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Abstract: The evolution of network technologies has witnessed a paradigm shift toward open and intel-
ligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising
solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy
multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN
ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have
gained considerable attention in recent years, offering promising avenues for network automation in
O-RAN. This paper presents a comprehensive survey of the current research efforts on network automa-
tion using ML in O-RAN. We begin by providing an overview of the O-RAN architecture and its key
components, highlighting the need for automation. Subsequently, we delve into O-RAN support for ML
techniques. The survey then explores challenges in network automation using ML within the O-RAN
environment, followed by the existing research studies discussing application of ML algorithms and
frameworks for network automation in O-RAN. The survey further discusses the research opportunities
by identifying important aspects where ML techniques can benefit.

Keywords: open radio access networks; machine learning; artificial intelligence

1. Introduction

Open Radio Access Network (O-RAN) is a revolutionary concept in the field of wireless
telecommunications that aims to transform traditional, proprietary Radio Access Networks
(RAN) into open, intelligent, and interoperable networks. The O-RAN concept involves
separating the hardware and software components of RANs and enabling interoperabil-
ity and integration of solutions coming from different vendors. This open architecture
is made possible through the use of open Application Programming Interfaces (APIs),
standardized interfaces, and virtualization technologies, which allow RAN components to
be disaggregated and easily swapped out or upgraded. Thus, O-RAN is expected to bring
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greater flexibility, innovation, cost-efficiency, design flexibility, operational adaptability,
system functionality, deployment scalability, and function expandability to RANs, while
also supporting the demands of next-generation networks and services such as 5G/6G,
Internet of Things (IoT), and edge computing.

Over the past couple of decades, wireless communications have gone through several
transformations to support massive connectivity and to meet the demands of modern real-
time and mission-critical applications, as the target 5G and 6G Key Performance Indicators
(KPIs) include ultra-high reliability, low latency, and high-throughput. However, despite of
all advancements made in wireless systems, particularly in 5G, achieving all these goals
remains challenging. The key problems confronting stakeholders in 5G and 6G systems
include efficiently supporting wireless access across diverse frequency bands, dealing
with heterogeneous technologies, addressing a wide variety of application requirements
leading to complex protocol stacks, and managing the rising capital and operational
expenditure (CapEx and OpEx) needed for infrastructure upgrades and maintenance [1].
These challenges include the need to design an independent, service-focused network
architecture due to the diversity of Quality of Service (QoS) requirements, achieving
network agility while ensuring backward compatibility with existing equipment and
support for future upgrades, and guaranteeing network efficiency to avoid increased
computational complexity and a heavy load on the backhaul network [2].

The motivation behind the development of the O-RAN concept lies on the fact that
traditional RAN systems are proprietary, i.e., closed systems, limiting mobile network
operators (MNO) to obtaining all the radio, hardware, and software systems from a single
supplier when deploying a network at each region. Aside from the considerable impact on
RAN deployment CapEx and OpEx, this implies the lack of openness and interoperability,
which can hinder innovation and agility. Traditional RANs are monolithic systems, which
are designed to operate as integrated products, seen by the operators as black-boxes.
Traditionally, at its most basic level, the RAN architecture consists of a radio unit (RU) or
remote radio unit (RRU), a baseband unit (BBU), antennas, and various software-based
interfaces. As described above, this results in difficulty meeting the very strict and diverse
KPIs of modern networks. Consequently, the consensus was that the mobile network
should be more software driven, virtualized, flexible, and intelligent to provide all the KPI
goals and address the aforementioned challenges.

The RAN evolution towards O-RAN started with disaggregation, defined by 3GPP in
Release 15 [3], where the 5G NR RAN (more specifically gNB) functionalities split into three
logical nodes: the Central Unit (CU), the Distributed Unit (DU), and the Radio Unit (RU).
The CU handles gNB functions like transfer of user data, radio access management, po-
sitioning, mobility, and session management. A DU function is dependent on the func-
tional split option, but mainly manages baseband processing functions across cell sites.
The CU operation is controlled by the CU. The RU component is located near or integrated
into the antenna unit where the radio signals are transmitted, received, amplified, and
digitized. In traditional RAN configuration, sometimes called distributed RAN (D-RAN),
BBU and RRH are co-located in the same place in the cell site, in which they are directly
connected via Common Public Radio Interface (CPRI). Disaggregation option provides
new levels of flexibility and efficiency at RAN level by enabling the network operators to
decide where to locate each function and maximize performance. In 2009, centralized or
cloud RAN (C-RAN) has emerged as an efficient solution, exploiting disaggregation to
move the BBU functionalities to a centralized location, called BBU pool, while leaving the
RRU and antenna on cell site. The principle design idea of C-RAN is to move some of RAN
functionalities to the cloud infrastructure, the BBU pool could be implemented on a cloud
platform [4]. The path towards O-RAN making mobile networks “more software driven,
virtualized, flexible, intelligent and energy efficient”, as well as “cost-efficient and reli-
able” [2], is paved through the use of Network Function Virtualization (NFV) concepts. The
O-RAN concept is supported by several standard bodies such as the O-RAN Alliance [5],
the Third Generation Partnership Project (3GPP) [6], the European Telecommunications
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Standards Institute (ETSI) [7], the Next Generation Mobile Networks (NGMN) [8], and the
Optical Internetworking Forum (OIF) [9], to ensure interoperability and interconnection
between O-RAN components from different vendors.

As O-RAN environments are inherently complex, characterized by heterogeneity
and dynamism, with various hardware and software components from different vendors
working together, Machine Learning (ML) is expected to be an invaluable tool. The effec-
tiveness and efficiency of O-RAN architectures are intricately tied to the integration of ML
capabilities. ML techniques offer a plethora of advantages within O-RAN architectures.
ML algorithms excel at real-time analysis of extensive network data, including KPIs, end-
user behaviors, and network traffic patterns, all in real-time. This analytical strength
empowers the prompt identification of trends, anomalies, and performance issues, fa-
cilitating network optimization and predictive maintenance [10]. Moreover, ML plays
a vital role in resource allocation by intelligently assigning radio resources, optimizing
resource utilization, and enhancing QoS [11]. Additionally, ML algorithms facilitate data-
driven decision-making in O-RAN management and orchestration functions, such as auto-
mated network configuration, dynamic spectrum allocation, and intelligent traffic steering.
This streamlined approach reduces network management complexity and empowers MNOs
to optimize network performance. Overall, ML is a very important tool for O-RAN as it
allows for the provision of insights, efficient resource allocation, and automated manage-
ment capabilities.

In this paper, we embark on a comprehensive exploration of the current landscape
concerning ML applications in O-RAN. Our objective is to identify and analyze the pre-
vailing challenges that remain unresolved, preventing the full harnessing of ML’s potential
for enhancing O-RANs. While there have been several O-RAN survey papers in the liter-
ature [1,4,12–19], our survey paper stands out as it concentrates on the applications and
potential of ML within the O-RAN context, which has not been extensively addressed
in prior surveys. Table 1 provides a summary of the topics covered in relevant surveys,
along with their contributions, in order to provide a clear comparison with our work.
It can be noted that most of the existing surveys aim to provide a detailed tutorial on RAN
evolution, O-RAN architecture, and components and use cases. They all have different
focuses compared to our paper. For example, ref. [16] specifically focuses on the security
and privacy risks associated with Open RAN architecture, which complements our survey.
Meanwhile, ref. [17] centers its attention on the Non-Terrestrial Network (NTN), offering
an architectural solution for an O-RAN-based NTN system. In addition, although [18,19]
both acknowledge the prevailing challenges and prospective research directions in this
field, ref. [18] primarily examines the existing O-RAN specifications, while [19] focuses
on how Explainable AI (XAI) can contribute to O-RAN networks. Among the existing
survey papers, refs. [14,15] have a similar focus on ML in O-RAN. Ref. [14] mainly provides
a tutorial on how intelligent applications can improve the efficiency of O-RAN and the
future opportunities in O-RAN, while [15] looks into how deep learning solutions can be
integrated to the O-RAN architecture, as well as case studies. However, ref. [15] primar-
ily focuses on deep learning techniques rather than general ML techniques. Moreover,
while [14,15] discuss open problems and future research directions, they primarily look
at these from the perspective of O-RAN, rather than looking at the specific challenges
and opportunities associated with ML-empowered O-RAN. Different from the existing
surveys, in this article, we dive deep into the ML integration in O-RAN, covering re-
cent research works that study the application of ML in O-RAN, discussing emerging
issues and research opportunities that shall be addressed to fulfill its design commitment.
We believe this survey marks a significant milestone as the first comprehensive endeavor
aimed at summarizing recent studies and providing crucial technical guidance to re-
searchers interested in ML-enabled O-RAN. Within this paper, we also present research
opportunities across diverse areas encompassing data collection and analysis, as well as the
development, deployment, maintenance, and operation of ML within the O-RAN domain.
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Table 1. Summary of surveys relevant to ML-enabled O-RAN. H: High, M: Medium, and L: Low.
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Remarks

2023 [1] H M M This paper provides a detailed tutorial on O-RAN, describing its
architecture, design principles, and the O-RAN interfaces.

2021 [4] H L L This paper overviews the idea of O-RAN and presents ongoing
O-RAN Alliance standardization activities in this context, fol-
lowed by a study of traffic steering use case.

2022 [12] H L L This paper provides a comprehensive survey of O-RAN develop-
ment, encompassing a summary of the RAN evolution history, an
introduction to O-RAN technology, an overview of Open RAN-
related projects and activities, a discussion of standardization
efforts, challenges, and potential solutions.

2021 [13] M L L This paper provides an overview of the O-RAN Alliance RAN
architecture, highlighting its core building blocks and, subse-
quently, it presents a practical use case that leverages AI/ML-
based innovations.

2022 [14] H M M This paper presents an O-RAN architecture overview, delves into
AI applications within Op-RAN, and discusses the challenges
and opportunities in implementing intelligent solutions in 5G
and B5G telecommunications.

