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a b s t r a c t

The present study proposes an ensemble-based deep neural network (DNN) model for autonomous
detection of visual faults such as glass breakage, burn marks, snail trail, and discoloration, delamination
on various photovoltaic modules (PVM). The proposed technique utilizes an image dataset captured
by RGB (Red, Green, Blue) camera mounted on an unmanned aerial vehicle (UAV). In the first step,
the images are preprocessed by deriving spatial and frequency domain features, such as discrete
wavelet transform (DWT), texture, grey level co-occurrence matrix (GLCM), fast Fourier transform
(FFT), and grey level difference method (GLDM). The processed images are inserted as input in the
proposed ensemble-based deep neural network (DNN) model in order to detect any visual faults
on the photovoltaic modules (PVM). The performance of the proposed model is evaluated through
classification accuracy, receiver operating characteristic (ROC) curve, and confusion matrix. The results
demonstrate that the proposed ensemble-based deep neural network (DNN) model, along with the
random forest classifier, achieved a classification accuracy of 99.68% for detecting visual faults on the
PV modules. To verify the performance and robustness of the proposed model, we compare our model’s
results to those of various classification approaches described in the literature. The suggested approach
is compatible with the commercial unmanned aerial vehicle (UAV) embedded flight management
system for fault detection.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The global demand for electricity has expanded tremendously
s a result of technical breakthroughs, population explosions, and
cientific advancements. Currently, fossil fuels such as coal, oil,
nd natural gas account for 79.7 percent of the energy used
o produce electricity (D’Adamo et al., 2020). Extensive use of
ossil fuels has hastened the depletion of natural reserves of
oal, oil, and natural gas, resulting in their exhaustion within
few decades. Extensive use of fossil fuels has hastened the
epletion of natural reserves of coal, oil, and natural gas, resulting
n their exhaustion within a few decades. Furthermore, the usage
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nc-nd/4.0/).
of fossil fuels leads to greenhouse gas emissions that aid in
global warming and climatic changes (Perveen et al., 2020). As
a result of the rising energy demand and environmental crisis,
renewable energy sources are adopted as an alternative to fossil
fuels in electricity production. Studies reveal that 27.3% of the
total electricity production is constituted by renewable energy
sources, among which solar-based photovoltaic (PV) power pro-
duction contributes around 2.8%. Solar-based power generation
is the second leading contributor to renewable power genera-
tion (Venkatesh and Sugumaran, 2021). Solar energy generation
has drawn more capitalists and investors due to its widespread
and year-round availability. The total global photovoltaic module
(PVM) installations are projected to reach 440 gigawatts (GW) by
2022, according to several reports and publications (Tang et al.,
2020). Additionally, the drop-in PVM prices (99% within the last
three decades) has attracted several investors and capitalists to
adopt PVM power generation (Naveen Venkatesh and Sugumaran,

2022).
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Apart from all the highlights, PVM power generation con-
fronts the following challenges: (i) output power degradation,
(ii) different types of faults, (iii) reliability of modules, (iv) vary-
ing operational environment, (v) high installation cost, (vi) re-
quirement of large geographical regions (Pillai and Rajasekar
2018). PVM is placed outdoors under changing climatic condi-
tions causing fault occurrences like snail trail, glass breakage,
delamination, discoloration, and burn marks (Aghaei et al., 2022;
Kettle et al., 2022). These faults in PVM can hinder the life
span, reliability, and power output, raising severe concerns for
safe operation. Recent reports infer that faults account for 18.9
percent of yearly output power loss (Madeti and Singh, 2018).
Additionally, a study on degradation of various types of pho-
tovoltaic module states that the annual power degradation in
monocrystalline, polycrystalline and amorphous silicon modules
were estimated to be 1.23%, 1.43% and 1.67% per year respec-
tively. Furthermore, the estimated lifetime of the modules ranges
between 13–16 years (Aboagye et al., 2021). In this context, an
accurate and on-time fault diagnosis can help increase the power
output, useful lifespan, and reliability of PVM, thereby ensur-
ing safe operation (Moradi Sizkouhi et al., 2021). The primary
purpose of fault diagnosis is to discover and categorize defects
so that the appropriate preventative action may be taken for a
given scenario. Conventionally, a trained professional carried out
PVM fault diagnosis through visual inspection. However, such
inspections require more human resources, consume more time,
and are not feasible for large-scale installations. Nowadays, more
advanced non-destructive inspections on PVM like electrolumi-
nescence imaging, photoluminescence imaging, thermographic
assessments, and electrical measurements are performed to di-
agnose PVM faults (S and Sugumaran, 2020). String data analysis
was also utilized in assessing shading fault condition in PVM
(Zsiborács et al., 2021). Hong et al. classified photovoltaic fault
detection methods into two categories namely, (i) visual and
thermal methods — lock in thermography, visual inspection,
infrared thermography, electroluminescence imaging etc., and
(ii) electrical based methods — IV characteristics, power loss
analysis, artificial intelligence techniques etc (Hong and Pula,
2022).

