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Abstract 

An earthquake is one of the deadliest natural disasters. Forecasting an earthquake is a 

challenging task since natural causes such as movement of tectonic plates, volcanic eruptions, 

rainfall, and tidal stress all play an important part in earthquakes. Earthquakes can also be 

caused by human beings, such as mining, dams, nuclear bomb testing, etc. 

Solar activity has also been suggested as a possible cause of earthquakes. Solar activity and 

earthquakes occur in different parts of the solar system, on the Sun’s surface and the Earth’s 

surface, separated by a huge distance. However, scientists have been trying to figure out if 

there are any links between these two seemingly unrelated occurrences since the 19th century. 

In this study, four machine learning algorithms k-nearest neighbour, support vector regression, 

random forest regression, and Long Short-Term Memory network were applied to understand 

if there is a relationship between solar activity and earthquakes. The study employed three 

types of solar activity: sunspot number, solar wind, and solar flares, as well as worldwide 

earthquake frequencies that ranged in magnitude and depth. 

The study's findings imply that the Long Short-Term Memory network model predicts 

earthquakes more accurately than other models. There's a chance that earthquakes are 

influenced by solar activity. Earthquakes with a magnitude less than 5.5 are more linked to 

solar activity than earthquakes with a magnitude equal to or higher than 5.5. Solar activity has 

a bigger impact on earthquakes of lower depths. 
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1 Chapter One Introduction 

This chapter discusses the study's background as well as the key motives for conducting it. 

The research hypotheses, as well as the research contributions, are all presented in this 

chapter. 

1.1 Background 

Since ancient times, cataclysmic disasters such as droughts, floods, earthquakes, volcanic 

eruptions, storms, and many other types of natural catastrophes, had a profound impact on 

humans at the cost of countless lives. These disasters are classified as natural disasters 

(Wirasinghe et al., 2013). The most severe natural disaster in recent history was the flood of 

the Yangtze–Huai River in China in the summer of 1931. Up to 25 million people were affected 

by the effects of this flood (National Flood Relief Commission, 1933); hence, it is considered 

the deadliest natural disaster since 1900, excluding epidemics and famines. 

Although the China flood of 1931 was the most widescale disaster in terms of mortality, all 

other natural disasters also took a toll on human life. After the 2010 Haiti earthquake, the death 

toll reached more than 200,000 people (Daniell, Khazai and Wenzel, 2013). 

The number of deaths from natural disasters may change depending on the type of disaster 

and the affected area. But, from the average point of view, around 40,000 people per year are 

killed by natural disasters. For example, Figure 1.1 shows the yearly average of global annual 

deaths from natural disasters between 1900 and 2010s. The graph was created based on data 

from (OFDA/CRED International Disaster Data, 2021). 

 
Figure 1.1 Yearly average global of annual deaths from natural disasters, by decade. 
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As seen in Figure 1.1, the three deadliest natural disasters are droughts, floods, and 

earthquakes. However, in the last few decades, the most dangerous natural disasters for 

people have been earthquakes, extreme temperatures, and floods. Even though the average 

global death toll from natural disasters in the 21st century is lower than in the previous century, 

the average death rate is still high. 

Moreover, in addition to the loss of human lives, natural disasters also greatly influence human 

society and the economy. For example, Lesk, Rowhani and Ramankutty (2016) suggested 

that extreme natural disasters such as floods, droughts, and extreme temperatures drastically 

reduce cereal production. In addition, another study Shabnam (2014) provided a 

comprehensive review of the effect of natural disasters on macro- and microeconomic 

spheres. 

Subsequently, understanding and exploring ways to understand and predict the occurrence of 

natural disasters might be useful in saving human lives, particularly in the area of anti-crisis 

services. Prediction of cataclysms, prediction of economic recession, and many others are 

also vital. Thus, the investigation of disaster management became crucial. 

That is why numerous studies have been conducted to predict natural disasters and determine 

what factors influence each disaster. For example, several studies such as Wang et al. (2015), 

Muis et al., (2018), Barnard et al. (2015) found that climate variability such as teleconnection 

pattens have a huge impact on floods throughout the world. Different studies established the 

relationship between solar activity and earth atmospheric–oceanic circulation mechanisms. 

Hassan et al. (2016) using the Markov chain method, found relationship between sunspots 

and the Pacific Ocean El Niño–Southern Oscillation. Gruzdev and Bezverkhnii (2018) used 

wavelet analysis to demonstrate the correlation between Central England temperature, the 

index of the North Atlantic Oscillation, and sunspot numbers during the solar cycle. 

In contrast, Mohamed and El-Mahdy (2021) did not find a strong relationship between sunspot 

number and rainfall patterns over Eastern Africa and proposed that teleconnection pattens 

have an influence on rainfall. 

However, most of the Earth’s meteorological processes are localised and make good limited-

area weather forecasts. Space weather is always global on the planetary scale (Koskinen et 

al., 2001). 

Further, the assumption that solar activities could influence Earth’s natural disasters is not 

new. Back in 1853, the astronomer Wolf (1853) suggested sunspots might influence 

earthquake events. Since then, several studies, using statistical methods, showed the 
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correlation between solar activity and earthquakes. Odintsov et al. (2006) reported that 

seismic activity is related to the sunspot maximum during the solar cycle. Marchitelli et al. 

(2020) proved the correlation between solar activity and earthquakes with a magnitude of more 

than 5.6 on the Richter scale. 

The modern solar activity data and natural disaster data, as well as worldwide data, which 

exponentially increase every year with improved or new technologies – contain a plethora of 

different parameters for solar but also natural disaster events. Reinse and colleagues stated 

that the International Data Corporation predicts an increase of the global dataset from 33 ZB 

in 2018 to 175 ZB by 2025 (Reinse, Gantz and Rydning, 2018). To work with such a huge 

amount of data, computer processing power must be faster but also algorithms more 

intelligent. There is a part of computer science that tries to achieve this goal by employing 

artificial intelligence. Studies focussing on the intelligence of animals (Thorndike, 2000) and 

plants (Calvo et al., 2020) proved that one of the most crucial requirements for intelligence is 

learning. High intelligence is based on comprehensive learning and artificial intelligence, is not 

an exception. That is why machine learning is one of the most important and vital parts of 

artificial intelligence (Dunjko and Briegel, 2018). 

One of the first occasions that machine learning was mentioned, was back in 1959, in the 

Samuel (1959) study. Samuel (1959) created a checkers programme, where two “machine-

learning procedures” were used, and the study provided a start for the development of learning 

methods that would exceed average human abilities and solve real life problems. A quote from 

the original article describes machine learning: “Programming computers to learn from 

experience should eventually eliminate the need for much of this detailed programming effort.” 

This checkers programme was one of the first programmes that used reinforcement learning. 

Most of the mathematical groundwork for reinforcement learning was laid by Richard Bellman. 

There are many other outstanding pioneers of machine learning, such as Karl Steinbuch, from 

Germany, who gave the start of neural networks with leading further research carried out by 

scientists such as Frank Rosenblatt, Charles Wightman, Mark I Perceptron, David Rumelhart, 

Geoffrey Hinton, and Terry Sejnowski (Trappenberg, 2020). 

Nowadays, machine learning with regard to space weather has become more and more 

popular since the increase in the volume of data and the continuous development of computer 

hardware. The study by Bobra and Couvidat (2015) used the Supervised Learning model, the 

Support Vector Machine algorithm, to forecast solar flares. The study Liu et al. (2019) built the 

Long Short-Term Memory (LSTM) networks to predict solar flares, one LSTM network for each 

flare class. 
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So, increasing the processing power of computer systems in parallel with the growing amount 

of solar and climate data, together with implementing powerful data analysis techniques, will 

allow more accurate predictions of risk levels and threats of disasters, as well as the time and 

place of the disasters. 

However, there is a lack of studies, that use Machine Learning techniques, which try to find 

the most appropriate method in the prediction of natural disasters using solar activity. This can 

be attributed to the fact that solar and natural disasters data are often raw and unstructured, 

which makes them due to their volume difficult to analyse and challenging to process. 

  



5 
 

1.2 Motivation 

Machine learning is increasingly being used nowadays. With a variety of different algorithms, 

the most difficult tasks can be solved. Despite the fact that the percentage of machine learning 

techniques used for space and natural disaster studies increases daily, there are only a few 

studies that use machine learning techniques for trying to predict earthquakes based on solar 

activity events. 

It is still not completely confirmed that solar activity events affect natural disasters. However, 

in accordance with Love and Thomas (2013) the statement that solar activity events have an 

impact on natural disasters cannot be rejected, even though they did not find a strong 

correlation between solar activity and earthquakes. 

That is why, there is a growing need to understand by using data and machine leaning 

algorithms – if solar activity can influence earthquake activity. 
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1.3 Problem Definition 

At the first glance, solar activity and earthquakes seem to be unrelated events. However, some 

studies have consistently shown that there is a relationship between solar activity and 

earthquakes (Gribbin, 1971; Han, 2004) Also, there are suggestions, that earthquakes depend 

on solar activity and the 11-year solar cycle (Odintsov, Ivanov-Kholodnyi and Georgieva, 

2007). 

However, it is still not clear of how and to what extent solar activity affects earthquakes. 

Moreover, all above theories are not yet sufficiently developed to allow reliable predictions of 

the likelihood of future earthquakes. Therefore, this study attempts to build a model that tests 

the relationship between solar activity and earthquakes using machine learning techniques. 
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1.4 Research Questions 

The research question is: “How effective is machine learning in predicting of earthquakes 

based on solar activity?” 

To attempt the above question, sub questions need to be addressed: 

• What characteristics and types of earthquakes and solar activity should be used in 

earthquake prediction? 

• How to evaluate the efficacy and effectiveness of the machine learning algorithms used 

in the study to ensure the efficacy of the analysis? 

• Which machine learning algorithms should be chosen to answer the research question, 

and which one would give the highest accuracy among those chosen? 

• Do solar activity events have the same impact on different types of earthquakes, and 

what other factors are important, such as time delay? 
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1.5 Research Hypotheses 

Null hypothesis: 

“Solar activity events do not have any relationship to earthquake events and these two events 

are completely independent of each other”. 

Alternative hypothesis: 

“If solar activity events and earthquake events are related to each other, then earthquake 

events may change in one way or another due to changes in solar activities events.” 
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1.6 Research Contribution 

The connection between solar activity and earthquakes isn't a novel one. However, only a few 

studies have used machine learning approaches to investigate this association. Because it is 

still unknown whether solar activity events have an impact on earthquakes. The statement that 

solar activity events have an impact on earthquakes, on the other hand, cannot be dismissed 

(Love and Thomas, 2013). 

Using machine learning techniques, an attempt was made to uncover any probable links 

between two events: solar activity and earthquakes. So that it can serve as a foundation for 

future earthquake research. Furthermore, the study is based on seismology findings, which 

will assist them in employing machine learning approaches to support their results. The study 

given here is only a step towards earthquake prediction using machine learning techniques, 

but it has important long-term ramifications. 
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1.7 Thesis Outline 

The thesis is structured as follows: 

• The first chapter provides background information, motivation, and a characterization 

of the research problem. There are other research questions and hypotheses in this 

chapter. 

• The second chapter discusses natural disasters, earthquakes, and solar activity 

occurrences, as well as machine learning methods. The chapter also discusses 

previous research on the link between solar activity and natural disasters. The chapter 

also gives related work over machine learning algorithms – solar activity, and machine 

learning – natural disasters. 

• Testing the null hypothesis and the research methodology are presented in the third 

chapter. The data sources and data preparation are described in this chapter. The data 

preparation for the experiments is also shown in this chapter. The chapter describes 

how data is normalised, checked for linear and nonlinear relationships, and 

dimensionally reduced. Furthermore, the chapter defines a model measurement 

approach as well as machine learning algorithms. 

• The fourth and fifth chapters contain a collection of the results. 

• The discussion of the results is presented in the final chapter, which also contains a 

conclusion as well as a suggestion for further study. 

• At the end, a bibliography and additional materials will be included. 
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2 Chapter Two Literature Review 

This chapter explores the link between solar activity and natural disasters, particularly 

earthquakes. The chapter also discusses machine learning in general, as well as machine 

learning techniques that have been applied to natural disasters and solar activity studies. The 

chapter begins with an overview of natural disasters and how they are linked to processes 

both on and off the surface of the Earth. This is followed by a description of earthquakes and 

solar activity in order to gain a better understanding of these events. The chapter then goes 

on to explain solar activity events and how and if they are linked to earthquakes. In the chapter, 

various techniques and algorithms for machine learning were examined, and it was discussed 

how machine learning has been used in natural disasters and solar activity, as well as how 

frequently it is used with solar activity and earthquakes. 

2.1 Natural disasters 

The word “disaster” is defined in the Oxford English Dictionary (2021) as “An event or 

occurrence of a ruinous or very distressing nature; a calamity; esp. a sudden accident or 

natural catastrophe that causes great damage or loss of life.” Based on the Wirasinghe et al., 

(2013) study, there are two main classifications for all disasters. They are classified as 

a) natural disasters – events that are natural; 

b) human-made disasters – events that occurred as a result of human activity. 

Natural disasters are grouped as biological, geophysical, or hydrological events, depending 

on their cause. The origin of disasters can range from terrestrial to extra-terrestrial events. 

Disasters are further categorised into many types and sub-types, including drought, flood, 

tornado, tsunami, etc. According to Wirasinghe et al., (2013), natural disasters such as 

cyclones/hurricanes/storms, earthquakes, floods, fires, landslides, lightning strikes, meteorite 

impacts, tsunamis, and volcanic eruptions have an impact on a global level on Earth. 

Also, the Earth's climate has large-scale climate irregularities. Feldstein and Franzke (2017) 

study has shown that anomalies in weather conditions in different parts of the world are linked 

to each other. As an example, usually dry regions endure floods, while normally wet regions 

can have severe droughts. These remote connections are called teleconnection patterns. The 

examples of the teleconnection patterns are the El Niño–Southern Oscillation (ENSO), North 

Atlantic Oscillation (NAO), Arctic Oscillation (AO), etc (Allan, 2006). 

There are several studies that have found a link between natural disasters and different 

processes that occur on and off the Earth. Donat et al. (2010) showed that most storm days 
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in Central Europe were related to the NAO. Dewitte et al. (2012) demonstrated that ENSO 

impacts rainfall flooding in parts of South America. Thompson and Wallace (1998) found the 

link between warming air temperatures and AO. Studies carried out by Dätwyler et al. (2019) 

and Pararas-Carayannis and Zoll (2017) confirmed that the relationship between 

teleconnection patterns and earthquakes, volcanic eruptions, and tsunamis is not clear and 

should be investigated in the future. 

As for the processes that happen outside of the Earth, Laurenz, Lüdecke and Lüning (2019) 

investigated the impact of the solar cycle on rainfall in Europe. In the period from 1901 to 2015, 

they calculated the Pearson correlation coefficient based on sunspot number data and monthly 

precipitation series in Europe. They did not find the strong correlation that would have allowed 

them to assert that solar sunspots influence rainfall. However, they assumed that the solar 

cycle may have an influence on rainfall along with the NAO. 

Also, Mohamed and El-Mahdy (2021) using a simple linear regression model, showed a weak 

negative correlation between sunspot number and rainfall patterns over Eastern Africa. They 

proposed that processes such as the ENSO have a greater impact on rainfall patterns as an 

explanation for this result.  

What is more, the study in Sytinskii, (1973) claimed that the total seismicity of the Earth, 

expressed through the total energy of earthquakes and the number of catastrophic 

earthquakes per year, depends on the phase of the 11-year solar cycle. Also, the time of 

occurrence of individual strong earthquakes with a Richter magnitude Μ ≥ 6.5 depends on the 

position of active regions on the Sun. Earthquakes occur mainly 2-3 days after the passage of 

the active region through the central solar meridian. 
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2.2 Earthquake 

2.2.1 Earthquake General Information 

In the last decades, as can be seen from Figure 1.1, the most dangerous natural disaster for 

people have been earthquakes. According to Kanamori and Brodsky (2004) the simple 

definition of an earthquake is an event shaking the Earth’s surface. Worldwide, earthquakes 

are one of the most severe natural disasters. According to Dong and Shan (2013), about 60% 

of all deaths that occurred due to natural disasters were caused by earthquakes. 

An earthquake occurs as a result of global tectonic plate movement. An earthquake is defined 

by several basic parameters, including its depth, hypocentre, and magnitude. (Table 2.1): 

• Earthquake Depth: The depth indicates where an earthquake can occur between the 

Earth’s surface and 700 kilometres below the surface. This sub-surface region is 

divided into three zones: shallow (0 – 70 km), intermediate (70 – 300 km), and deep 

(300 – 700 km). 

• The hypocentre is the point of initiation of an earthquake. 

• Earthquake Magnitude: The magnitude is the measure of the size of an earthquake 

source. Depending on the magnitude an earthquake be subdivided into classes. 

Table 2.1 Earthquake Magnitude Scale (Earthquakes magnitude scale and classes, 2021) 

Magnitude Earthquake Effects 
Each Year Estimated 

Number 

2.5 or less Not felt, can be recorded by seismograph. 900,000 

2.5 to 5.4 Often felt, but only causes minor damage. 30,000 

5.5 to 6.0 
Slight damage to buildings and other 

structures. 
500 

6.1 to 6.9 A lot of damage in very populated areas. 100 

7.0 to 7.9 Serious damage. 20 

8.0 or greater Can destroy communities. One every 5 to 10 years 

 

2.2.2 Earthquake map 

Earthquakes happen at conservative and collisional plate margins (Merle, 2011): 

• Conservative – the tectonic plates are sliding past each other. 

• Continental – tectonic plates are moving towards each other. 
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The significant earthquakes that took place during the 23rd solar cycle are shown in Figure 2.1. 

Together with the plate tectonics map in Figure 2.2, they show that earthquake events mainly 

take place at the plate tectonic boundary. In Figure 2.1, earthquakes are distributed by 

magnitude based on the group from Table 2.1. 

 

 

Figure 2.1 Earthquake events map during 23rd solar cycle, distributed by magnitude (python 

code for the map in Appendix A, Figure A - 1). 

 

The earthquake data for Figure 2.1 were collected from the open-source National Geophysical 

Data Center / World Data Service (NGDC/WDS) (1972). The dataset consists of information 

about significant earthquakes that meet one of the criteria, such as "caused deaths, caused 

moderate damage (approximately $1 million or more). The minimum magnitude in the dataset 

is M = 1.6, which is proof that even the earthquake from the first group (Table 2.1) can lead to 

significant damage. 
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Figure 2.2 Plate Tectonics Map - Plate Boundary Map. Source: Plate Tectonics Map - Plate 

Boundary Map (2021) 

2.2.3 Signs and Common Events that Trigger of Earthquakes 

There are few ways to predict an earthquake. Studies based on the examination of different 

animal behaviours showed the possibility of predicting earthquakes. For example, Fidani 

(2010) found that one hour before the earthquake, all dogs started to bark and stopped barking 

right after the main shock of the earthquake. Li et al., 2009, in their study, noted the change 

in the behaviour of mice before and after an earthquake. Others (Yamauchi et al., 2017) found 

that about three weeks before an earthquake, cows produced less milk than usual. 

Another way to predict an earthquake is to monitor the change in electromagnetic field signals. 

Amezquita Sanchez et al., 2017 found anomalies in ultra-low frequency signals up to 8.5 hours 

before earthquakes. Also, Ida et al. (2008) showed that anomalies occur in the ultra-low 

frequency signals before an earthquake of Richter magnitude 6.1. According to Masci and 

Thomas (2015), other factors such as geomagnetic storms and solar activity are causes of 

anomalies in ultra-low frequency signals, and their influence on earthquakes should be 

investigated further. Other studies focused their attention on analysing the change in Earth’s 

water levels. Orihara, Kamogawa and Nagao (2015) found a decrease in groundwater 

temperature and level three months before the 2011 earthquake in Japan. Also, the study of 
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Singh et al. (2010) concentrated their attention on analysing the chemical composition of 

ground waters and reporting changes before earthquakes. One of the natural triggers of 

earthquakes can be volcanic eruptions (McNutt and Roman, 2015), however, on the other 

hand, earthquakes can also be a trigger of volcanos (Nishimura, 2017). The other examples 

of natural triggers of earthquakes are rainfall (Hainzl et al., 2006), tidal stress (Métivier et al., 

2009), solar weather (Sytinskii, 1973). 

What is more, earthquakes might potentially be caused by man's meddling with nature. A 

change in crustal balance caused by heavy water pressure in dams can produce earthquakes 

(Chander, 1999). Mining may be a source of concern since it involves the removal of large 

amounts of rock from various regions, which might result in an earthquake (Redmayne, 1988). 

Also, nuclear bombs and testing can cause particular sorts of shockwaves to travel over the 

earth's surface, disrupting tectonic plate alignment (Tian, Yao and Wen, 2018). 

Arguably, the methods of using these signs to predict earthquakes are too far from being 

perfect (Schorlemmer et al., 2018). 
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2.3 Solar activity 

2.3.1 Sunspots and Solar cycles 

A sunspot is a dark area that appears on the Sun’s surface. The temperature within the dark 

area is cooler than the surrounding surface. Sunspots have various shapes and range in size, 

showing different diameters. The lifetime of sunspots depends on their size. The smaller the 

area, the shorter the lifetime. A sunspot with a diameter of 10 Mm may last for 2 – 3 days, but 

one with a diameter of 60 Mm can last up to 90 days (Priest, 2014). 

Solar activities depend on a solar cycle. The sun is generating a magnetic field, which goes 

through a cycle. During this cycle, the magnetic field reverses and the north and south poles 

of the sun switch positions. During the next solar cycle, the poles revert back. One solar cycle 

has a period of approximately 11 years (Figure 2.3). The length of the solar cycle may vary, 

and throughout the cycle, the number of sunspots may fluctuate. The solar cycle has a solar 

minimum and a solar maximum. The solar minimum at the beginning and end of each solar 

cycle is associated with the minimum number of sunspots, while the solar maximum in the 

middle of the cycle is linked to the maximum number of sunspots (Priest, 2014). The first solar 

cycle was documented in the 18th century (Priest, 2014). The current solar cycle, the 25th, 

began in December 2019 (Potter, 2020). 

2.3.2 Sunspot number 

The state of the solar cycle is measured by calculating sunspots (Priest, 2014). Figure 2.3 

provides a graphic representation of the solar cycles based on the average quantity of sunspot 

number per year. The graph was created based on data from the open-source resource SILSO 

World Data Center website (SILSO | World Data Center for the production, preservation and 

dissemination of the international sunspot number 2021). In Figure 2.3 the beginning and end 

of the solar cycle can be clearly seen, as can the rising and falling faces, minimum, and 

maximum of the solar cycle. The Python codes for the generation of SSN data and a graph 

are shown in Appendix A (Figure A - 3 and Figure A - 4). 

According to Hathaway (2015), there is more than one method of counting the number of 

sunspots. The first method that yields the International Sunspot Number is a traditional way 

that uses the Wolf number. The Wolf number is a quantity that measures the number of 

sunspots. However, there are additional methods, often better ones. The Boulder Sunspot 

Number is provided by the US Air Force and the National Oceanic and Atmospheric 

Administration. The American Sunspot Number is provided by the American Association of 

Variable Star Observers. The Group Sunspot Number is used by Hoyt and Schatten (1998). 



18 
 

There are various methods for counting sunspots, but none of them can be said to be the 

optimal among them. 

 

Figure 2.3 Solar cycle and sunspot number, data source: SILSO World Data Center website 

Khan et al. (2020) made a sunspot number prediction for the 25th solar cycle in their study. As 

for a dataset, they used sunspot number data from 1818 to 2020. For machine learning 

technique – Long Short-Term Memory network. The study predicted that the 25th solar cycle 

would be reached between 2021 and 2025. 