2022 [15] H M M This paper focuses on mapping existing deep-learning-based
studies to the O-RAN architecture, highlighting key technical
challenges, open issues, and future AI-enabled O-RAN research
directions.

2023 [16] M L L This paper examines security and privacy risks in O-RAN ar-
chitecture, proposes possible solutions and presents relevant
security standardization efforts.

2023 [17] M L L This paper focuses on Non-Terrestrial Networks exploring the
possible implementation of an O-RAN-based NTN solution.

2022 [18] H L L This paper identifies critical limitations in current O-RAN speci-
fications: security, latency, real-time control, and AI-based RAN
control.

2023 [19] H M L This paper focuses on XAI methods and explores their deploy-
ment within the context of O-RAN.

The structure of the remaining sections in this paper is as follows. Section 2 provides an
overview of the O-RAN architecture and its development, highlighting its design principles
that support network automation. In Section 3, we survey the existing ML applications
in the context of O-RAN. Section 4 focuses on the potential of O-RAN and discusses the
research opportunities for applying ML techniques to enhance various aspects of mobile
network operation within the O-RAN framework. Finally, Section 5 concludes the survey
and discussion presented in this paper. We illustrate the organization of this paper in
Figure 1.
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Figure 1. The overall structure of this paper.

2. O-RAN Architecture and Development

O-RAN architecture is a virtualized, software-driven, and open radio access network
(RAN) architecture that enables the integration of hardware and software components from
multiple vendors. It is designed to be modular, scalable, and flexible, with standardized
interfaces that enable interoperability between different RAN components. The O-RAN
architecture consists of multiple functional components that can be separated and managed
independently. Some of the key components in O-RAN are Radio Unit (RU), Distributed
Unit (DU), Central Unit (CU), RAN Intelligent Controller (RIC), and Service Management
and Orchestration (SMO). In the following, we shall first describe the O-RAN alliance,
architecture and softwarization developments, as well as their role in ML for O-RAN
network automation.

2.1. O-RAN Alliance

The O-RAN Alliance is a global industry consortium that was founded in 2018 to drive
the development and adoption of open and intelligent Radio Access Networks (RAN).
The alliance is made up of more than 200 member organizations, including mobile network
operators, network equipment vendors, and software companies.

The goal of the O-RAN Alliance is to create a more open, interoperable, and cost-
effective RAN ecosystem that can accelerate the deployment of 5G networks and support
new use cases and services. To achieve this goal, the O-RAN Alliance focuses on three
main areas:

• Standardization: the O-RAN Alliance works to develop and promote open standards
for RAN interfaces and APIs, enabling multi-vendor interoperability and reducing
network deployment costs;

• Software: the O-RAN Alliance develops and promotes open software for RANs,
including software-defined radio (SDR), virtualized RAN (vRAN), and open APIs for
software integration;

• Testing and integration: the O-RAN Alliance provides specifications, conformance
testing, and integration guidelines to ensure that O-RAN solutions can be easily inte-
grated into existing network environments and can interoperate with other vendors’
solutions.

Through its work in these areas, the O-RAN Alliance is helping to create a more open,
flexible, and efficient RAN ecosystem that can meet the demands of 5G networks and
support new use cases and services, such as industrial IoT, autonomous vehicles, and
smart cities.
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2.2. O-RAN Architecture

The O-RAN architecture is a set of open interfaces and protocols designed to enable
multi-vendor interoperability and support a wide range of use cases and services in RAN.
The architecture defines a modular and disaggregated approach to building RAN systems,
where different functional components can be developed and deployed independently by
a variety of vendors. Such an approach intends to increase innovation, reduce costs, and
enable faster deployment of new services and features.

The O-RAN architecture specifies main components and interfaces connecting the
components. The interfaces allow the Service Management and Orchestration (SMO) frame-
work to connect with O-RAN network functions and O-Cloud. Figure 2 illustrates the high
level O-RAN architecture, which can be viewed as Virtualized Network Functions (VNFs)
placed above the O-Cloud and/or Physical Network Functions (PNFs). The A1 Interface
between the Non-RT RIC in the SMO and the Near-RT RIC used for RAN Optimization,
O1 Interface between the SMO and the O-RAN Network Functions used for Fault, Con-
figuration, Accounting, Performance, Security (FCAPS) support and in the hybrid model.
The Open Fronthaul M-plane interface between SMO and O-RU supports FCAPS too.
While the O2 Interface between the SMO and the O-Cloud provides platform resources and
workload management, the O-Cloud Notification interface allows event consumers such
as an O-CU implemented on O-Cloud to subscribe to events or status. Moreover, the Y1
interface permits the Y1 consumers to subscribe or request the RAN analytics information
delivered by Near-RT RIC. Where the Y1 consumer stands for an entity or more, within
or outside of the public land mobile network (PLMN) trust domain that ingests analytics
information services after mutual authentication and authorization by subscribing to or
requesting the RAN analytics information via the Y1 service interface. There are three
main control loops that run simultaneously in O-RAN, depending on the use cases, which
are real-time (RT), which is limited to a maximum of 10 ms execution time texe; Near-RT,
with 10 ≤ texe ≤ 1000 ms; and None-RT, which can take 1000 ≤ texe ms. Multi-vendor
Slices use case targets enabling functions that belong to different vendors; there are many
possible configurations to deploy the Multi-vendor slicing, all of which share that one
O-RU is connected to one or more O-DUs. The advantages of such a use-case include a
higher flexibility and rapid deployment of services to market by network operators, sharing
RAN equipment among operators, optimizing CAPEX and OPEX among their existing
assets, and future investments. In addition, reducing the supply chain risk; for example,
if an existing vendor supplies a certain pair of vO-DU and vO-CU functions and if, for
business reasons or even political situations, it has to withdraw from a certain market,
then the operator can outsource and deploy alternative vO-DU and vO-CU that support
multi-vendor slicing functions. The O-RAN specification work has been covered by eleven
technical Work Groups (WG) to covers all the O-RAN Architecture parts, each WG has been
supervised by the O-RAN alliance technical steering committee. Below is a brief overview
of each WG:

• WG1: Use Cases and Overall Architecture. This WG is responsible for defining the
overall architecture of Open RAN and the use cases that it will support;

• WG2: Non-Real-Time RAN Intelligent Controller and A1 Interface. This WG is
responsible for defining the specifications for the Non-Real-Time RIC (Non-RT-RIC)
and the A1 interface. The Non-RT-RIC is a centralized controller that manages the non-
real-time aspects of the RAN. The A1 interface is the interface between the Non-RT-RIC
and the radio units;

• WG3: Near-Real-Time RIC and E2 Interface. This WG is responsible for defining the
specifications for the Near-Real-Time RIC (nRT-RIC) and the E2 interface. The nRT
RIC is a centralized controller that manages the near-real-time aspects of the RAN.
The E2 interface is the interface between the nRT RIC and the radio units;

• WG4: Open Fronthaul Interfaces. This WG is responsible for defining the specifications
for the open fronthaul interfaces. The fronthaul is the interface between the baseband
unit and the radio units;
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• WG5: Open F1/W1/E1/X2/Xn Interfaces. This WG is responsible for defining the
specifications for the open F1/W1/E1/X2/Xn interfaces. These interfaces are used to
communicate between different parts of the RAN;

• WG6: Cloudification and Orchestration. This WG is responsible for defining the
specifications for cloudification and orchestration of the RAN. Cloudification is the
process of moving the RAN to the cloud. Orchestration is the process of managing
the RAN;

• WG7: White-box Hardware. This WG is responsible for defining the specifications
for white-box hardware for the RAN. White-box hardware is hardware that is not
proprietary to a specific vendor;

• WG8: Stack Reference Design. This WG is responsible for defining the stack reference
design for the RAN. The stack reference design is a model of the RAN that can be used
to develop and test different RAN implementations;

• WG9: Open X-haul Transport. This WG is responsible for defining the specifications
for open X-haul transport for the RAN. X-haul transport is the transport of data
between the baseband units and the radio units;

• WG10: OAM. This WG is responsible for defining the specifications for operation, ad-
ministration, and maintenance (OAM) for the RAN. OAM is the process of monitoring
and managing the RAN;

• WG11: Security. This WG is responsible for defining the specifications for security
for the RAN. Security is a critical part of the RAN, and this WG is responsible for
ensuring that the RAN is secure.

Figure 2. High-level architecture of O-RAN showing internal, 3GPP, and external system inter-
faces [20].

Figure 3 provides further detail of the O-RAN architecture. As can be seen, O-RAN
consists of O-RU, O-DU, O-CU, Near-RT RIC, Non-RT RIC, and SMO. The Uu interface
between UE and O-RAN components inside the green dashed area, as well as the UE
and O-eNB, denote all the O-RAN functions required to support the Uu interface NR. On
the other hand, the O-eNB terminates the Uu interface for LTE. The 3GPP defined and
maintained interfaces and is considered part of the O-RAN architecture includes the E1,
F1-c, F1-u, NG-c, NG-u, X2-c, X2-u, Xn-c, and Xn-u, as depicted in Figure 3 [20]. In the
following, we shall elaborate these O-RAN components.
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Figure 3. Logical architecture of O-RAN, its associated interfaces, and the three control loops.

2.2.1. O-RU

The major O-RU hardware and software components in Figure 4 highlight the internal
and external interfaces that are required. The O-RU terminates the O-RAN Fronthaul
(FH) interface, known as Lower Layer Split, as well as Low-PHY functions of the radio
interface towards the UE. This is a physical node. The O-RU terminates the O-RAN
Fronthaul M-Plane interface towards the O-DU and SMO. The O-RU termination of the O1
interface towards the SMO is under study under the O-RAN Operations and Maintenance
Architecture. A single split point, known as “7−2x”, but which allows a variation, with
the precoding function located either “above” the interface in the O-DU or “below” the
interface in the O-RU. For the most part, the interface is not affected by this decision, but
there are some impacts, namely to provide the necessary information to the O-RU to execute
the precoding operation. O-RU(7−2) within which the precoding is not done (therefore
of lower complexity) are called “Category A” O-RUs, while O-RU(7−2) within which the
precoding is done are called “Category B” O-RUs, as in Figure 5.