Currently, unmanned aerial vehicles (UAVs) have been em-
ployed extensively to diagnose a non-destructive fault on PVM
(Sizkouhi et al., 2019). Advancements in UAV technologies have
spread their application over different fields like photography,
search & rescue, large-scale inspections, freight transport, surveil-
lance, and disaster relief. As discussed in the following papers,
the key takeaways of employing UAV technology are time con-
sumption reduction, human interference minimization, and its
non-destructive nature. A contactless and non-destructive in-
spection was performed on PVM using a UAV equipped with
thermal cameras (Grimaccia et al., 2018; Kirsten Vidal de Oliveira
et al., 2020; Vidal de Oliveira et al., 2019). Poor thermal image
resolution and higher UAV speed have confined the system from
detecting hotspots at high temperatures. Hot spots in a PVM
represent the presence of faults like micro-cracks, solder bond
failure, short circuits, corrosion, and partial shading. Detecting the
fault mentioned above can be challenging since thermal images
are composed of thermal radiation information represented in
pseudocolor images (Grimaccia et al., 2017). Given the drawbacks
mentioned above, thermal imaging cameras are being replaced
with high-resolution digital cameras to identify small faults with
high precision. Digital cameras installed on UAVs acquire true-
color images from PVM that aid in detecting visible faults like
snail trail, glass breakage, delamination, discoloration, and burn
marks. Several authors have adopted various image processing
methods such as correlated texture feature extraction (Li et al.,
2017), aerial triangulation (Tsanakas et al., 2017), image mo-
saicing (Leva et al., 2015), and edge detection (Tsanakas et al.,
14383
2015) to detect faults in PVM. However, the performance of the
above-mentioned techniques relies highly upon the resolution
of the images acquired using a UAV. Additionally, several other
factors like vehicle vibration, wind speed, haze, and reflection can
deteriorate the acquired UAV image resolution.

A convolutional neural network (CNN) is a common tech-
nique that delivers precise classification results while using low-
resolution images in various fault diagnosis applications (Sizkouhi
et al., 2022). Deep learning architectures are formulated by stack-
ing CNN layers together that can be utilized to extract, select and
classify features of an image in machine vision applications (Lu
et al., 2019). Involving deep learning techniques in fault diagnosis
has proved to outplay the classification performance displayed by
traditional methods. Several researchers have adopted CNN in lit-
erature for diagnosing PVM faults, which are discussed as follows.
A fault pattern recognition algorithm was designed using deep
learning to detect five PVM test conditions, namely, encapsulant
discoloration, glass breakage, snail trails, encapsulant delami-
nation, and dust shading. The authors utilized a CNN network
depicting the VGG16 network model in which a support vec-
tor machines classifier replaced the softmax layer to distinguish
between PVM faults (Li et al., 2018). Cascading autoencoders
(CASAE) were adopted to detect surface-level defects on a metal
surface through segmentation and localization of defect regions.
The defect regions were classified into classes like dust occur-
rence, damage spot, and glue mark using a compact CNN (Tao
et al., 2018). Wang et al. attempted to classify PVM condition
using features like perimeter, ratio of contour to outer rectangle,
contour area and aspect ratio extracted from thermal images.
U-net architecture was applied to segment the mask regions in
thermal images of photovoltaic modules to identify fault occur-
rences (Wang et al., 2022). Akram et al. used electroluminescence
images to locate flaws using CNN automatically. The authors used
a publically available dataset consisting of electroluminescence
images and attained a classification accuracy of 93.02% (Akram
et al., 2019). Li et al. carried out fault diagnosis of PVM available
in PV farms constructed on a large scale with a deep learning
approach. Features from PVM images were extracted and further
classified using a deep learning technique (Li et al., 2019). U – net
architecture was adopted by Wang et al. to monitor photovoltaic
panels using infrared images acquired from drones. Segmentation
and masking were performed on the panels to determine the
condition (Wang et al., 2022). Additionally, hotspots in a photo-
voltaic panel were detected using YOLOv5 network by Tianyi Sun
et al. The model produced a classification accuracy of 98.6% over
infrared images (Sun et al., 2022).

Numerous research has utilized various machine learning (ML)
techniques to classify PVM problems, as will be mentioned here.
Three different fault types were classified using the Naïve Bayes
algorithm from thermal images of PVM that achieved 94.1% clas-
sification accuracy (Niazi et al., 2019). Bouraiou et al. and Har-
rou et al. employed SVM to classify fault occurrences in a PVM
(Bouraiou et al., 2018; Harrou et al., 2019). String level faults in
a photovoltaic array were identified with a classification accu-
racy of 98.7% using the k-nearest neighbor (kNN) algorithm by
Madeti et al. (Madeti and Singh, 2018). In another investigation,
visual faults in PVM were discriminated accurately using kNN
classifiers (Naveen Venkatesh and Sugumaran, 2022). A com-
bined approach of CNN and random forest classification was
attempted by Ying et al. to classify cell-level faults in a PVM
(Ying et al., 2019). Electroluminescence images of PV cells were
fed as input to CNN, where image features were extracted and
supplied to a random forest classifier for further process. Simi-
larly, Naveen et al. adopted random forest algorithms to classify
faults in a PVM (Sridharan and Sugumaran, 2021). Additionally,

Chen et al. attempted an intelligent technique to diagnose array
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aults involving an ensemble learning random forest algorithm.
n adaptive neuro fuzzy interference system was used to detect
aults in photovoltaic system. Subtractive clustering and grid par-
ition strategies were used to train the fuzzy system (Abbas and
hang, 2021). It can be inferred that ML algorithms can produce
ccurate results while working with numerical data, consum-
ng less training time and computational efforts with versatile
pplications (Chen et al., 2018).
In recent times, CNN-based techniques have evolved to a great

xtent that they have been used in a wide range of applica-
ions. The significant advantage of using CNN models is that the
odel architecture can be constructed from scratch or adapted

