
Downloaded from: http://ray.yorksj.ac.uk/id/eprint/858/

The version presented here may differ from the published version or version of record. If you intend to cite from the work you are advised to consult the publisher's version:

Research at York St John (RaY) is an institutional repository. It supports the principles of open access by making the research outputs of the University available in digital form. Copyright of the items stored in RaY reside with the authors and/or other copyright owners. Users may access full text items free of charge, and may download a copy for private study or non-commercial research. For further reuse terms, see licence terms governing individual outputs. Institutional Repository Policy Statement

RaY
Research at the University of York St John
For more information please contact RaY at ray@yorksj.ac.uk

A conditional process model of children’s behavioural engagement and behavioural disaffection in sport based on self-determination theory

Thomas Curran¹, Andrew P. Hill², and Christopher P. Niemiec³

¹Victoria University, Australia
²University of Leeds, UK
³University of Rochester, USA

Keywords: Autonomy Support, Basic Psychological Need Satisfaction, Moderated Mediation, Self-Determination Theory, Structure

Author Notes

Thomas Curran, Institute of Sport, Exercise and Active Living, Australia; Andrew P. Hill, Faculty of Biological Sciences, University of Leeds, UK; Christopher P. Niemiec, Department of Clinical and Social Sciences in Psychology, University of Rochester, USA.

Address correspondence to Thomas Curran, Institute of Sport, Exercise and Active Living, Victoria University, P.O. Box 14428, Melbourne, Victoria, 8001 Australia; E-mail: thomas.curran@vu.edu.au
Abstract

The potential benefits of children’s engagement in sport for their psychological, social, and physical health are well established. Yet children may also experience psychological and social impairments due, in part, to a variety of detrimental coach behaviours. In the current study, we proposed and tested a conditional process model of children’s self-reported behavioural engagement and behavioural disaffection in sport based on self-determination theory. Results from a sample of 245 youth soccer players suggested that structure from coaches related positively to behavioural engagement and negatively to behavioural disaffection, and that these relations were mediated by athletes’ basic psychological need satisfaction. Importantly, and in line with our hypotheses, these indirect effects were moderated by autonomy support from coaches, such that the mediation was evident only among those who reported higher levels of autonomy support. These findings underscore the importance of coaches’ providing guidance, expectations, and feedback (i.e., structure) in a way that respects athletes’ volition (i.e., autonomy support).

Key Words: Autonomy Support, Basic Psychological Need Satisfaction, Moderated Mediation, Self-Determination Theory, Sport, Structure
Recent estimates suggest that there are 22 million youth soccer players worldwide (Federation Internationale de Football Association, 2007). The potential benefits of children’s engagement in activities such as soccer for their psychological, social, and physical health are well established (Smith & Smoll, 2007). In particular, sport affords opportunities to develop healthy styles of emotion regulation, to refine interpersonal skills, and to enhance psychological wellness (Reinboth & Duda, 2006; Smith, 2003; Smoll & Smith, 2002). Yet athletes may also experience psychological and social impairments due, in part, to a variety of detrimental coach behaviours (Fraser-Thomas & Côté, 2009; Krane, Greenleaf, & Snow, 1997). Therefore, it is important to consider how the way in which coaches relate to young athletes may affect children’s experiences in sport.

In the current study, we used self-determination theory (SDT; Deci & Ryan, 2008; Niemiec, Ryan, & Deci, 2010) to propose and test a conditional process model (moderated mediation) of children’s self-reported behavioural engagement and behavioural disaffection in sport (see Figure 1). SDT is an organismic approach to human motivation, emotion, and personality in social contexts that has applications to sport and exercise psychology (Hagger & Chatzisarantis, 2007; Standage & Ryan, 2012). The first component of the proposed conditional process model (labelled A) was that structure from coaches would relate positively to athletes’ behavioural engagement and negatively to behavioural disaffection in sport. The second component (labelled B) was that structure from coaches would relate positively to athletes’ satisfaction of the basic psychological needs for autonomy, competence, and relatedness in sport. The third component (labelled C) was that athletes’ satisfaction of the basic psychological needs would relate positively to behavioural engagement and negatively to behavioural disaffection in sport. The fourth component (labelled D) was that the association between structure and basic psychological need satisfaction would be moderated by autonomy support from coaches, such that athletes who
experienced higher levels of autonomy support would show a stronger positive association between structure and basic psychological need satisfaction. That is, the mediation by basic psychological need satisfaction was hypothesized to be evident only among those who reported higher levels of autonomy support. Next, we describe the theoretical and empirical foundations for these hypotheses.

Engagement in Sport and Structure from Coaches

Engagement and disaffection are indicators of the quality of motivation in sport, as well as in other achievement contexts (Skinner, Wellborn, & Connell, 1990). Behavioural engagement refers to a high level of effort and attention while doing an activity, whereas behavioural disaffection manifests as passive and ritualistic investment in an activity. These constructs are important to understand because they reflect outward expressions of one’s underlying motivation at the level of participation (Reeve, Jang, Carrell, Jeon, & Barch, 2004) and involve very different phenomenological experiences (e.g., enthusiasm, interest, and enjoyment versus anxiety, frustration, and anger; Skinner, Furrer, Marchand, & Kindermann, 2008). Thus, behavioural engagement and behavioural disaffection are cogent indicators of athletes’ positive and negative experiences in sport.