Figure 4. O-RU high-level architecture showing the main hardware components, and internal and
external interfaces.
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Figure 5. The O-DU(7−2)/O-RU(7−2) split point option showing requirements for Category A and
Category B for the O-RU.

2.2.2. O-DU

The O-DU is designed as a white box that performs the O-DU functions, such as
upper L1 and lower L2 functions. The hardware includes a motherboard that contains a
processing unit, memory, the internal I/O interfaces, and external connection ports. There
are two split options for the O-DU, which are O-DU(6) and O-DU(7−2). WG4 considers the
O-DU(7−2) functional split option due to the two competing interests. The first is to keep
an O-RU as simple as possible, because size, weight, and power draw are the primary
deciding considerations, and the more complex an O-RU, the larger, heavier, and more
power-hungry the O-RU tends to be. The second is to have the interface at a higher level,
which tends to reduce the interface throughput relative to a lower-level interface. However,
the O-RU tends to be the more complex with higher levels of interface.

The fronthaul and backhaul interface are used to carry the traffic between O-RU(7−2),
FHM(7−2), FHGW(7−2)→8 and O-DU(7−2), as well as O-CU and O-DU(7−2). The O-DU(7−2)
design may also provide an interface for hardware accelerator option design. The other
hardware functional components include synchronization and timing, the storage for
software, hardware and system debugging interfaces, and board management controller,
just to name a few; the O-DU(7−2) designer will make decision based on the specific needs
of the implementation. Note that the O-DU(7−2) hardware reference design is also feasible
for O-CU and integrated O-CU/O-DU(7−2).

2.2.3. O-CU

The O-CU is another white box hardware that performs the O-CU function of upper L2
and L3. The O-CU hardware motherboard contains a processing unit, memory, the internal
I/O interfaces, and external connection ports. The midhaul (MH) is used to carry the traffic
between O-CU and O-DU(7−2), and the backhaul (BH) interface is for carrying the traffic
between the O-CU and core network. Other hardware functional components, such as
the storage for software, hardware and system debugging interfaces, board management
controller, and more, are based on the specific needs of the implementation. The hardware
of the O-CU is similar to the O-DU(7−2). However, the hardware accelerator is mandatory
to offload computationally intensive functions and to optimize the performance under
varying traffic and loading conditions.

2.2.4. Near-RT RIC

The Near-RT RIC is a logical function that can control and optimization RAN elements
and resources in near real time by collecting detailed data from the O-RAN logical compo-
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nents and provide actions over the E2 interface. In addition, the A1 Interface enables Non-
RT RIC to drive the policy guidance of the Near-RT RIC applications/functions and support
AI/ML. Near-RT RIC hosts many functions in Figure 6, which include the following:

• Database and related Shared Data Layer (SDL) services: to exchange information
between RAN and UE to support specific use cases;

• xApp subscription management: to manage subscriptions from different xApps and
provides unified data distribution to xApps;

• Conflict mitigation: to resolve potentially overlapping or conflicting requests from
multiple xApps;

• Messaging infrastructure: to allow message interaction within the Near-RT RIC functions;
• Security, which provides the security scheme for xApps;
• Management services: to manage fault, configuration and performance as a service

producer to SMO;
• Logging service: to provide tracing and metrics collection which capture, monitor,

and collect the status of Near-RT RIC internals and transfer to external systems for
further evaluation if needed;

• Interface termination: to provide interfacing to other O-RAN components;
• Functions hosted by xApps: to allow services to be executed at Near-RT RIC;
• API-Enabled function: to support capabilities related to Near-RT RIC API operations

such as API repository/registry, authentication, discovery, generic event subscrip-
tion, etc.;

• AI/ML support: to feature data pipelining, training, and performance monitoring for
xApps;

• xApp Repository function: to manage selection of xApps for A1 message routing,
based on the A1 policy types and operator policies, and Access control of A1-EI types
for xApps based on operator policies.

Figure 6. Near-RT RIC functional architecture including the Near-RT RIC API component for the
xApps.

2.2.5. SMO and Non-RT RIC

The telecom industry widely considers the service-based architectural in network
implementation to give flexibility and future-proof solutions. In addition, the choice of
components that produce and/or consume certain services to the deployment allows
multi-vendor interoperability through the definition of standardized services and service
interfaces. It is important to have the perspective of two Non-RT RIC architecture views;
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the first one is the “Functional” view in Figure 7, showing the internal SMO framework and
the three categorical components: rApps, Non-RT RIC framework and the open APIs for
the rApps, while the “Service-based” view allows wide range of flexibility for deployment
and is future-proof, the main principles for this architecture illustrated in Figure 8 are
modularity, extensibility, functional abstraction, discoverability, composability, reusability,
and loose coupling.

Figure 7. Non-RT RIC functional architecture, showing the R1 and external interfaces [21].

Figure 8. Non-RT RIC architecture service-based view, in which the services are exposed to rApps
via the R1 [21].

2.2.6. O-RAN Interfaces

The O-RAN architecture is designed to promote interoperability, multi-vendor support,
and innovation in the RAN. Here are the main interfaces specified in the O-RAN architecture:

• Open Front Haul (OFH) interface: this interface connects the O-RU to the O-DU and
carries the digitized baseband signal and control information between the two units;
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• Fronthaul interface: This interface connects the O-RU to the O-CU in the O-RAN
Cloud RAN architecture. The interface carries the digitized baseband signal and
control information between the O-RU and the O-CU;

• E1 interface: This interface connects the O-DU to the O-CU and carries control and
management information between the two units;

• E2 interface: This interface connects the O-CU to the O-CU-CP and carries control and
management information between the two units;

• A1 interface: This interface connects the O-RAN Controller to the O-RAN Element
Management System (EMS) and provides management and monitoring capabilities
for the O-RAN network;

• O1 interface: This interface connects the O-RAN SMO to the O-RAN Controller and
provides service orchestration and management capabilities;

• O2 interface: This interface connects the O-RAN Controller to the O-RAN Radio
Resource Management (RRM) and provides resource management and optimization
capabilities for the O-RAN network;

• O3 interface: This interface connects the O-RAN Controller to the O-RAN Network
Management (NM) and provides network management and monitoring capabilities.

2.2.7. Interface with 3GPP

3GPP interfaces are also used in O-RAN to provide message exchanges between O-RAN
components following 3GPP signaling specifications. They are summarized as follows:

• X2 interface: The X2 interface is used to exchange control information and user data
between different eNodeBs (eNBs) in a 4G/LTE network. It is also used to facilitate
inter-cell handovers and load balancing. O-RAN uses the same X2 interface for
communication between O-RAN radio units and between the O-RAN radio units and
3GPP core network;

• S1 interface: The S1 interface is used to exchange control and user plane information
between the eNodeB and the 4G/LTE core network. This interface is responsible for
mobility management, session management, and connection management. O-RAN
uses the same S1 interface for communication between the O-RAN radio unit and the
3GPP core network;

• F1 interface: The F1 interface is a new interface introduced by O-RAN that connects
the O-RAN radio unit to the O-RAN distributed unit. This interface carries the radio
frequency (RF) signals and also supports the exchange of control and management
information. The F1 interface is similar to the W1 interface used in 3GPP’s split
architecture;

• E2 interface: The E2 interface is used in the 5G RAN to exchange control and man-
agement information between different network functions, including the radio access
network function (RANF), central unit (CU), and distributed unit (DU). The O-RAN
Alliance has developed an E2 interface specification that is compatible with the 3GPP
E2 interface.

2.3. ML Workflow in O-RAN

ML workflows in O-RAN involve a series of steps that enable the development,
deployment, and optimization of ML models for network operations. The workflow
consists of several stages of processing. We shall elaborate the processes involved in ML
workflow in the following [22]:

• Data collection: The first step in the ML workflow is to collect and preprocess the data.
This involves identifying the relevant data sources, collecting the data, and preparing
it for analysis. This step is crucial as the quality of the ML model depends on the
quality of the data used to train it;

• Data exploration and analysis: In this step, the collected data are explored to gain
insights and identify patterns. This involves data visualization, statistical analysis, and
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other data exploration techniques to understand the underlying structure of the data.
This step is important for selecting appropriate ML algorithms and for identifying
relevant features that can be used to train the models;

• Model development: In this step, ML algorithms are selected and trained using the
data. This involves selecting the appropriate algorithms, feature engineering, and
tuning the model hyper-parameters. Once the model is trained, it is evaluated and
validated to ensure that it is accurate and reliable;

• Model deployment: In this step, the trained model is deployed into the O-RAN
environment. This involves integrating the model into the network operations en-
vironment and deploying it in a way that allows it to access the relevant data and
provide real-time predictions or recommendations. This step also involves monitoring
the performance of the deployed model to ensure that it is performing as expected;

• Model optimization: Once the model is deployed, it needs to be optimized to improve
its performance. This involves monitoring the performance of the model in real-time,
identifying areas for improvement, and updating the model as necessary. This step
is crucial for ensuring that the ML models continue to provide accurate and reliable
predictions and recommendations over time;

• Model maintenance: The final step in the ML workflow is model maintenance. This
involves maintaining the ML model, updating it as necessary, and ensuring that it re-
mains aligned with the evolving needs of the O-RAN network operations environment.

Overall, the ML workflow in O-RAN involves a series of steps that enable the develop-
ment, deployment, and optimization of ML models for network operations. By leveraging
the power of ML, network operators can improve network performance, reduce energy
consumption, and provide a better user experience.

