasQI Language				
hasQI Postcode		hasQI Age				
enforceAnoReq Clinician	Data property assertions 🕕	hasQI Postcode				
	hasAnoReq "3" ^{^^} decimal	Data property assertions 😱				
Data property assertions 🕂	hasAnoReq "2"Mdecimal	hasAnoReg "2"^^decimal				
hasAnoReq "3"^^decimal	hasLinkageAnoReq "3" ^M decimal	•				
1						
Property as	sertions: ADDN Property assertions:	VicHealth				
Object pro	perty assertions 🕂 Object property asse	ect property assertions				
hasAr	onymity ano1 hasAnonymity ano2					

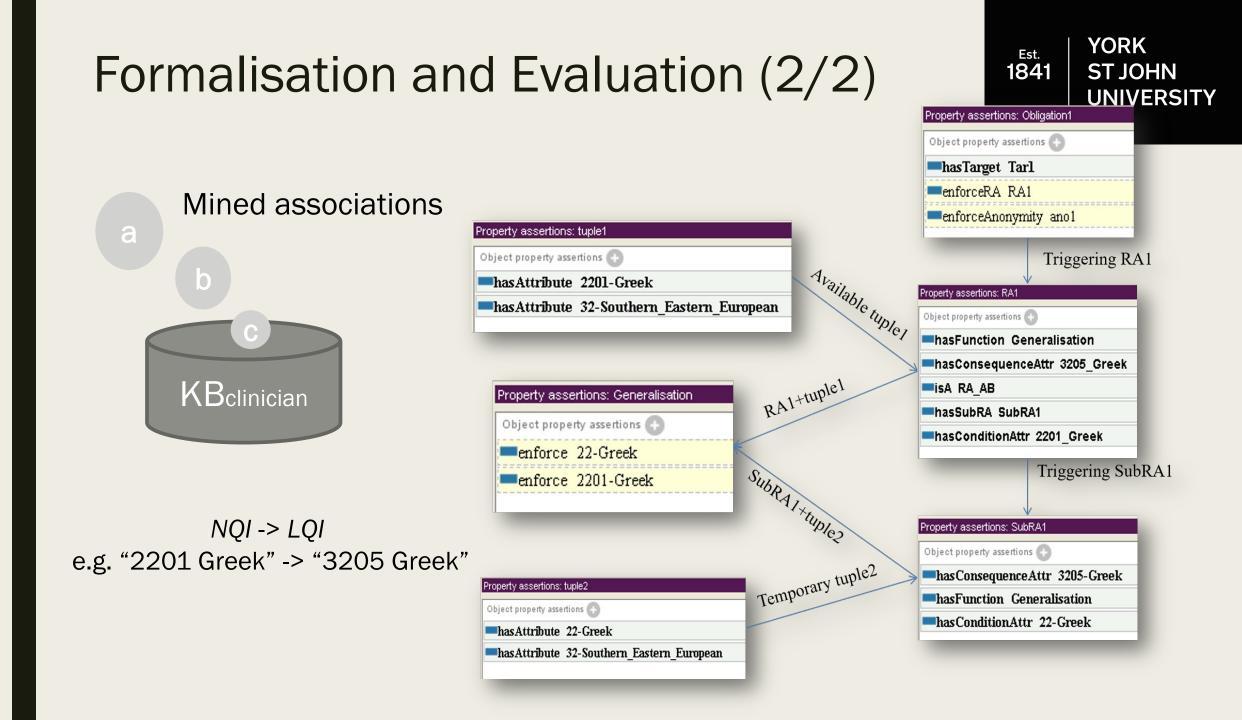
YORK

ST JOHN

UNIVERSITY

Est.

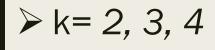
1841

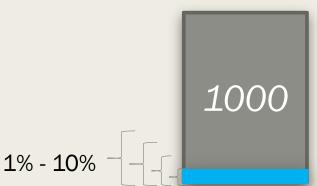


EXPERIMENT

Simulation

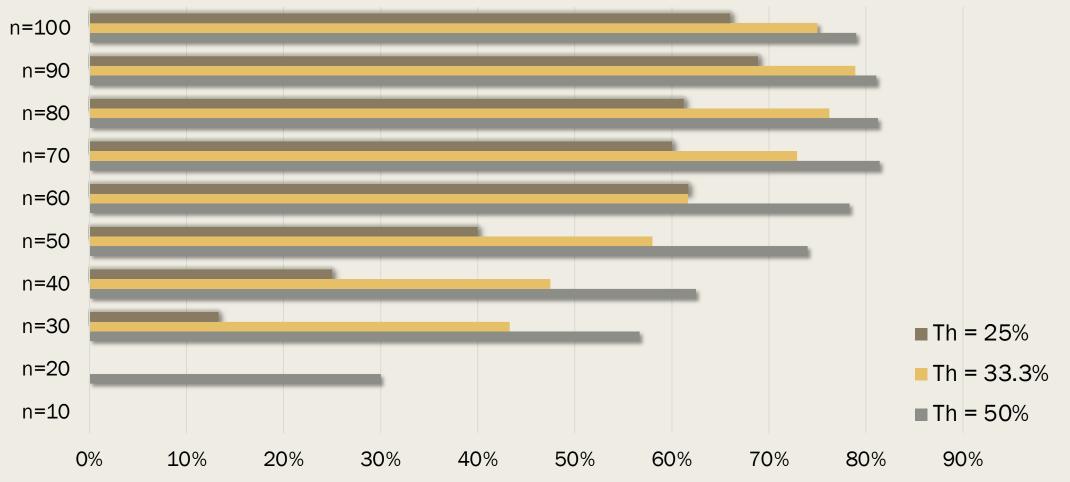
- 1000 (996 after cleaning) synthetic records about VicHealth survey respondents
- Label records as the "linked" (10 linkage datasets)
- Simulating *repeated linkage* requests (Time1 & Time 2)
 - Same: VicHealth user (role), candidate datasets, cohort, identifiers
 - > Different: policies (Anonymity schemes)
 - Time1 {age, ethnicity, postcode} and Time2 {age, ethnicity, postcode, language}