Research conducted over three decades has demonstrated the strong influence that coaches have on athletes’ experiences in sport (for a review, see Smoll & Smith, 2002). For instance, perceptions of coaches have been found to be associated with athletes’ self-reported behavioural engagement (e.g., effort; Smith, Ntoumanis, & Duda, 2007; Vazou, Ntoumanis, & Duda, 2006) and psychological health, including vitality (Reinboth & Duda, 2006), positive affect (Smith et al., 2007), and self-esteem (Reinboth & Duda, 2004). According to SDT, one of the important tasks that socializers (such as coaches) have is to provide a sense of structure. In the context of sport, structure refers to information that coaches provide to their athletes about expectations and strategies for achieving desired outcomes (Mageau & Vallerand, 2003). This involves the provision of clear and consistent rules and goals prior to
the activity, guidance and assistance during the activity, and constructive feedback after the
activity (Reeve, 2006a; Vansteenkiste, Sierens, et al., 2012). These elements of structure are
important because they cultivate achievement-related competencies and thus provide a
framework for behavioural engagement (rather than behavioural disaffection). In the absence
of structure, learning is experienced as chaotic (Jang, Reeve, & Deci, 2010) and, as a result,
subordinates may feel incompetent, isolated, and helpless (cf. Soenens, Vansteenkiste, et al.,
2007).

To date, only a small amount of research using SDT has examined structure in the
sport domain, possibly due to a lack of instrumentation in this context. Rather, much of the
research on structure has been conducted in the education domain (Jang et al., 2010; Sierens,
Vansteenkiste, Goossens, Soenens, & Dochy, 2009; Skinner et al., 1990). There are at least
two reasons, however, to expect a similar set of correlates among athletes. One is that the
correlates of structure are likely to be evident across a variety of life’s domains (cf. Ryan &
Deci, 2000). A second reason is that analogous constructs, such as goal setting, feedback, and
instruction, have been shown to be important for athletes’ motivation and development in
sport (Horn, 1985; Roberts & Kristiansen, 2012; Strachan, Côté, & Deakin, 2009). Therefore,
we hypothesized that structure from coaches would relate positively to athletes’ behavioural
engagement and negatively to behavioural disaffection in sport.

Mediation by Basic Psychological Need Satisfaction

If support is found for the divergent relations of structure from coaches to athletes’
behavioural engagement and behavioural disaffection in sport, then an important next step in
this line of inquiry is to identify a possible mechanism that might explain these associations.
Within SDT, the concept of basic psychological needs is a unifying principle that is used to
explain social-contextual influences on psychological integration, social wellness, and
physical health. SDT proposes that regardless of their gender, age, social class, culture, or
any other delimiting factor, all individuals require satisfaction of three basic psychological
needs for full functioning and wellness (see Niemiec & Ryan, in press). The need for autonomy (de Charms, 1968) refers to the experience that behaviour is enacted with a sense of volition, self-direction, reflective self-endorsement, and choice. The need for competence (White, 1959) refers to the experience of effectance and mastery in interacting with the physical world. The need for relatedness (Baumeister & Leary, 1995; Ryan, 1995) refers to the experience of mutual care, concern, and connection with important others.

Mageau and Vallerand (2003) have argued that coaches’ behaviours are likely to be associated with athletes’ basic psychological need satisfaction. In an extension of their model, we argue that structure from coaches may relate positively to athletes’ satisfaction of each of the basic psychological needs. Providing clear expectations and strategies for success, as well as effectance-relevant feedback, is likely to afford satisfaction of the need for competence. In addition, structure from coaches is likely to be associated with satisfaction of the need for relatedness because it involves offering help and guidance in the face of setbacks to better accomplish goals. Finally, structure from coaches is likely to be associated with satisfaction of the need for autonomy because it facilitates perceived control over goal attainment and the development of intentions for action (cf. Reeve, 2006b; Skinner et al., 1990). In support of these ideas, structure has been found to be positively associated with satisfaction of all three psychological needs in a physical education setting (Taylor & Ntoumanis, 2007), as well as with self-regulated learning among secondary school children (Sierens et al., 2009). Therefore, we hypothesized that satisfaction of the basic psychological needs for autonomy, competence, and relatedness would mediate the positive relation of structure from coaches to athletes’ behavioural engagement and the negative relation of structure from coaches to athletes’ behavioural disaffection in sport.

Moderation by Autonomy Support from Coaches

Although structure from coaches is expected to be associated with higher levels of basic psychological need satisfaction, the magnitude (and perhaps even direction) of this
association may depend on how structure is conveyed to athletes. According to SDT, the way in which socializers (such as coaches) introduce information, expectations, strategies, support, limits, and other aspects of structure can be perceived by those who are being socialized as either supportive or inhibitive of their volition. Autonomy support is an interpersonal style in which an authority figure assumes the perspective of the person for whom (s)he has responsibility. In doing so, the authority figure elicits and acknowledges the other’s perspective and ideas, takes interest in and accepts the other’s feelings, provides a rationale when limits are set on behaviour, encourages self-initiation and self-direction of action, and minimizes use of controlling language (e.g., “should”, “must”, “ought”, and “have to”). The presumed theoretical opposite of autonomy support is a controlling interpersonal style, in which the authority figure pressures or coerces the other to think, feel, or behave in particular ways.