rom public repositories (pre-trained network version). Studies
eveal that pre-trained networks outperformmodels created from
cratch due to the following reasons: (i) pre-trained models are
ccomplished with million images from different classes, (ii) the
odel weights are available in public repositories and accessi-
le, (iii) the model can be modified based on user requirement
transfer learning) and (iv) compatible with any application pro-
ucing accurate results. AlexNet (Krizhevsky et al., 2017) and
GG16 (Krishnaswamy Rangarajan and Purushothaman, 2020)
re the most widely used networks for image classification tasks
mong all the pre-trained networks available. Several literature
tudies representing the pre-trained networks application are
escribed as follows. Pierdicca et al. carried out an automatic PV
ell fault detection using thermal images. The defects in the PV
ells were identified and detected using a deep CNN replicating
GG16 architecture (Pierdicca et al., 2018). Pre-trained AlexNet
as implemented by Aziz et al. to identify faults in PV arrays.
Recently, CNN has displayed exceptional performance in ex-

racting features even on low-resolution images due to their
elf-learning ability and high compatibility (Aziz et al., 2020). The
erformance of deep learning models to produce accurate results
epends highly on the training method and the volume of the
ataset. Therefore, a massive volume of data is needed to train a
NN model in order to learn all the image features appropriately.
owever, acquiring vast data for a specific problem is challenging.
ata augmentation is considered the best solution to confront
his problem. Data augmentation is the process of artificially in-
reasing a limited dataset in order to obtain adequate information
or training purposes. Numerous literature has discussed using a
enerative adversarial network (GAN) to augment the acquired
ataset (Luo et al., 2019). However, such techniques comprise nu-
erous convolutional layers stacked together, thereby consuming
ore training time and hardware requirements.
In general, CNN has achieved great performances in fault di-

gnosis. However, CNN utilizes local features to perform classifi-
ation tasks. During dimensionality reduction, the pooling layers
an lose vital information and deplete the relationship between
he whole image and a part of the image. The fusion technique
s implemented to overcome the constraints of CNN feature ex-
raction. Because the strengths of individual features may be
ombined to create more accurate findings, this technique has
ttracted the attention of researchers. Haidong Shao et al. di-
gnosed faults in rotating machinery using an enhanced deep
eature fusion strategy (Shao et al., 2017). Similarly, Liang et al.
ttempted to diagnose roller-bearing faults with the aid of feature
usion using parallel CNN. The study fused time and frequency
omain features to enhance the feature information (Liang et al.,
021). Gear fault diagnosis was carried out by Pan et al. using an
xtreme learning machine and feature fusion optimization (Pan
t al., 2021). Individual features were traditionally extracted, and
ault diagnosis was carried out on PVM images. However, feature
usion strategies (on features retrieved from image data) have not
een explored, paving the way for more experimentation.
Ensemble-based techniques are now gaining popularity among

esearchers since the weaknesses of individual techniques are
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eliminated, and their strengths are integrated to give more pre-
cise results. Ensemble approaches have shown to be beneficial,
as demonstrated by the research reviewed below. Eskandari et al.
attempted an ensemble model combining kNN, SVM, and Naïve
Bayes to detect line faults in a PVM (Eskandari et al., 2020a).
Justin et al. attempted a stacking and bagging-based ensemble
approach to detect PV faults. Stacking-based ensemble produced
a classification accuracy of 94%, while bagging delivered 79.5%
accuracy (De Guia et al., 2020). A combined ensemble model of
SVM, kNN, and decision tree was employed by Dhibi et al. to
classify string-level PVM faults. Traditionally, ensemble learning
models were applied to numerical data retrieved from I–V char-
acteristics measured at PV plants or through various analytical
models (Dhibi et al., 2021). However, ensemble-based techniques
using features retrieved from image data have not been explored
thoroughly, paving the way for more experimentation. Table 1
represents a summary of the works carried out in diagnosing PVM
faults.

The following observations were made based on the literature
mentioned above.

(i) Most of the literature employs electroluminescence or ther-
mal images for detecting faults in PVM. A few studies
attempted to adopt true-color or RGB images.

(ii) Electroluminescence images were confined only to detect-
ing cell cracks, while thermographic assessments were lim-
ited to detecting hotspots. Also, only a limited number of
faults were identified and diagnosed in many studies.

(iii) There exists a vital challenge in acquiring image datasets
due to the non-availability and scarcity of datasets in public
depositories

(iv) Data augmentation was carried out using GAN, which con-
tains multiple convolutional layers resulting in increased
computational time and hardware requirements. Adopt-
ing data augmentation techniques without GAN can help
eliminate the challenges mentioned above.

(v) Features extracted from CNN have been utilized to perform
PVM fault diagnosis. However, feature fusion strategies
were less explored.

(vi) Ensemble-based techniques were applied to the dataset
retrieved from I-V characteristics measured at PV plants.
However, ensemble-based techniques using features re-
trieved from the image dataset have not been explored
thoroughly.

The challenges above imply a need to develop an intelligent
and effective fault diagnosis technique. Deep learning algorithms
display exceptional feature extraction properties, while machine
learning algorithms can produce accurate results on numerical
data. The present study recommends using various segmentation
techniques that contribute toward the detection of PVM faults
with the aid of PVM aerial images and machine learning clas-
sifiers. Fig. 1 represents the overall workflow proposed in this
article. The contributions of the paper are summarized as follows.

1. An ensemble-based deep neural network (DNN) model is
proposed to identify the faults on PV modules such as
glass breakage, burn marks, snail trail, discoloration, and
delamination.

2. PVM images features are derived from the spatial and fre-
quency domain features, including discrete wavelet trans-
form (DWT), texture, grey level co-occurrence matrix
(GLCM), fast Fourier transform (FFT), and grey level differ-
ence method (GLDM), and fused inside the ensemble-based
DNN model to perform PVM fault diagnosis.