Dani and Sulistiani (2019) predicted the maximum sunspot number for the 25th solar cycle. 

They used four machine learning algorithms: Random Forest, Support Vector Machine, Linear 

Regression, and Radial Basis Function. As for the programming environment, they used open-

source software called Weka. All four algorithms showed different results. Support Vector 

Machine and Radial Basis Function predicted similar sunspot numbers, while linear regression 

predicted the greatest number of sunspots. However, as the predicted maximum will be 

around the years 2023 and 2024, calculations might currently not be as accurate. 

2.3.3 Solar Flares 

A solar flare is an explosion of energy that is also accompanied by a coronal mass ejection. 

This explosion of energy occurs because magnetic fields intersect and reorganise near 

sunspots. Historically, a solar flare was defined using the H-alpha wavelength; later, with the 

onset of the space age, it was extended to the X-ray wavelength with the Geostationary 

Operational Environmental Satellites (GOES). Based on the flare’s strength, flares are 

classified as A-class, B-class, C-class, M-class, and X-class. A-class is the smallest, and X-

class is the largest solar flare by size. In turn, each flare class has a scale from 1 to 9; however, 

X-class flares can exceed the top scale of 9 (Priest, 2014). 
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Asaly, Gottlieb and Reuveni (2021) based on two datasets, Ionospheric Total Electron Content 

data and solar flare data, used Support Vector Machine for solar flare prediction. They found 

a high probability of predicting large-size solar flares of the M and X classes. However, the 

method they chose did not work for the prediction of small-sized solar flares. 

2.3.4 Solar Wind 

According to the description in NASA/Marshall solar physics (2014), the solar wind is a "not 

uniform" stream of charged particles that flows from the sun in all possible directions at a 

speed of about 400 km/s. According to Wood et al. (2009), the measurements of the solar 

wind are solar wind speed (velocity), proton density, and proton temperature. The source of 

the solar wind is the Sun’s outer atmosphere, which is called the corona. The Sun’s gravity 

cannot hold the charged particles when the temperature of the corona rises. All streams flow 

away from the sun, and their speeds change depending on different factors, for example, 

magnetic clouds. The highest speed of around 800 km/s occurred over regions where the 

corona is dark (corona holes), and the lowest speed of around 300 km/s was observed over 

large cap-like coronal structures with long, pointed peaks that usually overlie sunspots and 

active regions (streamers). 

The mean distance from the Sun to the Earth is 1.5x1011 m (Meyer-Vernet, 2012). As a result, 

the average time for solar wind to reach Earth is 4.3 days (1.5 x 108 km 400 km/s = 375,000 

sec). However, the real time between detection of the solar wind and its arrival on Earth may 

be shorter because of the location of the satellites that detect it. For example, the location of 

the ACE (Advanced Composition Explorer) satellite between the Earth and the Sun about 

1.5*106 km forward of the Earth (ACE real-time solar wind | NOAA / NWS space weather 

prediction center, 2021). 

Solar wind source classification is critical for solar and heliospheric physics research. Feldman 

(2005) conducted research on this topic. When it comes to categorising solar wind plasma, 

it's usually as simple as dividing it into "fast wind" and "slow wind" based on the wind speed. 

However, according to Xu and Borovsky (2015), there are four basic forms of solar wind: 

coronal-hole-origin plasma (CHOP), streamer belt plasma (SBP), sector-reversal-region 

plasma (SRRP), and ejecta (EJECT). That is why the classification of solar wind using 

machine learning techniques is becoming more popular. As a result, solar wind classification 

using machine learning techniques is becoming increasingly popular. In a solar wind 

classification, Camporeale, Carè and Borovsky (2017) used a supervised learning technique 

– Gaussian process and attained an accuracy of around 96 percent for all categories.  
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2.4 Earthquakes and Solar Activity 

The two events, solar activity and earthquakes, take place at different locations within the solar 

system, on the surfaces of the Sun and the Earth, separated by approximately 1.5x1011 m 

(Meyer-Vernet, 2012). However, starting from Wolf (1853), researchers have tried to find out 

if there are any connections between these two seemingly separate events. 

However, there is an opposite opinion. Love and Thomas (2013) claimed that there is no 

statistically valid explanation proving that solar-terrestrial interaction favours earthquake 

incidence. For their study they used data from the SPDF - OMNIWeb Service (2021) and 

Sunspot-numbers - monthly (2021). They based their judgment using χ2 and Student's t tests. 

On the other hand, Love and Thomas (2013) acknowledged that they do not have proof that 

the notion that solar activity has no effect is correct. 

There is an assumption, that earthquakes are influenced by several factors. Bijan, Saied and 

Somayeh (2013) in their study classified earthquakes into two categories (Figure 2.4): 

1. Earthquakes that occurred as a result of tectonic or internal earth effects, such as 

rainfall, volcanic eruptions, or landslides. 

2. Earthquakes caused by non-tectonic effects or external effects of the earth, such as 

the gravitational pull of the sun and moon or solar activity. 

 

Figure 2.4 Classification of Triggers of Earthquakes, source: Bijan, Saied and Somayeh, 2013 

What is more, Bijan, Saied and Somayeh (2013) claim, based on statistical graphs, that the 

number of earthquakes during the day is less than the number of earthquakes during the night. 

They explained this fact by saying that the atmospheric pressure during the day and night is 

different. 

The study by Novikov et al. (2020) showed the possibility that strong solar flares impact the 

triggering of earthquakes. Novikov et al. (2020) used laboratory experiments and earthquake 

observations before and after a significant solar event (a solar flare of the X class). Novikov et 
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al. (2020) discussed the results of laboratory experiments in the first part of their study: electric 

current injected into the Earth by an artificial generator, what causes a telluric current, and the 

impact of ionising radiation from solar flares on earthquake sources. They noticed an increase 

in the quantity of earthquakes with a Richter magnitude less than 3 after the injection of electric 

current into the Earth's crust. It has been found that geomagnetic pulsations caused by X-rays 

from X-class solar flares, as well as geomagnetic storms, can generate geomagnetically 

induced currents in earthquake sources. What leads to the hypothesis being confirmed is that 

the electromagnetic mechanism of earthquake initiation under strong variations in space 

weather is confirmed. 

Novikov et al. (2020) observed earthquake events that happened between August and 

September 2017. In this period of time, namely September 6, the X-class solar flare occurred. 

Novikov et al. (2020) used two groups of earthquakes: a quantity of global earthquakes with a 

Richter magnitude M≥4, and a quantity of regional (Greece) earthquakes with a Richter 

magnitude M≥3. The conclusion is based on a comparison of the number of earthquakes 

occurring before and after the solar flare X-class. An increase in the number of earthquakes 

in both groups of earthquakes, global (increased by 68%) and regional (increased by 120%), 

after the solar flare X-class allowed Novikov et al. (2020) assume the dependence of 

earthquakes on solar flares. Also, Novikov et al. (2020) mentioned that the current density in 

the Earth’s crust depends on its electrical conductivity. It was demonstrated that if the electrical 

conductivity at 10 km depth is greater than that at the Earth's surface, the current density will 

increase. 

Odintsov et al. (2006) and Odintsov, Ivanov-Kholodnyi and Georgieva (2007) tried to confirm 

the hypothesis of Sytinskii, (1973) that earthquakes with a Richter magnitude greater than 6.5 

match with high-speed solar winds whose velocity is more than 500 km/s. For their study, they 

used a 27-year period, a daily number of earthquakes with a Richter magnitude M≥5.5, and 

solar wind with a velocity of 500 km/s and above. They identified 307 cases of solar wind with 

this velocity value. Odintsov et al. (2006) and Odintsov, Ivanov-Kholodnyi, and Georgieva 

(2007) examined the number of earthquakes on the day of solar wind arrival as well as a few 

days before and after. They found an increase in the quantity of earthquakes on the day of the 

high-speed solar wind arrival and the day after. Also, Odintsov, Ivanov-Kholodnyi and 

Georgieva (2007) observed nine full solar cycles to find out if there is a connection between 

earthquakes and solar activity. For this part they used quantity of earthquakes with Richter 

magnitude M≥7. They compared the average yearly sunspot number with the average yearly 

number of earthquakes and found that during the 11-year solar cycle, the number of 

earthquakes has two maxima. The first maximum is the same as the maximum sunspot 
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number, and the second maximum occurs during the descending phase of the 11-year solar 

cycle. 

Furthermore, recent data-driven studies have discovered a link between global earthquakes 

and solar activity. Nishii, Qin and Kikuyama (2020) set out to determine whether solar activity 

is a source of earthquakes. They used solar activity data from SPDF's OMNIWeb Service 

(2021) and earthquake data from the Usgs earthquake hazards program (2021) catalogue for 

their study. They discovered a link between solar activity and earthquakes using support 

vector regression, notably for earthquakes with a Richter magnitude of less than 6. Using 

statistical methods Solar activity and earthquakes are linked, according to Marchitelli et al. 

(2020). They used two characteristics of solar wind for their research: proton density and 

velocity for solar activity data, and worldwide earthquakes with a Richter magnitude equal to 

or greater than 5.6 over a 20-year period. For the earthquake data, they used the Storchak et 

al. (2013) earthquake catalogue and solar activity data from the Solar and Heliospheric 

Observatory (SOHO) satellite. 

According to previous research, it is still unclear whether solar activity events are the cause of 

natural disasters. On the other hand, the assertion that solar activity events have an impact 

on earthquakes cannot be dismissed. Furthermore, studies show that: 

1. Earthquakes are influenced by the 11-year solar cycle.  

2. Earthquakes are influenced by some solar activity. 

3. Earthquakes are influenced by solar activity's electric current. 

4. A correlation between solar activity and earthquakes can be established using 

statistical techniques. 

5. Machine learning techniques can be used to determine whether solar activity is a 

cause of earthquakes. 
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2.5 Machine Learning 

With the rise of computing, there are more and more studies that use machine learning in the 

prediction of earthquakes based on historical data analysis. There are a lot of ways to use 

machine learning in the earthquake sphere, from prediction of earthquake events to 

management of post-earthquake events. Mangalathu et al. (2020), as a part of post-

earthquake management, classified earthquake-induced building damage. For their study, 

they had chosen four machine learning algorithms: linear discriminant analysis, k-nearest 

neighbour, decision trees, and neighbour forest. All four algorithms showed an accuracy 

prediction rate of around 60%; the highest accuracy of 66% was shown by using the random 

forest algorithm. Asim et al. (2017) based on the earthquake data and the seismic parameters, 

studied the prediction of earthquakes using four machine learning techniques: pattern 

recognition neural network, recurrent neural network, random forest, and linear programming 

boost ensemble classifier. Every algorithm showed different results when compared to each 

other. 

The very first tasks of machine learning are to clarify a problem and explore data. 

Understanding the data is one of the most important parts of machine learning. A good 

knowledge of a problem and data will help choose the right machine learning technique. 

Without this understanding, the choice of the machine learning techniques would be random 

(Müller and Guido, 2016). The basic stages of the machine learning process are presented 

graphically in Figure 2.5. 

 

Figure 2.5 Basic stages for machine learning process, adapted from Kuncheva (2004). 
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There are three main types of what is called the learning process: supervised learning, 

unsupervised learning, and reinforcement learning (Kaplan, A., 2019), (Figure 2.6): 

• Supervised learning is based on the relationship between inputs and their outputs, 

based on the result and knowledge gained, which allows for a future prediction. In 

supervised learning, data is pre-categorized or numerical (Kotsiantis, 2007). 

• Unsupervised learning is used to know more about data. In unsupervised learning, 

input data points are not labelled and do not belong to categories. Unsupervised 

learning can be considered the process of finding patterns in data (Ghahramani, 2004). 

• Reinforcement learning algorithm is also called the agent. The agent learns from an 

environment using feedback and compares actions based on feedback, trying to 

choose the most appropriate one (Sutton and Barto, 2018). 

 

Figure 2.6 Taxonomy of machine learning algorithms. 

 

2.5.1 Supervised Learning (SL) 

The solar activity data and earthquake data are labelled. As previously stated, supervised 

learning uses labelled data. That is why supervised learning is the most appropriate option in 

these case. Supervised learning methods are based on the relationship between inputs and 

their outputs. For example, let the input variables be represented by a label "X" and the output 

variable "Y" and supervised learning algorithms are used to learn the mapping function from 

the input "X" to the output "Y". (Kotsiantis, 2007; Mohamed, 2017). 
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Since the inputs and outputs are known during the learning process, high accuracy in a 

prediction can be achieved. That is why supervised learning is highly used in the spheres of 

solar activity and natural disasters. Novianty et al. (2019) used SL to detect tsunamis, Nishii, 

Qin and Kikuyama (2020) used SL to find if solar activity affected earthquake events. 

Murwantara, Yugopuspito and Hermawan (2020) and Mallouhy et al. (2019) used SL to predict 

earthquakes.  Rasouli, Hsieh, and Cannon (2012) and Aguilar-Martinez and Hsieh (2009) 

predicted teleconnections using SL. 

There are two major types of SL, Figure 2.7. The first one is classification, and the other is 

regression (Mohamed, 2017; Müller and Guido, 2016). A classification problem predicts “a 

category”, while a regression problem predicts “a number”. (Kotsiantis, 2007). 

 

 

Figure 2.7 Supervised learning. 

 

The main goal of classification supervised machine learning is to predict categorised outputs 

from previously learned input data. Each output is assigned to a specific category or class 

(Müller and Guido, 2016). The main goal of regression supervised learning is to estimate the 

value. The output data attribute of the input data attributes is a numeric value. Finding the 

value of an object is a common application of supervised learning regression (Alpaydin, 2014). 

2.5.2 Evaluation metrics in supervised learning, regression 

Evaluation metrics determine how accurate a prediction is. There are a few different types of 

metrics that are dependent on the task and the algorithms used. For example, classification 

metrics, regression metrics, and clustering metrics. Classification metrics are used to illustrate 

the quality of a prediction in supervised learning (classification type), whereas regression 

metrics are used to show how well a prediction is in supervised learning (regression type). 

Clustering metrics refer to unsupervised learning. 
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Regression is a type of predictive modelling that entails forecasting a numerical value. 

Calculating an error score to summarise a model's prediction ability is one of the regression 

metrics. The regression metrics demonstrate how closely the predicted values match the 

actual ones (Draper and Smith, 1998). According to Draper and Smith (1998) the challenges 

that require estimating a numeric value are known as "regression predictive modeling", like in 

the current situation. As a result, the regression metrics were examined in greater depth. 

Error is used in regression metrics. Error is a metric that measures how close forecasts were 

to their predicted values on average. Witten and Frank (2017) have compiled a list of useful 

regression metrics. However, the R-squared error, mean absolute percentage error, mean 

absolute error, mean squared error, and root mean squared error are arguably the most 

extensively used metrics.  

R-squared (R2), equation (1) – is the fraction of the variance in the dependent variable that 

can be predicted by the independent variable. The closer R2 to the “1” the better model fits 

data. 

 
𝑅2 = 1 − 

∑ (𝑝𝑖 − 𝑝�́�)
2𝑛

𝑖=1

∑ (𝑝𝑖 − �̅�)2𝑛
𝑖=1

  (1) 

Where: 

𝑛 – the number of data points 

�́�1, �́�2, … , �́�𝑛 – predicted values 

𝑝1, 𝑝2, … , 𝑝𝑛 – actual values 

�̅� – mean of actual values 

 

Mean absolute percentage error (MAPE), equation (2) – mean absolute percentage deviation. 

MAPE has a percentage value. 

 
𝑀𝐴𝑃𝐸 =  

1

𝑛
∑ |

𝑝𝑖 −  𝑝�́�

𝑝𝑖
|

𝑛

𝑖=1

 (2) 

Where: 

𝑛 – the number of data points 
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�́�1, �́�2, … , �́�𝑛 – predicted values 

𝑝1, 𝑝2, … , 𝑝𝑛 – actual values 

Mean absolute error (MAE), equation (3) – the average of the difference between the predicted 

and actual values. MAE has the same units as the original data. MAE shows how close the 

predicted values were to the actual values. 

 
𝑀𝐴𝐸 =  

1

𝑛
∑|𝑝𝑖 −  𝑝�́�|

𝑛

𝑖=1

 (3) 

Where: 

𝑛 – the number of data points 

�́�1, �́�2, … , �́�𝑛 – predicted values 

𝑝1, 𝑝2, … , 𝑝𝑛 – actual values 

Mean squared error (MSE), equation (4) – the difference between estimated and actual 

values, expressed as an average squared difference. MSE has the squared units of the 

original data.  

 
𝑀𝑆𝐸 =  

∑ (𝑝�́� − 𝑝𝑖)2𝑛
𝑖=1

𝑛
 (4) 

Where: 

𝑛 – the number of data points 

�́�1, �́�2, … , �́�𝑛 – predicted values 

𝑝1, 𝑝2, … , 𝑝𝑛 – actual values 

Root mean squared error (RMSE), equation (5) – square root of MSE. RMSE has the same 

units as the original data.  

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑝�́� − 𝑝𝑖)2𝑛

𝑖=1

𝑛
 (5) 
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Where: 

𝑛 – the number of data points 

�́�1, �́�2, … , �́�𝑛 – predicted values 

𝑝1, 𝑝2, … , 𝑝𝑛 – actual values 

The same rule applies to MAPE, MAE, MSE, and RMSE: the lower the error, the better the 

model matches the data. 

2.5.3 Types of Supervised Learning Algorithms. 

For efficient implementation of a SL algorithm, there is a Scikit-learn library for Python 

(Pedregosa et al., 2011). Scikit-learn is a free machine learning library, that was developed 

for Python (Supervised learning — scikit-learn 0.24.2 documentation, 2021). Depending on 

the task, supervised learning algorithms can be used for both classification and regression 

learning types. The descriptions of the summary of supervised ML algorithms are provided 

below. 

i. The K-Nearest Neighbors Algorithm (KNN) is one of the simplest algorithms to 

implement and is used in natural disaster studies. However, with the increase in data 

size, it becomes slower. For example, Novianty et al. (2019) measured the accuracy 

of the identification of tsunamis based on earthquake events using the KNN algorithm 

with an earthquake dataset and a tsunami dataset. They used three dataset variations 

and different "K" values and discovered that as the "K" value increases, so does the 

accuracy of the identification tsunami; however, after a certain value of "K," there is no 

significant change in accuracy. 

KNN implementation requires only two parameters: the "K" value, which means the number 

of nearest datapoints to the new data point, and the distance function. The value for "K" 

depends on a dataset. However, the higher the "K" value, the less noise influences the 

classification, and the forecast becomes more accurate, although boundaries between classes 

are less clear. There is no need to build a model, and new data can be easily added. KNN can 

be used for both classification (mostly) and regression learning types (Alpaydin, 2014). The 

measure between two data points calculated using Euclidean distance, equation (6), is the 

square root of the sum of the squared differences between two points, new and existing. 

Manhattan Distance – distance between real vectors using the sum of their absolute 

differences – is an alternative variation. For the regression task, the "K" closest data points 
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are chosen based on their distance from the new point, and the average of these data points 

is used to make the final forecast for the new point. 

 

𝐷(𝑝, 𝑞) =  √∑(𝑝𝑖 −  𝑞𝑖)2

𝑛

𝑖=1

 (6) 

Where: 

 𝑝, 𝑞– data represented in n-dimensional vector 

 𝑛  – dimension 

 

ii. Simple and Multiple Linear Regression (SLR and MLR) are statistical methods that 

create relationships between independent and dependent data variables. The goal of 

SLR is to determine how much an independent variable influences a dependent 

variable (outcome) (Zou, Tuncali and Silverman, 2003). A model for SLR is a line 

function, equation (7). 

 
𝑝 =  ∑ 𝑎 + 𝑏𝑞𝑖

𝑛

𝑖=1

 (7) 

Where: 

 𝑝– dependent data point 

 𝑞 – independent data point 

 a, b – coefficients, (a – y-intercept, b – slope of a line) 

 𝑛 – dimension 

SLR is also one of the methods for determining if the connection between the dependent and 

independent variables is linear or non-linear. To do so, run the dataset through SLR and 

evaluate the least square error. If the least square error is closer to one, the dataset is linear; 

otherwise, the dataset is non-linear. MLR is an extended version of SLR. MLR creates a linear 

relationship between more than one independent variable and one dependent variable. Ma et 

al. (2019) study investigated how solar activity (sunspots) impacts the El Niño-Southern 

Oscillation (ENSO) and ENSO-related events. In their study, Ma et al. (2019) used MLR. They 
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used sunspot and ENSO data, which they divided into two sections based on high or low sun 

activity. They discovered that solar activity influenced ENSO phases using MLR, but they did 

not discover mechanisms by which solar activity modulated ENSO events. 

iii. Support Vector Machine Algorithm (SVM) is one of the most popular algorithms 

used to solve data analytics problems. The main goal of SVM is to find a function that 

separates classes by line if a dataset has two features and puts new datapoints into 

the appropriate classes (Smola and Schölkopf, 2004). SVM is to find the most 

appropriate line, which has the maximum distance between datapoints. This line is 

called a hyperplane. The dimension of a hyperplane depends on the dimension(s) of 

a dataset. If a dataset has n features, a hyperplane will have (n-1) dimensions. Also, 

there are data points that are the closest to the hyperplane; these are called support 

vectors (Figure 2.8). SVM can be used for classification (mostly) and regression 

learning types. For regression tasks, SVM is called support vector regression (SVR). 

 

Figure 2.8 SVM, two dimensions. 

SVM is based on a collection of mathematical functions known as the kernel. The kernel's job 

is to take data and turn it into the needed format. Different types of kernel functions are used 

by different tasks solved using SVM. A kernel is described by its form, equation (8). 

 𝑘(𝑝, 𝑞) = (Φ(𝑝) ∗ Φ(q)) (8) 

Where: 

 𝑘– kernel 

 𝑝, 𝑞 – vectors 

 Φ(𝑝), Φ(q)  – feature space 
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The kernel approach is the most useful feature of SVM, as it aids in solving the linearity and 

non-linearity of the equation in a very straightforward manner. There are different types of 

kernels, such as linear, equation (9), polynomial, equation (10), radial basis function (RBF), 

equation (11), and sigmoid, equation (12) (Ghaedi et al., 2016; Benkedjouh et al., 2015; 

Loutas, Roulias and Georgoulas, 2013; Jacobs, 2012). 

 𝑘(𝑝, 𝑞) = 𝑝 ∗ q (9) 

 

 𝑘(𝑝, 𝑞) = ((𝑝 ∗ 𝑞) + 𝑐)𝑎 (10) 

Where: 

 c, a  – kernel parameters, c≥0, a∈N 

 𝑘(𝑝, 𝑞) = exp (−‖𝑝 − 𝑞‖2/𝜎2) (11) 

Where: 

 σ  – kernel parameters, σ>0 

 𝑘(𝑝, 𝑞) = 𝑡𝑎𝑛𝑔ℎ(𝜆(𝑝 ∗ 𝑞) + 𝜓) (12) 

Where: 

 λ, ψ  – kernel parameters, λ>0, ψ<0 

 

Nishii, Qin and Kikuyama (2020), using SVR, found that solar activity affected some 

earthquake events. An earthquake dataset was split into five groups, depending on 

earthquake magnitudes. As for the solar activity, they used nine physical measurements. They 

also used two vectors for earthquakes and solar activities, error terms, functions were given 

by a weighted sum of Gaussian kernels. They found that solar activity affects earthquakes 

with a magnitude(M) of 3≤M<5 most strongly. 

iv. Logistic Regression Algorithm (LR) is based on probability. For the logic function, 

LR uses a logistic function, that gives probabilistic values which are between 0 and 1 

(Logistic regression: from introductory to advanced concepts and applications - sage 

research methods, 2010), equation (13). 
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 𝑝𝑟𝑜𝑏 = 𝑓(𝑎 + 𝑏𝑞) (13) 

Where: 

 𝑓– logistic function 

 𝑎, 𝑏 – petametres, which need to be fitted  

 𝑞 – data point 

Korsós et al. (2021) used LR to predict solar flares based on sunspot and solar flare data. As 

for the programming environment, they used Python and the Scikit-Learn library. They used 

two models for training, the first based on a simple characteristic by using only solar flare 

intensity, and the second more complicated. They found out that LR can predict 70 – 75 % of 

the flares accurately. 

v. Naïve Bayes Algorithm (NB) is based on Bayes theorem, equation (14). NB assumes 

that all features (variables) are independent of each other. Then, it predicts a result 

based on the probability of an object. NB is used for the classification learning type 

(Verdhan and Kling, 2020). 