The importance of autonomy support (versus control) for psychological, social, and physical health has been demonstrated in a variety of domains, including parenting (Roth, Assor, Niemiec, Ryan, & Deci, 2009), education (Grolnick & Ryan, 1989), work (Deci, Ryan, et al., 2001), healthcare (Williams, Niemiec, Patrick, Ryan, & Deci, 2009; Williams, Patrick, et al., 2009), and close relationships (Deci, La Guardia, Moller, Scheiner, & Ryan, 2006), among others. Consistent results have also been found across the lifespan, including in infancy (Grolnick, Frodi, & Bridges, 1984), childhood (Deci, Driver, Hotchkiss, Robbins, & Wilson, 1993), adolescence (Soenens, Vansteenkiste, & Niemiec, 2009) and adulthood (O’Connor & Vallerand, 1994). More germane to the focus of the current study, a growing body of research in the sport domain attests to the importance of autonomy support from coaches. For instance, Adie, Duda, and Ntoumanis (2008) found that autonomy support from coaches has a moderate positive association with athletes’ vitality, and Jõesaar, Hein, and Hagger (2012) found that autonomy support from coaches has a moderate positive association with intrinsic motivation among youth sport participants. Thus, the importance of
autonomy support for full functioning and wellness in sport is becoming readily apparent.

To date, no study has examined the interaction of autonomy support and structure in the prediction of basic psychological need satisfaction in the sport domain. This may be because autonomy support and structure can be viewed as antagonistic, as the imposition of rules and expectations (two elements of structure) may resemble a controlling interpersonal style (cf. Daniels & Bizar, 1998). Yet within SDT, autonomy support and structure are considered to be largely independent constructs (Jang et al., 2010), such that structure can be enacted in a way that supports choice, volition, and self-initiation (autonomy support) or in a way that is perceived to be pressuring and coercive (control). Early support for this proposition was provided by Koestner, Ryan, Bernieri, and Holt (1984), who found that the way in which rules were set affected children’s intrinsic motivation in an education setting. Limits that were set in an autonomy-supportive way did not undermine intrinsic motivation, whereas limits that were communicated in a controlling style did undermine intrinsic motivation. More recently, Sierens et al. (2009) and Jang et al. (2010) found that autonomy support and structure interacted to yield positive correlates in the education domain.

Therefore, we hypothesized that the association between structure from coaches and athletes’ basic psychological need satisfaction would be moderated by autonomy support from coaches. Specifically, we anticipated that athletes who experienced higher levels of autonomy support would show a stronger positive association between structure and basic psychological need satisfaction.

Taken together, this set of hypotheses points toward the specification of a conditional process model of behavioural engagement and behavioural disaffection in sport based on SDT. The possibility that the indirect relations of structure to behavioural engagement and behavioural disaffection are moderated by autonomy support alludes to an explanatory model that cannot be captured using simple mediation or moderation analyses. This conditional process model (moderated mediation; Preacher, Rucker, & Hayes, 2007) would establish the
strength of the indirect effect across levels of the moderator and, in doing so, would yield a
deeper understanding of the associations among these variables. Such findings would support
SDT and, importantly, may also inform an understanding of how the way in which coaches
relate to young athletes affects children’s experiences in sport.

Method

Participants and Procedure

Participants were 281 youth soccer players (202 boys, 79 girls) with a mean age of
13.67 years (SD = 1.49) and a range from 11 to 18 years. The participants had been playing
soccer for an average of 6.76 years (SD = 2.34) and had been attached to their clubs for an
average of 3.47 years (SD = 2.33). Prior to data collection, ethical approval was provided by
the research ethics committee of a British University and parental consent was sought for the
children’s participation. The questionnaire was administered in a training session setting
during which the lead author was present to give general instructions and to answer any
questions.

Measures

Responses to all measures were made on a 7-point scale from 1 (not true at all) to 7
(very true).

Structure and autonomy support from coaches. A modified version of the Teacher
as a Social Context Questionnaire (Belmont, Skinner, Wellborn, & Connell, 1988; for a list of
items used in the current study, see Appendix A) assessed athletes’ perceptions of structure (8
items; e.g., The coach always tells us what he/she expects of us in soccer) and autonomy
support (8 items; e.g., The coach gives us lots of choices about how we do tasks in soccer)
from coaches. Psychometric support for the reliability and concurrent validity of this measure
has been found in a physical education setting (Taylor & Ntoumanis, 2007), and evidence of
its two-factor structure has been found among secondary school children (Sierens et al.,
2009).
Behavioural Engagement and Disaffection in Sport

Basic psychological need satisfaction. The Basic Needs Satisfaction in Sport Scale (BNSSS; Ng, Lonsdale, & Hodge, 2011) assessed athletes’ satisfaction of autonomy (10 items; e.g., I feel I participate in soccer willingly), competence (5 items; e.g., I have the ability to perform well in soccer), and relatedness (5 items; e.g., In soccer, I feel close to other people). Support for the psychometric properties of this measure has been found in past research (Ng et al., 2011).

Behavioural engagement and behavioural disaffection. A modified version of the Engagement Verses Disaffection with Learning Scale (Skinner, Kindermann, & Furrer, 2009) assessed athletes’ behavioural engagement (5 items; e.g., I try hard to do well in training) and behavioural disaffection (5 items; e.g., In training, I do just enough to get by). Broadly, the items used to measure behavioural engagement assessed effort, attention, and persistence in soccer, whereas those used to measure behavioural disaffection assessed lack of effort during, and withdrawal from, soccer. Support for the reliability and validity of this measure has been found in educational contexts (Skinner et al., 2008; Skinner et al., 2009).