2.4. O-RAN Open Source Development Landscape

During the past few years, open source platforms for cellular networks have been
developed to move away from proprietary hardware and mitigate technological bar-
riers [23–26]. The main open source projects implementing O-RAN specifications are
OpenAirInterface (OAI) [24], srsRAN [25] and O-RAN Software Community (O-RAN
SC) [23]. These three communities are sharing the source code of different modules with
different states of progress. For example, the OAI has implemented the CU/DU split by
supporting Software Defined Radio (SDR) USRP devices [27] for RU and on-the-shelf UEs.
The testbed Colosseum [28] was built to provide remote access to OAI resources configured
with 256 SDRs. It is a large-scale wireless testbed with a massive channel emulator, which
enables the design, development, and testing of solutions at scale in various deployments
and channel conditions. The testbed is open to the research community and can be used
for experimental research with different applications. On the other hand, srsRAN has
developed full stacks of UE and gNB with a simple setup compared to the OAI platform.
The O-RAN SC has published partly their industrial solutions of the O-DU with Medium
Access Control (MAC) and Radio Link Control (RLC) protocols. In parallel, the Software-
Defined Radio Access Network (SD-RAN) paradigm enables RAN programmability and
introduces new APIs for control extending platforms like OAI and srsRAN to support
control/data plane separation [29]. The objective of SD-RAN is to focus on the L2 proto-
cols: Radio Resource Control (RRC), RLC, MAC and Packet Data Convergence Protocol
(PDCP) protocols. FlexRAN [30] is an example of SD-RAN platforms promising flexibility
by supporting dynamic control functions and robustness by handling network applica-
tions with critical real-time requirements. Other new SD-RAN controllers, such as the
5G-EmPower [31], deal with other challenges like heterogeneity of mobile RANs or RAN
slicing with NexRAN [32]. These open source platforms and APIs represent key first steps
toward the availability of a fully open-source O-RAN solution.

These platforms allow the research community to experiment with new methods
and replace the simulation hypothesis. The research results would be with significant
impact. Furthermore, without the shift of the softwarization of the RAN functions as



Sensors 2023, 23, 8792 14 of 35

close as possible to the antenna, the ML algorithms cannot be applied efficiently for
the reconfiguration of the network. In addition, the 3GPP specifications are upgraded
frequently with new interfaces and protocols to improve the global network performances
and handle new applications. For example, the 3GPP release 17 introduces new NTN and
satellite communications and the new Multicast/Broadcast Session (MBS) in the definition
of protocols’ functions. If the RAN is closed with a full hardware implementation, the
solution would not be maintained quickly and the research community would not have
access to new challenges. However, the flexibility of the software radio would allow the
designer and the researcher to quickly maintain the O-RAN solutions as well as design,
prototype, demonstrate, and analyze the O-RAN functions in the real-world settings.

There remain challenges in the implementation and testing of open source O-RAN
solutions. Limited use cases, missing functionalities in the current implementation, as
well as the affordability of hardware devices are some obstacles to make further progress
in O-RAN implementation. For example, at the time of writing, O-RAN SC [23] shares
only the O-DU without the complete implementation of the CU. This O-DU handles the
registration of one UE with one distributed unit and without the possibility to test it with an
SDR. The srsRAN [25] and O-RAN SC [23] support the release 15 of the 3GPP specifications,
and they do not support the side link V2X communications use case. The OAI [24] uses
USRP X300, which is a capital outlay. Therefore, research and development efforts, such as
developing a specific SD-RAN for existing RIC implementation (for example, FlexRIC [33]),
or supporting new 3GPP specifications (for example, splitting of the CU into CU-UP and
CU-CP [34]), are open for both research and industrial communities to contribute.

3. ML Application in O-RAN

One key advantage of the Open RAN architecture is its ability to separate intelligent
controls from the core network. This architecture gives flexibility for RAN to incorporate
intelligence toward network control. With this architecture, ML can be easily integrated into
Open RAN, not only to automate and optimize network operations, but also to improve
network efficiency, introducing new use cases and services that are traditionally challenging
to implement in the RAN.

While being developed, the concept of Open RAN has already sparked many research
works in investigating the potential of Open RAN and its performance benefits. Notably,
substantial research works focusing on applying ML algorithms in Open RAN have ap-
peared in the literature. Improvements, such as optimizing radio resource management
and network slicing, automating component deployment for efficient use of computing
and communication resources, or improving energy efficiency, are some research activities
receiving attention. The structure of this section is summarized in Table 2, and the content
in each subsection is summarized in Tables 3–12.

Table 2. The structure of Section 3 for ML applications in Open RAN.

Title Ref Title Ref

Section 3.1 O-RAN Deployment [15,35] Section 3.2 AI/ML Implementation [22,36]

Section 3.3 Network Slicing [37–40] Section 3.4 Dynamic Function Split [41–43]

Section 3.5 Resource Management [44–47] Section 3.6 Session Management [48–50]

Section 3.7 Traffic Steering [4,51,52] Section 3.8 Mobility Management [53]

Section 3.9 Energy Efficiency [54] Section 3.10 Satellite NTN [55]

3.1. O-RAN Deployment

The deployment of an Open RAN poses challenges in terms of computing and network
resources. Integrating hardware and software components from multiple vendors can
lead to issues with resource allocation, such as conflicts over computing power, storage,
and bandwidth. Interoperability challenges can also lead to inefficiencies in resource
utilization, as different components may have different requirements and capabilities.
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In addition, security concerns related to access control, data protection, and privacy can
require additional computing and network resources to address. Overall, the deployment
of O-RAN requires careful planning and management of computing and network resources
to ensure optimal performance and security.

In [15], the authors investigate how the deep-learning mechanisms could be deployed
in an O-RAN architecture, via its hierarchical RIC modules. In particular, its O-RAN
placement within the Near-RT RIC, O-CU, O-DU, and O-RU modules, as well as the
associated functional blocks and O-RAN interfaces, is discussed. The authors describe
the general procedure to implement automated DL models in O-RAN to achieve stable
performance of these models by introducing ML system operations (MLOps) concept in
O-RAN. They then go deeper and explore two case studies for DL deployment in O-RAN,
which are classified as supervised and/or deep reinforcement learning (DRL).

For supervised learning, the authors identify two approaches to deployment: a central-
ized approach and a federated learning (FL) distributed architecture. The authors propose
that for either approach, in order to enhance RAN performance and reduce operational
cost, RICs would integrate embedded ML capability. To achieve this, local models (i.e.,
“xAPPs”) would run in the Near-RT RIC and global model parameters would be generated
by the Non-RT RIC. In the centralized case, the data would be held in the Non-RT RIC, but
for FL, the xApps could be built in the Near-RT RIC using O-RU level data, and just the
local parameters transmitted to the Non-RT RIC for aggregation, leaving the data to be held
locally. In either approach, the Non-RT RIC would then send out the global parameters
to the xApps to update their models, which then operate in real-time using data obtained
from the O-RUs via the O1 interface.

In the case of reinforcement learning (RL), the authors focus the deployment strategy
on the actions of the RL algorithm intelligent agent(s), which should be deployed near the
Near-RT RIC to improve the performance of xApps. This agent then uses the E2 interface
to communicate with the O-DU and O-CU-C/U modules to take periodic actions to update
the policy of resource allocation and scheduling in the O-DU’s MAC layer.

Additionally, the agent connects to the O-RU through the O1 interface to receive the
obtained reward based on user experience quality and new state of the system expressed
by the total number of allocated resource blocks and users’ density. By using inputs and
rewards, the ML model can be trained to make data-driven decision more accurately.

The authors then discuss options for control of the training and deployment process
for ML systems. The first option is a fully manual process with review by network staff
before deployment of an updated run-time system. The authors envisage that this will be-
come inadequate, however, in cases where data profiles vary with time, requiring frequent
retraining. They propose an automated pipeline process, triggered by various predefined
criteria, to retrain, validate, and deploy the updated ML systems. Pipeline metadata are
retained in case a roll-back to a previous model is required, and to assist in debugging.
The performance of RAN, which is based on manually created and deployed ML models,
may degrade due to the dynamics of the radio access environment, or even the data profiles
of the environment; as a result, the authors propose a general procedure to implement
automated DL models in O-RAN to achieve the stable performance of such O-RAN models,
called MLOps. Furthermore, the Non-RT-RIC module can monitor the Near-RT-RIC perfor-
mance for implementing the ML models using the A1 interface to pass the information to
enable ML automation. In addition, the article shows that the O-RAN architecture supports
the design of machine-learning-based schemes to provide optimization for the Automatic
Neighbor Relation (ANR) function of a Self Organizing Network (SON), which allows
gNodeB handovers process improvement and provides an example article [56], where both
Acumos Framework and Open Network Automation Platform (ONAP) were used to create
the ML models that the O-RAN RIC module can execute, monitor, and manage the model
design workflow with.

Finally, the authors identify a number of open problems in the deployment of DL
systems in O-RAN. A critical issue is security, where the large number of new interfaces
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and the potential lack of trust between the components results in a significant number of
new threats. The authors also identify issues with the integration of network slicing, self-
organizing network functions and edge computing entities, the use of online DL systems,
scalability, and challenges with energy management.

In order to overcome the challenges with the integration of network slicing capabili-
ties within the O-RAN environment, the authors of [35] tried to optimize the admission
and placement of O-RAN slices using DRL. The authors emphasize that while previous
works considered the placement of slices to optimize processing and bandwidth resources,
they have not considered admission control or the long-term impact of admitting a slice.
The authors propose an optimization model using a joint RL approach to intelligently
admit and place network slices in the available resources of different load scenarios.
The proposed solution is compared with two baseline methods, a greedy heuristic and a
DRL-based solution (RMAX) [57], under two load scenarios, low and high load. The results
show that the proposed solution outperforms the baseline methods in terms of revenue,
cost, and total profit for both scenarios, and therefore maximizes the long-term profit of
infrastructure providers by considering revenue factors of slices and the idle cost of servers
to deploy them.