 

 
𝑝𝑟𝑜𝑏(𝑝|𝑞) =

𝑝𝑟𝑜𝑏(𝑝|𝑞) ∗ 𝑝𝑟𝑜𝑏(𝑝)

𝑝𝑟𝑜𝑏(𝑞)
 (14) 

Where: 

 𝑝𝑟𝑜𝑏(𝐴), 𝑝𝑟𝑜𝑏(𝐵)– probabilities of the events p and q 

 𝑝𝑟𝑜𝑏(𝐴|𝐵) – probability of the event p given the event q 

 𝑝𝑟𝑜𝑏(𝐵|𝐴) – probability of the event p given the event q 

Murwantara, Yugopuspito and Hermawan (2020) compared three algorithms to predict 

earthquakes in Indonesia in their study. The algorithms were multinominal LR, SVM, and NB. 

They made predictions based on available earthquake data. As for the programming 

environment, they used R with its machine learning library and methods. They discovered that 

SVM produced the highest accuracy in earthquake prediction, while NB produced the least 

reliable results. 
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The following algorithm is a tree-based algorithm. Tree-based algorithms can be used for both 

classification and regression learning types. Tree-based algorithms consist of nested "If-Else" 

conditions, Figure 2.9. Tree-based algorithms start with the full population and split the data 

based on some condition. The splitting will continue until the stopping criteria is met (Verdhan 

and Kling, 2020). 

vi. Random Forest Algorithm (RF) is a tree-structured algorithm, based on ensemble 

learning conception. RF is a classifier that contains a number of tree-structured 

classifies – decision trees, which consist of independent vectors. A raw dataset is 

separated into randomly selected sub-features, and then particular subtrees are 

generated (Breiman, 2001; Alpaydin, 2014). 

 

Figure 2.9 Tree-based algorithm, split by some conditions 

Each tree has one vote. If the problem is a classification problem, the class with the most 

votes is the final result. For a regression problem, the average of all subtrees results is the 

final outcome. The greater the number of trees, the higher the accuracy of the prediction. RF 

does not have an overfiring problem; it uses a random subspace method (Breiman, 

2001;Hothorn, Hornik and Zeileis, 2006). Mallouhy et al. (2019) compared in their study eight 

different algorithms for predicting earthquake events, based on earthquake data. As for the 

programming environment, they used Matlab. They found that the highest prediction 

percentage was RF. KNN was very close to RF. NB and LR yielded the lowest prediction 

percentage. 
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2.5.4 Dimension Reduction 

When analysing data of moderate or high dimension, it is frequently beneficial to look for ways 

to restructure the data and lower its dimension while retaining the most relevant information 

or preserving some trait of interest. Dimension reduction is the process of reducing the number 

of traits, variables, and characteristics (Alpaydin, 2014). Reddy et al. (2020) in their study used 

the supervised algorithm Linear Discriminant Analysis (LDA) and the unsupervised algorithm 

PCA to reduce the size of a dataset and their impact on the final outcome. To train the reduced 

dataset, they used four machine learning techniques, including Random Forest and SVM. 

They discovered that PCA outperformed LDA in terms of final results. They also noticed that 

the dimensionally reduced dataset showed better results than the original one. However, they 

also indicated that when the data size is too small, dimensionality reduction methodologies 

have a negative impact on the performance of machine learning algorithms. One of the most 

popular unsupervised dimension reduction algorithms is Principal Component Analysis 

(PCA), equation (15). An orthogonal transformation is used in PCA, which is a statistical 

process. A set of correlated variables is converted to a group of uncorrelated variables using 

PCA. For exploratory data analysis, PCA is utilised (Reddy et al., 2020). 

 x = Wχ (15) 

Where: 

 x– the observations 

 𝑊 – is the mixing matrix 

 χ – the source or the independent components 

There are four stages in PCA. The standardisation of the raw data is the first stage. The 

second step is to calculate the raw data's co-variance matrix. The third step is to calculate the 

eigenvector and eigenvalue of the covariance matrix. The final stage is to project raw data into 

a new dimensional subspace. Dimensional reduction is unsupervised learning. For efficient 

implementation of the unsupervised learning algorithm, there is a Scikit-learn library for Python 

(Unsupervised learning — scikit-learn 0.24.2 documentation, 2021). 

2.5.5 Neural Networks 

Neural networks (NN) can solve both supervised and unsupervised problems. Also, NN are a 

great method for developing nonparametric and nonlinear classification/regression (Verdhan 

and Kling, 2020). 
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There are a lot of different types of NN, such as Recurrent Neural Network, Convolutional 

Neural Networks, Feed Forward Neural Networks, and Generative Adversarial Networks. 

One of the well-known neural networks is the Recurrent Neural Network (RNN). RNN is a 

neural network that has connections between passages related to sequences and lists and is 

dependent on previous states. The standard RNN, on the other hand, has a weakness: the 

gradient vanishes as information is lost over time. The Long Short Term Memory network 

(LSTM) was created to avoid the long-term dependency problem. The structure of LSTM is 

similar to that of standard RNN, but the repeating module is different (Hochreiter and 

Schmidhuber, 1997). According to Hochreiter and Schmidhuber (1997), there are few steps 

of LSTM. The first step in LSTM is deciding what information from the cell state will be 

removed, equation (16). 

 𝑓𝑡 = σ(𝑊𝑡𝑥𝑡 +  𝑈𝑓ℎ𝑡−1 +  𝑏𝑓)  (16) 

The second step in LSTM is deciding what “new” information will be stored in the cell state, 

equations (17)(18). 

 𝑖𝑡 = σ(𝑊𝑖𝑥𝑡 +  𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)  (17) 

 �̃�𝑡 = σ(𝑊𝑐𝑥𝑡 +  𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)  (18) 

And finally, output, equations (19)(20)(21): 

 𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡 �̃�𝑡  (19) 

 𝑜𝑡 = σ(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 +  𝑏𝑜)  (20) 

 ℎ𝑡 = 𝑜𝑡σℎ(𝑐𝑡)  (21) 

Where: 

 𝑥𝑡 – input vectors 

 ℎ𝑡 – hidden vectors 

 𝑓𝑡 – forget gate's activation vector, between 0 and 1 

 σ – sigmoid function 

 𝑊, 𝑈 – weights 



36 
 

 𝑏𝑡 – bias vector 

 𝑖𝑡 – update gate's activation vector, between 0 and 1 

 �̃�𝑡 – cell input activation vector, between -1 and 1 

 𝑐𝑡 – cell state activation vector 

 𝑜𝑡 – output gate's activation vector, between 0 and 1 

The above steps, which included fitting the model and obtaining prediction values, can be 

completed using Python libraries. Keras: the Python deep learning API (2021) is a popular 

library that comes highly recommended (Verdhan and Kling, 2020). One of the most important 

advantages of NN compared to traditional ML algorithms is that NN can work well with the 

increasing size of data. The bigger the training data size, the better the accuracy will get in the 

final result. 

Zhang et al. (2017) applied LSTM network to forecast sea surface temperature, based on the 

sea surface temperature dataset. Aguilar-Martinez and Hsieh (2009) used a Bayesian neural 

network, support vector regression, and linear regression to forecast sea surface temperature. 

Yuan et al. (2019) based on historical North Atlantic Oscillation index data, created an LSTM 

network to predict the North Atlantic Oscillation index. Rasouli, Hsieh and Cannon (2012) used 

a Bayesian neural network, support vector regression, Gaussian processing, and multiple 

linear regression to try to find out which algorithms better predicted the behaviour of different 

teleconnection patterns. 

 

2.5.6 Data splitting 

Building computational models with good prediction and generalisation skills is one of the most 

important needs in machine learning (Alpaydin, 2014). To forecast the output, a model should 

first be trained, and then the model should be evaluated. A dataset should be divided into 

training and testing sets for this purpose. This causes two issues: with a smaller training data 

set, the data parameter estimations are more variable, and with a smaller test data set, the 

performance statistics are more variable. Therefore, the data should be separated such that 

none of the variances are very large (Kononenko and Kukar, 2007). 

According to the previous studies, the most popular ratios for training/testing sets are 70/30 

(Dao et al., 2020) and 80/20 (Pham et al., 2020; Das et al., 2011). In their study, Nguyen et 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/neural-networks
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al. (2021) claimed that 70/30 is the most appropriate ratio; however, they used a relatively 

small dataset of 538 samples. However, Rácz, Bajusz and Héberger (2021) suggested that 

an 80/20 ratio is likely to be superior, especially for large datasets. 

2.5.7 Types of normalising 

Data normalising is the process of converting the values of numeric columns in a dataset to a 

similar scale without distorting the ranges of values (Muhamedyev, 2015). Normalising helps 

reduce data redundancy. Normalising helps to remove anomalies and minimise null values, 

which are found in large numbers in the data used in the current study. Data redundancy can 

be reduced by normalising. Normalization aids in the removal of anomalies and the reduction 

of null values, both of which are common in the data. Furthermore, Raju et al. (2020) 

demonstrated that when data was normalised, the findings were more accurate when 

compared to the original data. 

To normalise data, there are a number of different normalisation and standardisation methods 

that may be used (Raju et al., 2020). Different techniques are used by different methods; some 

change the range of values while others change the distribution. In the current study, box plots 

were used to compare the results of these methods in order to find the highest normalising 

result. 

MinMaxScaler – For each component, the base suggestion is set to 0, the most extreme 

value is set to 1, and all other values are set to a decimal between 0 and 1, equation (22). 

 
𝑝𝑠𝑐𝑎𝑙𝑒𝑑 =  

(𝑝 − 𝑝𝑚𝑖𝑛)

(𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛)
 (22) 

Where: 

 𝑝– data point 

 𝑝𝑚𝑖𝑛 – minimum value in a dataset 

 𝑝𝑚𝑎𝑥  – maximum value in a dataset 

MaxAbsScaler – similar to MinMaxScaler, the range between 0 and 1, equation (23). 

 𝑝𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑝

𝑚𝑎𝑥(𝑎𝑏𝑠(𝑝))
 (23) 

Where: 



38 
 

 𝑝– data point 

StandardScaler – is usually used inside each component to scale it to the point where the 

distribution is currently centred around 0 with a standard deviation of 1, equation (24). 

 
𝑝𝑠𝑐𝑎𝑙𝑒𝑑 =  

(𝑝 − 𝜇)

𝜎
 (24) 

Where: 

 𝑝– data point 

 𝜇 – mean of a dataset 

 𝜎  – standard deviation of a dataset 

RobustScaler – eliminates the centre and scales the data according to the Interquartile Range 

(IQR). The interval between the first quartile (25th quantile) and the third quartile is known as 

the IQR (75th quantile), equation (25). 

 
𝑝𝑠𝑐𝑎𝑙𝑒𝑑 =  

(𝑝 − 𝑚𝑒𝑑𝑖𝑎𝑛)

𝐼𝑄𝑅1,3
 (25) 

Where: 

 𝑝– data point 

 𝑚𝑒𝑑𝑖𝑎𝑛 – median of a dataset 

 𝐼𝑄𝑅1,3  – the range between the first and the third quartiles (25th and 75th quantiles) 

QuantileTransformer – is changed to follow a uniform or ordinary dispersion using this 

approach. As a result, in general, this alteration will spread out the most continuous attributes 

for a specific example. It also reduces the impact of (minor) deviations, making this a good 

pre-planning strategy. The update is applied independently to each case. QuantileTransform 

produces non-linear standardisation modifications by contracting the distance between 

minimal exceptions and inliers. The range between 0 and 1. 
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3 Chapter Three Methodology 

Testing the null hypothesis and the research method used in this study are covered in this 

chapter. To carry out this study, a variation of design science was used to answer the research 

questions and prove or disprove the hypothesis as follows: After that, the method goes over 

what data will be used in the experiment, as well as what data pre - processing methods will 

be used to get the data ready for the experiment. The chapter discusses the relationship 

between earthquakes and solar activity. The machine learning algorithms that will be used in 

the experiment were also discussed in the chapter. 

3.1 Testing Null Hypothesis 

The null hypothesis is “Solar activity events do not have any relationship with earthquake 

events, and these two events are completely independent of each other”. For testing the null 

hypothesis, two variables have been chosen: 

• The quantity of all earthquakes during the period, as for the earthquake events 

• The sunspot numbers, as for the solar activity events. 

These two variables were chosen because the all-earthquake variable describes all 

earthquake events and the sunspot number is the foundation for measuring a solar cycle; 

additionally, solar flares and solar winds are dependent on solar cycles, which are based on 

the sunspot number, as was discussed in Chapter 2.3. Based on a solar cycle, as a solar cycle 

affects each activity on the Sun’s surface, two periods were chosen for the events: 

• The first period is during one solar cycle (23rd solar cycle from August 1996 until 

November 2008) 

• The second period is two solar cycles (23rd and 24th solar cycles, cycle from 1996 till 

2020). 

Based on the graph in Figure 3.1 (an example of the code in Appendix B, Figure B - 2), it can 

be assumed that the number of earthquakes increases during the falling phase of the solar 

cycle, when the number of sunspots decreases from solar maximum to solar minimum. 

According to the Odintsov et al. (2006) study, based on solar activity, earthquakes can change 

dramatically, which leads to outliers. However, outliers can skew statistical analyses and 

violate their assumptions. That is why, two datasets were chosen to test the null hypothesis: 

the original data (Table 3.1) and the compact data, which contains no outliers  (Appendix B, 

Figure B - 5 Compact dataset). 
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Figure 3.1 SSN and Quantity of Earthquakes Over the " 23rd and 24th Solar Cycles 

 

Table 3.1 Original dataset 

Date Earthquake SNN 

1996-01-03 194 22 

1996-01-04 226 35 

1996-01-05 191 56 

… … … 

2020-01-08 759 4 

2020-01-09 511 15 

2020-01-10 445 4 

 

3.1.1 Choosing the type of the test 

To figure out which type of test to use for testing the null hypothesis, first it was checked to 

see if the sunspot number and earthquakes had a normal distribution. The next step was to 

determine whether the relationships between the sunspot numbers and earthquakes were 

linear or not. For testing the normality, the graph methods were used: box plots, distribution 

plots, and probability plots, as seen in Figure 3.2 through Figure 3.7 due to the size of the 

dataset with N=8718, as described in Chambers (1983) as supposed, such as the Shapiro-

Wilk test, do not give the right result (Mohd Razali and Yap, 2011). 
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Figure 3.2 SSN: boxplot 

 

Figure 3.3 EQ: boxplot 

 

Figure 3.4 Distribution of SSN 

 

Figure 3.5 Distribution of EQ 

 

Figure 3.6 Probability plot of SSN 

 

Figure 3.7 Probability plot of EQ 

 

As can be seen from Figure 3.2 and Figure 3.4 the SSN data have outliers, and the distribution 

of the SSN data, due to the mean and median being left skewed, along with the probability 

plot in Figure 3.6, have shown that the SSN data is not normally distributed. The earthquake 

data (Figure 3.3, Figure 3.5, and Figure 3.7), while containing outliers, are nearly normally 

distributed. However, the presence of outliers raises concerns about the data's normality. 
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For testing if the relationships were linear or nonlinear, a machine learning simple linear 

regression algorithm with subsequent checking for least square error was applied. It was 

discovered that the least square error was equal to "17.246" (an example of the code in 

Appendix B, Figure B - 2), indicating that the SSN and earthquake have a nonlinear 

relationship. For further choosing the type of test for the null hypothesis, it was needed to 

determine whether the relationship is monotonic. The graph in Figure 3.8 shows that the 

variables tend to move in the same direction at a constant rate, which indicates a monotonic 

relationship. 

 

 

Figure 3.8 Sunspot Number and Earthquakes, original data, relationship 

 

3.1.2 Spearman’s rho correlation coefficient 

To summarise the testing, it was found that the data are not normally distributed, at least the 

SSN is not normally distributed, and have nonlinear, monotonic relationships. Based on the 

de Siqueira Santos et al. (2014) study, for testing the null hypothesis, a Spearman’s rho 

correlation coefficient was chosen. To reduce the possibility of a Type I error, α -level equals 

0.01 was set (Frick, 1996). For the calculation of Spearman’s coefficient, the statistical Python 

library was used (Statistical functions (Scipy. Stats) — SciPy v1.7.1 Manual, 2021). The null 

hypothesis was tested using both original data and compact data (Appendix B, Figure B - 5 

Compact dataset). The results of the Spearman’s rho correlation coefficient test are as follows: 
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• Original data: p-value equal 7.759e-124 is less than 0.01. 

• Compact data: p-value equal 1.008e-74 is less than 0.01 

Also, the null hypothesis was tested during the 23rd solar cycle. The p-values in both the 

original and compact datasets were less than 0.01. The dataset examples, graphs, p-value 

calculation, and codes are in Appendix B. 

Based on the Spearman’s coefficients, that were calculated during the testing, it was assumed 

that the null hypothesis could be rejected. Also, Spearman’s coefficients showed that there is 

a possibility that solar activity influences earthquakes. However, the relationship is weak. 

Perhaps this is because solar activity affects earthquake events of different magnitudes in 

different ways (Odintsov, Ivanov-Kholodnyi and Georgieva, 2007; Odintsov et al., 2006). Also, 

different variables of solar activity have different effects on earthquakes (Novikov et al., 2020). 

 

3.2 Research Method 

3.2.1 Design of the study 

The design for this study has been based on and changed from typical design science models 

to focus on a researcher's standpoint (Dresch, Lacerda and Antunes, 2015). The research 

design has seven stages (Figure 3.9). The first step is formalising the research questions. The 

second step is formalisation of the aspect of the problem, understanding of the outer 

environment, understanding why the study is important, and systematic literature review. The 

third step is locating acceptable data resources that can be relied upon in future 

implementation and satisfy all of the requirements identified in the previous steps. The fourth 

step is to carry out the experiment so that it may be analysed and debated in the context of 

the research and answer the research questions. The fifth step is examining the data gathering 

findings, analysing them, and presenting them in a way that will ideally answer the previously 

stated research questions. The sixth and final steps are conclusion and communication. These 

steps include debating the findings and responding to the conclusions drawn from the data 

collection and analysis. This process frequently leads to potential future studies that may be 

continuously improved based on the research findings. 
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Figure 3.9 Research design 

3.2.2 Experiment Method 

For the experiment, it was decided to choose both traditional machine learning (KNN, SVR, 

and RFR) and deep learning (LSTM). Algorithms with a variety of backgrounds were chosen 

for the study. The selection algorithms were based on the notion that there is a non-linear 

relationship between the earthquakes and solar activity (that relationship was defined in 

Chapter 3.7). The experiment is based on the findings of previous seismological studies. 

Novikov et al. (2020) and Odintsov, Ivanov-Kholodnyi and Georgieva (2007) showed the 

relationship between strong earthquakes (Richter magnitude greater than 5.5) and solar 

activity. However, in their studies, they did not use earthquakes with a Richter magnitude lower 

than 5. They compare the number of earthquakes before and after solar activity events in their 

studies. They discovered that after solar activity events, the number of earthquakes increased. 

As for solar activity, Novikov et al. (2020) used solar flares, and Odintsov, Ivanov-Kholodnyi 

and Georgieva (2007) used solar wind velocity. 
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On the other hand, Nishii, Qin and Kikuyama (2020) using Support Vector Regression 

demonstrated that solar activity affects earthquakes with a Richter magnitude less than 5, but 

that earthquakes with a Richter magnitude of 3 and 4 have the strongest influence from solar 

activity. They used a number of earthquakes with a Richter magnitude of at least three and 

six variables of various types (ratio types and integers) for their study. Also, they used nine 

measurements of solar activity, including sunspot number, solar wind velocity, proton 

temperature, and others that were ratio types. They used correlation for the evaluation, which 

showed that the correlation for earthquakes with Richter magnitudes of 3 and 4 was 0.4777 

and 0.5298, respectively. Also, Nishii, Qin and Kikuyama (2020) mentioned that not all nine 

measurements of solar activity affected earthquakes. 

Also, Novikov et al. (2020) notice the increasing number of earthquakes with a Richter 

magnitude less than 3 after the influence of electric current on the Earth's crust, which is similar 

to solar exposure. The Earth's crust has different electrical conductivity in different regions. 

According to Novikov et al. (2020) and Novikov et al. (2017), the higher the electrical 

conductivity, the higher the current density in the lower Earth crust levels, resulting in an 

earthquake. It can be assumed that in different regions of the Earth, solar activity may cause 

earthquakes depending on their depth. 

The sunspot number, solar wind (speed (velocity), proton density, and proton temperature), 

and solar flares (A, B, C, M, X classes) were chosen for this study based on previous research. 

As for the earthquake data, earthquakes were divided into two parts. The first part is the 

number of earthquakes with a Richter magnitude less than 5.5, and the second part is 

earthquakes with a Richter magnitude of 5.5 and larger. Due to the fact that the study is 

studying global earthquakes, it was decided to use two earthquake options. The first option is 

to divide earthquakes by their depth, and the second option is not to divide them by their depth. 

So, all the models are separated by the depth of EQ categories, which, in turn, are separated 

by each magnitude category. Therefore, the independent variables are solar activity, and the 

dependent variables are the number of earthquakes. As was mentioned in Chapters 2.3.4 and 

2.4, there is a time gap between solar activity events and earthquake events. That is why a 

few predictions based on time delay were used, ranging from two to seven days, based on 

Sytinskii's (1973) study and considering the time it takes a solar wind to get from the sun to 

the Earth. 
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3.3 Data collection 

The data for the study consist of two parts: the earthquake data and the solar activity data. 

Solar activity depends on a solar cycle. That is why the data for the period between two 

completed solar cycles, namely the 23rd and 24th solar cycles, were collected from the year 

1996 until the year 2020. 

3.3.1 Earthquake Data Collection 

Daily earthquake data were collected from the United States Geological Survey (USGS) 

website (Earthquakes, 2021). USGS was created on March 3, 1879. USGS is a US 

government-run scientific organisation. More than 8,000 employees work at the USGS. USGS 

notifies authorities, emergency responders, the media, and the general public about major 

earthquakes in the United States and across the world. The website contains scientific 

information about natural disasters that endanger people's lives and livelihoods, as well as 

about water, energy, minerals, and other natural resources. It also keeps long-term seismic 

data archives for scientific and technical study. The USGS keeps track of seismic activity all 

around the world. 

The Earthquakes (2021) data consist of all earthquake events, regardless of the 

consequences caused by them. The data consist of 22 variables, but the main ones are: time 

of earthquakes, location of earthquakes (longitude and latitude), magnitude of earthquakes, 

and depth of earthquakes. Table 3.2 gives an example of the characteristics (time, location, 

magnitude, and depth) of earthquakes. 

Table 3.2 Earthquake data from the source 

time latitude longitude depth magnitude 

1996-01-01 00:08:39 10.1250 -70.0910 10.00 4.2 

1996-01-01 01:10:35 60.0308 -153.1522 129.70 2.5 

… … … … … 

2020-12-31 23:32:33 55.4040 -159.3768 7.10 3.3 

2020-12-31 23:51:23 62.3613 -151.1366 72.40 2.9 

 

3.3.2 Solar Activity Data Collection 

Based on Moldwin, M. (2008), there are a number of excellent websites that are related to 

space weather and the Sun-Earth relationship, such as the National Centers for Environmental 

Information (NOAA), National Aeronautics and Space Administration (NASA) and websites 
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that are connected to NASA, Space Weather: The International Journal of Research and 

Applications and the High Altitude Observatory (HAO). 