Construct Formation

Structure, autonomy support, behavioural engagement, and behavioural disaffection were calculated as weighted linear composites of scale items using the partial least squares path model (PLS-PM) algorithm in XLSTAT (version 2012.1; Addinsoft, Paris, France). Basic psychological need satisfaction was calculated as the weighted linear composite of autonomy, competence, and relatedness using the same algorithm (for a similar approach, see Sebire, Standage, & Vansteenkiste, 2009). This method of construct formation was preferred because it allows each item (or subscale) to make a unique contribution to the construct (Hair, Ringle, & Sarstedt, 2011). The unstandardized composite scores representing these constructs were used in all subsequent analyses.

Results

Preliminary Analyses
There were 227 participants who provided complete data. In accordance with the recommendations of Tabachnick and Fidell (2007), 31 participants with missing data were removed because their item non-response exceeded 5%. Since none of the participants in the remaining sample had more than 2 missing items, those values were replaced by the mean of the corresponding scale (Graham, Cumsille, & Elek-Fisk, 2003). Standardized z-scores larger than 3.29 ($z < .001$) and Mahalanobis distances greater than $\chi^2 (6) = 22.46 (p < .001)$ were used to identify participants as univariate and multivariate outliers (Tabachnick & Fidell, 2007). Five participants were removed on this basis. This yielded a final sample of 245 participants (172 boys, 73 girls). These data were normal at the univariate (average absolute skew = .35, s = .16, SE = .16; average absolute kurtosis = .53, s = .15, SE = .31) and multivariate (Mardia’s normalised coefficient = 3.71) levels.

Table 1 presents scale reliabilities (Cronbach’s α and Dillon-Goldstein's rho), means, standard deviations, and intercorrelations for the study measures. The measures used to assess each of the constructs were reliable ($\alpha > .70$; Tabachnick & Fidell, 2007) with the exception of behavioural disaffection ($\alpha = .68$), which was retained for two reasons. First, lower internal reliability (α) is more common among scales with a small number of items (Lowenthal, 1996). Second, an alternative assessment of reliability for this measure was found to be acceptable (Dillon-Goldstein's rho = .79; Nunnally & Bernstein, 1994). At the zero-order level, all of the variables were significantly intercorrelated and in the directions predicted by SDT, thereby providing some preliminary support for our hypotheses.

Primary Analyses

Behavioural engagement. We used the analytic methods discussed in Preacher and Hayes (2008) to examine simple mediation (see Table 2). As shown, the unconditional indirect effect was significant (95% bias correction and acceleration confidence interval [95% BCa CI]: {0.1419, 0.3126} with 5000 resamples). Structure from coaches predicted athletes’ basic psychological need satisfaction ($b = .33, p < .001$), which in turn predicted behavioural
engagement ($b = .66$, $p < .001$). Controlling for the mediator, the relation of structure to
behavioural engagement was reduced from $b = .28$ ($p < .001$) to $b = .06$ (ns).

We then used the analytic methods discussed in Preacher et al. (2007) to examine
moderation of this indirect effect by autonomy support from coaches, which generated two
multiple regression models. The mediator variable model specified basic psychological need
satisfaction as the dependent variable, and the dependent variable model specified
behavioural engagement as the dependent variable (see Table 3). In the mediator variable
model, the interaction of structure with autonomy support predicted basic psychological need
satisfaction ($b = .18$, $p < .001$). In the dependent variable model, basic psychological need
satisfaction predicted behavioural engagement ($b = .60$, $p < .001$). We calculated bootstrap
confidence intervals to determine the values of the moderator at which the conditional
indirect effect was significant. With 5000 resamples, the conditional indirect effect was
significant at 1SD above the mean (95% BCa CI: {0.1376, 0.3677}) and at the mean (95%
BCa CI: {0.0400, 0.2114}), but was non-significant at 1SD below the mean (95% BCa CI: {-
0.0969, 0.1010}) of autonomy support.

Finally, we used the Johnson-Neyman technique (for an application of this technique
to conditional process modeling, see Preacher et al., 2007) to examine the regional
significance of the conditional indirect effect across a range of values of the moderator.
Results suggested that the conditional indirect effect was antagonistic (see Figure 2), such
that the conditional indirect effect was positive when autonomy support was higher than
4.7136 ($[a_1 + a_3 W]b_1 = .11; 95\% \text{ BCa CI: } \{0.0237, 0.1962\}$) and was negative when
autonomy support was lower than 2.4271 ($[a_1 + a_3 W]b_1 = -.14; 95\% \text{ BCa CI: } \{-0.2961, -
0.0053\}$).

Behavioural disaffection. We used the same analytic methods discussed above to
examine simple mediation (see Table 4). As shown, the unconditional indirect effect was
significant (95\% BCa CI: {-0.2113, -0.0841} with 5000 resamples). Structure from coaches
predicted athletes’ basic psychological need satisfaction ($b = .33$, $p < .001$), which in turn predicted behavioural disaffection ($b = -.42$, $p < .001$). Controlling for the mediator, the relation of structure to behavioural disaffection was reduced from $b = -.19$ ($p < .001$) to $b = -.05$ (ns).

We then used the analytic methods discussed in Preacher et al. (2007) to examine moderation of this indirect effect by autonomy support from coaches (see Table 5). In the mediator variable model, the interaction of structure with autonomy support predicted basic psychological need satisfaction ($b = .18$, $p < .001$). In the dependent variable model, basic psychological need satisfaction predicted behavioural disaffection ($b = -.36$, $p < .001$). We calculated bootstrap confidence intervals to determine the values of the moderator at which the conditional indirect effect was significant. With 5000 resamples, the conditional indirect effect was significant at 1 SD above the mean (95% BCa CI: {-0.2462, -0.0729}) and at the mean (95% BCa CI: {-0.1413, -0.0242}), but was non-significant at 1 SD below the mean (95% BCa CI: {-0.0629, 0.0560}) of autonomy support.