3. The feature extraction process and the ensemble-based
DNN model algorithms are developed to exhibit the impact
of feature fusion on classification.
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Table 1
Related works on PVM fault diagnosis.
Technique adopted Dataset utilized Reference

CNN based on U-Net architecture Thermal images (Wang et al., 2022)
Deep CNN replicating VGG16 (Pierdicca et al., 2018)
Convolutional neural network Electroluminescence images (Akram et al., 2019)
CNN with Random Forest (Ying et al., 2019)
Custom CNN

RGB images
(Li et al., 2019)

CNN with decision tree algorithms (Sridharan and Sugumaran, 2021)
CNN with lazy algorithms (Naveen Venkatesh and

Sugumaran, 2022)
Adaptive neuro fuzzy interference system

I-V characteristics

(Abbas and Zhang, 2021)
Pre-trained AlexNet (Aziz et al., 2020)
Ensemble model combining kNN, SVM,
and Naïve Bayes

(Eskandari et al., 2020a)

Stacking based ensemble (De Guia et al., 2020)
Fig. 1. The overall workflow of the proposed ensemble-based DNN model to diagnose PVM test conditions.
4. Performance comparison is carried out with other tech-
niques proposed in the literature to show the proposed
method’s capability.

he overall manuscript is outlined as follows. Section 2 describes
he experimental studies involving the experimental setup, ex-
erimental procedure, and a brief description of various visual
aults in PVM. In Section 3, the feature extraction process using
arious segmentation algorithms like discrete wavelet transform
DWT), texture, grey level co-occurrence matrix (GLCM), fast
ourier transform (FFT), and grey level difference method (GLDM)
re explained, followed by short notes of the random forest
lgorithm in Section 4. The obtained experimental results are
eported in Section 5, followed by the conclusion in Section 6.

. Experimental process

The primary objective of the present study is to diagnose PVM
est conditions as healthy or defective. If the diagnosed condition
s defective, then the proposed technique aims at detecting the
ype of PVM fault. The current section describes the experimental

etup adopted, the procedure involved in acquiring aerial images

14385
of PVM test conditions, and a brief description of various PVM
faults.

2.1. Experimental setup

The experimental setup adopted in the study involves PVM
(with healthy and fault conditions), a UAV equipped with a high-
resolution digital camera, various sensors, on-board processors,
and a ground control station (Niccolai et al., 2019). The mod-
ules utilized in the present study were manufactured by Udhaya
semiconductors limited under operation. The images of PVMwere
acquired by DJI Mavic 2 Zoom UAV (see Table 2) under laboratory
conditions. A trained professional held a remote controller to
control the UAV operation. A digital RGB camera attached to
the UAV was used for image acquisition. The captured images
were stored on the storage system located at the ground sta-
tion. The stored images were further processed and fed into the
ensemble-based DNN model for feature extraction and classifi-
cation. Pre-processing of images might not be mandatory during
real-time operations since the results must be instantaneous. A

total of six PVM test conditions (Five faulty and one healthy)
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Table 2
DJI Mavic 2 Zoom specification.
Parameter Value

Weight 1.6 kg
Length 322 mm
Image sensor size 6.18 mm × 4.50 mm
Operational range 5 km
Propulsion Electric power
Flight endurance 0.28–0.70 h
Mission altitude 20–30 m
Wingspan 0.354 m
Cruise speed 10–20 m/s
Maximum resolution 4000 × 3000

were utilized during image data acquisition. Table 3 represents
the detailed specifications of PVM adopted in the study.

During data acquisition, the UAV was operated between 1–5
eters above the PVM for data collection. The UAV was operated

n two sessions (each lasting about 14 min) to acquire PVM
mages. Every test condition of PVM, namely, snail trail, glass
reakage, delamination, discoloration, healthy module, and burn
arks, was placed at various positions inside the laboratory for

mage data acquisition. One hundred images were collected for
very test condition for each PVM condition. A sample of images
aptured is depicted in Fig. 2.

.2. Experimental procedure

The experiment was carried out in four different stages: (i)
ata acquisition, (ii) feature extraction using various image seg-
entation techniques, (iii) fusion of features using an ensemble-
ased DNN model and (iv) features classification using random
orest classifiers. Initially, 600 images (100 images for every class)
ere attained and categorized into different classes. Dataset
reparation is a crucial step in dealing with a deep learning
roblem. A primary solution is to take advantage of data aug-
entation techniques. In this experimental research, 3150 images
re prepared, through which 525 images are allocated to each
lass. Table 4 represents the image transformations applied to
he image dataset for data augmentation. A balanced dataset is
btained for further feature extraction. Finally, the extracted fea-
ures were fused using the ensemble-based DNN model equipped
ith a random forest classifier to perform classification.
14386
Table 3
Detailed specification of PVM.
Parameter Value

Number of cells 36
Efficiency 9%–10%
Maximum power point current (Impp) 2.1
Maximum power 36 W
Maximum power point voltage (Vmpp) 17 V
Voltage (Voc) 20.6 V
Dimensions (1011 × 435 × 36) mm
Weight 3.5 kg
Current (Isc) 2.25 A
Type Monocrystalline
Model name USP-36

∗All values measured at standard test conditions of 25 ◦C, 1000 W/m2 irradiance
nd AM 1.5 spectrum.

.3. Visible faults in PVM

Faults in a PVM can be induced due to extreme environmental
ncertainties, thermal stresses and changing climatic conditions.
he occurrence of faults in PVM can significantly affect the perfor-
ance, life span and reliability of PV modules. Table 5 describes

he most commonly occurring visual faults, while a pictorial
epresentation of such faults is provided in Fig. 3.

. Feature extraction using advanced segmentation techniques

The process involving a reduction in variables to describe and
nderstand large volumes of data is termed feature extraction.
efore feature extraction, the acquired PVM aerial images were
esized to a uniform size of 512 × 512 pixels. Additionally, the
olor space of the images is converted into grayscale and provided
s input of size 512 × 512×1 for the application of segmentation

techniques.