There are different solar activity events, which were collected from several open-source 

resources. For this study, the following solar activity data were selected: sunspot number, 

solar wind (solar wind speed, proton density, and proton temperature), and solar flares (A 

class, B class, C class, M class, and X class). Table 3.3 shows an example of a physical 

measurement of solar activity based on open-source data resources. 

Table 3.3 Solar activity, physical measurements 

Solar Activity Units 

Sunspot number - 

Solar wind speed km/s 

Proton density N/cm3 

Proton temperature Degrees, K 

Solar flare - 

 

Daily total sunspot number data were collected from the open-source resource SILSO World 

Data Center website (SILSO | World Data Center for the production, preservation and 

dissemination of the international sunspot number, 2021). The data have two primary 

variables: date and daily total sunspot number; the whole set has six variables. Table 3.4 

displays the daily total number of sunspots.  

Table 3.4 Daily total sunspot number 

Date Daily total sunspot number 

1996-01-01 0 

1996-01-02 14 

… … 

2020-12-30 32 

2020-12-31 34 

 

For the solar wind data, daily averages of the characteristics of the solar wind chosen for the 

study were taken, including solar wind speed, proton density, and proton temperature. The 

data were collected from the open-source NASA OMNIWeb website (SPDF - OMNIWeb 

Service, 2021). The daily averages consist of information about solar activity events and their 

coordinates in the Heliographic Intertial Coordinate System and the Real Time Network 
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Coordinate System. The coordinates are not needed for the current study. Table 3.5 shows 

the solar wind characteristics. 

Table 3.5 Summarises daily averages of the solar wind measurements 

Date Solar Wind Speed Proton Density Proton Temperature 

1996-01-01 403 7.9 72020 

1996-01-02 398 8.0 77660 

… … … … 

2020-12-30 483 3.6 122507 

2020-12-31 406 3.3 44521 

 

Solar flare data were collected from the open-source NOAA National Center for Environmental 

Information website. Historical information about the solar flares is limited to the year 2016. 

Therefore, the data were collected from the Solar Flare Data | NCEI (2021) the period from 

the year 1996 until the year 2016. For the period from the year 2017 until the year 2020, the 

data were collected from GOES-R Space Weather | NCEI (2021). Solar flare data contain a 

wealth of information about the event, such as the date, coordinates, class, intensity, etc. 

However, for the current study, two main variables were chosen: the date of the event and the 

solar flare class. Table 3.6 lists the solar flare classes that were chosen for the study. 

Table 3.6 Solar flares classes 

Date Solar flare class 

1996-01-03 B 

1996-01-03 B 

… … 

2017-01-10 C 

… … 

2020-01-10 B 
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3.4 Data Cleaning 

3.4.1 Earthquake Data Cleaning 

Based on the United States Geological Survey (USGS) website (Earthquakes, 2021), all sell 

in the data should not be empty. That is why, all data had been checked for empty items. The 

earthquake data did not have any missing values, except one row, that had been removed.  

The precise location of the earthquake is not important in current investigation. As a result, 

the three variables employed in the current study are the date of the earthquakes, earthquake 

magnitude, and earthquake depth. 

In this investigation, two different experimental setups were used. The first is a list of global 

earthquakes organised by Richter magnitude. Earthquakes were split into two groups based 

on the research of Odintsov, Ivanov-Kholodnyi, and Georgieva (2007). The first category of 

earthquakes includes those with a Richter magnitude of less than 5.5. The second category 

includes global earthquakes with a Richter magnitude of 5.5 or greater. According to the 

Novikov et al. (2020) experiment, electric current influences global earthquakes. For the 

second setting, in addition to sorting global earthquakes by Richter magnitude, the global 

earthquakes were sorted by depth, using the earthquake zones described in Chapter 2.2.1: 

shallow zone, intermediate zone, and deep zone. Table 3.7 shows an example of the 

earthquake data that has been cleaned. Figure 3.10 shows the data structure for earthquakes.  

Table 3.7 Frequencies of Earthquakes by magnitude, shallow zone 

     Magnitude 
t M<5.5 M≥5.5 

Shallow zone 
Intermediate 

zone 
Deep zone 

M<5.5 M≥5.5 M<5.5 M≥5.5 M<5.5 M≥5.5 

0 193 1 173 1 19 0 1 0 

1 225 1 205 1 15 0 5 0 

… … … … … … … … … 

8716 510 1 475 1 31 0 4 0 

8717 444 1 414 1 28 0 2 0 
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Figure 3.10 Structure of Earthquake data 

 

 

In Figure 3.11 through Figure 3.18 all earthquake components are presented in box plots. It 

goes without saying that the data have outliers, and these outliers will have an impact on the 

final result. Moreover, a future fitted model can be significantly impacted by even a single 

value. Removing outliers from a dataset is one approach to deal with them, but it is not always 

the best approach (Spiegelhalter, 2019; Agresti, Franklin and Klingenberg, 2018). The current 

data outliers contain valuable information. The data outliers represent important events in the 

data. Removing them can lead to a loss of information and can affect the validity of the analysis 

(Novikov et al., 2020). That is why normalisation techniques were used here. Normalisation is 

a technique that can be used to deal with outliers without removing them from the data 

(Muhamedyev, 2015). Normalisation involves transforming the data so that it has a specific 

distribution or range of values (Chapter 3.5). After the process of cleaning the data, the 

Earthquake dataset had 8718 records. 

To summarise, for the earthquakes, as dependent variables there were two parts. The first 

part is global earthquakes divided by their magnitude: 

• Global earthquakes with a Richter magnitude less than 5.5 – daily number of 

earthquakes 

• Global earthquakes with a Richter magnitude greater than 5.5 – daily number of 

earthquakes 
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The second part is shallow depth earthquakes divided by their magnitude: 

• Shallow depth earthquakes with a Richter magnitude less than 5.5 – daily number of 

earthquakes 

• Shallow depth earthquakes with a Richter magnitude greater than 5.5 – daily number 

of earthquakes 

The second part is intermediate depth earthquakes divided by their magnitude: 

• Intermediate depth earthquakes with a Richter magnitude less than 5.5 – daily number 

of earthquakes 

• Intermediate depth earthquakes with a Richter magnitude greater than 5.5 – daily 

number of earthquakes 

The second part is deep depth earthquakes divided by their magnitude: 

• Deep depth earthquakes with a Richter magnitude less than 5.5 – daily number of 

earthquakes 

• Deep depth earthquakes with a Richter magnitude greater than 5.5 – daily number of 

earthquakes 

 

 

 

Figure 3.11 Global EQ, M < 5.5 

 

Figure 3.12 Global EQ, M ≥ 5.5 
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Figure 3.13 Shallow zone EQ, M < 5.5 

 

Figure 3.14 Shallow zone EQ, M ≥ 5.5 

 

 

Figure 3.15 Intermediate zone EQ, M < 5.5 

 

Figure 3.16 Intermediate zone EQ, M ≥ 5.5 

 

Figure 3.17 Deep zone EQ, M < 5.5 

 

Figure 3.18 Deep zone EQ, M ≥ 5.5 

3.4.2 Solar Activity Data Cleaning 

According to the fact that solar activities were collected from three different open-source 

resources, solar activity cleaning data was broken into three parts, one for each resource. 

The sunspot number data contain information about sunspot number from the year 1818 until 

the present. That is why the unnecessary data for the current study, which is outside the 

chosen period of the 23rd and 24th solar cycles, has been removed. According to the dataset 

description, the daily sunspot number column has negative values, which indicates that "no 
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numbers are available for that day" (SILSO | World Data Center for the production, 

preservation and dissemination of the international sunspot number 2021). That is why the 

data had been checked for negative values, which showed that there were not any negative 

values in the selected period. 

The data for the three solar wind characteristics, which were chosen for the study (solar wind 

speed, proton density, and proton temperature), also contained values that were outside the 

chosen period, which had also been removed. The data did not contain any empty values; 

however, the data could include the values "999.99," "9999.99," and "9999999.99," which 

indicate the absence of the values. That is why these empty values were found and changed 

to "NaN" values for later removal. 

A few completely empty rows in the solar flare data were deleted. In addition, in the current 

study, the frequency of the solar flares was classified by their classes. Table 3.8 gives an 

example of the solar activity data. 

Table 3.8 Solar activity data 

Date 
Sunspot 

Number 

Solar Wind 

Speed 

Proton 

Density 

Proton 

Temperature 
A-class B-class C-class M-class X-class 

1996/01/01 0 403 7.9 7202 NaN NaN NaN NaN NaN 

1996/01/02 14 398 8.0 77660 NaN NaN NaN NaN NaN 

… … … … … … … … … … 

2020/12/30 32 483 3.6 122507 NaN NaN NaN NaN NaN 

2020/12/30 34 406 3.3 44521 NaN NaN NaN NaN NaN 

 

As the solar activity data had empty values, these empty values have been removed. Figure 

3.19 illustrates the structure of the solar activity data. The final step, after merging data and 

removing empty values, was the union of earthquake data and solar activity data. For future 

use, the dataset was saved in "*.tsv" format. The final version of the earthquakes and solar 

activity dataset is shown in Appendix B Figure B - 1. 
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Figure 3.19 Structure of Solar activity data 

The boxplots of the original solar activity data shown in Figure 3.20 through Figure 3.28 show 

that each independent variable includes outliers. As was mentioned in Chapter 3.4.1 the 

outliers will impact the final result, and it was a decision to leave outliers. In the case of solar 

activity, it can be a high-speed solar wind, which has a significant impact on earthquakes 

(Odintsov et al., 2006). After the process of cleaning the data, the Solar activity dataset had 

8718 records. 

To summarise, for the solar activity, as independent variables there were chosen: 

• Sunspot number – daily total sunspot number 

• Solar wind speed – daily averages  

• Proton density – daily averages 

• Proton temperature – daily averages 

• Solar flares A-class – quantity of solar flares A-class per a day 

• Solar flares B-class – quantity of solar flares B-class per a day 

• Solar flares C-class – quantity of solar flares C-class per a day 
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• Solar flares M-class – quantity of solar flares M-class per a day 

• Solar flares X-class – quantity of solar flares X-class per a day 

These solar activity events were chosen based on the previous seismological studies’ findings 

(Odintsov et al., 2006; Novikov et al., 2020; Novikov et al. 2017; Odintsov, Ivanov-Kholodnyi 

and Georgieva 2007; Sytinskii's 1973). 

 

 

Figure 3.20 SSN 

 

 
Figure 3.21 Solar wind speed 

 

Figure 3.22 Proton density 

 

Figure 3.23 Proton temperature 
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Figure 3.24 Solar flares A class 

 

Figure 3.25 Solar flares B class 

 

Figure 3.26 Solar flares C class 

 

Figure 3.27 Solar flares M class 

 

 

Figure 3.28 Solar flares X class 
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3.5 Normalising data 

3.5.1 Normalising earthquake data (dependent variables) 

As was mentioned in Chapter 3.4.1, it was decided to leave earthquake outliers, based on 

Novikov et al. (2020) study. To determine which normalisation scaler is optimal for the data, 

box plots were used to compare the scaler findings. From Figure 3.29 through Figure 3.34, 

the box plots of the normalised results are shown. As can be seen from these graphs, the 

"Quantile Transformer" scaler produced the highest normalising result. 

 

Figure 3.29 Dependent variables: Normalisation using "MinMaxScaler" scaler after 

normalising 

 

Figure 3.30 Dependent variables: Normalisation using "MaxAbsScaler" scaler after 

normalising 
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Figure 3.31 Dependent variables: Normalisation using "Normalizer" scaler after normalising 

 

Figure 3.32 Dependent variables: Normalisation using "StandardScaler" scaler after 

normalising 

 

Figure 3.33 Dependent variables: Normalisation using "RobustScaler" scaler after normalising 
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Figure 3.34 Dependent variables: Normalisation using "Quantile Transformer" scaler after 

normalising 

3.5.2 Normalising solar activity data (independent variables) 

The same normalising comparison had been run with the independent variables, solar activity, 

as it had been done with the dependent variables, earthquakes. From Figure 3.35 until Figure 

3.40, box plots depict the outcomes of the normalising scalers. Similar to the earthquake data, 

the "Quantile Transformer" scaler produced the highest normalisation results. That is why the 

"Quantile Transformer" scaler for the normalising process was employed in the experimental 

section of the study. 

 

 

Figure 3.35 Independent variables: Normalising using "MinMaxScaler" scaler after normalising 
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Figure 3.36 Independent variables: Normalising using "MaxAbsScaler" scaler after 

normalising 

 

Figure 3.37 Independent variables: Normalising using "Normalizer" scaler after normalising 

 

Figure 3.38 Independent variables: Normalising using "StandardScaler" scaler after 

normalising 
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Figure 3.39 Independent variables: Normalising using "RobustScaler" scaler after normalising 

 

Figure 3.40 Independent variables: Normalising using "Quantile Transformer" scaler after 

normalising  
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3.6 Dimensional reduction of solar activity data 

As previously stated, Nishii, Qin, and Kikuyama (2020) proposed in their variable reduction 

study that not all solar activity events influence earthquakes equally. The solar activity dataset 

has nine variables. Moreover, the aim is to explain the earthquake (dependent) variables as a 

function of the solar activity (independent) variables. That is why the earthquake variables 

should not be included in the PCA.  

 

Figure 3.41 Choosing the number of SA variables 

Firstly, it was examined whether all solar activity variables have an effect on earthquake 

variables. Figure 3.41 shows that the first six principal components keep over 96 percent 

(96.343 percent) of the variability in the independent variables. The remaining three variables 

may be co-correlated or not contribute much. That is why, the independent variables can be 

reduced by three features (Figure 3.42). 

 

Figure 3.42 Independent variables after dimensionally reduction  
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3.7 Linear and non-linear relationships between earthquake and solar activity 

data 

Before applying machine learning algorithms to each type of data, the variables in the data 

were checked for linear/nonlinear relationships using the Linear Regression machine learning 

algorithm, equation (26) and the R-squared (R2) error, equation (27). 

 

 𝐸�́� =  𝑎0 + 𝑎1 ∗ 𝑆𝐴1 + 𝑎2 ∗ 𝑆𝐴2 + 𝑎3 ∗ 𝑆𝐴3 + 𝑎4 ∗ 𝑆𝐴4 + 𝑎5 ∗ 𝑆𝐴5 + 𝑎6 ∗ 𝑆𝐴6  (26) 

Where: 

 𝐸�́� – predicted earthquake frequency 

 𝑆𝐴1 − 𝑆𝐴6 – solar activity data points 

 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5,  𝑎6 – coefficients  

 

 
𝑅2 =  

∑ (𝐸�́� −  𝐸�́�̅̅ ̅̅ )2𝑛
𝑖=1

∑ (𝐸𝑄 −  𝐸𝑄̅̅ ̅̅ )2𝑛
𝑖=1

  (27) 

Where: 

 𝑛 – data size 

 𝐸�́� – predicted earthquake frequency 

 𝐸𝑄 – actual earthquake frequency 

 

All of the above calculations and coefficient determinations were carried out using the Python 

library Scikit-learn (Pedregosa et al., 2011; Supervised learning—Scikit-learn 0.24.2 

documentation, 2021). The results are presented in Table 3.9. All R2 values in Table 3.9 are 

negative, and the highest value of R2 equals -13.01. A negative R2 value in a linear regression 

model indicates that the model is performing worse than a simple mean model that uses the 

mean value of the dependent variable to predict its value. An R2 value of -13.01 is particularly 

low and suggests that the model is not a good fit for the data (Kutner, 2005). It can be assumed 

that the relationships between solar activity data and earthquake data in all earthquake 
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categories are non-linear. That is why algorithms that work well with nonlinear relationships 

are preferred. 

 

Table 3.9 Linear and nonlinear relationships, R2 values 

Global  

Solar 
Activity 

EQ 
category 

SA: 2 days 
delay 

SA: 3 days 
delay 

SA: 4 days 
delay 

SA: 5 days 
delay 

SA: 6 days 
delay 

SA: 7 days 
delay 

M<5.5 -13.49 -13.21 -13.01 -13.28 -13.33 -13.41 

M≥5.5 -1619.85 -1376.71 -811.66 -630.0 -1075.8 -1431.76 

Shallow Zone 

Solar 
Activity 

EQ 
category 

SA: 2 days 
delay 

SA: 3 days 
delay 

SA: 4 days 
delay 

SA: 5 days 
delay 

SA: 6 days 
delay 

SA: 7 days 
delay 

M<5.5 -14.24 -13.8 -13.56 -13.85 -13.98 -14.08 

M≥5.5 -965.43 -813.24 -892.07 -916.75 -809.8 -741.1 

Intermediate Zone 

Solar 
Activity 

EQ 
category 

SA: 2 days 
delay 

SA: 3 days 
delay 

SA: 4 days 
delay 

SA: 5 days 
delay 

SA: 6 days 
delay 

SA: 7 days 
delay 

M<5.5 -16.22 -16.16 -16.35 -16.45 -16.33 -16.11 

M≥5.5 -1446.15 -1709.9 -625.39 -480.75 -883.75 -1050.33 

Deep Zone 

Solar 
Activity 

EQ 
category 

SA: 2 days 
delay 

SA: 3 days 
delay 

SA: 4 days 
delay 

SA: 5 days 
delay 

SA: 6 days 
delay 

SA: 7 days 
delay 

M<5.5 -55.47 -52.88 -53.37 -51.87 -50.83 -54.61 

M≥5.5 -1683.91 -1136.28 -1129.27 -1074.42 -1809.56 -3828.17 
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3.8 Determining the method for the model measurement error 

Spiess and Neumeyer (2010) study showed, that R2 error should not be used in nonlinear data 

analysis. The study used various simulation models and found that R-squared leads to false 

conclusions about which nonlinear models are better. A good way of comparing different 

models is by using errors, which provide a relative measure of the percentage. It was found 

that, as the "Deep zone" category of EQ has a lot of zero values, MAPE, equation (2), is not 

suitable here since using MAPE would give a division by zero. However, there is no division 

by zero using the RMSE equation (28) and MAE equation (29) for the calculations of margin 

error in the data. 

 

𝑅𝑀𝑆𝐸𝐸𝑄 =  √
∑ (𝐸𝑄𝑖

́ − 𝐸𝑄𝑖)2𝑛
𝑖=1

𝑛
 (28) 

Where: 

𝑛 – the number of data points 

𝐸�́�1, 𝐸�́�2, … , 𝐸�́�𝑛 – predicted earthquake frequency 

𝐸𝑄1, 𝐸𝑄2, … , 𝐸𝑄𝑛 – actual earthquake frequency 

 

 
𝑀𝐴𝐸𝐸𝑄 =  

∑ |𝐸𝑄𝑖
́ − 𝐸𝑄𝑖|𝑛

𝑖=1

𝑛
 (29) 

Where: 

𝑛 – the number of data points 

𝐸�́�1, 𝐸�́�2, … , 𝐸�́�𝑛 – predicted earthquake frequency 

𝐸𝑄1, 𝐸𝑄2, … , 𝐸𝑄𝑛 – actual earthquake frequency 

However, Willmott and Matsuura (2005) indicated that RMSE is not a good measure of model 

performance and may be a deceptive indicator of average error. That is why they suggested 

MAE is a preferable metric. On the other hand, Chai and Draxler (2014) stated that avoiding 

RMSE is not the appropriate practice. Also, RMSE avoids using absolute values, which is a 

benefit over MAE. Also, they suggested that for evaluating model performance, it's better to 
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use a variety of metrics. That is why it was decided to use both errors, MAE and RMSE, for 

the evaluation of the study's model. 

As it was needed to compare the models with different dependent variables, MAE and RMSE 

are not useful for this purpose. That is why the normalised RMSE (NRMSE) was used here. 

There are few ways to normalise the RMSE (Shcherbakov et al., 2013): 

• Normalisation by the difference between the 75th and 25th percentile, the interquartile 

range of the data as presented in equation (30). 

• Normalisation by the difference between the maximum and minimum of the data, 

equation (31) 

• Normalisation by the data mean, equation (32). 

• Normalisation by the standard deviation, equation (33). 

 
𝑁𝑅𝑀𝑆𝐸𝐸𝑄 =  

𝑅𝑀𝑆𝐸𝐸𝑄

𝑄3 − 𝑄1
 (30) 

Where: 

 𝑅𝑀𝑆𝐸𝐸𝑄 – RMSE of a model 

 𝑄1, 𝑄3 – 25th and 75th percentile of the data 

 

 
𝑁𝑅𝑀𝑆𝐸𝐸𝑄 =  

𝑅𝑀𝑆𝐸𝐸𝑄

𝐸𝑄𝑚𝑎𝑥 − 𝐸𝑄𝑚𝑖𝑛
 (31) 

Where: 

 𝑅𝑀𝑆𝐸𝐸𝑄 – RMSE of a model 

 𝐸𝑄𝑚𝑎𝑥, 𝐸𝑄𝑚𝑖𝑛 – maximum and minimum of the data 

 

 
𝑁𝑅𝑀𝑆𝐸𝐸𝑄 =  

𝑅𝑀𝑆𝐸𝐸𝑄

𝐸𝑄̅̅ ̅̅
 (32) 

 

Where: 

 𝑅𝑀𝑆𝐸𝐸𝑄 – RMSE of a model 

 𝐸𝑄̅̅ ̅̅  – mean of EQ dependent variable 
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𝑁𝑅𝑀𝑆𝐸𝐸𝑄 =  

𝑅𝑀𝑆𝐸𝐸𝑄

𝑆𝐷
 (33) 

Where: 

 𝑅𝑀𝑆𝐸𝐸𝑄 – RMSE of a model 

 𝑆𝐷 – standard deviation of the data 

 

However, normalising the data by its interquartile range is not useful in this case because, in 

some cases, both the 25th and 75th percentiles are equal to zero, resulting in division by zero. 

Also, normalisation by the difference between maximum and minimum is not the appropriate 

option in this case, because the data were normalised using the Quantile Transformer scaler, 

𝐸𝑄𝑚𝑎𝑥 = 1 and   𝐸𝑄𝑚𝑖𝑛 = 0. That is why RMSE will always be equal to NRMSE normalised by 

the difference between maximum and minimum. That is why normalisations by mean and 

standard deviation are suitable in the current case. 

MAE, like RMSE, can be normalised using the mean, interquartile range, and difference 

between the maximum and minimum values. Normalisation MAE (NMAE) employing an 

interquartile range and difference between maximum and minimum, similar to RMSE, is not 

appropriate here. As a result, the mean was used to calculate NMAE, equation (34). 

 
𝑁𝑀𝐴𝐸𝐸𝑄 =  

𝑀𝐴𝐸𝐸𝑄

𝐸𝑄̅̅ ̅̅
 (34) 

Where: 

 𝑀𝐴𝐸𝐸𝑄 – RMSE of a model 

 𝐸𝑄̅̅ ̅̅  – mean of EQ dependent variable 
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3.9 Machine learning algorithm used in the study 

For the experiment, classic algorithms as well as deep learning methods were used. There 

were two main requirements for selecting algorithms. The first requirement is that algorithms 

should have different approaches to solving a problem that help solve the problem using 

various techniques. The second is that these methods should be good at solving issues with 

non-linear relationships between the variables. Based on the above requirements, the classic 

algorithms K-Nearest Neighbour (KNN), Support Vector Regression (SVR), and Random 

Forest Regression (RFR) were chosen, and the Long Short-Term Memory Network (LSTM) 

was chosen for the neural networks. It should be noted that all these machine learning 

methods have been successfully applied in many fields. 