Finally, we used the Johnson-Neyman technique to examine the regional significance of the conditional indirect effect across a range of values of the moderator. Results suggested that the conditional indirect effect was antagonistic (see Figure 3), such that the conditional indirect effect was negative when autonomy support was higher than 4.7136 ($a_1 + a_3Wb_1 = -.06$; 95% BCa CI: {-0.1328, -0.0159}) and was positive when autonomy support was lower than 2.1731 ($a_1 + a_3Wb_1 = .10$; 95% BCa CI: {0.0134, 0.2194}).

Discussion

This study tested a conditional process model of behavioural engagement and behavioural disaffection in sport based on self-determination theory (SDT). In terms of simple mediation, we hypothesized that structure from coaches would relate positively to athletes’ behavioural engagement and negatively to behavioural disaffection in sport, and that these divergent associations would be explained (mediated) by athletes’ satisfaction of the
basic psychological needs for autonomy, competence, and relatedness. Results supported these predictions. It appears, therefore, that structure from coaches affords athletes opportunities for satisfaction of basic psychological needs, which in turn is associated with higher levels of behavioural engagement and lower levels of behavioural disaffection in sport.

According to SDT, though, the way in which coaches provide structure can be perceived by athletes as either supportive of their choice and volition (autonomy support) or pressuring and coercive (control). In terms of moderated mediation, then, we hypothesized that the strength of the indirect effects would depend on athletes’ perceptions of autonomy support from coaches. Results supported this prediction. The interaction of structure with autonomy support predicted basic psychological need satisfaction, and thus mediation was evident only among athletes who reported levels of autonomy support at or above the mean. As well, the conditional indirect effects were antagonistic. That is, the conditional indirect effect of structure on behavioural engagement was positive for those who reported higher levels of autonomy support and was negative for those who reported lower levels of autonomy support. In contrast, the conditional indirect effect of structure on behavioural disaffection was negative for those who reported higher levels of autonomy support and was positive for those who reported lower levels of autonomy support.

Theoretical Implications

These findings have important theoretical implications for SDT in the sport domain. Structure from coaches predicted higher levels of behavioural engagement and lower levels of behavioural disaffection in sport, suggesting that clear instructions and positive feedback from coaches are conducive to athletes’ investment in sport. Also in line with SDT, these divergent relations were reduced to non-significance after controlling for athletes’ satisfaction of the basic psychological needs. Such evidence of mediation speaks to basic psychological need satisfaction as an explanatory mechanism in the association between the social context
(the coach) and motivational outcomes in athletes (behavioural engagement and behavioural
disaffection). More broadly, these results suggest that provision of information, expectations,
strategies, support, limits, and other aspects of structure is not necessarily inhibitive of
volitional engagement in sport, as at the zero-order level this approach was conducive to
athletes’ experience of basic psychological need satisfaction and behavioural engagement.

We call for future research in SDT to examine structure in a variety of life’s domains, such as
health care, parenting, and organizational behaviour.

Although structure from coaches predicted basic psychological need satisfaction, this
positive relation was moderated by autonomy support and was stronger among athletes who
experienced higher levels of autonomy support from their coaches. Thus, athletes are more
likely to experience basic psychological need satisfaction when coaches provide structure
with support for choice, volition, and self-initiation (autonomy support) rather than in a
context of pressure to think, feel, and behave in particular ways (control). Structure and
autonomy support were found to interact synergistically in predicting basic psychological
need satisfaction, and thus it is important that future research in SDT examine both constructs
in a variety of domains to develop a more complete understanding of how the social context
affects motivational outcomes.

It follows from this synergism that the indirect effects of structure to both behavioural
engagement and behavioural disaffection in sport through basic psychological need
satisfaction would be moderated by autonomy support from coaches. Athletes experience
satisfaction of their basic psychological needs in contexts that are structured and autonomy
supportive, and such satisfaction provides the foundation of psychological energy necessary
for healthy engagement in sport (Mageau & Vallerand, 2003). Without autonomy support,
coaches may communicate information, expectations, strategies, limits, and other aspects of
structure in a controlling way, which undermines athletes’ perceptions of agency, capability,
and support (Bartholomew, Ntoumanis, Ryan, Bosch, & Thøgersen-Ntoumani, 2011). This
lack of psychological need satisfaction, in turn, gives rise to passive and ritualistic behaviour (disaffection; Skinner et al., 2008). In short, structure in a context of autonomy support appears to create optimal conditions for the satisfaction of basic psychological needs, which is associated with higher levels of behavioural engagement and lower levels of behavioural disaffection in sport.

Practical Implications

These findings have important implications for coaches, parents, and other socializers who are involved in youth sport. Most notably, our results suggested that structure and autonomy support from coaches operate synergistically to facilitate children’s behavioural engagement in sport through basic psychological need satisfaction. As such, the importance of coaches’ providing structure in a context of autonomy support is readily apparent. To provide a sense of structure, coaches can offer clear and consistent instructions prior to the activity, guidance and assistance during the activity, and effectance-relevant feedback after the activity. To support autonomy, coaches can assume the perspectives of their athletes and, in doing so, elicit and acknowledge their ideas, take interest in and accept their feelings, provide a meaningful rationale for limits and other relevant requests, encourage self-initiation, provide a desired amount of choice, and minimize use of controlling language.