The present study adopts several well-established image seg-
mentation methods like Fast Fourier Transforms (FFT), Grey Level
Difference Method (GLDM), Discrete Wavelet Transforms (DWT),
Texture and Grey Level Co-Occurrence Matrix (GLCM) to extract
images features based on the statistical features derived. A total
of 252 features were formulated (combined number of features)
from all the segmentation techniques adopted. The statistical
features computed in the present study are provided as follows:
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Fig. 3. Various visual faults in PVM.
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Table 4
Basic image transforms used for PVM dataset augmentation.
Transform
operation

Noise Warp Rotation (Clockwise,
Anticlockwise)

Flip (Horizontal,
Vertical)

Blur

Value Random 40 0◦–180◦ 90◦ Gaussian
Table 5
Visual fault occurrence in photovoltaic modules.
S.No Visual faults in PVM Reason for the occurrence of a

fault
Effect on modules

1
Delamination
(Sánchez-Friera et al.,
2011)

Adhesion loss between back
cover, encapsulant and glass

Moisture invasion leading to
corrosion

2 Glass breakage
(Chandel et al., 2015)

Physical damage during transport
and installation, Thermal Stresses

Lower Irradiance, Corrosion and
Moisture invasion

3 Snail trail (Dolara
et al., 2016)

Stress acting upon micro-cracks
along edges

Quicker Degradation

4 Discoloration (Han
et al., 2018)

Elevated exposure to ultraviolet
radiation, heat and humidity

Physical color change of modules
(Browning or Yellowing), Power
loss

5 Burn marks (Köntges
et al., 2014)

Solder bond failure, ribbon
breakage and localized heating

Safety hazards and performance
degradation
area, density, standard density, skewness, kurtosis, energy, en-
tropy, maximum, mean absolute deviation, median, minimum,
range, root mean square and uniformity. The image segmentation
techniques delivered 252 features combined (14 FFT, 56 GLCM,
56 GLDM, 14 texture, and 112 DWT). The algorithms involved in
resizing the images, the feature extraction and the training of the
ensemble-based DNN model are presented in Algorithms 1, 2 and
3, respectively. A brief description of the adopted segmentation
techniques is provided below.

3.1. Grey level co-occurrence matrix (GLCM)

The grey level co-occurrence matrix is a second-order statisti-
al process that investigates texture features based on the spatial
elationship of pixels. The primary role of GLCM is to identify
he frequency of pixels’ combination appearance in a particular
mage for a given distance and direction. GLCM is generally com-
uted in four directions and at different distances over which
he texture features are highlighted. The measurement boundary
uring GLCM application is determined by adopting the middle
alue from various directions (Alvarenga et al., 2007). A grid-
ased system is adopted to identify the textural highlights in
orizontal, vertical, and diagonally up and down directions from
pecific distances. The GLCM segmentation of a sample PVM fault
s represented in Fig. 4 with cell, module and GLCM dissimilarity
n four positions. The co-occurrence matrix (R) displays different
ossible combinations of grey levels within an image where a
nd b (elements in various grey levels) are placed at a distance
(displacement vector) along with the direction e (one among
ight orientations), R (a, b | d, e). However, only four proba-
ility orientation matrices are created since opposite directions
14388
Fig. 4. Grey level co-occurrence matrix (GLCM) segmentation for a sample PVM
aerial image.

are always ignored. The symmetric matrices are utilized in four
directions, namely, 0◦, 45◦, 90◦ and 135◦. A correlation texture
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Fig. 5. Fast Fourier transformation (FFT) segmentation for a sample PVM aerial image.
unction (T) was adopted to calculate the texture feature. Eq. (1)
epresents the GLCM feature extraction, while Eqs. (2), (3), (4) and
5) denote the parameters.

T =

∑
a,b

(a − δa) (b − δb) R (a, b)
σaσb

(1)

δa =

∑
a,b

a.R (a, b) (2)

δb =

∑
a,b

b.R (a, b) (3)

σa =

√∑
a,b

(a − δa)
2 .R (a, b) (4)

σb =

√∑
a,b

(b − δb)
2 .R (a, b) (5)

3.2. Fast Fourier transforms (FFT)

Fast Fourier transform is a computer algorithm oriented to-
wards the computation of discrete Fourier transform (DFT) for a
sequence of variables or the inverse of DFT (IDFT). FFT is widely
used for calculating various frequency elements from different
time-domain signals and is capable of reconstructing the signals
through a set of frequency values. The primary role of FFT is to
transform a digital signal (d) of range (R) from the time domain
into the frequency domain (F) depending upon the parameter
value (Márquez and Papaelias, 2019). During FFT, the frequency
spectrum vector is divided into several frequency levels to auto-
mate the selection of sensitive frequency toward fault occurrence
that is considered. Furthermore, the mean of every frequency
range is considered the sensitive element of each condition. FFT
was adopted to calculate 14 statistical features for all the images
in this experimental research. Eq. (6) represents the working
of FFT, while a sample observation of FFT imposed on a PVM
image is presented in Fig. 5, in which the difference between the
spectrum and centered spectrum can be observed.