3.9.1 K-nearest neighbour algorithm (regression) 

KNN is one of the simplest algorithms, with one of the fastest training speeds. KNN employs 

Euclidean Distance. Even though the accuracy of prediction decreases as the number of 

predictors increases, the decision was made to start with the KNN algorithm because it is good 

for data exploration and works well with non-linear relationships. Moreover, the data have 

8718 records, which is not critical for the KNN algorithm. 

The first step is the calculation of the Euclidian distance between the new data point and the 

existing point equation (6). The second step is to find a predicted value of earthquakes that is 

equal to the average of earthquakes for the top "K" neighbours. All of the calculations related 

to fitting the model and determining the prediction values were performed using the Python 

library Scikit-learn (Pedregosa et al., 2011; Supervised learning — scikit-learn 0.24.2 

documentation, 2021). 

To determine the appropriate value of "K", a plot of the RMSE values versus the "K" values 

was created in each scenario, Figure 1.1 – Figure 3.50. An array of "K" values ranging from 1 

to 20 was used to create the charts. For each "K" value, a model was trained, and afterward 

KNN was used to make a prediction. After that, the RMSE value was determined. As can be 

seen from Figure 3.43 through Figure 3.50, after "K" equals 17, the value of the error does not 

change significantly. That is why the decision was made to choose the value of "K" to be equal 

to 17. Also, "K" must be a whole number, as "K" is the number of nearest datapoints to the 

new data point. 
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Figure 3.43 Finding the most appropriate value of “K” Global EQ M<5.5 

 
Figure 3.44 Finding the most appropriate value of “K” Global EQ M≥5.5 

 

Figure 3.45 Finding the most appropriate value of “K” Shallow zone EQ M<5.5 
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Figure 3.46 Finding the most appropriate value of “K” Shallow zone EQ M≥5.5 

 
Figure 3.47 Finding the most appropriate value of “K” Intermediate zone EQ M<5.5 

 

Figure 3.48 Finding the most appropriate value of “K” Intermediate zone EQ M≥5.5 
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Figure 3.49 Finding the most appropriate value of “K” Deep zone EQ M<5.5 

 

Figure 3.50 Finding the most appropriate value of “K” Deep zone EQ M≥5.5 

 

3.9.2 Support vector regression algorithm 

The SVR algorithm is a kernel-based algorithm. The most important parameter is the kernel 

type. Hyperparameters, such as kernel, can be set in SVR. That is what makes SVR so 

effective in dealing with non-linear relationships between dependent and independent 

variables. Due to the fact that the dependent and independent variables have non-linear 

relationships, the RBF kernel has been chosen; the equation is based on (Smola and 

Schölkopf, 2004). 

Two vectors were defined for the experiment: vector x = (SA1, SA2, SA3, SA4, SA5, SA6), 

where SA1 – SA6  frequency of solar activity of the data points and vector y = (EQ), where 

EQ frequency of earthquakes of the data points. The Python library Scikit-learn (Pedregosa et 
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al., 2011; Supervised learning — scikit-learn 0.24.2 documentation, 2021) was used to 

accomplish all of the calculations related to fitting the model and generating the prediction 

values. 

3.9.3 Random forest regression (RFR) 

RFR is an example of ensemble learning. RFR has no formal distributional assumptions and 

works well with non-linear relationships. There are four steps involved in RFR. In the first 

stage, the data were divided into subsets. In the second phase, an individual decision tree 

was generated for each subgroup. The third step includes a result from each subset. The final 

step is an average of all subset outcomes. All of these steps related to fitting the model and 

obtaining the prediction values were completed using the Python library Scikit-learn 

(Pedregosa et al., 2011; Supervised learning — scikit-learn 0.24.2 documentation, 2021). 

According to Rodriguez-Galiano et al. (2012), the most important parameters for RFR are the 

number of regression trees and the number of features needed at each node to make 

regression trees develop. The number of regression trees was equal to 100 (the scikit-learn 

default number), as RFR does not have overfitting. The number of features equals two 

because, when the number of features is reduced, the correlation between trees is reduced, 

which improves the model's accuracy. 

3.9.4 Long Short-Term Memory network 

The LSTM algorithm is a neural network (NN) algorithm that works well with non-linear 

functions. A typical sigmoid transfer function was used to create a number of neural network 

models, which is why the sigmoid function was also used in the study, the sigmoid function is 

default in Keras: the Python deep learning API (2021) settings. 

The number of hidden layers and nodes per layer need to be chosen as a structure before 

training the LSTM. The number of hidden layers is determined by no rule. In general, the more 

hidden layers there are, the better the network's ability to represent training data patterns. 

However, the large number of units in the hidden layer reduces the generalisation power of 

the networks and increases the cost (Verdhan and Kling, 2020). That is why, two hidden layers 

were chosen. The number of hidden nodes was calculated using the equation in Keras: the 

Python deep learning API (2021), equation (35) 
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𝑁ℎ =

𝑁𝑠

(𝛼 ∗ (𝑁𝑖 +  𝑁𝑜))
  

(35) 

Where: 

 𝑁𝑠 – number of samples in training data set 

 𝑁𝑖 – number of input neurons 

 𝑁𝑜 – number of output neurons 

𝛼 – scaling factor (minimum 2, maximum 10), was calculated as mean between 

minimum and maximum. 

To fit the LSTM model, the number of epochs needs to be chosen. The number of epochs 

specifies how many times the learning algorithm will iterate over the entire training dataset. As 

with hidden layers, there is no specific way to choose the number of epochs. The optimal 

number of epochs depends on various factors, including the complexity of the problem, the 

amount of data, and the selected hyperparameters. Thus, an experiment with different values 

and monitoring the training progress could help find the optimal number of epochs for a given 

problem (Lipton, Berkowitz and Elkan, 2015). However, this process is costly in time and 

energy. Therefore, prior studies and research can provide guidance on the range of 

reasonable values for the number of epochs based on similar datasets and problems. These 

studies can also provide insight into the relationship between the number of epochs and model 

performance, such as the risk of overfitting and the impact of early stopping. Istiake Sunny, 

Maswood and Alharbi (2020) compared various LSTM model settings and discovered that 100 

epochs and 2 hidden layers produced the highest accuracy for their model. Kim et al. (2021) 

trained their LSTM model with epochs ranging from 1 to 30, and they discovered that for 

different types of data, LSTM with epochs of 25 and 30 produced the highest accuracy. While 

there is no definitive answer to the optimal number of epochs for LSTM training, based on 

prior studies and research that provided valuable guidance, 70 epochs were chosen for the 

current study. 

3.9.5 Data splitting for the experiment 

As was discussed in Chapter 2.5.6 the 80/20 split for training and testing is a commonly used 

practise in machine learning because it provides a good balance between having enough data 

for training and having enough data for testing (Pham et al., 2020; Das et al., 2011 Rácz, 

Bajusz and Héberger 2021). The idea is to use 80% of the available data for training the model 

and the remaining 20% for testing the model's performance.  
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The 80/20 training and testing split is typically selected randomly from the available data. This 

means that a random subset of the data is selected to be used as the training set, and the 

remaining data is used as the test set. The random selection helps to ensure that the training 

and test sets are representative of the overall data set and that the results are not biased 

towards a particular subset of the data. For the current study, an 80/20 ratio was chosen based 

on the previous studies findings, which were described in Chapter 2.5.6, as the most 

appropriate for the data. That is why, in terms of the number of random tests selected, typically, 

only one test set is selected here. 
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4 Chapter Four Influence of Solar activity on global earthquakes 

The findings of the study, which show a possible link between solar activity and global 

earthquakes, are presented in this chapter. These findings are presented first, followed by a 

discussion of the findings as a whole in Chapter 6. 

The findings are divided into two categories. The first section demonstrates the association 

between solar activity and earthquakes with a Richter magnitude of less than 5.5 on the 

Richter scale. The second half focuses on solar activity and large earthquakes with a Richter 

magnitude greater than 5.5. The results are presented in tables that include the RMSE and 

MSE as well as their normalised values. 

4.1 Solar activity and global earthquakes with a Richter magnitude less than 

5.5 

Table 4.1 through Table 4.6, illustrate the outcomes of each part of the experiment. After each 

table, the summary shows which algorithm had the highest accuracy (the smallest error) and 

which method had the poorest result (the largest error). Figure 4.1 through Figure 4.12  show 

the graphical interpretation of the above tables and the contrasts between actual and predicted 

earthquake values. The data contains over 8,000 records; creating a line graph with good 

visual appeal using all of them is not possible. That's why a graph of the moving average 

(averaging every 100 points) was created. 

Table 4.1 Global earthquakes M<5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2779 0.2734 0.2768 0.2733 

NRMSE by SD 0.9659 0.9503 0.9623 0.9503 

NRMSE by mean 0.5562 0.5472 0.5542 0.5472 

Mean absolute error 

MAE 0.2339 0.2271 0.2362 0.2326 

NMAE by mean 0.4683 0.4547 0.4729 0.4656 

 

Table 4.1 and Figure 4.1 show the highest accuracy, evaluated by NRMSE, was LSTM, and 

the KNN algorithm had the lowest accuracy for a two-day delay between solar activity events 

and earthquake events. In terms of NMAE, the highest accuracy was SVR, and the lowest 

accuracy was RFR. LSTM and SVR are the first two spots in both NRMSE and NMAE, 

whereas RFR and KNN are the last two. 
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Figure 4.1 Errors: Global earthquakes M<5.5, Two Days Delay 

 

Figure 4.2 Global earthquakes M<5.5: Compare actual and predicted values, Two Days Delay 

As can be seen in Figure 4.2, all three traditional machine learning algorithms are close to 

each other, but SVR repeats the original data graph better. As for LSTM, it repeats the original 

data similarly to SVR but moves separately and has more points of intersection with the 

original data, particularly the data points that are above average. This also explains the 

difference in the outcomes of errors. Also, it was observed that LSTM is more expensive in 

terms of both time and energy. 

Table 4.2 Global earthquakes M<5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2792 0.2758 0.2777 0.2732 

NRMSE by SD 0.9682 0.9566 0.9632 0.9476 

NRMSE by mean 0.5533 0.5467 0.5505 0.5416 

Mean absolute error 

MAE 0.236 0.2296 0.2373 0.2317 

NMAE by mean 0.4677 0.455 0.4704 0.4592 
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Table 4.2 and Figure 4.3 show the results for a three-day delay part are the same as for a two-

day delay part. LSTM and SVR have the highest accuracy, whereas RFR and KNN have the 

lowest. Furthermore, Figure 4.4 shows that the LSTM prediction line and the SVR prediction 

line are relatively close and that there is a much smaller difference between both errors than 

there was in the two-day delay part. 

 

Figure 4.3 Errors: Global earthquakes M<5.5, Three Days Delay 

 

Figure 4.4 Global earthquakes M<5.5: Compare actual and predicted values, Three Days 

Delay 

Table 4.3 Global earthquakes M<5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2805 0.2783 0.28 0.2764 

NRMSE by SD 0.97 0.962 0.968 0.9555 

NRMSE by mean 0.5563 0.5517 0.5551 0.548 

Mean absolute error 

MAE 0.2365 0.2321 0.239 0.236 

NMAE by mean 0.4689 0.4601 0.4738 0.4679 
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The results for a four-day delay part are the same as for a two-day delay and three-day delay 

parts, as shown in Table 4.3 and Figure 4.5. However, Figure 4.6 shows that the prediction 

lines repeat the prediction lines in the two-day delay part, and the LSTM prediction values are 

located above average. 

 

 

Figure 4.5 Errors: Global earthquakes M<5.5, Four Days Delay 

 

 

Figure 4.6 Global earthquakes M<5.5: Compare actual and predicted values, Four Days Delay 

 

Based on Table 4.4 and Figure 4.7 the outcomes for a five-day delay component are similar 

to the previous sections in general. The two with the highest accuracy are LSTM and SVR, 

while RFR and KNN have the lowest accuracy. Figure 4.8, however, demonstrates that the 

prediction lines repeat the prediction lines in the three-day delay part. 
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Table 4.4 Global earthquakes M<5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2797 0.2752 0.2757 0.2729 

NRMSE by SD 0.9787 0.9629 0.9646 0.9548 

NRMSE by mean 0.5566 0.5476 0.5485 0.5429 

Mean absolute error 

MAE 0.2366 0.2305 0.2346 0.231 

NMAE by mean 0.4702 0.4586 0.4669 0.4596 

 

 

Figure 4.7 Errors: Global earthquakes M< 5.5, Five Days Delay 

 

Figure 4.8 Global earthquakes M<5.5: Compare actual and predicted values, Five Days Delay 

The results for the six-day delay part are identical to the previous parts, with all models 

remaining in their unchanged positions, as can be seen in Table 4.5 and Figure 4.9. However, 

Figure 4.10  depicts the LSTM prediction line in a different location. It has more crossing points 

with values that are below average and is located below the prediction lines of the conventional 

ML algorithms. 
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Table 4.5 Global earthquakes M<5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2746 0.2718 0.2734 0.2713 

NRMSE by SD 0.9702 0.9604 0.9659 0.9585 

NRMSE by mean 0.5469 0.5414 0.5445 0.5404 

Mean absolute error 

MAE 0.2309 0.2255 0.2321 0.2275 

NMAE by mean 0.4599 0.4492 0.4622 0.4531 

 

 

Figure 4.9 Errors: Global earthquakes M<5.5, Six Days Delay 

 

Figure 4.10 Global earthquakes M<5.5: Compare actual and predicted values, Six Days Delay 

The results of a seven-day delay for the remaining components of the experiment are the 

same as the previous parts, Table 4.6 and Figure 4.11. LSTM consistently outperforms other 

algorithms in terms of NRMSE. In terms of NMAE, SVR and LSTM came in first and second, 

respectively, with RFR and KNN coming in third and fourth. All of the prediction lines are close 
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to one another, as seen in Figure 4.12, but LSTM and SVR are better at repeating the original 

values line, as in the three-day and five-day delay parts. 

Table 4.6 Global earthquakes M<5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.278 0.2747 0.2744 0.2717 

NRMSE by SD 0.9783 0.9667 0.9656 0.9564 

NRMSE by mean 0.5556 0.5491 0.5484 0.5432 

Mean absolute error 

MAE 0.2331 0.2281 0.2328 0.2288 

NMAE by mean 0.466 0.456 0.4653 0.4574 

 

 

Figure 4.11 Errors: Global earthquakes M<5.5, Seven Days Delay 

 

 

Figure 4.12 Global earthquakes M<5.5: Compare actual and predicted values, Seven Days 

Delay 
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The results are visualised in Figure 4.13. It is evident from these graphs that LSTM and SVR 

have the highest accuracy. Furthermore, the algorithms with the highest and lowest accuracy 

are generally the same in all parts of the experiment with solar activity and earthquakes with 

Richter magnitudes less than 5.5. Furthermore, the NRMSE metric values for all algorithms 

were discovered to be extremely close to one another. The same was seen in the NMAE 

measurements. 

 

Figure 4.13 Global earthquakes M<5.5, summarising results 

It was noted that, based on Figure 4.2 and the other similar graphs, the earthquakes have two 

peaks, which had been discussed earlier. That is why the values that are further from the 

mean are significant in the earthquake data. That is why RMSE values are more desirable in 

this situation. It had been found that, in terms of normalising error values, the three-day delay 

and six-day delay parts have the highest accuracy in terms of NRMSE, while the six-day delay 

part has the highest accuracy in terms of NMAE. 

  



83 
 

4.2 Solar activity and global earthquakes with a Richter magnitude equal to 

or greater than 5.5 

The results of each part of the experiment are depicted in Table 4.7 – Table 4.12. From Figure 

4.14 until Figure 4.25, the graphical interpretation of the above tables and the differences 

between actual and predicted values are shown. 

Table 4.7 Global earthquakes M ≥ 5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3461 0.3532 0.3386 0.3385 

NRMSE by SD 1.0213 1.0422 0.9989 0.9987 

NRMSE by mean 0.7737 0.7895 0.7568 0.7566 

Mean absolute error 

MAE 0.2897 0.2926 0.2793 0.2812 

NMAE by mean 0.6476 0.654 0.6243 0.6286 

 

 

 

Figure 4.14 Errors: Global earthquakes M≥5.5, Two Days Delay 

 

Table 4.7 and Figure 4.14 show the highest accuracy for a two-day delay in terms of NRMSE 

was LSTM, with a very close value to RFR. Also, RFR had the highest accuracy in terms of 

NMAE. The model with the lowest accuracy had SVR in both metrics (NRMSE and NMAE), 

and KNN came in third. The SVR result is explained by Figure 4.15, which depicts the SVR 

prediction line as being above the actual values line, while LSTM and RVR are situated close 

to averages. 
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Figure 4.15 Global earthquakes M≥5.5: Compare actual and predicted values, Two Days 

Delay 

 

Table 4.8 Global earthquakes M≥5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3516 0.3535 0.3399 0.3406 

NRMSE by SD 1.0329 1.0383 0.9986 1.0005 

NRMSE by mean 0.7739 0.7779 0.7482 0.7496 

Mean absolute error 

MAE 0.2961 0.2931 0.2811 0.2864 

NMAE by mean 0.6516 0.6452 0.6187 0.6303 

 

 

 

Figure 4.16 Errors: Global earthquakes M≥5.5, Three Days Delay 
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Figure 4.17 Global earthquakes M≥5.5: Compare actual and predicted values, Three days 

delay 

For the three-day delay part, results are shown in Table 4.8 and Figure 4.16. For both metrics, 

RFR has the highest accuracy, followed by LSTM with very close values. SVR showed the 

lowest accuracy in terms of NRMSE, while KNN had the lowest accuracy in terms of NMAE. 

Figure 4.17 shows that the SVR prediction line, as in the previous part, is above the actual 

values lines and the KNN line does not properly repeat the actual values line. RFR and LSTM 

get their results because they are located near the averages and have more crossing points 

with the actual values line. 

Table 4.9 Global earthquakes M≥5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3533 0.3577 0.3457 0.3456 

NRMSE by SD 1.0215 1.0342 0.9995 0.9993 

NRMSE by mean 0.7823 0.792 0.7654 0.7653 

Mean absolute error 

MAE 0.3 0.2971 0.289 0.2916 

NMAE by mean 0.6644 0.6579 0.64 0.6457 

 

 

The results for the four-day delay part, from Table 4.9 and Figure 4.18, are the same as for a 

two-day delay part. LSTM and RFR had the highest accuracy, whereas SVR and KNN had 

the lowest accuracy. Figure 4.19 shows that SVR prediction lines are above the actual values 

line and KNN prediction lines do not repeat the actual values line property. Additionally, both 

SVR and KNN have some points where they cross the actual line. LSTM and RFR are both 

close to the mean of the actual values. 
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Figure 4.18 Errors: Global earthquakes M≥5.5, Four Days Delay 

 

Figure 4.19 Global earthquakes M≥5.5: Compare actual and predicted values, Four Days 

Delay 

For the five-day delay, part RFR had the highest accuracy in terms of NRMSE, while LSTM 

had the highest accuracy in terms of NMAE (Table 4.10 and Figure 4.20). Both values are 

close to each other. The situation with the lowest accuracy results is the same as it was before 

the four-day delay.SVR and KNN are located in the same position as they were in the four-

day delay part of Figure 4.21. The LSTM prediction line is located above the RFR prediction 

line. 

Table 4.10 Global earthquakes M≥5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3496 0.3532 0.34 0.3402 

NRMSE by SD 1.0299 1.0404 1.0016 1.0021 

NRMSE by mean 0.7813 0.7893 0.7598 0.7602 

Mean absolute error 

MAE 0.2952 0.2922 0.2816 0.2787 

NMAE by mean 0.6598 0.6529 0.6293 0.6227 



87 
 

 

 

Figure 4.20 Errors: Global earthquakes M≥5.5, Five Days Delay 

 

Figure 4.21 Global earthquakes: compare actual and predicted values, Five Days Delay 

Table 4.11 and Figure 4.22 show that the results for the six-day delay part are identical to 

those for the five-day delays. The highest accuracy had LSTM and RFR, while the lowest 

accuracy had SVR and KNN. In addition, the prediction lines in Figure 4.23 have almost the 

same location as in the five-day delay part. 

Table 4.11 Global earthquakes M≥5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3552 0.3588 0.3421 0.3429 

NRMSE by SD 1.0384 1.0489 1.0003 1.0025 

NRMSE by mean 0.8021 0.8103 0.7727 0.7744 

Mean absolute error 

MAE 0.2998 0.2962 0.2826 0.2777 

NMAE by mean 0.6772 0.6689 0.6383 0.6273 
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Figure 4.22 Errors: Global earthquakes M≥5.5, Six Days Delay 

 

Figure 4.23 Global earthquakes M≥5.5: Compare actual and predicted values, Six Days Delay 

Table 4.12 and Figure 4.24 show that for the seven-day delay part, LSTM has the highest 

accuracy in both metrics, followed by RFR. However, the errors are close to each other. The 

positions of SVR and KNN are the same as in the six-day delay part. Figure 4.25 

demonstrates, that the positions, locations, and behavioursof all prediction lines are the same 

as in the six-day delay part. 

Table 4.12 Global earthquakes M≥5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3541 0.3616 0.3417 0.3415 

NRMSE by SD 1.0375 1.0594 1.0011 1.0005 

NRMSE by mean 0.7853 0.8019 0.7578 0.7574 

Mean absolute error 

MAE 0.2996 0.2986 0.2832 0.2811 

NMAE by mean 0.6645 0.6621 0.6281 0.6234 
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Figure 4.24 Errors: Global earthquakes M≥5.5, Seven Days Delay 

 

Figure 4.25 Global earthquakes M≥5.5: Compare actual and predicted values, Seven Days 

Delay 

The above error results are quite similar. To find out if there is a difference or if it is a random 

fluctuation, the ANOVA test was used. The ANOVA test had been chosen because ANOVA 

is a statistical technique used to determine whether there are significant differences between 

the means of two or more groups, as in the current study. The null hypothesis for ANOVA is 

that there is no significant difference between the means of the groups. The alternative 

hypothesis is that there is a significant difference between the means of the groups. Before 

conducting the ANOVA test, a check for normality using a Shapiro-Wilk test was done. The 

null hypothesis for the Shapiro-Wilk test is that the data had a normal distribution 

(Spiegelhalter, 2019; Agresti, Franklin and Klingenberg, 2018; Mohd Razali and Yap, 2011). 

To test if there is a difference between the error results, the RMSE normalised by standard 

deviation and MAE normalised by mean datasets were used. The level of significance was set 

at 0.05, which is a commonly used level (Spiegelhalter, 2019; Agresti, Franklin and 

Klingenberg, 2018). For the calculation of the results of ANOVA and Shapiro-Wilk tests, the 

statistical Python library was used (Statistical functions (Scipy. Stats) — SciPy v1.7.1 Manual, 
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2021). The results of the ANOVA and Shapiro-Wilk test (Appendix C) showed that there was 

a difference in the error results for both metrics of solar activity and global earthquake in both 

parts. 

 

 

Figure 4.26 Global earthquakes M≥5.5, summarising results 

 

Figure 4.26 shows the visualisation of the results. These graphs clearly show that LSTM and 

RFR have the highest accuracy. LSTM and RFR equally shared the first and second places 

in both metrics. Even though it was noted that the error numerical values are not very far from 

each other, comparing graphs (Figure 4.15 and similar graphs) show the prediction lines have 

different locations compared to each other and the actual values line. It was found that, in 

terms of normalising error values, the three-day delay part had the highest accuracy in both 

metrics. 

As in the previous part of the experiment with earthquakes M<5.5, the earthquakes have few 

peaks with significant values. That is why, RMSE values are also preferable in this case. 