Some elements of structure (such as limits) may seem antagonistic to certain aspects of autonomy support (such as choice), yet it is possible for coaches to provide a sense of structure without compromising autonomy. This might be achieved, for instance, by introducing rules and limits with a meaningful rationale, or by organizing the content of goals, training regimens, and competition strategies in concordance with athletes’ ideas and suggestions. As Jang et al. (2010) articulated, providing expectations and limits (structure) in a context that encourages choice and volition (autonomy support) enables children to maintain a sense of autonomy while fostering their competence. Research has shown that socializers can be trained to provide support for the basic psychological needs (Deci, Connell,
& Ryan, 1989; Ntoumanis, 2012), and the current study suggests that special emphasis in
such interventions may be placed on training socializers to provide structure in a way that
respects autonomy.

Limitations and Future Research

Several limitations of this study deserve mention. First, the cross-sectional design
precludes any inference of directionality or causality among the variables. It is important for
future research to examine the proposed conditional process model using longitudinal and
experimental methods, especially in light of Reeve’s (2009) suggestion that disaffection may
evoke controlling (rather than autonomy-supportive) strategies from teachers over time.

Second, data were collected among youth soccer players in England, and thus the
specificity and homogeneity of this sample limits the generalizability of the findings. It is
interesting to note that sport is a context in which behaviour is fairly well integrated into
individuals’ self-concepts (Vallerand, 2004), and therefore structure may be less important in
sport than in other life spheres (cf. Jang et al., 2010). It is important for future research to
examine these dynamics in other achievement contexts and life domains.

Third, the lack of a sport-specific measure of structure necessitated our use of a
modified version of the Teacher as a Social Context Questionnaire (Belmont et al., 1988).
Although this measure has been useful in assessing structure in other domains, there may be
some unique elements of structure in sport that this measure does not assess. It is important
for future research to develop a well-validated, sport-specific measure of structure.

Fourth, the current study did not assess athletes’ perceptions of involvement from
coaches. Involvement refers to the interest and concern that socializers (such as coaches)
show toward those for whom they have responsibility (Skinner et al., 1990). Mageau and
Vallerand (2003) have argued that involvement is an important part of the coach-athlete
relationship, even though it may have a more distal role in motivation compared to autonomy
support and structure (Koestner & Losier, 2002; Markland & Tobin, 2010). It is important for
future research to examine the dynamics among autonomy support, structure, and involvement in sport.

Fifth, all data were based on self-report measures, which introduces the possibility of bias due to common method variance. This systematic source of measurement error can inflate associations among constructs (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003). It is important for future research to utilize alternative measures, such as observation, to corroborate the findings of the current study. Observational measures rely on behaviorally anchored rating scales and offer a flexible means of assessing actual (rather than perceived) coach practice. Researchers have adopted this approach in other domains (Jang et al., 2010), and similar work is needed in sport.

Conclusion

Sport contexts that provide athletes with structure and autonomy support are associated with higher levels of behavioural engagement and lower levels of behavioural disaffection. This is because such contexts afford opportunities for satisfaction of autonomy, competence, and relatedness. In contrast, structure from coaches in the absence of autonomy support is unrelated to basic psychological need satisfaction. These findings underscore the importance of coaches’ providing guidance, expectations, and feedback (i.e., structure) in a way that respects athletes’ volition (i.e., autonomy support).
References

benefits of giving as well as receiving autonomy support: Mutuality in close friendships. Personality and Social Psychology Bulletin, 32, 313-327.

Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in...

indices as a function of their perceptions of the coach- and peer-created climate.

Psychology of Sport and Exercise, 7, 215-233.

Footnotes

1 Extending traditional approaches to mediation (Baron & Kenny, 1986; Sobel, 1986), these indirect effects are termed “conditional” because they are calculated using a product term that includes the interaction coefficient and the level of the moderator (i.e., \([a_1 + a_3W] b_1\), where \(a_1\) is the path from the independent variable to the mediator variable, \(a_3\) is the path from the interaction coefficient to the mediator variable, \(W\) is the level of the moderator, and \(b_1\) is the path from the mediator variable to the dependent variable; see Preacher et al., 2007), whereas unconditional indirect effects are calculated as the product of the coefficients (i.e., \(ab\)).
Table 1
Scale reliabilities, descriptive statistics, and intercorrelations for the study measures.

<table>
<thead>
<tr>
<th>Measures</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Structure</td>
<td>.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Autonomy Support</td>
<td>.64***</td>
<td>.73</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Basic Psychological Need Satisfaction</td>
<td>.39***</td>
<td>.44***</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Behavioural Engagement</td>
<td>.30***</td>
<td>.40***</td>
<td>.62***</td>
<td>.83</td>
<td></td>
</tr>
<tr>
<td>5. Behavioural Disaffection</td>
<td>-.21***</td>
<td>-.38***</td>
<td>-.41***</td>
<td>-.43***</td>
<td>.68</td>
</tr>
<tr>
<td>Composite Reliability (Dillon-Goldstein's rho)</td>
<td>.82</td>
<td>.81</td>
<td>.92</td>
<td>.88</td>
<td>.79</td>
</tr>
<tr>
<td>M</td>
<td>4.88</td>
<td>4.84</td>
<td>5.31</td>
<td>5.41</td>
<td>2.52</td>
</tr>
<tr>
<td>SD</td>
<td>1.19</td>
<td>1.09</td>
<td>1.01</td>
<td>1.14</td>
<td>1.08</td>
</tr>
</tbody>
</table>

Notes. Scale reliabilities (Cronbach’s α) are shown on the diagonal. The Cronbach’s α values for the individual measures that were used to form the basic psychological need satisfaction composite were as follows: autonomy (α = .85), competence (α = .87), and relatedness (α = .82).