Table 3. Summary of current efforts on ML applications for O-RAN deployment.

Year Ref Contribution

2022 [15]

Proposed a centralized/federated learning approach for the deployment of deep
learning mechanisms in the O-RAN architecture, while the integration of RL mecha-
nisms is associated with the Near-RT RIC, O-CU, O-DU, and O-RU modules. The E2
and O1 interfaces are explored for RL-based resource allocation and scheduling.

2022 [35]
Proposed a joint DRL-based solution using PPO to solve an optimization problem
aiming to intelligently admit and place network slices in the O-RAN environment
considering the available resources and different network loads.

3.2. AI/ML Workflow Implementation in O-RAN

The O-RAN specification addresses the overall architecture and solution for AI/ML
Workflow-related requirements in [22] for the O-RAN use cases. These requirements allow
automating AI scaling, where Data, Model Training, and Model Evaluation pipelines are
key points to make AI faster, easier to deploy, and able to scale to larger and more complex
problems.

In [36], the authors adopt the importance of ML training pipeline automation to
propose ML pipeline automation techniques to apply the MLOps level 1 (ML pipeline
automation) to the RIC platform, where they use Kubeflow for supporting the end-to-end
lifecycle of the model management and propose the training pipeline automation to the RIC
Platform to conduct the online training process. However, the authors use the KFServing
inference service to deploy Kubeflow’s trained model. The new ML xApp type structure
removed the RMR/gRPC adapter and replace it by using a Shared Data Layer (SDL) and
RIC Message Router (RMR) libraries directly from the ML xApp. The authors show that
the round trip time of the inference request between assisted xApp and ML xApp reduced
significantly when the number of requests is more than 300. To find how an RL model
application performs under the proposed RIC AI/ML workflow, the authors trained it
to solve the resource allocation in the DU optimization problem using PPO to show the
improvement in user throughput.
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Table 4. Existing studies on ML applications for AI/ML implementation in O-RAN.

Year Ref Contribution

2021 [22] Provides an initial O-RAN standard the terminology, workflow, and requirements,
related to AI/ML model training, distribution and deployment.

2021 [36] Proposed ML pipeline automation technique to manage ML training in O-RAN RIC.

3.3. Network Slicing

Network slicing in O-RAN refers to the ability to partition a physical network into
multiple virtual networks, each tailored to specific use cases or applications. Each network
slice has its own set of resources, including bandwidth, processing power, and storage,
which can be dynamically allocated and managed according to the needs of the specific use
case. O-RAN network slicing enables operators to offer customized services to their cus-
tomers, such as low-latency communication for industrial applications or high-bandwidth
streaming services for consumers. It also allows multiple services to be delivered over the
same physical infrastructure, maximizing resource utilization and improving efficiency.
The O-RAN architecture provides a framework for implementing network slicing, with the
RAN and the CN working together to manage and allocate resources. The RAN is respon-
sible for managing the radio access resources, while the CN is responsible for managing
the core network resources. Together, they can allocate and manage resources across the
network slices as required.

The synergies between O-RAN and network slicing, as well as SON and MEC tech-
nologies, were explored in [58], where the O-RAN platform was proposed as a common
denominator for the integration of those technologies via proper modifications and exten-
sions of its present architecture. It has been shown that an O-RAN-centric approach is
beneficial, and such integration solves some of the issues not well-addressed by the current
O-RAN implementation. Also, due to the integration, some components of the contributory
technologies can be removed or reused.

ML algorithms can be used to automate the process of creating, modifying, and
deleting network slices based on changing network conditions. By combining predictive
analytics, real-time monitoring, optimization, and intelligent resource allocation, ML al-
gorithms can create a closed-loop feedback system that can automatically adjust network
slices to meet changing network conditions. The main point is to enable the third party to
develop better ML algorithms. Particularly for network slicing, we can capture data for
training purposes so as to improve the efficiency of network slicing. Based on real-time
monitoring, ML algorithms can identify changes in network conditions. By monitoring
network performance, ML algorithms can detect changes in network traffic, demand, and
capacity, and can modify network slices in response. Then, ML algorithms can be trained to
learn how to optimize network slicing based on changing network conditions. By consider-
ing factors such as network traffic, user demands, and network capacity, machine learning
algorithms can adjust the size and characteristics of network slices to improve network
performance and reduce energy consumption. With the network slicing, ML algorithms
can then optimize the allocation of network resources to different network slices based on
changing network conditions. By learning from historical data and network performance
metrics, machine learning algorithms can adjust the allocation of network resources to
different slices in real-time, and can optimize resource utilization to improve network
performance and reduce energy consumption.

In particular, ML can be of help to network slicing by (i) traffic forecasting; (ii) ad-
mission control; and (iii) resource allocation [37]. They reflect three key network slicing
building blocks that, together, aim at ensuring network slicing service level agreements
(SLAs) are fulfilled. The traffic forecasting block allows us to predict the evolution of traffic
load and resource usage for slices over future time instants. The outcome of the traffic
forecasting solution can be fed into the slice admission control solution and slice resource
allocation solution to enable better decisions (e.g., maximize system resource utilization).
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The admission control decides upon the slices to be served over future time instants, based
on different criteria, e.g., resource availability, resource efficiency, operator revenue, etc.
It can also be built on the outcome of the traffic forecasting for refining admission deci-
sions in an anticipatory manner. Once a slice/user is admitted, the resource allocation
block assigns the resources to each slice/user by avoiding over-provisioning and under-
provisioning of the resources and ensuring the SLAs are respected.

O-RAN is a promising RAN architecture that inherits all the necessary features, such
as intelligence, open and standard interfaces, and closed control loops, to facilitate resource
management in a network shared among verticals. In [38], AI techniques are used to
perform predictions of future SLA violations and perform corrective actions in advance.
Specifically, a recurrent neural network model is utilized to predict the amount of resources
required over each slice, given the volume of traffic it carries. E2E O-RAN setup has been
used for evaluation of the intelligent closed control loop and resource provisioning scheme,
for network slicing and control of the radio and cloud resources of slices, respectively.

In O-RAN, distinct network slices must be dynamically controlled to avoid SLA
variation caused by rapid changes in the environment. A novel framework is introduced
in [39] to manage network slices through provisioned resources intelligently. Due to diverse
heterogeneous environments, the intelligent machine learning approaches require sufficient
exploration to handle the harsh situations in a wireless network and accelerate convergence.
To tackle this issue, a solution based on evolutionary-based DRL (EDRL) is proposed to
accelerate and optimize the slice management learning process in the RIC modules.

An elastic O-RAN slicing problem is addressed in [40] for industrial monitoring and
control in the industrial internet of things (IIoT) networks. This work aims to reduce the age
of information (AoI) penalty of fresh information updates from different IIoT devices while
considering the energy consumption of the IIoT devices. A matching game for solving the
IIoT association problem is introduced and an actor-critic-based DRL model applied for
O-RAN slicing-based resource allocation.

Table 5. Summary of ML studies for network slicing in O-RAN.

Year Ref Contribution

2022 [37] Introduced the application of ML to network slicing; discussed some open challenges
and potential solutions.

2022 [38]
Provided an intelligent closed-loop SLA assurance scheme for O-RAN slicing. A real-
world dataset of a large operator is used to train a learning solution for optimizing
resource utilization in the proposed closed-loop service automation process.

2022 [39] Developed a novel O-RAN slicing framework over an evolutionary-based DRL ap-
proach to manage network slices dynamically in the rapid changing environment.

2022 [40]

Addressed the elastic O-RAN slicing problem for industrial monitoring and control
in IIoT and introduced a matching game for solving the IIoT association problem,
and then applied an actor-critic-based deep reinforcement learning model for O-RAN
slicing-based resource allocation.

3.4. Dynamic Function Split

Dynamic function splitting is an essential technique for enhancing the efficiency and
flexibility of O-RAN. It involves breaking down a network node or application’s functions
into smaller and more modular components, which can be distributed across different
computing resources. By leveraging ML, O-RAN can benefit from real-time intelligence
and decision-making capabilities. ML algorithms can analyze network traffic patterns and
resource usage to predict future demand and allocate computing resources accordingly,
leading to better resource utilization, reduced latency, and improved overall network
performance. Additionally, ML can optimize the selection of computing resources for
specific functions based on factors like location, processing power, and energy efficiency,
resulting in better dynamic function splitting and better service delivery to users.
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In [41], the authors provide a RL-based approach to the problem of optimizing dy-
namic function splitting in O-RAN compliant disaggregated and virtualized RANs. Their
paper addresses the specific scenario of function splitting between a CU and one or more
DUs in a fully virtualized environment, as opposed to splitting between virtual and phys-
ical resources. They adopt a multi-agent RL approach using either Q-Learning or State
Action Reward State Action (SARSA); a similar but slightly different alternative to Q-
Learning. Optimization takes into account the traffic type (e.g., eMBB or URLCC) and also
energy efficiency. It is assumed that the CU and each of the DUs run on separate physical
environments, each with their own renewable energy source backed up by a battery-based
energy storage facility, with a grid connection as a reserve input. Optimization is designed
to minimize operational expenditure (Opex), including maximizing the usage of the re-
newable energy source, taking into account the energy remaining in the battery and also
the variation in grid electricity prices during the day. Optimization takes place over a
48-h period and comparative Opex results are presented using solar radiation data from
Stockholm, Cairo, Jakarta, and Istanbul, combined with broad traffic level assumptions.

In [42], a novel and efficient energy-efficient RAN disaggregation and virtualization
method tailored for O-RAN is presented. This method effectively tackles challenges
related to dynamic traffic conditions. By formulating the energy consumption as a multi-
objective optimization problem, the authors integrate the Advantage Actor-Critic (A2C)
algorithm with a sequence-to-sequence model to effectively address the sequential nature
of RAN disaggregation and capture long-term dependencies. The results demonstrate the
effectiveness of the proposed solution to reduce energy consumption for dynamic Virtual
VNF splitting over traditional approaches like D-RAN and C-RAN.