Additionally, it was observed that while SVR and RVR switched places, LSTM and KNN 

remained generally in the same positions as in the earlier section of the experiment. What is 

more, NRMSE and NMAE values in this section are higher than they were in the previous 

section, and the NRMSE by standard deviation, in some cases, had values greater than "1". 
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5 Chapter Five Influence of Solar activity on Shallow zone 

earthquakes, Intermediate zone earthquakes, and Deep zone 

earthquakes. 

In the previous Chapter 4 the findings of a possible link between solar activity and global 

earthquakes were presented. However, in their study, Novikov et al. (2020) conducted an 

experiment that revealed that earthquakes may be influenced by the electric current generated 

by solar activity. The depth of the electric current's influence is determined by the Earth's crust. 

As a result, in the second segment of the study, the dependent variables, earthquakes, were 

divided by their depth, which was then divided by their magnitude. So, in the second segment 

of the study, there are three datasets: solar activity and earthquakes from the shallow zone 

(Chapter 2.2.1), intermediate zone solar activity and earthquakes, and deep zone solar activity 

and earthquakes. 

The findings were divided into two categories, just as in Chapter 4. The first section shows 

how solar activity is linked to earthquakes with a Richter magnitude less than 5.5. The second 

section discusses solar activity and large earthquakes with a Richter magnitude of 5.5 or 

higher. The results are also presented in tables that include the RMSE and MSE as well as 

their normalised values (as in Chapter 4). 

5.1 Solar activity and Shallow zone earthquakes with a Richter magnitude 

less than 5.5 

The results of each section of the experiment with shallow zone earthquakes are presented in 

Table 5.1 through Table 5.6 The graphical interpretation of the above tables and the 

differences between actual and predicted earthquake values are presented in Figure 5.1 

through Figure 5.12. 

Table 5.1 Shallow zone earthquakes M<5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.279 0.2746 0.2769 0.2742 

NRMSE by SD 0.97 0.955 0.963 0.9534 

NRMSE by mean 0.5589 0.5502 0.5548 0.5493 

Mean absolute error 

MAE 0.2358 0.2283 0.2362 0.2321 

NMAE by mean 0.4723 0.4573 0.4732 0.4651 
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Figure 5.1 Errors: Shallow zone earthquakes M<5.5, Two Days Delay 

 

Table 5.1 and Figure 5.1 show that the two-day delay outcomes are completely in the same 

range as in the experiment with the two-day delay of the previous dataset, solar activity, and 

global earthquake M<5.5 (Chapter 4.1). For the NRMSE metric, LSTM had the highest 

accuracy, and KNN had the lowest accuracy. In terms of NMAE, SVR had the highest 

accuracy, and RFR had the lowest accuracy. LSTM and SVR are the first two spots in both 

metrics, whereas RFR and KNN are the last two. Figure 5.2 shows that the actual values line 

has almost the same slope as in the previous dataset, Chapter 4.1. Moreover, the prediction 

lines of all algorithms also repeat their position and behaviour. 

 

 

Figure 5.2 Shallow zone earthquakes M<5.5: Compare actual and predicted values, Two Days 

Delay 
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In the three-day delay part, the result is the same as in the two-day delay part. LSTM and SVR 

come in first and second, respectively, with KNN and RFR coming in third and fourth (Table 

5.2 and Figure 5.3). The prediction lines of the algorithms, as shown in  Figure 5.4, also repeat 

the location as in the two-day delay part. 

 

Table 5.2 Shallow zone earthquakes M<5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2801 0.2761 0.2777 0.2735 

NRMSE by SD 0.9724 0.9588 0.9643 0.9495 

NRMSE by mean 0.5562 0.5484 0.5516 0.5431 

Mean absolute error 

MAE 0.2371 0.2304 0.2377 0.2319 

NMAE by mean 0.4708 0.4575 0.472 0.4606 

 

 

Figure 5.3 Errors: Shallow zone earthquakes M<5.5, Three Days Delay 

 

Figure 5.4 Shallow zone earthquakes M<5.5: Compare actual and predicted values, Three 

Days Delay 
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Table 5.3 and Figure 5.5 show that, as in the two previous parts, LSTM and SVR had the 

highest accuracy, while KNN and RFR had the lowest accuracy. The location of the algorithms' 

prediction lines in Figure 5.6 further supports this. 

Table 5.3 Shallow zone earthquakes M<5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2818 0.2795 0.2806 0.2759 

NRMSE by SD 0.9736 0.9658 0.9697 0.9533 

NRMSE by mean 0.5592 0.5547 0.557 0.5476 

Mean absolute error 

MAE 0.2381 0.2337 0.2401 0.2347 

NMAE by mean 0.4725 0.4638 0.4765 0.4659 

 

 

Figure 5.5 Errors: Shallow zone earthquakes M<5.5, Four Days Delay 

 

Figure 5.6 Shallow zone earthquakes M<5.5: compare actual and predicted values, Four Days 

Delay 
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Table 5.4 and Figure 5.7 demonstrate that, for the five-day delay part, in both metrics, LST 

showed the highest accuracy and KNN showed the lowest accuracy. As in previous sections, 

LSTM and SVR had the first two places, and RFR and KNN had the last two places. The 

prediction lines of the algorithms, Figure 5.8, have the same location as in the previous parts. 

Table 5.4 Shallow zone earthquakes M<5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2812 0.2773 0.2766 0.2755 

NRMSE by SD 0.9834 0.9695 0.967 0.9635 

NRMSE by mean 0.56 0.552 0.5506 0.5486 

Mean absolute error 

MAE 0.2384 0.2322 0.2356 0.231 

NMAE by mean 0.4746 0.4624 0.4692 0.4599 

 

 

Figure 5.7 Errors: Shallow zone earthquakes M<5.5, Five Days Delay 

 

Figure 5.8 Shallow zone earthquakes M<5.5: compare actual and predicted values, Five Days 

Delay 
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In the six-day delay part, the outcomes showed the same result as in the first three parts for 

both metrics (Table 5.5 and Figure 5.9). In general, LSTM and SVR, as well as KNN and RFR, 

held the same positions in the preceding portions. However, Figure 5.10 demonstrates that 

the LSTM prediction line is located above the traditional ML algorithms' prediction lines. 

Table 5.5 Shallow zone earthquakes M<5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2763 0.2731 0.2743 0.2713 

NRMSE by SD 0.9748 0.9637 0.9678 0.9572 

NRMSE by mean 0.5509 0.5446 0.5469 0.541 

Mean absolute error 

MAE 0.2333 0.2278 0.2337 0.2296 

NMAE by mean 0.4652 0.4542 0.4661 0.4579 

 

 

Figure 5.9 Errors: Shallow zone earthquakes M<5.5, Six Days Delay 

 

Figure 5.10 Shallow zone earthquakes M<5.5: Compare actual and predicted values, Six Days 

Delay 
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Table 5.6 and Figure 5.11 show that the algorithms’ positions are almost the same as in the 

previous part, LSTM and SVR have the first positions in NRMSE and NMAE, respectively, 

while KNN has the last position in both metrics. Compared to other parts of the experiment, 

the LSTM prediction line is located below the traditional ML algorithms’ prediction lines (Figure 

5.12). 

 

Table 5.6 Shallow zone earthquakes M<5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2798 0.275 0.2752 0.2732 

NRMSE by SD 0.9844 0.9676 0.9683 0.961 

NRMSE by mean 0.5597 0.5501 0.5505 0.5464 

Mean absolute error 

MAE 0.2353 0.2294 0.2342 0.2295 

NMAE by mean 0.4707 0.4587 0.4685 0.459 

 

 

Figure 5.11 Errors: Shallow zone earthquakes M<5.5, Seven Days Delay 

 

Figure 5.12 Shallow zone earthquakes M<5.5: Compare actual and predicted values, Seven 

Days Delay 
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The summary and visualisation of the results are presented in Figure 5.13. The graphs clearly 

show that LSTM and SVR have the highest performances. Also, it was noted, the highest and 

lowest accuracy of the algorithms are the same in all areas of the experiment. In both 

measures, LSTM and SVR provided the highest accuracy, while KNN and RFR had the lowest 

accuracy. As well as with the previous segments of the experiment, the earthquakes have 

peaks. Because of this, the values in the earthquake data that are further from the mean are 

important. As a result, as in the previous case, RMSE values are preferable in this case.  

 

 

Figure 5.13 Shallow zone earthquakes M<5.5, summarising results 

It was discovered that the three-day delay and six-day delay parts have the highest accuracy 

in terms of NRMSE, while the six-day delay part has the highest accuracy in terms of NMAE 

when it comes to normalising error values. It was also noted that the range of the results in 

the dataset for shallow earthquakes M<5.5 is completely the same as for global earthquakes 

M<5.5. 
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5.2 Solar activity and Shallow zone earthquakes with a Richter magnitude 

equal to or greater than 5.5 

Table 5.7 through Table 5.12 show the outcomes of each component of the experiment. The 

graphical interpretation of the above tables and the disparities between actual and predicted 

values are shown in Figure 5.14 through Figure 5.25. 

Table 5.7 Shallow zone earthquakes M≥5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3727 0.3688 0.3638 0.3637 

NRMSE by SD 1.0233 1.0128 0.9991 0.9988 

NRMSE by mean 0.8954 0.8862 0.8743 0.874 

Mean absolute error 

MAE 0.3349 0.3267 0.3357 0.3356 

NMAE by mean 0.8047 0.7851 0.8067 0.8064 

 

 

Figure 5.14 Errors: Shallow zone earthquakes M≥5.5, Two Days Delay 

 

Figure 5.15 Shallow zone earthquakes M≥5.5: Compare actual and predicted values, Two 

Days Delay 
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Table 5.7 and Figure 5.14 show that, in terms of NRMSE, RFR, and LSTM, they had the 

highest accuracy, respectively. KNN had the lowest accuracy. However, in terms of NMAE, 

there is an opposite result: SVR and KNN had the highest accuracy, while LSTM and RFR 

had the lowest accuracy. As can be seen in Figure 5.15, the LSTM and RFR prediction lines 

are very close to each other and to the averages of the actual values. But the SVR prediction 

line is close to the upper limit of actual values. The KNN prediction line is also located near 

the average actual values, but it does not repeat the actual values line properly. 

Table 5.8 Shallow zone earthquakes M≥5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3765 0.372 0.3649 0.365 

NRMSE by SD 1.0305 1.0182 0.9986 0.999 

NRMSE by mean 0.9043 0.8936 0.8764 0.8768 

Mean absolute error 

MAE 0.3391 0.3293 0.3368 0.3371 

NMAE by mean 0.8144 0.7909 0.8089 0.8089 

 

The three-day delay is displayed in Table 5.8 and Figure 5.16. RFR and LSTM had the highest 

accuracy in terms of NRMSE, while KNN had the lowest accuracy. SVR and KNN had the 

highest accuracy in terms of NMAE. All of the algorithms' prediction lines are located almost 

exactly where they were in the two-delay part, Figure 5.17. Additionally, the RFR and LSTM 

values of NRMSE by standard deviation are extremely close to each other and to "1". The 

values of NRMSE by standard deviation for SVR and KNN are greater than "1". Similar 

circumstances exist for the two-day delay part. 

 

 

Figure 5.16 Errors: Shallow zone earthquakes M≥5.5, Three Days Delay 
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Figure 5.17 Shallow zone earthquakes M≥5.5: compare actual and predicted values, Three 

Days Delay 

 

According to Table 5.9 and Figure 5.18, the four-day delay had the same results as the three-

day delay in terms of NRMSE. The highest levels of accuracy were held by RFR and LSTM, 

with almost identical error values, followed by SVR and KNN. SVR had the highest accuracy 

in terms of NMAE, and LSTM had the lowest accuracy. It should be noted that the NRMSE by 

standard deviation values for SVR and KNN are greater than "1". Figure 5.19 shows that the 

prediction lines for traditional ML have almost the same location compared with the three-day 

delay part. The LSTM prediction line is located below its three-day delay position. 

 

Table 5.9 Shallow zone earthquakes M≥5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.374 0.371 0.3646 0.3647 

NRMSE by SD 1.0251 1.0169 0.9992 0.9996 

NRMSE by mean 0.8974 0.8902 0.8748 0.8751 

Mean absolute error 

MAE 0.3376 0.3289 0.3363 0.338 

NMAE by mean 0.81 0.7893 0.8069 0.811 
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Figure 5.18 Errors: Shallow zone earthquakes M≥5.5, Four Days Delay 

 

Figure 5.19 Shallow zone earthquakes M≥5.5: compare actual and predicted values, Four 

Days Delay 

RFR and LSTM had the highest accuracy with a five-day delay, while SVR and KNN had the 

lowest accuracy (Table 5.10 and Figure 5.20). SVR and LSTM had the highest accuracy in 

terms of NMAE, while KNN and RFR had the lowest accuracy. Figure 5.21 illustrates that the 

traditional ML algorithms' prediction lines remained in place while the LSTM prediction line 

moved. 

Table 5.10 Shallow zone earthquakes M≥5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3693 0.3667 0.3593 0.3612 

NRMSE by SD 1.0282 1.0208 1.0003 1.0057 

NRMSE by mean 0.8722 0.8659 0.8485 0.8531 

Mean absolute error 

MAE 0.3298 0.3195 0.3307 0.3259 

NMAE by mean 0.7788 0.7545 0.781 0.7696 

 



103 
 

 

Figure 5.20 Errors: Shallow zone earthquakes M≥5.5, Five Days Delay 

 

Figure 5.21 Shallow zone earthquakes M≥5.5: compare actual and predicted values, Five 

Days Delay 

 

Table 5.11 together with Figure 5.22 and Figure 5.23 show that in both metrics, the six-day 

delay had the same results as the three-day delay part. 

Table 5.11 Shallow zone earthquakes M≥5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3748 0.3714 0.3633 0.3638 

NRMSE by SD 1.0321 1.0227 1.0004 1.0018 

NRMSE by mean 0.9064 0.8981 0.8786 0.8798 

Mean absolute error 

MAE 0.3364 0.3275 0.3351 0.3333 

NMAE by mean 0.8135 0.7921 0.8104 0.806 
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Figure 5.22 Shallow zone earthquakes M≥5.5, Six Days Delay 

 

Figure 5.23 Shallow zone earthquakes M≥5.5: compare actual and predicted values, Six Days 

Delay 

 

Table 5.12 and Figure 5.24 and Figure 5.25 demonstrate that, for both metrics, the seven-day 

delay produced the same outcomes as the three- and six-day delay parts. 

Table 5.12 Shallow zone earthquakes M≥5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3787 0.3731 0.3653 0.366 

NRMSE by SD 1.0372 1.022 1.0006 1.0024 

NRMSE by mean 0.9042 0.891 0.8723 0.8738 

Mean absolute error 

MAE 0.3411 0.3308 0.3372 0.3327 

NMAE by mean 0.8144 0.7898 0.8051 0.7949 
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Figure 5.24 Errors: Shallow zone earthquakes M≥5.5, Seven Days Delay 

 

Figure 5.25 Shallow zone earthquakes M≥5.5: compare actual and predicted values, Seven 

Days Delay 

 

 

Figure 5.26 Shallow zone earthquakes M≥5.5, summarising results 

Figure 5.26 demonstrates that RFR and LSTM had the highest accuracy in terms of NRMSE. 

Whereas, in terms of NMAE, SVR had the highest accuracy, followed by LSTM. It was found 

that the three-day delay part had the highest accuracy in terms of NRMSE and the five-day 

delay part had the highest accuracy in terms of NMAE. Furthermore, both metrics values in 
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this dataset are greater than the metrics values in the dataset for shallow zone earthquakes 

with a Richter magnitude less than 5. Furthermore, it was noted that NRMSE values 

normalised by standard deviation were very close to "1" or even greater than "1". What is 

more, the earthquakes have peaks, just like in the earlier segments of the experiment. The 

values in the earthquake data that are further from the mean are significant. That is why RMSE 

values are preferred in this instance as well as the one before it. 
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5.3 Solar activity and Intermediate zone earthquakes with a Richter 

magnitude less than 5.5 

Table 5.13 through Table 5.18 summarise the results of each section of the intermediate zone 

earthquake experiment. Figure 5.27 through Figure 5.38 show the graphical interpretation of 

the above tables and the disparities between earthquakes' actual and projected values. 

 

Table 5.13 Intermediate zone earthquakes M<5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2778 0.2751 0.2778 0.2742 

NRMSE by SD 0.9674 0.9581 0.9674 0.9547 

NRMSE by mean 0.5491 0.5438 0.5491 0.542 

Mean absolute error 

MAE 0.2347 0.2306 0.2372 0.2325 

NMAE by mean 0.4639 0.4558 0.4688 0.4597 

 

Table 5.13 and Figure 5.27 demonstrate that the first place, in the two-day delay part, was 

LSTM, whereas RFR and KNN shared the last place. In terms of NMAE, the first place had 

SVR, the second had LSTM, and the last had RFR. Figure 5.28 shows that the prediction lines 

of the algorithms are located almost together, while the LSTM prediction line is located slightly 

separated from the others and, in some cases, follows the actual values lines better than the 

others. 

 

Figure 5.27 Errors: Intermediate zone earthquakes M<5.5, Two Days Delay 

 

Table 5.14 and Figure 5.29 illustrate the three-day delay part. In terms of NRMSE, the first 

place went to LSTM, and the last place went to KNN, with SVR and RFR in second and third 
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place, respectively. The first two places in terms of NMAE were SVR and LSTM, and the last 

two places were RFR and KNN, respectively. Figure 5.30 demonstrates that all algorithms' 

prediction lines, as well as those for the two-day delay, go together. However, in some cases, 

LSTM and KNN diverge from the other algorithms. 

 

Figure 5.28 Intermediate zone earthquakes M<5.5: compare actual and predicted values, Two 

Days Delay 

Table 5.14 Intermediate zone earthquakes M<5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2777 0.276 0.2764 0.2737 

NRMSE by SD 0.9715 0.9656 0.967 0.9574 

NRMSE by mean 0.5442 0.5409 0.5417 0.5363 

Mean absolute error 

MAE 0.2355 0.2314 0.2354 0.2317 

NMAE by mean 0.4615 0.4535 0.4614 0.4542 

 

 

Figure 5.29 Errors: Intermediate zone earthquakes M<5.5, Three Days Delay 
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Figure 5.30 Intermediate zone earthquakes M<5.5: compare actual and predicted values, 

Three Days Delay 

 

Table 5.15, as well as Figure 5.31 and Figure 5.32, demonstrate that the components of the 

four-day delay were identical to those of the three-day delay. 

Table 5.15 Intermediate zone earthquakes with Richter magnitude less than 5.5 (M < 5.5) Four 

Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2754 0.273 0.2733 0.272 

NRMSE by SD 0.974 0.9652 0.9663 0.9619 

NRMSE by mean 0.5442 0.5393 0.5399 0.5374 

Mean absolute error 

MAE 0.231 0.2266 0.2321 0.2297 

NMAE by mean 0.4563 0.4477 0.4586 0.4539 

 

 

Figure 5.31 Errors: Intermediate zone earthquakes M<5.5, Four Days Delay 
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Figure 5.32 Intermediate zone earthquakes M<5.5: compare actual and predicted values, Four 

Days Delay 

 

Table 5.16 and Figure 5.33 and Figure 5.34 demonstrate that the results for the five-day delay 

part were the same the those for the three- and four-day delay parts. 

Table 5.16 Intermediate zone earthquakes M<5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2789 0.276 0.2762 0.2723 

NRMSE by SD 0.9752 0.965 0.9658 0.9522 

NRMSE by mean 0.5516 0.5459 0.5464 0.5386 

Mean absolute error 

MAE 0.2361 0.2299 0.2347 0.2301 

NMAE by mean 0.467 0.4547 0.4642 0.4552 

 

 

Figure 5.33 Errors: Intermediate zone earthquakes M<5.5, Five Days Delay 
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Figure 5.34 Intermediate zone earthquakes M<5.5: compare actual and predicted values, Five 

Days Delay 

Table 5.17 and Figure 5.35 illustrate that in the six-day delay part, the results were slightly 

different. In terms of NRMSE, SVR and KNN took the first two positions, while LSTM and RFR 

took the last two positions. Figure 5.36 supports this and demonstrates that the LSTM 

prediction line is located below the other algorithm prediction lines and below its previous 

locations. 

Table 5.17 Intermediate zone earthquakes M<5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2695 0.2687 0.2715 0.27 

NRMSE by SD 0.9568 0.9538 0.9638 0.9585 

NRMSE by mean 0.5314 0.5297 0.5353 0.5323 

Mean absolute error 

MAE 0.2253 0.2224 0.23 0.2261 

NMAE by mean 0.4441 0.4384 0.4534 0.4458 

 

 

Figure 5.35 Errors: Intermediate zone earthquakes M<5.5, Six Days Delay 
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Figure 5.36 Intermediate zone earthquakes M<5.5: compare actual and predicted values, Six 

Days Delay 

SVR and LSTM, respectively, showed the highest accuracy in both metrics with the seven-

day delay, according to Table 5.18 and Figure 5.37, while RFR showed the lowest accuracy. 

Figure 5.38 shows that the LSTM prediction line is currently above the other prediction lines, 

in contrast to the almost constant convergence of the traditional ML algorithms' prediction 

lines. 

Table 5.18 Intermediate zone earthquakes M<5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2758 0.2732 0.2759 0.274 

NRMSE by SD 0.9661 0.9569 0.9666 0.96 

NRMSE by mean 0.5457 0.5406 0.5461 0.5423 

Mean absolute error 

MAE 0.2324 0.2288 0.2351 0.231 

NMAE by mean 0.46 0.4528 0.4653 0.4571 

 

 

Figure 5.37 Errors: Intermediate zone earthquakes M<5.5, Seven Days Delay 



113 
 

 

Figure 5.38 Intermediate zone earthquakes M<5.5: compare actual and predicted values, 

Seven Days Delay 

 

 

Figure 5.39 Intermediate zone earthquakes M<5.5, summarising results 

The results were visualised in Figure 5.39. In both metrics, it was discovered that LSTM and 

SVR had the highest accuracy. In RNMSE, LSTM was the first, while in NMAE, SVR was the 

first. In both metrics, RFR and KNN showed the lowest accuracy. In terms of NRMSE, it was 

discovered that the five-day delay part has the highest accuracy, while the six-day delay part 

has the highest accuracy in terms of NMAE. What is more, it was noted that intermediate 

depth data errors are higher than shallow depth data errors. Additionally, just like in the earlier 

parts of the experiment, the earthquakes have peaks. Significant values can be found in the 

earthquake data that deviate more from the mean. Because of this, RMSE values are 

preferred in both this situation and the one before it. 
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5.4 Solar activity and Intermediate zone earthquakes with a Richter 

magnitude equal to or greater than 5.5 

Table 5.19 through Table 5.24 summarise the results of each section of the intermediate zone 

earthquake with a Richter magnitude of 5.5 or greater. Figure 5.40 through Figure 5.51 

demonstrate the graphical interpretation of the above tables and the differences between 

actual and forecast earthquake magnitudes. 

Table 5.19 and Figure 5.40 demonstrate that in the two-day delay in terms of NRMSE, LSTM 

had the highest accuracy, while KNN had the lowest accuracy. In terms of NMAE, SVR had 

the highest accuracy, while KNN had the lowest accuracy. It was also found that the 

normalised errors in both metrics are quite large, which shows that the prediction is not 

accurate enough. The line graphs in Figure 5.41 also show that the results are far from ideal. 

While the LSTM, RFR, and KNN prediction lines are located near the averages of the actual 

values, the SVR prediction line is located at the lower range of the actual values line. 