R [k] =

F−1∑
i=0

d (i)W ik
F ,WF = e−

2π i
F , for k = 0, 1, 2 . . . (6)

3.3. Discrete wavelet transforms (DWT)

Discrete wavelet transforms (DWTs) are a characteristic rep-
resentation of a non-redundant tested continuous wavelet trans-
form (CWT). The wavelet transforms are used to represent a
discrete-time series arrangement in the form of numerous co-
efficients of wavelets. Such wavelet coefficients are examined
14389
with the aid of CWT to achieve a bio-orthogonal or symmet-
rical region. Non-redundancy of the signal to be portrayed is
guaranteed while utilizing symmetrical regions. In general, sym-
metrical representations can provide direct calculations for the
remaking and disintegration of signals. However, calculating the
value of productive wavelets consumes more computational ef-
forts that are not oriented towards actualizing an instantaneous
Fourier transform (Bentley and McDonnell, 1994). In this paper,
wavelets are described based on the channel bank idea in which
the wavelets are characterized as two finite impulse response
channels with N coefficients. Among the two channels, one is
considered a high pass channel while the other is considered
a low pass channel (capable of cutting off the inspection re-
currence). The characterization of a wavelet transform can be
performed using the channels mentioned above through recur-
sive application. Initially, the high pass f1 (m) and low pass f2 (m)

elements are derived from the channels by applying the input
time arrangement as provided in (7) and (8).

f1 (m) =

N−1∑
i=0

xif (m − i) (7)

f2 (m) =

N−1∑
i=0

yif (m − i) (8)

Where xi and yi are the low and high pass channel coefficients.
Additionally, one can build a high pass channel based on the low
pass channel through a rotating flip plan (9).

yi = (−1)ieN−1 (9)

The present experimental study adopted a sequential two-way
operation to estimate the coefficients like CH1, CA1, CD1 and
CV1 and other coefficients formulated using CA1, namely, CH2,
CA2, CD2 and CV2, depending upon the 14 statistical features.
Fig. 6 represents the wavelet transforms applied to a sample PVM
image.

3.4. Texture analysis and Grey level difference method (GLDM)

Texture has proved to be a necessary and sufficient feature
that helps handle several computer vision applications. Works of
literature involving texture analysis revealed that the necessary
parameters for image refining revolve around union, division
and order. Image recovery, investigation of clinical images and
aeronautical & satellite image examinations are various applica-
tions of texture analysis (Manjunath et al., 2005). The present
section exhibits a method to portray texture features based on
multi-band image disintegration that can be applied for object
recognition, characterization, image recovery and division. On
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Fig. 6. Wavelet transforms (DWT) segmentation for a sample PVM aerial image.
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he other hand, the grey-level difference method calculates the
tatistical grey level difference between thickness capabilities
n a grey image. Additionally, the density among the image’s
ost significant and least significant regions can be calculated
ased on the contrast adjustments. Homogeneity in an image
s proportional to the angular second moment, considered the
easurement metric. Accordingly, 14 statistical features were
alculated for four spatial regions at a distance of s = 8 from
he neighboring pixels (m, n) and reference points for all images
n a dataset. In (10) the GLCM distance calculation is represented
or every input image j for the corresponding output image k.

(m, n) = |j (m, n) − j (m, n + s) | (10)

. Classification using random forest

Random forest is an ensemble technique that applies a su-
ervised learning strategy to solve regression and classification
roblems. As the name suggests, the forest is a term used to
enote a collection of trees, and a more significant number of
rees deliver a more vigorous forest. Random forest works by
dopting multiple decision trees accompanied by the information
ain obtained from the trees (Chen et al., 2018; Ying et al., 2019).
ubsequently, the decision trees’ output is forecasted so that the
est results are identified through voting strategy. In general,
group’s decisions are superior to the individual decisions de-

ivered by the tree since the model avoids overfitting, thereby
veraging the outcome. Fig. 7 represents the random forest al-
orithm operation. The random forest has exhibited exceptional
lassification performance over other machine learning classifiers
ue to its versatile nature, easy adaptability, high precision and
nsemble strategy. Hence, a trained random forest was adopted in
his study to perform the PVM test condition calculation. The hy-
erparameters for the random forest network i.e., the number of
rees, were set as 100 to perform batch predictions. The random
orest works on the following steps.

• Initially, random data samples are determined from the
input dataset.

• Consequently, each data sample is represented in the form
of decision trees. Additionally, the expected results can be
obtained from every decision tree.

• Finally, a voting strategy has been applied to predict the
possible outcomes.

.1. Performance evaluation

The performance of a classifier can be evaluated using a con-
usion matrix. In a confusion matrix, the rows and columns rep-
esent the actual and predicted classes. The performance of the
lassifier is evaluated depending upon four factors, namely, true
ositive (TP), true negative (TN), false positive (FP) and false
 i
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negative (FN) for every class. The present study evaluates the
model performance based upon various performance metrics like
accuracy and receiver operating characteristics (ROC). Accuracy is
the measure of model performance that signifies the proportion
of correctly classified samples that can be computed as given in
Eq. (11) (Eskandari et al., 2020b).

Accuracy =
TP + TF

Total number of samples in a dataset
(11)

The receiver operating characteristics (ROC) curve is a perfor-
mance measure used to demonstrate the capability of a classifi-
cation model. The curve is plotted against two major parameters:
true positive rate (TPR) and false positive rate (FPR). In other
words, TPR is termed as sensitivity while FPR is denoted as 1-
specificity. Eqs. (12) and (13) represent the process of calculating
TPR and FPR, respectively. ROC plots carry information about
a corresponding sensitivity/specificity pair for every threshold
passed, while the area under the curve (AUC) represents the
model accuracy.

TPR =
TP

TP + FP
(12)

FPR =
FP

FP + TN
(13)

. Results and discussion

The present study evaluates the performance of the devel-
ped ensemble-based DNN model in diagnosing various PVM
est conditions using extracted features from advanced segmen-
ation techniques. The PVM aerial images acquired from UAV
re preprocessed before being fed into the ensemble-based DNN
odel. A total of 252 features consisting of 14 FFT, 56 GLCM, 56
LDM, 14 texture, and 112 DWT features were derived and fused
hrough an ensemble-based DNN model. A random forest classi-
ier was coupled with an ensemble-based DNN model to classify
VM test conditions. The performance of the proposed ensemble-
ased DNN model, along with a comparison of state-of-the-art
echniques, are discussed in this section.