In [43], the authors propose a novel DRL-based algorithm to jointly solve the optimal
placement of network functions between the CU, DU, and user RU in an O-RAN archi-
tecture. In the meantime, the proposed algorithm aims to minimize the end-to-end delay
and deployment cost, while considering constraints such as processing capacity and link
bandwidth. The proposed method evaluates the impact of user mobility on the proposed
DQN-based joint user association and CU-DU placement scheme (DJRCD) using the SUMO
traffic simulation tool. The algorithm is tested using a mixed highway-urban region in
the north of the Greater Toronto Area in Canada, and it is found to be superior to existing
methods, achieving a reduction of up to 30% and 40% in end-to-end delay and deployment
cost, respectively.

Table 6. Summary of current efforts on ML applications for dynamic function splitting in O-RAN.

Year Ref Contribution

2021 [41] Applied RL to dynamically perform function split decisions for DUs and CU in a
virtualized O-RAN architecture.

2023 [42] Applied DRL to propose an energy-efficient RAN disaggregation and virtualization
approach across edge sites, including DUs, and a cloud site, including CUs.

2022 [43] Proposed a DRL-based algorithm to jointly solve the optimal placement of network
functions between the CU, DU, and user RU in an O-RAN architecture.

2023 [59]
Proposed a DRL-based algorithm for a multi-objective optimization to minimize
computational costs and the overhead associated with periodically reconfiguring
dynamic VNFs splitting.

The dynamic nature of O-RAN environments often necessitates VNF reconfigurations
during operation, resulting in additional overhead costs and traffic instability. To tackle this
challenge, the work in [59] introduced a multi-objective optimization approach aimed at
simultaneously minimizing VNF computational expenses and the periodic reconfiguration
overhead. This solution relies on constrained combinatorial optimization with deep rein-
forcement learning, where an agent works to minimize a penalized cost function derived
from the proposed optimization problem. The evaluation of this solution demonstrates
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substantial improvements, including a remarkable 76% reduction in VNF reconfiguration
overhead, accompanied by a modest increase of up to 23% in computational costs. Further-
more, when compared to the most resilient O-RAN system, Centralized RAN (C-RAN),
which does not necessitate VNF reconfigurations, this solution delivers savings of up to
76% in bandwidth while revealing a 27% overprovisioning of CPU resources.

3.5. Resource Management

In [44], the authors compare the performance of on-policy and off-policy DRL methods.
The former is based on Proximal Policy Optimization (PPO) and the latter on a Sample
Efficient Actor-Critic with Experience Replay (ACER). This process was conducted under
an O-RAN setup. The O-RAN architecture is a suitable technology for DRL implementation,
since it includes mechanisms that enable AI for more efficient network management and
orchestration. In particular, both Near-RT and Non-RT RICs are designed for hosting AI
workflows, namely DRL models. Since the objective is to optimize the resource allocation
of a real-time surveillance video application, the types of services were classified as latency-
sensitive and latency-tolerant. In this direction, two slices are established and managed
by an O-RAN cross-slice resource orchestrator hosted by the SMO. One slice serves video
surveillance cameras to transmit real-time videos via O-RAN to the 5G Core Network (CN)
and then to a Control Center (CC) for real-time monitoring, and a slice serving the latency-
tolerant users. The performance of the DRL on-policy mechanism was shown to provide
better overall results namely in terms of implementation simplicity, performance stability,
good trade-off between users latency and energy consumption, and faster convergence.

In [45], the authors consider the problem in which the eMBB and URLLC services
compete for limited and insufficient computing resources, and the operator must bal-
ance the allocation of these resources to users of both services in multiple O-RUs/shared
O-Cloud while maximizing fairness. The problem is initially modeled as an Integer Linear
Programming (ILP) problem. However, given the high complexity of solving the NP-Hard
ILP problem, a policy gradient-based RL algorithm aiming to solve a Markov Decision
Process (MDP) is used instead. The latter is expected to perform similarly to the ILP solver,
and both approaches are compared. Simulation results showed that the RL agent performed
close to the optimal results of the ILP solver not deviating from the ILP by more than 6%,
while being fairer at the same time.

The authors of [46] proposed an RL-based framework to manage traffic flows while
taking advantage of the O-RAN ecosystem. The framework receives periodic reports from
the O-RAN DU about the network status and dynamically adapts the per-flow resource
allocation for which each traffic flow can compete, and identifies the corresponding modu-
lation and coding scheme (MCS) that best fits the traffic flow KPIs and the channel quality.
The RL-based dynamic resource controller solution that leverages a policy differential
semi-gradient State-Action-Reward-State-Action (SARSA) targets the minimization of the
maximum difference between desired and actual throughput, across all active traffic flows.
The framework was integrated into an O-RAN platform, and is deployed as an xApp in
the Near-RT RIC. The deployed framework is very flexible, and can adapt its architecture
based on the number of traffic flows. Additionally, it is possible to create multiple policy
instances, each independently and sequentially serving a subset of users, improving the
framework’s scalability.

The research conducted in [47] employs RL for adaptive resource allocation, demon-
strating its utility in the context of Non-RT RIC. The ML agent deployed in the Non-RT
RIC acquires knowledge and learns a radio resource allocation policy capable of adapting
to dynamic environments, while simultaneously meeting diverse energy-driven criteria.
Within the learning context, key information such as the mean and variance of the channel
quality indicator (CQI) from the previous period and the bit number of new data are
aggregated at the onset of each period. Subsequently, three transmit parameters, including
transmit power, the highest MCS, and the maximum transmission airtime, are selected
and transmitted to the Near-RT RIC so that the transmit parameters can be applied to
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BSs. The chosen resource allocation policy’s effectiveness is evaluated at the end of each
period by the Near-RT RIC, which computes a reward indicative of the transmission rate.
This reward is then sent to the Non-RT RIC. Through this iterative learning process, the ML
agent gradually acquires knowledge and discerns the optimal resource allocation policy
capable of adapting to dynamically changing environments.

Table 7. Summary of current efforts on ML applications for O-RAN resource management.

Year Ref Contribution

2022 [44]

Demonstrated the performance of on-policy and off-policy DRL methods in the
form of PPO and ACER, respectively, and the performance was compared in an
O-RAN setup for resource allocation optimization in a real-time surveillance video
application.

2022 [45]

Employed a policy gradient-based RL algorithm as an alternative to the initially
proposed ILP, to solve an MDP and address the challenge of fairly allocating lim-
ited resources to eMBB and URLLC users from multiple O-RUs while providing a
significantly less complex solution.

2021 [46]
Proposed a RL-based dynamic resource controller leveraging policy differential semi-
gradient SARSA to optimize traffic flow management by effectively and dynamically
allocating per-flow resources within an O-RAN platform.

2021 [47] Designed ML deployed in a Non-RT RIC to adapt the resource allocation policy to
environment dynamics while satisfying various energy-driven criteria.

3.6. Session Management

Session management in O-RAN refers to the process of establishing, maintaining, and
terminating communication sessions between network components. These sessions are
used to transmit data, control signals, and other information between different components
of the network. Session management is an essential function of O-RAN, as it enables the
coordination and control of network operations and services. It involves the management of
session parameters, such as session identifiers, session timeouts, and session initiation and
termination procedures. Effective session management in O-RAN is critical for ensuring
the efficient and reliable operation of the network, as well as for enabling the delivery of
high-quality services to end-users.

The authors of [48] explore the efficiency of RL-based methods for intelligent ses-
sion management when taking advantage of the intelligent gNB architecture of O-RAN.
This architecture is again assumed to facilitate the inclusion of AI/ML algorithms mainly
due to the introduction of the RIC, which is designed for sustainable deployment of these
algorithms. The work is focused on the lack of effort to reduce the packet transmission la-
tency in the Core and Data Networks, which can go up to hundreds of seconds compared to
several milliseconds in the gNB fronthaul/backhaul links. By installing intelligent session
management schemes based on policy evaluation RL methods such as Q-learning, double
and State-Action-Reward-State-Action (SARSA) on the RIC of an O-RAN emulated gNB, it
becomes able to effectively predict room to accommodate new PDU sessions with given
service requirements. Therefore, the gNB can decide whether to grant a new PDU session
or QoS flow, preventing existing and new sessions from violating the latency requirements.

In [49], the authors study connection management under the session management
function (SMF), specifically for user-cells associating the user with a BS, considering sub-
optimal and greedy solutions such as the received signal reference power (RSRP). Even
though the greedy approach is simple and effective, it does not take into consideration the
network’s local and global status. This causes the lack of load balancing where a certain BS
can be overloaded while the neighboring BSs are underutilized. So, the O-RAN architecture
features support global RAN automation to balance the load over the network resources by
deploying ML algorithms as rApps and xApps in the RIC. The authors proposed a Deep
Q-learning algorithm to infer the weights of the graph neural networks (GNN) for optimal
user-cell association.
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While user access management in O-RAN refers to the process of controlling and
securing access to network resources and services by users and applications, it includes
the management of user identities, authentication, authorization, and accounting (AAA).
The goal of user access management is to ensure that only authorized users and applica-
tions can access the network, and that they can do so in a secure and controlled manner.
User access management in O-RAN typically involves the use of access control policies,
authentication mechanisms, and auditing tools to manage user access and monitor network
activity. It is a critical component of network security and privacy, as unauthorized access
to network resources can lead to data breaches, network disruptions, and other security
incidents. Effective user access management is essential for ensuring the secure and reliable
operation of O-RAN with session management.