 

Table 5.19 Intermediate zone earthquakes M≥5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.344 0.3323 0.3306 0.33 

NRMSE by SD 1.0423 1.0068 1.0016 0.9998 

NRMSE by mean 2.4741 2.3899 2.3775 2.3732 

Mean absolute error 

MAE 0.2433 0.2088 0.241 0.2352 

NMAE by mean 1.75 1.502 1.7332 1.6914 

 

 

Figure 5.40 Errors: Intermediate zone earthquakes M≥5.5, Two Days Delay 
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Figure 5.41 Intermediate zone earthquakes M≥5.5: compare actual and predicted values, Two 

Days Delay 

The three-day delay results, Table 5.20 and Figure 5.42, showed that, in terms of NRMSE, 

LSTM had the highest accuracy and KNN had the lowest accuracy. In terms of NMAE, SVR 

had the highest accuracy, and RFR had the lowest accuracy. The metric values were similarly 

high as in the prior part of the experiment. The prediction lines of all algorithms (Figure 5.43) 

repeat the location as it was in the two-day delay part. 

Table 5.20 Intermediate zone earthquakes M≥5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3399 0.3325 0.3306 0.3302 

NRMSE by SD 1.0293 1.0069 1.0011 1.0001 

NRMSE by mean 2.4378 2.3847 2.3708 2.3684 

Mean absolute error 

MAE 0.2391 0.209 0.241 0.2343 

NMAE by mean 1.7152 1.4991 1.7282 1.6802 

 

 

Figure 5.42 Errors: Intermediate zone earthquakes M≥5.5, Three Days Delay 
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Figure 5.43 : Intermediate zone earthquakes M≥5.5: compare actual and predicted values, 

Three Days Delay 

Table 5.21 and Figure 5.44 illustrate that, as with previous parts of the experiment, in the four-

day delay part, the metrics values were rather high. However, in terms of NRMSE, LSTM had 

the highest accuracy. In terms of NMAE, SVR had the highest accuracy. KNN had the lowest 

accuracy in both metrics. The line graphs in Figure 5.45 are repeated at the same location as 

in the previous two- and three-day delay parts. 

Table 5.21 Intermediate zone earthquakes M≥5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 2.4378 0.3469 0.3429 0.3425 

NRMSE by SD 1.0341 1.0114 0.9998 0.9987 

NRMSE by mean 2.3258 2.2748 2.2487 2.2464 

Mean absolute error 

MAE 0.2519 0.2192 0.2473 0.2496 

NMAE by mean 1.6521 1.4377 1.6217 1.6371 

 

 

Figure 5.44 Errors: Intermediate zone earthquakes M≥5.5, Four Days Delay 
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Figure 5.45 Intermediate zone earthquakes M≥5.5: compare actual and predicted values, Four 

Days Delay 

Table 5.22 and Figure 5.46 show that in the five-day delay part, in terms of NRMSE, the results 

repeat the position as in the previous parts. However, in terms of NMAE, LSTM has the lowest 

accuracy. Also, as in the previous parts, the error values are too high. The line graphs in Figure 

5.47 are repeated at the same location as in the previous parts. Also, it was noted that the 

prediction lines of all algorithms did not follow the actual values line. 

Table 5.22 Intermediate zone earthquakes M≥5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3386 0.3327 0.3303 0.3302 

NRMSE by SD 1.0244 1.0066 0.9995 0.9992 

NRMSE by mean 2.4317 2.3895 2.3726 2.3719 

Mean absolute error 

MAE 0.2353 0.2089 0.2405 0.2433 

NMAE by mean 1.6903 1.5004 1.7272 1.7478 

 

 

Figure 5.46 Errors: Intermediate zone earthquakes M≥5.5, Five Days Delay 
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Figure 5.47 Intermediate zone earthquakes M≥5.5: compare actual and predicted values, Five 

Days Delay 

 

Table 5.23, Figure 5.48, and Figure 5.49 demonstrate that in the six-day delay part, the results 

and locations of the prediction lines were the same as in the previous parts of the experiment: 

the two-day delay and four-day delay parts. The outcome is quite high, as it was in the previous 

parts. 

Table 5.23 Intermediate zone earthquakes M≥5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3419 0.3337 0.3319 0.3311 

NRMSE by SD 1.0316 1.007 1.0016 0.9992 

NRMSE by mean 2.4267 2.3688 2.3561 2.3505 

Mean absolute error 

MAE 0.2422 0.21 0.2418 0.2355 

NMAE by mean 1.7192 1.4909 1.7167 1.6714 

 

Figure 5.48 Errors: Intermediate zone earthquakes M≥5.5, Six Days Delay 
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Figure 5.49 Intermediate zone earthquakes M≥5.5: compare actual and predicted values, Six 

Days Delay 

 

Table 5.24, Figure 5.50, and Figure 5.51 show that the outcomes and locations of the 

prediction lines in the seven-day delay part were the same as in the five-day delay part of the 

experiment. Like in the earlier parts, the result is quite high. 

Table 5.24 Intermediate zone earthquakes M≥5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3483 0.3441 0.3418 0.3403 

NRMSE by SD 1.023 1.0108 1.004 0.9996 

NRMSE by mean 2.3101 2.2827 2.2671 2.2573 

Mean absolute error 

MAE 0.2474 0.2177 0.2477 0.2482 

NMAE by mean 1.6408 1.4442 1.643 1.6462 

 

 

Figure 5.50 Errors: Intermediate zone earthquakes M≥5.5, Seven Days Delay 
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Figure 5.51 Intermediate zone earthquakes M≥5.5: compare actual and predicted values, 

Seven Days Delay 

 

 

Figure 5.52 Intermediate zone earthquakes M≥5.5, summarising results 

 

The visualisation of the findings can be seen in Figure 5.52. Everything is clear in terms of 

RMSE; all techniques had the same positions in the every-day delay parts. In terms of NMAE, 

however, only SVR had the highest accuracy; with all other techniques, the accuracy was 

changing. However, the normalised error values show that the prediction is not perfect. Also, 

it was noted that the error values are greater than in the previous segments of the experiment 

with global and shallow earthquakes. It was discovered that the four-day delay part produced 

the highest accuracy in both metrics. What is more, the earthquake data contains significant 

values that deviate more from the mean. As a result, in both this scenario and the one before 

it, RMSE values are preferred. 
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5.5 Solar activity and Deep zone earthquakes with a Richter magnitudes less 

than 5.5 

The results of each part of the deep zone earthquake (M<5.5) experiment are summarised in 

Table 5.25 through Table 5.30. Figure 5.53 through Figure 5.64 represent the graphical 

interpretation of the above tables and the differences between actual and predicted 

earthquake values. 

Table 5.25 and Figure 5.53 demonstrate that in the two-day delay part, LSTM and RFR 

showed the highest accuracy in both metrics, while KNN had the lowest accuracy in both 

metrics. However, it was noted that the SVR and KNN values of NRMSE by standard deviation 

are greater than "1" and the LSTM and RFR values are very close to "1". Figure 5.54 shows 

that none of the algorithms' prediction lines perfectly match the line representing actual values. 

The SVR prediction line is located above the others. The LSTM and RFR prediction lines are 

located around the averages of the actual values. 

 

Table 5.25 Deep zone earthquakes M<5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3078 0.3049 0.3008 0.3 

NRMSE by SD 1.0167 1.0069 0.9934 0.9908 

NRMSE by mean 0.6417 0.6355 0.6269 0.6253 

Mean absolute error 

MAE 0.2611 0.2598 0.2548 0.2554 

NMAE by mean 0.5443 0.5416 0.5311 0.5323 

 

 

 

Figure 5.53 Errors: Deep zone earthquakes M<5.5, Two Days Delay 
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Figure 5.54 Deep zone earthquakes M<5.5: compare actual and predicted values, Two Days 

Delay 

Table 5.26 together with Figure 5.55 and Figure 5.56 illustrate that in the three-day delay part, 

the range of the results and the prediction lines are repeated from the two-day delay part. 

Furthermore, NRMSE by standard deviation values are very close to or greater than "1". 

 

Table 5.26 Deep zone earthquakes M<5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3145 0.3122 0.3081 0.3071 

NRMSE by SD 1.0159 1.0085 0.9953 0.9921 

NRMSE by mean 0.6442 0.6395 0.6312 0.6292 

Mean absolute error 

MAE 0.266 0.265 0.2602 0.2603 

NMAE by mean 0.5449 0.5428 0.5331 0.5333 

 

 

Figure 5.55 Errors: Deep zone earthquakes M<5.5, Three Days Delay 
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Figure 5.56 Deep zone earthquakes M<5.5: compare actual and predicted values, Three Days 

Delay 

Table 5.27 and Figure 5.57 how that in the four-day delay part, in both metrics, RFR and LSTM 

had the highest accuracy, respectively. The lowest accuracy got KNN in NRMSE and SVR in 

NMAE. Figure 5.58 demonstrates that the RFR, SVR, and KNN prediction lines are located 

approximately at the same location as they were in the previous parts, while the LSTM 

prediction line is located below the others. As well as with the previous parts, the SVR and 

KNN values of NRMSE by standard deviation are greater than "1" and the RFR and LSTM are 

very close to "1". 

Table 5.27 Deep zone earthquakes M<5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3095 0.3078 0.3017 0.3034 

NRMSE by SD 1.0169 1.0114 0.9913 0.9967 

NRMSE by mean 0.636 0.6325 0.62 0.6234 

Mean absolute error 

MAE 0.2611 0.2619 0.2559 0.2571 

NMAE by mean 0.5365 0.5381 0.5257 0.5284 

 

 

Figure 5.57 Errors: Deep zone earthquakes M< 5.5, Four Days Delay 
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Figure 5.58 Deep zone earthquakes M< 5.5: compare actual and predicted values, Four Days 

Delay 

Table 5.28 and Figure 5.59 show that in the five-day delay, RFR had the highest accuracy in 

both metrics, followed by LSTM, while KNN had the lowest accuracy in both metrics. Figure 

5.60 shows that the LSTM prediction line is located above the previous positions, while the 

others are located where they were in the previous parts. The NRMSE by standard deviation 

values are greater or very close to "1" as in the previous parts. 

Table 5.28 Deep zone earthquakes M<5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3082 0.3043 0.3009 0.3018 

NRMSE by SD 1.0158 1.0031 0.9916 0.9947 

NRMSE by mean 0.6386 0.6306 0.6234 0.6253 

Mean absolute error 

MAE 0.2609 0.2594 0.2557 0.2569 

NMAE by mean 0.5405 0.5376 0.5297 0.5322 

 

 

Figure 5.59 Errors: Deep zone earthquakes M<5.5, Five Days Delay 
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Figure 5.60 Deep zone earthquakes M<5.5: compare actual and predicted values, Five Days 

Delay 

Table 5.29 and Figure 5.61 demonstrate that in the six-day delay in both metrics, LSTM had 

the highest accuracy, followed by RFR, while SVR and KNN had the lowest accuracy. As in 

the earlier parts, the NRMSE by standard deviation values are greater than or very close to 

"1". Figure 5.62 shows the previous locations of the KNN, SVR, and RFR prediction lines, 

while the LSTM prediction line is located below the others and its previous locations. 

Table 5.29 Deep zone earthquakes M<5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3103 0.3056 0.3042 0.3034 

NRMSE by SD 1.0149 0.9995 0.9951 0.9923 

NRMSE by mean 0.6303 0.6207 0.618 0.6163 

Mean absolute error 

MAE 0.2624 0.2595 0.258 0.2574 

NMAE by mean 0.5331 0.5271 0.5241 0.5228 

 

 

Figure 5.61 Errors: Deep zone earthquakes M<5.5, Six Days Delay 
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Figure 5.62 Deep zone earthquakes M<5.5: compare actual and predicted values, Six Days 

Delay 

 

Table 5.30, Figure 5.63, and Figure 5.64 illustrate that in the seven-day delay part, the range 

of the accuracy and the positions of the prediction lines are the same as in the four-day delay 

part. 

Table 5.30 Deep zone earthquakes M<5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.3048 0.2997 0.2972 0.2991 

NRMSE by SD 1.017 0.9999 0.9915 0.998 

NRMSE by mean 0.6314 0.6208 0.6156 0.6196 

Mean absolute error 

MAE 0.2564 0.2524 0.2499 0.2526 

NMAE by mean 0.531 0.5229 0.5177 0.5234 

 

 

Figure 5.63 Errors: Deep zone earthquakes M<5.5, Seven Days Delay 
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Figure 5.64 Deep zone earthquakes M<5.5: compare actual and predicted values, Seven 

Days Delay 

 

 

Figure 5.65 Deep zone earthquakes M<5.5, summarising results 

In this part of the experiment, RFR and LSTM had the highest accuracy in both metrics, as 

shown in Figure 5.65. It was also noted that the values of the two highest accuracy results in 

both metrics are really close to each other. It was also found that the errors were quite near 

"1" or even higher. Furthermore, while the location of the LSTM prediction line changed, the 

location of the traditional ML algorithms' prediction lines remained roughly the same. It was 

found that the two-day delay part had the highest accuracy in terms of NRMSE, while the 

seven-day delay part had the highest accuracy in terms of NMAE. The data from the 

earthquakes also includes notable values that deviate more from the mean. As a result, RMSE 

values are also preferred here. 
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5.6 Solar activity and Deep zone earthquakes with Richter magnitude equal to 

or greater than 5.5 

Table 5.31 through Table 5.36 summarise the results of each part of the deep zone earthquake 

(M≥5.5) experiment. The graphical interpretation of the above tables and the differences 

between actual and predicted earthquake values are displayed in Figure 5.66 through Figure 

5.77. 

Table 5.31 and Figure 5.66 show that in the two-day delay part, LSTM had the highest 

accuracy and KNN had the lowest accuracy in terms of NRMSE. In terms of NMAE, RFR and 

LSTM had the highest accuracy, while KNN and SVR had the lowest accuracy. Also, it was 

noted that the normalised error values in both metrics are too high, which causes the poor 

prediction. Figure 5.67 demonstrates that the prediction lines of the algorithms do not follow 

the actual line correctly. LSTM and RFR prediction lines are located around averages of the 

actual values. The KNN prediction line is also located near averages but with peaks, and the 

SVR prediction line is above the others. 

 

Table 5.31 Deep zone earthquakes M≥5.5, Two Days Delay 

Two Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2552 0.2505 0.2491 0.2486 

NRMSE by SD 1.0261 1.0075 1.0015 0.9998 

NRMSE by mean 3.6931 3.6259 3.6044 3.5985 

Mean absolute error 

MAE 0.1334 0.1545 0.1308 0.131 

NMAE by mean 1.9302 2.2366 1.8926 1.8958 

 

 

Figure 5.66 Errors: Deep zone earthquakes M≥5.5, Two Days Delay 
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Figure 5.67 Deep zone earthquakes M≥5.5: compare actual and predicted values, Two Days 

Delay 

 

Table 5.32 and Figure 5.68 illustrate that, in the three day-delay part, both metrics' error values 

are too high. In terms of NRMSE, SVR had the highest accuracy, and KNN had the lowest 

accuracy. In terms of NMAE, LSTM had the highest accuracy, while SVR had the lowest 

accuracy. Figure 5.69 shows that the prediction lines' locations in relation to one another were 

identical to those in the two-day part. However, the algorithms' prediction lines shifted with 

respect to the line representing actual values, which explains why the SVR achieved the 

highest accuracy in NRMSE. 

 

Table 5.32 Deep zone earthquakes M≥5.5, Three Days Delay 

Three Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2847 0.2769 0.2776 0.2781 

NRMSE by SD 1.0292 1.0008 1.0032 1.0056 

NRMSE by mean 3.261 3.171 3.1786 3.1851 

 

MAE 0.1438 0.1689 0.1427 0.1397 

NMAE by mean 1.647 1.9345 1.634 1.6002 
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Figure 5.68 Errors: Deep zone earthquakes M≥5.5, Three Days Delay 

 

Figure 5.69 Deep zone earthquakes M≥5.5: compare actual and predicted values, Three Days 

Delay 

 

Table 5.33, Figure 5.70, and Figure 5.71 demonstrate that the four-day delay part had the 

same range of results and prediction line location as the two-day delay part, with error values 

in both measures being too high. This also shows the poor accuracy of the prediction. 

Table 5.33 Deep zone earthquakes M≥5.5, Four Days Delay 

Four Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2658 0.2598 0.259 0.2588 

NRMSE by SD 1.0277 1.0045 1.0014 1.0006 

NRMSE by mean 3.5338 3.4542 3.4435 3.441 

Mean absolute error 

MAE 0.135 0.1593 0.1351 0.1327 

NMAE by mean 1.7946 2.1172 1.7956 1.7637 
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Figure 5.70 Errors: Deep zone earthquakes M≥5.5, Four Days Delay 

 

Figure 5.71 Deep zone earthquakes M≥5.5: compare actual and predicted values, Four Days 

Delay 

 

The high value of errors and the same location of the prediction lines in the five-day delay part 

are shown in Table 5.34, Figure 5.72, and Figure 5.73 

Table 5.34 Deep zone earthquakes M≥5.5, Five Days Delay 

Five Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2543 0.2481 0.2463 0.2461 

NRMSE by SD 1.0333 1.0082 1.001 1.0002 

NRMSE by mean 3.7678 3.6765 3.6501 3.6472 

Mean absolute error 

MAE 0.1282 0.1532 0.1295 0.1353 

NMAE by mean 1.8992 2.2708 1.9196 2.0045 
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Figure 5.72 Errors: Deep zone earthquakes M≥5.5, Five Days Delay 

 

Figure 5.73 Deep zone earthquakes M≥5.5: compare actual and predicted values, Five Days 

Delay 

 

Table 5.35, Figure 5.74, and Figure 5.75 show the range of results, and the prediction line 

locations in the six-day delay were similar to those in the five-day delay, with high normalised 

error values. 

Table 5.35 Deep zone earthquakes M≥5.5, Six Days Delay 

Six Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.2697 0.2621 0.2614 0.2611 

NRMSE by SD 1.0326 1.0036 1.0011 0.9997 

NRMSE by mean 3.509 3.4106 3.4021 3.3972 

Mean absolute error 

MAE 0.1358 0.1606 0.1361 0.1404 

NMAE by mean 1.7674 2.0904 1.7712 1.8272 
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Figure 5.74 Errors: Deep zone earthquakes M≥5.5, Six Days Delay 

 

Figure 5.75 Deep zone earthquakes M≥5.5: compare actual and predicted values, Six Days 

Delay 

 

The range of results and the locations of the prediction lines in the seven-day delay part are 

similar to those in the four-day delay part, with high normalised error values, as shown in Table 

5.36, Figure 5.76, and Figure 5.77. 

Table 5.36 Deep zone earthquakes M≥5.5, Seven Days Delay 

Seven Days Delay 

          Algorithm 
Error 

KNN SVR RFR LSTM 

Root mean squared error 

RMSE 0.256 0.2511 0.2493 0.2492 

NRMSE by SD 1.0268 1.0073 1.0002 0.9998 

NRMSE by mean 3.6794 3.6097 3.5842 3.5827 

Mean absolute error 

MAE 0.131 0.1548 0.1312 0.1265 

NMAE by mean 1.8835 2.2258 1.8853 1.819 
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Figure 5.76 Errors: Deep zone earthquakes M≥5.5, Seven Days Delay 

 

Figure 5.77 Deep zone earthquakes M≥5.5: compare actual and predicted values, Seven Days 

Delay 

Similar to the previous section, with solar activity and the global earthquake, the results are 

quite similar. The same as with the previous section (Chapter 4), the ANOVA test was done 

using the RMSE normalised by standard deviation and MAE normalised by mean datasets. 

The results of the ANOVA and Shapiro-Wilk tests in the Appendix C. In the solar activity and 

shallow zone earthquakes, there is a difference in the error results in both metrics in the parts 

with a Richter magnitude less than 5.5. However, in the part where solar activity and shallow 

zone earthquakes with a Richter magnitude equal to or greater than 5.5 RMSE have different 

results, there was not able to implement the ANOVA for the MAE as the MAE results do not 

have a normal distribution. In the solar activity and intermediate zone earthquakes with a 

Richter magnitude less than 5.5, both error results had a difference, but in the second part, 

with a Richter magnitude greater than 5.5, not every error result had a normal distribution, 

which is why it was not possible to implement ANOVA. The solar activity and deep zone 

earthquakes with a Richter magnitude less than 5.5 have a difference in both error results. 

However, in the other part, with a Richter magnitude greater than 5.5, the RMSE data do not 
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have a normal distribution, and there is a difference in the MAE results. So, it can be concluded 

that there is a difference in the errors results. 

 

Figure 5.78 Deep zone earthquakes M≥5.5, summarising results 

Figure 5.78 shows that the range variations between two metrics were rather large in this 

segment of the experiment. In terms of NRMSE, the first two positions were occupied by 

LSTM, whereas in terms of NMAE, the first three positions were occupied by LSTM, KNN, and 

RFR. However, the normalised error values are too high in and the accuracy of the prediction 

is poor. For NRMSE, it was discovered that the six-day delay part produced the highest 

accuracy, whereas for NMAE, the three-day delay part produced the highest accuracy. There 

are also notable values that are located far from the mean in the earthquake data. That is why 

RMSE values are preferred. 
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6 Chapter Six Evaluation, Conclusion, and Future work 

6.1 Evaluation 

The main research question of this study is: “How effective is machine learning in predicting 

of earthquakes based on solar activity?” To attempt this question, the following sub questions 

have been asked: "What characteristics and types of earthquakes and solar activity should be 

used?" 

This study looked at the relationship between solar activity and earthquakes. Earthquakes 

occur globally, which is why the total number of earthquakes that occurred globally was 

selected. Based on the literature (Novikov et al., 2017; Odintsov, Ivanov-Kholodnyi and 

Georgieva, 2007; Novikov et al., 2020) and experiments conducted in this study, it was 

discovered that earthquake magnitude and depth are the most important characteristics of 

earthquakes that can be used in earthquake prediction. That is why, two different experimental 

designs were used in this study. In the first experimental design, earthquakes were divided 

into two groups: global earthquakes with a Richter magnitude of less than 5.5 and global 

earthquakes with a Richter magnitude of 5.5 or higher (refer to Chapter 4). The second 

experimental design used the earthquake's zones (the shallow zone, intermediate zone, and 

deep zone) to sort global earthquakes by depth in addition to their Richter magnitude (refer to 

Chapter 5). 

With regards to solar activity, there are numerous solar activity events. Based on the literature 

and the results of previous seismological and space studies (Nishii, Qin and Kikuyama, 2020; 

Novikov et al., 2017; Odintsov, Ivanov-Kholodnyi and Georgieva, 2007; Novikov et al., 2020), 

the appropriate solar activity events, that can influence earthquakes were selected. Sunspot 

number, solar wind characteristics (solar wind speed, proton density, and proton temperature), 

and solar flares were chosen for solar activity, and used in both experimental designs (refer 

to Chapters 4 and 5). Thus, the first research sub question was answered. 

The second research sub question is “How to evaluate the efficacy and effectiveness of the 

machine learning algorithms used in the study to ensure the efficacy of the analysis?” The 

analysis of the characteristics of the collected data for this study's experiment revealed that 

the data points' relationships are nonlinear (refer to Chapter 3.7) and there is a possibility of 

having a division by zero in the analysis (Chapter 2.5.2, equation (2)). Thus, the R2 error and 

MAPE were discovered to be unsuitable data evaluation metrics. Following that, RMSE and 

MAE were used to assess the algorithm's efficacy and accuracy. To compare the results and 

determine their significance, the normalised values of the RMSE and MAE were used. 
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However, it was discovered during the experiment (refer to Chapter 4 and 5) that earthquakes 

have upper and lower peaks. In the earthquake data, the values that are far from the mean 

are important. Moreover, MAE is the average of absolute error values, whereas RMSE is the 

square root of the average of squared errors. That's why the RMSE gives large errors a lot of 

weight. Because RMSE gives more weight to observations that are farther from the mean, its 

values are more desirable in this situation. 