Security Condition

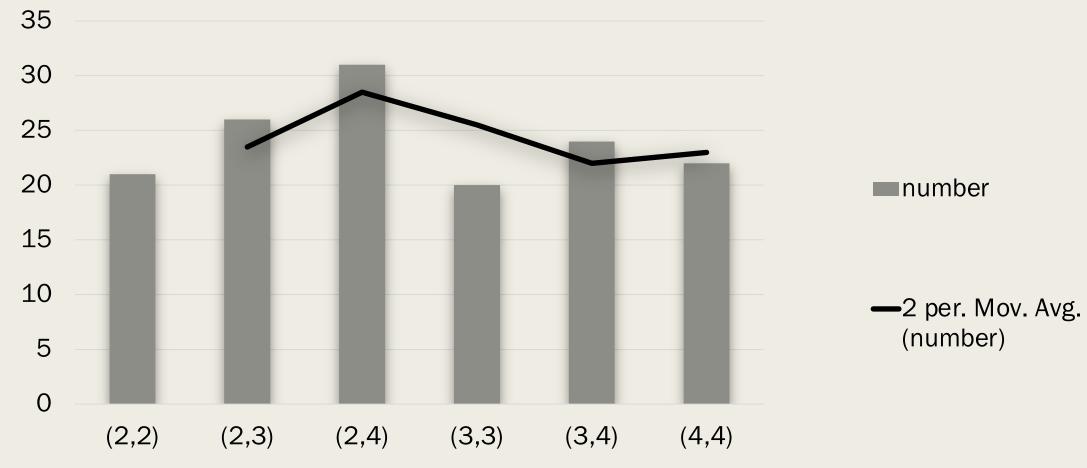
Records satisfying the privacy requirement



Privacy Violation – Weak k-anonymity

1841 | YORK 1841 | ST JOHN UNIVERSITY

Compromised Number

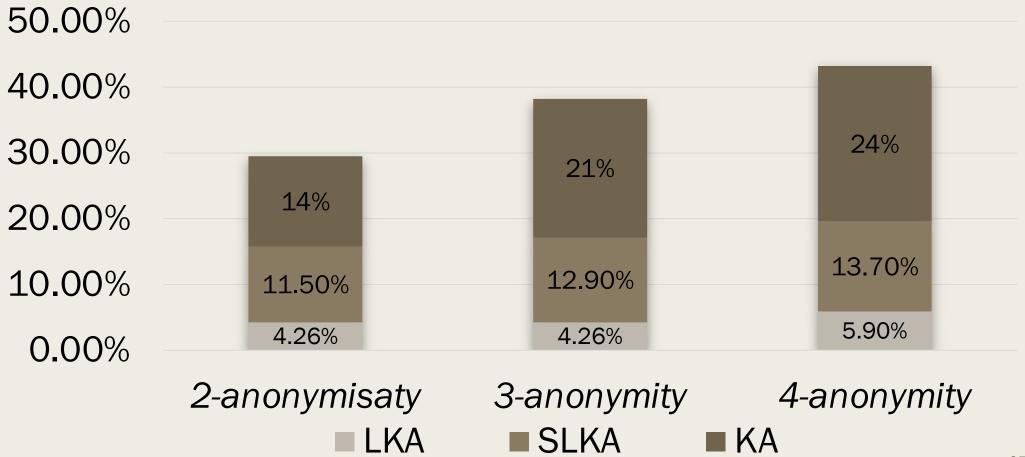


YORK Est. 1841 **ST JOHN** Information Loss (1/2) UNIVERSITY Information Loss $\frac{SSE}{SST} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} \text{level}_{\text{Dis}}(x_{ij}, x'_{ij})^2}{\sum_{i=1}^{n} \sum_{j=1}^{m} \text{level}(x_{ij})^2}$ 200% 150% 100% 50% 0%

2-anonymity KA = 2-anonymity LKA = 3-anonymity KA = 3-anonymity LKA = 4-anonymity KA = 4-anonymity LKA 24

Information Loss (2/2)

Information loss



CONCLUSION

Conclusion

- We adopt semantic web technology to tackle privacy issues...
 - Providing SLKA according to the characteristics of record linkage
 - Striking the balance between **Privacy** and **Utility** Supporting arbitrary policy (k-anonymity) composition
 Improved effectiveness of security policy

Lu, Y., Sinnott, R. O., Verspoor, K., & Parampalli, U. (2018, August). Privacy-preserving access control in electronic health record linkage. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (pp. 1079-1090). IEEE. 27

THANK YOU