.1. Training and evaluation of the ensemble-based DNN model

The current study utilizes a designed ensemble-based DNN
odel and a random forest classifier to classify various PVM con-
itions, including snail trail, glass breakage, delamination, discol-
ration, healthy module, and burn marks. Features from advanced
egmentation techniques like FFT, GLCM, GLDM, texture and DWT
ere extracted and fused through the concatenation layer in
he ensemble-based DNN model. Random forest was used to
lassify the PVM test conditions from the concatenated features.
ig. 8 represents the overall performance of the ensemble-based
NN model involving the accuracy and loss curves. As shown

n Fig. 8, the training and validation loss gradually decreases,
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Fig. 8. The performance of the ensemble-based DNN model.

hereby improving the validation and training accuracies. The plot
nfers that the training process of the ensemble-based DNNmodel
onverges quickly on the applied PVM aerial dataset. Additionally,
inimal loss values represent the evolution of a highly accurate
odel. The random selection of training and validation data has
rchestrated the fine training of the model. Both the training and
alidation accuracy reaches a saturation (100%) after 10 epochs;
hus, early stopping was implemented when further training
esulted in no change of accuracy values.

To assess the performance of the model, a confusion ma-
rix was designed to provide a clear insight into the prediction
evel of the trained model. In a confusion matrix, the rows and
olumns represent the actual and predicted test conditions of
 t

14391
Fig. 9. The confusion matrix of the ensemble-based DNN model.

he PVM. Also, the shape of the confusion matrix is determined
ased on the number of test conditions adopted. The diagonal
lements present in a confusion matrix represent the correctly
lassified instances, while the other elements represent misclas-
ifications. Fig. 9 represents the confusion matrix obtained from
he ensemble-based DNN model.

After dataset preparation, a total number of 3150 aerial images
f PVM were collected, from which 2520 sample data was split
or training, and 630 sample data was used for the test. Among
he 630 test samples, the proposed ensemble-based DNN model
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Table 6
Five-fold cross validation of the proposed ensemble model.
Fold 1 (%) Fold 2 (%) Fold 3 (%) Fold 4 (%) Fold 5 (%) Overall accuracy (%)

98.09 99.96 100.00 99.72 99.12 99.38
Fig. 10. ROC curve for the ensemble-based DNN model for PVM test conditions.

achieved a high classification accuracy of 99.68% by producing
only two misclassifications (1 sample each in discoloration and
snail trail). To avoid the randomness in the obtained results a
five-fold cross validation was carried out and the obtained results
were presented in Table 6. The overall validation results display
similar classification accuracy as obtained in the test set. The
similarity in extracted features, noise interference and image
resemblance are specific reasons for misclassification. The limited
number of misclassifications infer that features are learned effec-
tively and exhibit the feasibility of the proposed model. Feature
fusion helps eliminate the drawbacks faced by individual features
by compensating the weakness of one feature with the strength
of other features that contribute toward classification. Fig. 10
represents the receiver operating curve (ROC) obtained for the
ensemble-based DNN model.

5.2. Performance evaluation of the ensemble-based DNN model
against pre-trained models

The proposed ensemble-based DNN model’s performance is
valuated through a comparative analysis with various state-of-
he-art pre-trained models. Deep learning models need a consid-
rable amount of data for training. Pre-trained models are used to
ompare and analyze the performance of the proposed ensemble-
ased DNN model. Additionally, transfer learning is a helpful
echnique through which trained weights of another network are
ransferred to a designed model with minimal changes in the
inal few layers. Pre-trained models’ weights are made available
n public repositories for instrument transfer learning. In the
ield of computer vision, many pre-trained networks have been
pplied for performing classification tasks. Among the available
re-trained models, ResNet-50 (Wen et al., 2019) and VGG16
Kim et al., 2017) have produced exceptional results in clas-
ification tasks and are widely adopted. This section presents
comparative study of pre-trained models’ performance with

he proposed ensemble-based DNN model, as represented in Ta-
le 7. As shown in Table 7, the proposed ensemble-based DNN
odel achieves an elevated performance than pre-trained and
NN models by providing an overall classification accuracy of
9.68%. The performance of the pre-trained and CNN models
as hindered due to the high complexity in computation and
14392
Fig. 11. Performance comparison of machine learning classifiers and proposed
model.

model overfitting. Additionally, working with pre-trained net-
works require huge hardware requirements and robust systems
to deliver results in minimal time, thereby increasing the capital
cost. Overall, the proposed ensemble-based DNN model delivered
better accuracy and consumed low computational efforts, thereby
eradicating the need for sophisticated systems.

5.3. Performance evaluation of the ensemble-based DNN model
against machine learning classifiers

Machine learning algorithms are widely used to perform clas-
sification and regression tasks. The present study compares the
performance of a random forest aligned with the ensemble-based
DNN model with various renowned machine learning classifiers
like J48, Logistic Regression, Multilayer Perceptron, SVM, NB, and
kNN (Naveen Venkatesh and Sugumaran, 2022). Fig. 11 repre-
sents the performance comparison of the ensemble-based DNN
model with specified machine learning classifiers. As depicted
in Fig. 11, it is evident that the proposed ensemble-based DNN
model with random forest performs better in diagnosing PVM
conditions than other machine learning classifiers. The kNN clas-
sifier has comparable performance to the proposed methodology
with 98.85%. One can also observe that all the classifiers exhibit
healthy classification accuracy (above 90%) for the developed
aerial PVM dataset. However, since the computational cost of
the proposed ensemble-based DNN model with a random forest
classifier is affordable, it can be used in real-time applications.
The comparative study performed in this section considered the
features extracted from pre-trained models classified with ma-
chine learning classifiers and compared them with the proposed
methodology.