The third research sub question is “Which machine learning algorithms should be chosen to 

answer the research question, and which one would give the highest accuracy among those 

chosen?” Two requirements were considered to determine which of the ML algorithms should 

be used. The first was to choose ML algorithms with different approaches (Chapter 2.5.3). The 

second was the non-linear relationship between earthquakes and solar activity (Chapter  3.7). 

As a result, four algorithms were selected: K-nearest neighbour, support vector regression, 

random forest regression, and long short-term memory neural network. KNN is one of the 

simplest and fastest Euclidean distance algorithms (Alpaydin, 2014). The SVR algorithm is 

based on the kernel (Smola and Schölkopf, 2004). RFR is an ensemble learning algorithm 

(Alpaydin, 2014). LSTM is a neural network algorithm (Hochreiter and Schmidhuber, 1997). 

The results of the study are presented in Chapters 4 and 5. In the first segment of the 

experiment, the relationships between solar activity and the global earthquake were studied. 

In the first section of this experiment’s segment, the NRMSE analysis indicates that the LSTM 

model has a higher accuracy in predicting earthquakes than other models (Figure 4.13). In the 

second section of this experiment’s segment, the NRMSE analysis indicates that the LSTM 

and RFR models have a higher accuracy in predicting earthquakes than other models (Figure 

4.26). Summarizing the results of all the segments of the experiment with shallow zone 

earthquakes (Figure 5.13 and Figure 5.26), intermediate zone earthquakes (Figure 5.39 and 

Figure 5.52), and deep zone earthquakes (Figure 5.65 and Figure 5.78), the general result is 

visualised in Figure 6.1. 

According to the results summarised in Figure 6.1, LSTM outperforms other models in terms 

of EQ prediction accuracy, followed by RFR. However, the error values were close to each 

other. But the basic algorithm settings were used in the study, and to find out which algorithm 

will give the highest accuracy, more experiments with changing parameters need to be done. 

KNN is typically applied to related neighbours of data points. SVR considers each row to be a 

separate training sample and attempts to predict value based on the information gathered. 

RFR does not have an overfitting problem and uses an ensemble technique. LSTM attempts 

to analyse the entire dataset before predicting the next number. What is more, it should be 

mentioned that while traditional learning algorithms, during one segment of the experiment, 
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showed the constant location of the prediction lines in relation to the averages, minimums, 

and maximums of the actual values, in different time-delay parts of the experiment, the LSTM 

prediction lines changed their locations. 

 

 

Figure 6.1 NRMSE: Summing up all the result ranges 

 

The fourth research sub question is “Do solar activity events have the same impact on different 

types of earthquakes, and what other factors are important, such as time delay?” Based on 

the findings in all segments of the experiments (Chapters 4 and 5), solar activity and global 

earthquake (Table 4.1 through Table 4.12), shallow zone earthquakes (Table 5.1 through 

Table 5.12), intermediate zone earthquakes (Table 5.13 through Table 5.24), and deep zone 

earthquakes (Table 5.25 through Table 5.36), it can be discovered that both error values (used 

in the study) in the relationships between solar activity and earthquakes M<5 are less than 

both error values in the relationship between solar activity and earthquakes M≥5. 

Considering these results, it can be concluded that solar activity has a stronger effect on 

earthquakes M<5.5 than on earthquakes M≥5. This conclusion is backed up by a study by 

Nishii, Qin and Kikuyama (2020), who found that SA has the greatest impact on earthquakes 

with a Richter magnitude less than 4. However, this conclusion differs from that of Odintsov, 

Ivanov-Kholodnyi and Georgieva (2007), who concluded that solar activity has a greater effect 

on earthquakes M>5.5. This can be explained by the fact that in their study, Odintsov, Ivanov-

Kholodnyi and Georgieva (2007) used earthquake data with a minimum magnitude of five. 

They also focused primarily on high-speed solar wind. In contrast, Nishii, Qin, and Kikuyama 

(2020) had nine solar activity events and an earthquake M>3. 
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Based on the segments of the experiment where earthquakes were divided by their depth 

(Table 5.1 through Table 5.36), it was also discovered that as the depth of earthquakes 

increases, so do the error values. As a result, a suggestion can be made that solar activity 

has the greatest impact on earthquakes in the shallow zone. Moreover, in cases with greater 

depth and higher magnitude, RMSE and MAE values, normalised by mean, are bigger than 

"1". This leads to the assumption that solar activity may not have an influence on earthquakes 

with great depth and high magnitude. The study by Novikov et al. (2020) corroborated the 

findings of the study. Novikov et al. (2020) carried out an experiment that revealed that the 

electric current generated by solar activity can influence earthquakes. The higher the electrical 

conductivity, the higher the current density in the lower Earth crust levels, according to Novikov 

et al. (2020). 

During the experiment, it was noted, that in the segments of the experiment with global 

earthquakes and shallow zone earthquakes, the lowest NRMSE values were in the three-day 

delay part. The other parts of the experiment with intermediate zone and deep zone 

earthquakes showed the lowest RMSE values in the different-day delay parts of the 

experiment. However, it should be noted that segments of the experiment had the highest 

error values (Table 5.13 through Table 5.36). This finding is supported by Sytinskii, (1973) 

who stated that earthquakes occur mainly 2-3 days after solar activity passes the central solar 

meridian. Also, Odintsov et al. (2006) and Odintsov, Ivanov-Kholodnyi and Georgieva (2007) 

found that solar wind with a high velocity had an influence on earthquakes.  
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6.2 Conclusion 

The data were collected between 1996 and 2020, throughout the 23rd and 24th solar cycles. 

There were over 8,000 time-series data collections in the data. An 80/20 proportion for testing 

and training sets was employed in the study. Four ML algorithms were used in the study: KNN, 

SVR, RFR, and LSTM. 

During the implementation of the machine learning models, several issues were encountered. 

There are two types of data in the study: earthquake data and solar activity data. The 

earthquake data were of rather high quality, while the solar activity data contained errors, 

missing values, and negative values. Also, both earthquake and solar activity data had a lot 

of outliers. This involved tasks such as data cleaning, normalization, and dimensionality 

reduction. There are many different types of machine learning models, each with its own 

strengths and weaknesses. Choosing the right model for a particular problem can be 

challenging and may require experimentation and domain expertise. Furthermore, machine 

learning models have hyperparameters that need to be tuned to achieve optimal performance 

to avoid underfitting or overfitting. To avoid these problems, previous study results were taken 

into account. 

As can be seen from Figure 6.1, the LSTM model showed the highest accuracy in prediction 

compared with the other algorithms. Though there isn't a massive difference between the 

accuracy values of each algorithm. However, the accuracy of the prediction is far from being 

perfect. Moreover, the lowest error values, normalised by mean, are around 0.5, which shows 

that there are still a lot of issues to work out. For example, increase the size of a dataset by 

adding new variables or improving algorithms settings. 

The only changeable attribute in KNN is the "K"-value. That is why, to improve the accuracy 

of KNN, the most obvious solution is to change the value of "K". However, refer to Figure 3.43 

– Figure 3.50 where the increasing of the "K" value to greater than 17 does not significantly 

change the error values, so this will not improve the accuracy of the prediction. On the other 

hand, some studies (AL Kafaf, Kim and Lu, 2017; Wang, Xu and Zhao, 2021), to improve 

KNN, used a variation of KNN and proposed starting from a pre-processing stage, which 

classified the training dataset by categories. However, this method needs further study. 

The kernel function is the main key to SVR. There are four kernels that are widely used in 

SVR (refer to Chapter 2.5.3). Besides changing kernels, the corresponding kernels’ 

parameters also need to be set. Changing these kernels and comparing the error values can 

help find the most accurate solution. 
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In the case of RFR, changing the tree numbers is one of the first steps towards improving 

accuracy. Probst and Boulesteix, (2018) demonstrated the positive influence of increasing the 

number of trees on accuracy. Also, changing the parameters of RFR (such as the maximum 

depth of the tree) will change the accuracy of the prediction. 

As for the LSTM model, changing network topology settings, adding more neurons to hidden 

layers (making LSTM wider), or making the LSTM model deeper by adding hidden layers (and 

trying a combination of these methods) will help find high prediction accuracy in LSTM. 

Moreover, changing the number of nodes and epochs will influence accuracy. Also, increasing 

the volume of the training dataset will change the accuracy of prediction, which is not the 

appropriate option for traditional ML algorithms. However, increasing the above parameters 

will require more training. So, it can be suggested that the LSTM model has more potential for 

the prediction of earthquakes based on solar activity events because it has more parameters 

that can be changed to improve the final accuracy of the prediction. However, it should be 

mentioned that the LSTM model is more expensive compared to the traditional ML algorithms 

used in this study. 

6.3 Future Work 

The study reported here is only a basic step towards earthquake prediction, but it has 

suggestions for future research. There are still a lot of issues to work out. The finding showed 

that an artificial neural network has more potential than traditional machine learning 

algorithms, even with basic settings. Although LSTM is far from being successful in predicting 

earthquakes, the finding indicates that the level of the prediction might be increased further by 

improving the algorithm and taking into account additional variables (solar activity and 

earthquakes) than those included in the study. 

Here are a few ways to improve the performance of neural networks. Increasing the number 

of hidden layers, as a consequence, it appears that the more layers, the better the outcomes. 

However, it only requires a variable number of layers to be tested. Weights: first-time weights 

are set at random when training neural networks. Although weights updating occurs, neural 

networks can sometimes converge in local minima. Also, random weights do not function 

effectively when using a multi-layered design. It can be provided with the most appropriate 

starting weights. Also, the quantity of data used to train a neural network should be increased 

because the amount of data required varies greatly depending on the challenge. Further 

experiments need to be done using different neural network settings to compare the accuracy 

of the predictions. 
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However, neural networks are too time-consuming, energy-intensive, and require more 

expensive resources. That is why additional experiments should be done using traditional 

machine learning algorithms, changing their parameters, and adding additional algorithms. 

Additionally, ensemble learning must be used to determine whether the prediction's accuracy 

can be improved. 

One of the goals here was to see if solar activity events influenced earthquakes. Analysing 

their relationships, using machine learning techniques for two solar cycles, showed the 

possibility of this impact. However, since earthquakes are currently unpredictable, the various 

machine learning models should be used to uncover relationships between solar activity and 

earthquakes. 

Daily solar activity and earthquake data were examined for two solar cycles (24 years). The 

relationship between solar activity and earthquakes was positively demonstrated during this 

period. The next step is to test the methods over a longer period of time than two solar cycles 

(24 years). Furthermore, various solar activity events can be included in the research to 

improve the outcomes. The magnetic field, dynamic pressure, Earth's distance from the sun 

during the event, and its degree of tilt are only a few examples. Moreover, photos of solar 

activity events, such as solar wind or solar flares, might be used as an alternative. 

However, it should be noted that not all solar activity events have the same effect on 

earthquakes; Nishii, Qin, and Kikuyama (2020) also suggested this. Finding the most effective 

solar activity events and the least effective solar activity events should be necessary at this 

point. This can be accomplished by reducing solar activity events one at a time and conducting 

an experiment. According to the study's findings and those of Nishii, Qin, and Kikuyama 

(2020), the impact of solar activity on earthquakes varies depending on the Richter magnitude 

of the earthquakes. Earthquakes should be ranged by an order of magnitude more frequently 

in future studies than was done in the current study. 

According to Novikov et al. (2020), the electric current created by solar activity can impact 

earthquakes, which is also corroborated by the study's findings. In addition, the electrical 

conductivity of different Earth surfaces varies. As a result, one of the earthquake variables 

should be earthquake coordinates, ranged by tectonic plates. 
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Appendix A Codes 

 

Figure A - 1 Python code for the Earthquake events map, code for the legend was taken from 

the Jupiter Notebook website (Jupyter Notebook Viewer, 2021). 

 

Figure A - 2 Python code for the graph of the yearly average global annual deaths from natural 

disasters, by decade. 
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Figure A - 3 Generation SSN data 

 

 

Figure A - 4 Python code of solar cycles graph 
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Appendix B Testing Null Hypothesis, codes and graphs 

 

 

Figure B - 1 Final data, earthquake events, range by magnitude and depth 

 

 

Figure B - 2 Method for building Sunspot Number and Earthquakes graph 

 

 

Figure B - 3 Testing for liner/nonlinear relationship 
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Figure B - 4 Method for building Boxplot, Distribution plot, and Probability plot 

 

 

Figure B - 5 Compact dataset 
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Table B - 1 Testing for normality of the compact data 

Sunspot Number Earthquakes 
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Figure B - 6 Sunspot Number and Earthquakes, compact data, relationship 

 

 

Figure B - 7 Testing Speraman's rho correlation coefficient, compact data 

 

Figure B - 8 23rd Solar Cycle original dataset 
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Figure B - 9 SSN and Quantity of Earthquakes Over the " 23rd Solar Cycle 

 

 

 

Figure B - 10 23rd Solar Cycle – testing linear/nonlinear 
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Table B - 2 23rd Solar Cycle, Testing for normality of the original data 

Sunspot Number Earthquakes 
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Figure B - 11 23rd Solar Cycle, Sunspot Number and Earthquakes, original data, relationship 

 

 

Figure B - 12 23rd Solar Cycle: Testing Speraman's rho correlation coefficient, original data 

 

Figure B - 13 23rd Solar Cycle compact dataset 
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Figure B - 14 23rd Solar Cycle compact dataset – testing linear/nonlinera 

 

Table B - 3 23rd Solar Cycle, Testing for normality of the compact data 

Sunspot Number Earthquakes 
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Figure B - 15 23rd Solar Cycle, Sunspot Number and Earthquakes, compact data, relationship 

 

 

Figure B - 16 23rd Solar Cycle: Testing Speraman's rho correlation coefficient, compact data 
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Appendix C The results of the ANOVA and Shapiro-Wilk tests 

Solar activity and global earthquakes with Richter magnitude less than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.17788830399513245 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.7576268911361694 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.9346261620521545 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.5397152900695801 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

F-statistic: 17.141354107886347 

p-value: 9.46731261444152e-06 

There is a difference between the results.  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.11578981578350067 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.6425475478172302 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.716153621673584 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.7536829710006714 

NMAE by mean data have a normal distribution. 

 

 ANOVA test for NMAE by mean : 

F-statistic: 10.973481270630913 

p-value: 0.00017813849485294112 

There is a difference between the results.  

 

Solar activity and global earthquakes with Richter magnitude equal and greater than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.2568373382091522 
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NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.5153138041496277 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.6657636165618896 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.6015990972518921 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

F-statistic: 81.78487331971033 

p-value: 2.112690765350821e-11 

There is a difference between the results.  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.7982276082038879 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.98912113904953 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.6951642632484436 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.06597564369440079 

NMAE by mean data have a normal distribution. 

 

 ANOVA test for NMAE by mean : 

F-statistic: 21.75406563907471 

p-value: 1.6551583449969694e-06 

There is a difference between the results.  

 

Solar activity and Shallow zone earthquakes with Richter magnitude less than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.18843567371368408 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.6705337166786194 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.6331677436828613 

NRMSE by SD data have a normal distribution. 
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Shapiro-Wilk test for  LSTM : 

p-value =  0.7835633754730225 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

F-statistic: 16.645127261251286 

p-value: 1.1644355779257726e-05 

There is a difference between the results.  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.27412766218185425 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.7041400671005249 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.9487019181251526 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.2370591163635254 

NMAE by mean data have a normal distribution. 

 

 ANOVA test for NMAE by mean : 

F-statistic: 20.01063593802911 

p-value: 3.0894873790568735e-06 

There is a difference between the results.  

 

Solar activity and Shallow zone earthquakes with Richter magnitude equal and greater than 

5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.9246004819869995 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.5712231397628784 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.2598402202129364 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.29754874110221863 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

F-statistic: 105.32973983243016 



174 
 

p-value: 2.0099364096415475e-12 

There is a difference between the results.  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.006755472160875797 

NMAE by mean data do not have a normal distribution 

Shapiro-Wilk test for  SVR : 

p-value =  0.0013201335677877069 

NMAE by mean data do not have a normal distribution 

Shapiro-Wilk test for  RFR : 

p-value =  0.0021910914219915867 

NMAE by mean data do not have a normal distribution 

Shapiro-Wilk test for  LSTM : 

p-value =  0.02673717774450779 

NMAE by mean data do not have a normal distribution 

 

 ANOVA test for NMAE by mean : 

NMAE by mean Not all data have a normal distribution  

 

Solar activity and Intermediate zone earthquakes with Richter magnitude less than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.44137734174728394 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.1362820565700531 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.2664940655231476 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.9428536295890808 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

F-statistic: 7.045178085800416 

p-value: 0.00203888974565398 

There is a difference between the results.  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.3183441460132599 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.07979367673397064 
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NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.945838451385498 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.3366086184978485 

NMAE by mean data have a normal distribution. 

 

 ANOVA test for NMAE by mean : 

F-statistic: 3.811407188280396 

p-value: 0.026070334708980063 

There is a difference between the results.  

 

Solar activity and Intermediate zone earthquakes with Richter magnitude equal and greater 

than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.7315348386764526 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.01050021592527628 

NRMSE by SD data do not have a normal distribution 

Shapiro-Wilk test for  RFR : 

p-value =  0.45113614201545715 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.9072741270065308 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

NRMSE by SD Not all data have a normal distribution  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.69315505027771 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.02082839235663414 

NMAE by mean data do not have a normal distribution 

Shapiro-Wilk test for  RFR : 

p-value =  0.029222922399640083 

NMAE by mean data do not have a normal distribution 

Shapiro-Wilk test for  LSTM : 

p-value =  0.5133634805679321 

NMAE by mean data have a normal distribution. 
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 ANOVA test for NMAE by mean : 

NMAE by mean Not all data have a normal distribution  

 

Solar activity and Deep zone earthquakes with Richter magnitude less than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 

p-value =  0.38038596510887146 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.5624624490737915 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.09868592023849487 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.5761890411376953 

NRMSE by SD data have a normal distribution. 

 

 ANOVA test for NRMSE by SD : 

F-statistic: 79.56460379368163 

p-value: 2.7216374497043484e-11 

There is a difference between the results.  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.5104153752326965 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.2166089564561844 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.7081069350242615 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.13067221641540527 

NMAE by mean data have a normal distribution. 

 

 ANOVA test for NMAE by mean : 

F-statistic: 4.51210989205787 

p-value: 0.01422752499125534 

There is a difference between the results.  

 

Solar activity and Deep zone earthquakes with Richter magnitude equal and greater than 5.5 

Results for NRMSE by SD 

Shapiro-Wilk test for  KNN : 
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p-value =  0.3110499382019043 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.41629543900489807 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.3134954273700714 

NRMSE by SD data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.0007865511579439044 

NRMSE by SD data do not have a normal distribution 

 

 ANOVA test for NRMSE by SD : 

NRMSE by SD Not all data have a normal distribution  

 

Results for NMAE by mean 

Shapiro-Wilk test for  KNN : 

p-value =  0.5279027819633484 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  SVR : 

p-value =  0.39597877860069275 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  RFR : 

p-value =  0.33919471502304077 

NMAE by mean data have a normal distribution. 

Shapiro-Wilk test for  LSTM : 

p-value =  0.8993145227432251 

NMAE by mean data have a normal distribution. 

 

 ANOVA test for NMAE by mean : 

F-statistic: 11.378279252702814 

p-value: 0.00014281265688313277 

There is a difference between the results.  
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Appendix D The explanation of the machine learning process 

that has been implemented in the code in Chapter 3 

The implementation of machine learning in Chapter 3 is divided into several segments. The 

segments are import libraries, set the line style, load data, independent and dependant 

variables, normalisation, testing linear/nonlinear, machine learning, and save result. 

Import libraries. 

To implement the machine learning algorithms the necessary libraries were uploaded. The 

libraries provide an access to the functions and classes, which can be used to implement the 

machine learning algorithms and evaluate their performance: 

• Pandas (Pandas - python data analysis library, 2021) and Numpy (Numpy and Scipy 

documentation 2021) are commonly used for data manipulation and analysis. 

• Matplotlib (Matplotlib: Python plotting, 2021) and Seaborn (seaborn: statistical data 

visualization, 2021) for creating static, interactive, and visualizations. The libraries are 

useful for exploring data and understanding their patterns and relationships. 

• Scikit-learn (Supervised learning — scikit-learn 0.24.2 documentation, 2021) provides 

a wide range of tools and algorithms for tasks such as classification, regression, 

clustering, and dimensionality reduction. Also, the library provides tools for error 

calculation and data normalisation. 

• Math (Math — mathematical functions 2021) provides mathematical functions and 

constants, used for RMSE calculation. 

• Cycler (Composable cycles — cycler 0.11.0 documentation 2021) is creating custom 

colour palettes for data visualisations or plots. 

Set the line style. 

The implementation of the Cycle library for setting the line style and colours for better 

visualisation. 

Load Data. 

Load cleaned solar activity and earthquake data using the Pandas library. 

Independent and dependent variables. 

Two methods were created. The first method to get the independent/dependent variables. The 

second method to define if there are outliers in the data. 
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Normalisation. 

The method was created by using the Scikit-learn library to normalise the data using different 

normalisation scalers and return a dictionary with normalised data to compare the 

normalisation results. Also, the earthquake data were divided by their characteristics 

(magnitude and depth). For the solar activity data, using the Scikit-learn library, PCA had been 

applied. 

Testing linear/nonlinear. 

Two methods had been created to define if there was a linear or nonlinear relationship. The 

first method used the Scikit-learn library for applying linear regression and counting R2. The 

other method took different datasets and sent them to the first method for the calculation of 

R2, then printed the results. 

Machine learning. 

Finding the optimal K-value 

For the purpose of finding K-values, two methods were created. The method 

"calculation_knn_rmse" uses a set of training and testing datasets. The method creates an 

array of RMSEs that were calculated using the Scikit-learn library for a number of "K". For 

each "K"-value, an object (a model) was created. Then the model has been trained using 

independent and dependent training datasets. The next step is to use the model to make a 

prediction. Afterwards, the RMSE was calculated, and the RMSE value was added to the 

array. 

The method “rmse_graph” creates a set of training and testing datasets and receives the array 

of the RMSE values from the “calculation_knn_rmse” method. And creates graphs for each 

dataset. 

KNN & SVR & RFR 

Several methods were created to implement the machine learning algorithms. Also, for 

containing actual and predicting data, there were created dictionaries (global_eq_less_5, 

global_eq_more_5, etc) for each part of the experiment. 

For fitting the models of the traditional machine learning algorithms, the method 

"fit_traditional_model_for_save_frame" was created. The method fits the relevant model and 
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makes a prediction. Then it converts the results to the dataframe and saves them to the 

appropriate dictionary. The method uses the Scikit-learn library. 

Deep learning 

The method "fit_lstm_model_for_save_frame" was used to implement the LSTM model. The 

method uses the Keras library (Keras: the Python deep learning API 2021). Keras is a high-

level deep learning Python library that is used for building and training deep neural networks. 

The method prepares parameters for the LSTM model. Then it builds, compiles, fits the model, 

and makes a prediction. Also, it converts the results to the dataframe and saves them to the 

appropriate dictionary. 

For running the methods "fit_traditional_model_for_save_frame" and 

"fit_lstm_model_for_save_frame" the method "run_ml" was used. After running the "run_ml" 

method, actual and predicted data were saved in the dictionaries (global_eq_less_5, 

global_eq_more_5, etc). 

Error calculation & Build plots 

For the calculation of the models errors, the methods "calculate_errors" and 

"run_error_calcuation" were used. The methods use dictionaries, which contain actual and 

predicting data. The errors were calculated using the Math and Scikit-learn libraries. 

Save result 

To save the dictionaries that contain actual and predicting data (global_eq_less_5, 

global_eq_more_5, etc) appropriate paths and the method “save_eq_frame” were used. 