In [50], the authors address the anticipated handover-rate and load balancing issues if
O-RAN is deployed under the conventional user access control schemes typically based
on signal strength or capacity measurements. This is a result of the openness nature of
O-RAN, where the BS functions are decomposed and virtualized into CUs, DUs, and RUs,
where they are massively deployed throughout the network. Therefore, typical access
control procedures would make this a practically intractable process due to the massive
signaling overhead and system complexity. This can be considerably mitigated if each
UE autonomously selects proper BSs (or CUs/DUs/RUs). In this direction, a federated
DRL-based scheme to address user access control in the O-RAN is proposed to estab-
lish intelligent user-centric access control mechanism to optimize the overall throughput
and avoid frequent handovers. This is achieved by enabling the UE to train two deep
Q-networks (DQNs) using its own observations, and making access decisions based on
its DQNs outputs. Then, the DQN parameters are forwarded to a global model server
installed in the RIC. This server can select just a group of UEs in each instance to further
mitigate the signaling overhead. Afterward, the global model is updated by aggregating
DQN parameters obtained from the selected UEs. The DQN global parameters are then
disseminated to each UE to further improve its access decision. The achieved results show
that the proposed scheme can reduce the frequency of handover in a O-RAN environment
up to 53% when compared to a conventional access control based on signal strength UE
measurements.

Table 8. Summary of current efforts on ML applications for O-RAN session management.

Year Ref Contribution

2021 [48] Applied an ML algorithm in O-RAN to maintain QoS satisfaction by controlling
admission of PDU sessions.

2021 [49] Applied DQN to optimize user-cell association in O-RAN by supporting the global
RAN automation through load balancing over the network resources.

2021 [50] Proposed a smart user-centric access control in O-RAN using Federated DRL-based
learning to mitigate frequent handover.

3.7. Traffic Steering

O-RAN traffic steering research aims to optimize network traffic management by
intelligently routing traffic based on real-time network conditions and user demand.
This involves analyzing various network parameters, such as traffic load, network con-
gestion, and user behavior, to determine the best path for traffic flow. Traffic steering
techniques can also be used to dynamically split traffic across different network functions
and resources in real-time, improving network performance and reducing latency. ML al-
gorithms can play a critical role in traffic steering research, providing real-time intelligence
and decision-making capabilities to optimize traffic flow and improve overall network
performance. However, there are still challenges related to scalability, complexity, and
limited resources that need to be addressed to achieve optimal traffic steering in O-RAN.
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In O-RAN, more processing is done by placing virtual network functions (VNF) in the
DU before transferring data over midhaul links. This means that placing VNFs in the CU
needs more bandwidth compared to placing in the DU [60]. Therefore, the question is how
many functions should be left in the DUs to prevent network congestion on midhaul links
arises. This is especially the case when DUs have limited computing/storage capacities
compared to CUs. The authors of [61] have proposed an optimization problem to select
the split points in O-RAN. The objective of this study is to balance the load across CUs as
well as midhaul links with respect to the required delay and bandwidth and processing
capacity of the DUs and CUs. Going beyond the static optimization, it is also noted that in
real-world scenarios under traffic demands dynamicity and uncertainty at RUs, methods
like RL and DRL can be used to provide dynamic VNF splitting across CUs and DUs.

In [62], O-RAN decouples the Control Plane (CP) from the User Plane (UP) through
the E1 interface, which is derived from the software defined network (SDN) architecture.
This separation of CP and UP allows a network to be more flexible in programming.
The CP is implemented in hierarchical RICs, and manages radio resource functions through
A1 and E2 interfaces. The authors of [62] proposed using the hierarchical RICs to minimizes
end-to-end delay of the data plane traffic by placing Containerized Network Functions
(CNFs) effectively. In comparison to VNFs, CNFs are lighter and can be implemented
through microservice architectures, enabling a dynamic, scalable, and flexible architecture
towards 5G [63].

Additionally, paper [4] discusses the use of ML methods to achieve modular and
flexible O-RAN implementations in 6G networks, with a focus on the traffic steering use
case and O-RAN xApps. The authors describe several ML algorithms that can be used for
traffic steering, including decision trees, k-nearest neighbor (KNN), and neural networks.
They also discuss the use of RL to train an agent to make traffic steering decisions in
real-time. In [51], a federated meta-learning approach for traffic steering in O-RAN systems
is proposed. This approach allows multiple Radio Access Technologies (RATs) to learn
from each other without sharing their private data. The authors present a neural network
architecture that uses meta-learning to adapt to different RATs and learn to steer traffic in a
decentralized manner.

Paper [52] proposes a traffic steering use-case in O-RAN systems that exploits the
benefits of Non-Orthogonal Multiple Access (NOMA) to improve radio resource efficiency.
The authors introduce a resource allocation algorithm that dynamically allocates radio
resources based on the traffic demand and channel conditions of the users. The proposed
algorithm leverages NOMA to allow multiple users to share the same radio resources, while
ensuring a high-quality user experience. Paper [64] proposes a traffic steering approach
that ensures the efficient coexistence of eMBB and uRLLC services in O-RAN systems.
They introduce a multi-objective optimization problem and a traffic steering algorithm that
dynamically steers traffic based on the network load and user demands while ensuring a
minimum QoS requirement for both eMBB and uRLLC users.

Table 9. Summary of current efforts on ML applications for traffic steering in O-RAN.

Year Ref Contribution

2021 [4] Proposed logistic regression for modular and flexible O-RAN in 6G networks, focus-
ing on traffic steering and O-RAN xApps.

2022 [51] Introduced federated meta-learning with DQN for privacy-preserving multi-RAT
knowledge sharing.

2022 [52] Proposed Q-learning-based algorithm for power and frequency allocation in O-RAN
to minimize macro gNB interference and maximize device QoS.

3.8. Mobility Management

Mobility management is a key function for cellular communication to maintain service
continuity and ensure a good level of service quality for users moving across a network.
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This requires efficient coordination of radio resources to achieve predictive, timely, and
successful handovers for preventing communication disruptions in highly dynamic mobile
environments. To support this, the O-RAN architecture offers various capabilities, including
the collection of, maintenance of, and access to historical traffic and radio data. Additionally,
real-time monitoring of traffic and radio conditions is achievable through the support of
the Near-RT RIC framework, which enables the deployment of AI/ML-based applications
for detecting and predicting handover anomalies at the user level.

In [53], the authors proposed a new predictive handover method to predict target cells
in advance, hence to reduce handover failures. Handover cases are simulated by random
user movement within an environment with three eNBs and coverage holes. The handover
prediction algorithm is implemented within a software developed by O-RAN Software
Community (O-RAN SC), where an Anomaly Detection use case has been installed in the
Near-RT RIC platform, which consists of three xApps: Anomaly Detection, Traffic Steering,
and QoE Predictor. The process starts with the Anomaly Detection xApp, which analyzes
UE data and sends notifications to the Traffic Steering xApp via the RMR protocol when
anomalies are detected. The Traffic Steering xApp then requests a prediction of the target
cell from the QoE Predictor xApp, which uses the Vector Autoregressive (VAR) algorithm to
forecast time-series data based on past throughput data. As user mobility is not considered
by the original QoE Predictor xApp, the paper has contributed by adding mobile users’
RSRP measurements to the predict cells’ throughput. The proposed intelligent predic-
tion method achieves higher successful transmission rates than conventional handover
algorithms and allows the traffic steering xApp to send commands to the RAN, such as a
handover command using the REST API interface.

Table 10. Summary of ML studies for mobility management in O-RAN.

Year Ref Contribution

2022 [53]
Implemented a NN-based handover prediction method for the next target cell
in Near-RT RIC using software developed by O-RAN Software Community
(O-RAN SC).

3.9. Energy Efficiency

Energy efficiency is a significant challenge in O-RAN due to their highly flexible and
scalable design, where several components and technologies must work together seamlessly.
Achieving energy efficiency also requires balancing trade-offs with other performance
metrics such as latency or throughput. Although dynamic function splitting and ML-based
optimization techniques can be used to allocate computing resources efficiently, challenges
related to limited resources, scalability, and the dynamic environment of O-RAN must be
addressed to achieve optimal energy efficiency.

To address this, the authors in [54] propose an online learning-based energy-aware
scheduling method for virtualized Base Stations (vBS) in O-RAN. The goal is to optimize
scheduling policies that reduce energy consumption while maximizing vBS performance.
The novelty of this work lies in the application of adversarial bandit learning to vBS
operations. The authors introduce a Policy Decider application within Non-RT RIC to learn
and implement optimal policies, which can be adjusted based on network conditions and
user needs. The policy decision is shared with Near-RT RIC through A1 interface, and the
Data Monitor calculates the reward based on achieved performance and energy cost, which
is then sent to the Policy Decider via the O1 interface at the end of each decision time slot.
Data-driven experiments based on real-world traffic traces and testbed measurements are
conducted to evaluate the effectiveness of the proposed method and compare it to state-
of-the-art approaches. The proposed approach outperforms state-of-the-art methods by
achieving energy savings between 35.5% and 74.3%, as demonstrated through data-driven
experiments based on real-world traffic traces and testbed measurements.
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Table 11. Summary of ML studies for energy efficiency in O-RAN.

Year Ref Contribution

2022 [54]
Proposed online adversarial bandit learning for energy-aware scheduling policy
optimization to maximize the performance of virtualized Base Stations (vBS)
in O-RAN.

3.10. Satellite NTN

Interference management in satellite networks involves reducing interference between
multiple satellites and traditional cellular communication systems, which can lead to
degraded signal quality and decreased network performance. O-RAN can be used for
interference management in satellite networks by leveraging its cutting-edge function-
alities. One way to use O-RAN for interference management in satellite networks is by
using a dynamic spectrum access techniques to dynamically allocate and manage spectrum
resources based on real-time network conditions. This involves monitoring network pa-
rameters, such as channel quality and interference levels, and dynamically reconfiguring
the network to avoid interference and optimize network performance. Another approach is
to use machine learning algorithms to analyze network data and make intelligent decisions
on interference management. For example, machine learning algorithms can be trained
to identify patterns in network data that indicate interference and automatically adjust
network parameters to mitigate interference. Finally, O-RAN can also be used to implement
beamforming techniques to improve signal quality and reduce interference in satellite
networks. Beamforming involves adjusting the phase and amplitude of transmitted signals
to create directional beams focused on specific network areas. By optimizing beamforming
parameters based on network conditions, interference can be minimized and network
performance improved. Additionally, the radio spectrum is a finite and highly sought-after
resource; therefore, spectrum sharing aims to help resolve this issue by creating regulatory
frameworks and developing wireless technologies to share spectrum bands between hetero-
geneous users. The authors in [55] proposed O-RAN with machine learning for 5G/XG and
closed-loop feedback via sensing can reduce harmful interference between heterogeneous
5G and Low Earth Orbit (LEO) satellite communication systems.