***p < .001
Table 2

Unconditional indirect effect of structure from coaches to athletes’ behavioural engagement through their basic psychological need satisfaction.

<table>
<thead>
<tr>
<th>Sample Size = 245</th>
<th>Number of Bootstrap Resamples = 5,000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Direct and Total Effects</th>
<th>b</th>
<th>SE</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>b (YX)</td>
<td>.2822</td>
<td>.0582</td>
<td>4.84</td>
</tr>
<tr>
<td>b (MX)</td>
<td>.3298</td>
<td>.0501</td>
<td>6.58</td>
</tr>
<tr>
<td>b (YM.X)</td>
<td>.6647</td>
<td>.0612</td>
<td>10.86</td>
</tr>
<tr>
<td>b (YX.M)</td>
<td>.0630</td>
<td>.0519</td>
<td>1.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirect Effect and Significance Using Normal Distribution</th>
<th>Effect</th>
<th>SE</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.2192</td>
<td>.0391</td>
<td>5.61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bootstrap Results for Indirect Effect</th>
<th>Mean</th>
<th>SE</th>
<th>95% BCa CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.2192</td>
<td>.0430</td>
<td>(0.1419, 0.3126)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect Size for Indirect Effect</th>
<th>(\kappa^2)</th>
<th>SE</th>
<th>95% BCa CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.2384</td>
<td>.0397</td>
<td>(0.1652, 0.3215)</td>
</tr>
</tbody>
</table>

Notes. b (YX) = the total effect of the independent variable (structure) on the dependent variable (behavioural engagement). b (MX) = the effect of the independent variable on the mediator (basic psychological need satisfaction). b (YM.X) = the effect of the mediator on the dependent variable, controlling for the independent variable. b (YX.M) = the effect of the independent variable on the dependent variable, controlling for the mediator. \(\kappa^2 \) = standardised value of the indirect effect, where 0 implies no linear indirect effect and 1 implies that the indirect effect is as large as it could have been (Preacher & Kelley, 2011).

*** \(p < .001 \)
Table 3
Conditional indirect effect of structure from coaches to athletes’ behavioural engagement through their basic psychological need satisfaction.

Sample Size = 245
Number of Bootstrap Resamples = 5,000

<table>
<thead>
<tr>
<th>Predictor</th>
<th>b</th>
<th>SE</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (a₁)</td>
<td>-.6771</td>
<td>.2066</td>
<td>-3.28**</td>
</tr>
<tr>
<td>Autonomy Support</td>
<td>-.6120</td>
<td>.2287</td>
<td>-2.68**</td>
</tr>
<tr>
<td>Interaction (a₃)</td>
<td>.1812</td>
<td>.0432</td>
<td>4.19***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Predictor</th>
<th>b</th>
<th>SE</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Psychological Need Satisfaction (b₁)</td>
<td>.5986</td>
<td>.0651</td>
<td>9.19***</td>
</tr>
<tr>
<td>Structure</td>
<td>-.2736</td>
<td>.2134</td>
<td>-1.28</td>
</tr>
<tr>
<td>Autonomy Support</td>
<td>-.0836</td>
<td>.2345</td>
<td>-0.36</td>
</tr>
<tr>
<td>Interaction</td>
<td>.0541</td>
<td>.0452</td>
<td>1.19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Values of Moderator</th>
<th>(a₁ + a₃W) b₁</th>
<th>SE</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SD Below the Mean</td>
<td>.0023</td>
<td>.0489</td>
<td>0.48</td>
</tr>
<tr>
<td>At the Mean</td>
<td>.1216</td>
<td>.0439</td>
<td>2.77**</td>
</tr>
<tr>
<td>1 SD Above the Mean</td>
<td>.2409</td>
<td>.0590</td>
<td>4.09***</td>
</tr>
</tbody>
</table>

Notes. The conditional indirect effect is calculated by \((a₁ + a₃W) b₁\), where \(a₁\) is the path from structure to basic psychological need satisfaction (from the mediator variable model), \(a₃\) is the path from the interaction of structure with autonomy support to basic psychological need satisfaction (from the mediator variable model), \(W\) is autonomy support, and \(b₁\) is the path from basic psychological need satisfaction to behavioural engagement (from the dependent variable model).

\(p < .01\), *\(p < .001\)

Table 4

Unconditional indirect effect of structure from coaches to athletes’ behavioural disaffection through their basic psychological need satisfaction.

<table>
<thead>
<tr>
<th>Sample Size = 245</th>
<th>Number of Bootstrap Resamples = 5,000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Direct and Total Effects</th>
<th>b</th>
<th>SE</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>b (YX)</td>
<td>-.1909</td>
<td>.0567</td>
<td>-3.37***</td>
</tr>
<tr>
<td>b (MX)</td>
<td>.3298</td>
<td>.0501</td>
<td>6.59***</td>
</tr>
<tr>
<td>b (YM.X)</td>
<td>-.4159</td>
<td>.0676</td>
<td>-6.15***</td>
</tr>
<tr>
<td>b (YX.M)</td>
<td>-.0538</td>
<td>.0573</td>
<td>-0.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indirect Effect and Significance Using Normal Distribution</th>
<th>Effect</th>
<th>SE</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-.1372</td>
<td>.0307</td>
<td>-4.47***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bootstrap Results for Indirect Effect</th>
<th>Mean</th>
<th>SE</th>
<th>95% BCa CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effect</td>
<td>-.1372</td>
<td>.0322</td>
<td>{-0.2113, -0.0841}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Effect Size for Indirect Effect</th>
<th>(\kappa^2)</th>
<th>SE</th>
<th>95% BCa CI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.1463</td>
<td>.0307</td>
<td>{0.0919, 0.2141}</td>
</tr>
</tbody>
</table>