5.4. Discussion

The present study adopts an ensemble based deep neural
network to detect and classify PVM conditions with the aid of ran-
dom forest classifier. Image features were extracted using various
segmentation algorithms and fused together in the concatenation
layer. Furthermore, the performance of the proposed model is
assessed and compared with various state of the art techniques.
The major findings from the study are discussed as follow:



S.N. Venkatesh, B.R. Jeyavadhanam, A.M.M. Sizkouhi et al. Energy Reports 8 (2022) 14382–14395

b
t
t
h
D
o
u
q

Table 7
Performance comparison with various CNN models proposed in literature.
Methodology Image type Classification

accuracy (%)
Reference

Isolated model Infrared images 98.67 (Akram et al., 2020)
Custom CNN Infrared images 99.00 (Manno et al., 2021)
Transfer learned model Infrared images 99.23 (Akram et al., 2020)
Encoder Decoder RGB images 93.00 (Moradi Sizkouhi et al., 2021)
Multiscale CNN RGB images 97.32 (Korkmaz and Acikgoz, 2022)
Custom CNN Infrared images 92.50 (Fonseca Alves et al., 2021)
Custom CNN Time series graph 99.00 (Lu et al., 2019)
Custom CNN Scalograms 73.53 (Aziz et al., 2020)
Pre trained VGG 16 RGB images 73.88

(Li et al., 2019)Conventional pattern recognition RGB images 74.50
CNN based model RGB images 97.00
Pre trained Resnet 50 RGB images 90.00 (Bommes et al., 2021)
Proposed technique RGB images 99.68
m
V
h
i
s
S
E
A
i
t
t
I
R

D

c
t

• The image dataset of 3150 images was split with a train test
split ratio of 80%–20% representing 2520 training images
and 630 test images. Features from advanced segmenta-
tion techniques like FFT, GLCM, GLDM, texture and DWT
were extracted and fused through the concatenation layer
in the ensemble-based DNN model. The model was trained
initially for 30 epochs with early stopping strategy that
stops training when no further change in accuracy or loss
was observed. The model displayed gradual rise and drop
in accuracy and loss curves respectively. Smooth lines in
the training process represents that the model has learnt
the features effectively (Fig. 8). The confusion matrix in
Fig. 9 represents the overall classification accuracy of the
proposed model with 99.68%.

• Among the 630 test instances, one can observe that only 2
instances were misclassified representing the phenomenal
performance of the proposed methodology. Also, ROC curves
represented in Fig. 10 display values of 1 thereby provid-
ing a clear insight about the elevated performance of the
proposed method.

• To establish the superiority of the proposed method, various
state of the art techniques in CNN and machine learning
were compared. Considering CNN based techniques, several
pre-trained and CNN models exhibited in literature were
compared with the proposed method. From Table 7, one
can observe that the overall classification accuracy of the
proposed method (99.68%) was higher than all the other
works of literature.

• On the other hand, results from literature adopting var-
ious machine learning classifiers for diagnosing faults in
PVM were compared with the proposed method as pre-
sented in Fig. 11. One can observe that the proposed method
with random forest classifier outperforms all other clas-
sifiers with a classification accuracy of 99.68%. The only
classifier to achieve a classification accuracy closer to the
proposed method was kNN with a classification accuracy
of 98.85%. Based on the obtained results, one can suggest
that the proposed method can be adopted for real time
application of PVM fault diagnosis.

6. Conclusion

In this experimental study, we have proposed an ensemble-
ased deep neural network (DNN) model for autonomous de-
ection of visual faults such as glass breakage, burn marks, snail
rail, and discoloration, delamination on various PV modules. We
ave evaluated the performance of the proposed ensemble-based
NN model in classifying different visual faults in PV modules. In
rder to train the model, an image dataset of PVM was prepared
sing an RGB camera mounted on DJI Mavic 2 Zoom. Subse-
uently, the proposed ensemble-based DNN model was applied
14393
for a feature fusion strategy by combining features of various
advanced segmentation techniques, including GLCM, FFT, GLDM,
DWT, and texture and performed classification using a random
forest classifier. A total number of 252 features were extracted
and used in the classification process. The performance of the
proposed ensemble-based DNN model was assessed using the
training progress, ROC and confusion matrices. We have obtained
an accuracy of 99.68% for the proposed model.

Furthermore, the results of the designed network were com-
pared with several other pre-trained deep learning models and
multiple machine learning classifiers to demonstrate the superior
performance of our proposed model. The functionality of the pro-
posed ensemble-based DNN model has shown that it consumed
less computation time and required minimal hardware, which
makes it feasible and cost-efficient for real-time application. Thus,
the ensemble-based DNN model with random forest classifiers
can be credibly adopted to diagnose PVM fault conditions in real-
time. The proposed model is compatible with all commercially
available UAVs and can be applied in their embedded control
units for aerial fault detection. The outcomes of the present study
led to detecting the failures on time in PV strings, maximizing
the energy yield generated by the PV system. As a future direc-
tion, multiple feature extraction strategies can be adopted, and
ensemble techniques can be applied to reduce the dimensional
complexity of images. On-board deployment of a fault diagnosis
system is a viable option and prospect for diagnosing PVM faults.
Moreover, we will develop the proposed model to detect other
faults which can be identified by infrared (IR) thermography and
electroluminescent (EL) techniques.
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