Notes. \(b (YX)\) = the total effect of the independent variable (structure) on the dependent variable (behavioural disaffection). \(b (MX)\) = the effect of the independent variable on the mediator (basic psychological need satisfaction). \(b (YM.X)\) = the effect of the mediator on the dependent variable, controlling for the independent variable. \(b (YX.M)\) = the effect of the independent variable on the dependent variable, controlling for the mediator. \(\kappa^2 = \) standardised value of the indirect effect, where 0 implies no linear indirect effect and 1 implies that the indirect effect is as large as it could have been (Preacher & Kelley, 2011). *** \(p < .001\)
Table 5

Conditional indirect effect of structure from coaches to athletes’ behavioural disaffection through their basic psychological need satisfaction.

| Sample Size = 245 | Number of Bootstrap Resamples = 5,000 |

Mediator Variable Model (DV = Basic Psychological Need Satisfaction)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>b</th>
<th>SE</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure (a₁)</td>
<td>-0.6771</td>
<td>0.2066</td>
<td>3.28**</td>
</tr>
<tr>
<td>Autonomy Support</td>
<td>-0.6120</td>
<td>0.2287</td>
<td>2.68**</td>
</tr>
<tr>
<td>Interaction (a₃)</td>
<td>0.1812</td>
<td>0.0432</td>
<td>4.19***</td>
</tr>
</tbody>
</table>

Dependent Variable Model (DV = Behavioural Disaffection)

<table>
<thead>
<tr>
<th>Predictor</th>
<th>b</th>
<th>SE</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Psychological Need Satisfaction (b₁)</td>
<td>-0.3617</td>
<td>0.0708</td>
<td>-5.11***</td>
</tr>
<tr>
<td>Structure</td>
<td>-0.1385</td>
<td>0.2320</td>
<td>-0.60</td>
</tr>
<tr>
<td>Autonomy Support</td>
<td>-0.5515</td>
<td>0.2549</td>
<td>-2.16*</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.0517</td>
<td>0.0492</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Conditional Indirect Effect at Different Values of Moderator

<table>
<thead>
<tr>
<th>Values of Moderator</th>
<th>(a₁ + a₃W) b₁</th>
<th>SE</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SD Below the Mean</td>
<td>-0.0013</td>
<td>0.0295</td>
<td>-0.04</td>
</tr>
<tr>
<td>At the Mean</td>
<td>-0.0727</td>
<td>0.0295</td>
<td>-2.47*</td>
</tr>
<tr>
<td>1 SD Above the Mean</td>
<td>-0.1441</td>
<td>0.0435</td>
<td>-3.31***</td>
</tr>
</tbody>
</table>

Notes. The conditional indirect effect is calculated by \((a₁ + a₃W) b₁\), where \(a₁\) is the path from structure to basic psychological need satisfaction (from the mediator variable model), \(a₃\) is the path from the interaction of structure with autonomy support to basic psychological need satisfaction (from the mediator variable model), \(W\) is autonomy support, and \(b₁\) is the path from basic psychological need satisfaction to behavioural disaffection (from the dependent variable model).

* \(p < .05\), ** \(p < .01\), *** \(p < .001\)
Figure 1. The hypothesized conditional process model.
Figure 2. Plot of the conditional indirect effect of structure from coaches to athletes’ behavioural engagement through their basic psychological need satisfaction.

Notes. \((a_1 + a_3 W)b_1 = \) the conditional indirect effect. The solid plot depicts the trajectory of the conditional indirect effect, and the dashed plots depict the upper and lower limits of the 95% BCa CI. The vertical lines depict the boundaries of the regional significance of the conditional indirect effect.
Figure 3. Plot of the conditional indirect effect of structure from coaches to athletes’ behavioural disaffection through their basic psychological need satisfaction.

Notes. \((a_1 + a_3W)b_1\) = the conditional indirect effect. The solid plot depicts the trajectory of the conditional indirect effect, and the dashed plots depict the upper and lower limits of the 95% BCa CI. The vertical lines depict the boundaries of the regional significance of the conditional indirect effect.
Appendix A

Items for the modified version of the Teacher as a Social Context Questionnaire

1. Every time I do something wrong, my coach acts differently
2. My coach gives me a lot of choices about how to do the tasks in football
3. My coach doesn’t make it clear what he/she expects of me in football
4. My coach is always getting on my case about work in football
5. My coach shows me how to complete tasks for myself
6. My coach makes sure I understand before he/she moves on
7. My coach talks about how I can use the things we learn in training
8. My coach keeps changing how he/she acts towards me
9. My coach doesn’t give me much choice about how I do activities in football
10. My coach always tells me what he/she expects of me in football
11. It seems like my coach is always telling me what to do
12. If I can’t complete a task, my coach shows me different ways to try to help me
13. My coach checks to see if I’m ready before he/she starts a new activity
14. My coach doesn’t explain why what I do in football is important to me
15. My coach listens to my ideas
16. My coach doesn’t listen to my opinion

Notes. Items 2, 4, 7, 9, 11, 14, 15, and 16 were used to assess autonomy support. Items 1, 3, 5, 6, 8, 10, 12, and 13 were used to assess structure. Items 1, 3, 4, 8, 9, 11, 14, and 16 were reverse scored.