Table 12. Existing study of ML applications for Satellite NTN relevant to O-RAN.

Year Ref Contribution

2021 [55] Investigated how O-RAN can be used for 5G/XG to mitigate interference between
terrestrial and space communication systems.

4. Research Opportunities in O-RAN

Applying ML in O-RAN networks has the potential to significantly improve net-
work performance, automate complex network operations, and enable new use cases and
business models. ML algorithms can analyze large volumes of network data, enabling
intelligent decision-making in real-time and optimizing network resources for enhanced
user experiences. In the previous section, we provided overview of the state-of-the-art
research works that demonstrate the use of ML to improve O-RAN and the underlying
network elements. However, challenges remain to apply and integrate ML into O-RAN
for network automation. These challenges include the need for high-quality and diverse
training datasets, ensuring robustness and fairness of ML models, addressing privacy
concerns, and developing efficient computational frameworks capable of handling the scale
and complexity of O-RAN deployments. In this section, we shall describe the potential of
ML applications in O-RAN and their challenges. Table 13 shows a summary of identified
research opportunities.
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Table 13. Research opportunities for ML applications in O-RAN.

Category Issues

Section 4.1 ProactiveMaintenance

- How to evolve the O-RAN framework in conjunction with ML system design;
- To develop ML training approaches across the network irrespective of
equipment vendor or site location (i.e., different configurations of multiple vendor
equipment and unharmonized data across multiple sites).

Section 4.2 xApps,rApps,dAppsOperation

- Orchestration of xApps, rApps, and dApps in the O-RAN RIC when they are
simultaneously operated for network automation;
- Orchestration across the domain with SON functions in a core network and any
newly added xApps, rApps, and dApps to the RAN.

Section 4.3 SatelliteNTN
- To optimize the resource allocation for capacity enhancement;
- To mitigate network interference sources such as adjacent satellite interference
and inter-system interference.

Section 4.4 MassiveMIMO

- To provide right interfaces to integrate multi-antenna processing in O-RAN to
maximize the spectral efficiency;
- To dynamically adjust the level of coordination/cooperation between DUs and
to efficiently perform the RU clustering;
- To effectively distribute the channel state information between the split baseband
functions.

Section 4.5 MobilityManagement - To jointly optimize the trajectory of UAV and the task offloading among diverse
O-RAN elements.

Section 4.6 NetworkManagement - To optimize the flexible functional split of RAN slices dynamically to respond to
changing network environments.

Section 4.7 DataPrivacySecurity

- To make ML models to access and utilize the data without compromising user
privacy;
- To secure ML models against adversarial attacks and to develop the measure
indicating protection against potential data breaches or cyberattacks.

Section 4.8 Big DataCollectionfor ML - To improve data collection by using O-RAN, including collection and consolida-
tion of hybrid empirical and synthetic data.

4.1. Proactive Maintenance

A significant fraction of the cost of maintaining a cellular radio network is due to
the need for site visits. Virtualization of the RAN within the O-RAN framework may
help considerably by extending the scope for remote or automatic intervention to miti-
gate hardware failures, but ultimately the only way to repair faulty on-site hardware is
by making a site visit. Ideally, it would be possible to predict failures before they occur,
allowing proactive scheduling of site visits. Deep learning systems can potentially assist
here by trawling very large datasets to detect “precursor” events occurring before fail-
ures, which might be difficult to find by an engineer tasked with scanning the fault logs.
Before this can happen, however, at least two open issues need to be addressed. The
first is to evolve the O-RAN framework in conjunction with ML system design so that
detailed fault-related data are provided at the O1 interface, including additional informa-
tion required by the virtualization of the RAN. The second is related to the fact that in a
reliable network fault data are relatively scarce, with the further issue that equipment from
different vendors may operate in slightly different ways. Here, the challenge is to develop
ML training approaches which can be applied in a standardized way across the network,
irrespective of equipment vendor or site location.

In relation to the first issue, in [65], members of Chungwha Telecom Taiwan and
their academic partner present a view of a proposed high level architecture for an O-RAN
Network Management System from the network operator’s perspective. The authors de-
scribe the architectures for 3GPP NG- and O-RAN, and provide a list outlining the key
Operations and Maintenance (OAM) functions supported by the O-RAN O1 interface.
They then provide a high-level layered architecture for an O-RAN-based network manage-
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ment system, together with a diagram indicating the relationships between the proposed
NMS and other system entities. The paper references a TM Forum white paper published
in 2003 on the New Generation Operations System and Software (NGOSS), but at this
stage no attempt is made to evaluate this in relation to the current O-RAN context, where
extensive use is made of virtualized network functions. The authors suggest that further
work is needed to clarify the work distribution between the network management system
and the entities managing the relevant clouds, as well as the approach to management of
the virtualized O-RAN elements.

On the second issue, one opportunity to increase the amount of available fault data
could be to make use of the emergence of self-healing networks, especially in the context
of virtualization, in which faults being compensated for by the self-healing process may
persist in dormant form for some considerable time and yield valuable information.

Another possibility is suggested by Mulvey et al. [66], in which they survey the
literature on fault management in cellular networks and outline a number of suggestions
for further work which are relevant to O-RAN. In particular, they consider the issue of multi-
vendor equipment configurations, and suggest that transfer learning may be a possible
approach, especially for distributed ML systems, which would allow ML subsystems
to be trained on one vendor’s equipment, and the learning approach transferred with
appropriate adjustments to equipment provided by other vendors.

Recently, there has also been growing interest in federated learning [67], which can
potentially harmonize data across multiple site locations, allowing a centralized ML system
to utilize data from a large number of locations, when translated into a common format.

4.2. xApps, rApps and dApps Operation

The O-RAN architecture allows the RIC to host and run applications developed by
third party for automation and intelligent orchestration to the network through ML and
AI, which will leverage the enormous amount of data generated by the RAN and exposed
through the O-RAN interfaces to analyze the current network conditions, forecast future
traffic profiles and demand, and implement closed-loop network control strategies to
optimize the RAN performance. The add-on xApps, rApps, and dApps will make the
monolithic RAN “black-box” obsolete and provide open, programmable and virtualized
solutions that expose status and offer control knobs through standardized interfaces [68].
The rApps are residence of the Non-RT RIC and control the optimization objectives such
as policies, models and slicing that the time scale of the close control loop of the network
requires more than one millisecond. The Near-RT RIC hosts the xApps that require the
response of control loops time between 10 and 1000 ms for optimizing objectives such as
the RRM and session management. However, the notion of dApps, custom and distributed
applications can complement xApps/rApps by implementing RAN intelligence at the
CUs/DUs for real-time use cases outside the timescales of the current RICs. The control loop
response timescale in such use cases is≤10 ms to optimize objects such as the beamforming
and modulation management. The dApps receive real-time data and KPMs from the
RUs (e.g., frequency-domain I/Q samples), DUs (e.g., buffer size, QoS levels), and CUs
(e.g., mobility, radio link state), as well as enrichment information from the Near-RT
RIC, and use it to execute real-time inference and control of lower-layer functionalities.
Such dApps enable network intelligence at the edge of the O-RAN ecosystem [69].

It is clear that intelligent and dynamic xApps, rApps and dApps are key enablers for
future network automation. However, it also introduces novel practical challenges concern-
ing. One of the challenges is the orchestration of the existing xApps, rApps, and dApps in
the O-RAN RIC. In addition, the question is how to maintain the orchestration cross domain
with core network SON functions in 3GPP and any newly added xApps, rApps, and dApps
to the RAN without creating conflicts between all these apps. As a result, the network
intelligence orchestration for the different types such as the xApps, rApps, and dApps is an
unprecedented problem that requires innovative, automated and scalable solutions. In [69],
the authors formulate an orchestration problem where the orchestration policy variable
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X is computed to maximize the total value of requests being accommodated by selecting
(i) which requests can be accommodated; (ii) which AI/ML models should be instantiated;
and (iii) at what location the AI/ML and requests should be executed to satisfy request
performance and timescale requirements to avoid or mitigate the conflict between then and
at the same time, complying with the requirements of each request [70].

4.3. Satellite NTN

One of the challenges of Satellite NTN low-latency communications is long latency due
to the significant distance between the terrestrial UE and the satellite [71–73].
Using a distributed computing model, O-RAN can help a satellite solve its latency draw-
back. In this model, the O-RAN intelligent controller can be deployed closer to the end-user
(for example, at the satellite gateway or user terminal) to reduce the round-trip time for
control and management signals. The controller can also use advanced algorithms to
intelligently allocate radio resources, reducing the need for frequent signaling between the
user terminal and the satellite. Another way O-RAN can help reduce latency is through the
use of edge computing. Edge computing involves moving tasks closer to the user or device,
reducing the amount of data that must be sent back and forth between the user and the
satellite. This approach can be used to run applications such as video streaming, gaming,
or IoT applications, which require low-latency and high-bandwidth connections.

For massive devices involved in NTN, ML-empowered O-RAN architecture can play
an essential role in optimizing the performance, e.g., throughput, coverage probability,
latency, and energy efficiency. Firstly, for capacity optimization, ML can help predict
the capacity requirements of the NTN and optimize the allocation of resources such as
bandwidth, power, and antenna coverage. Secondly, ML can help identify and mitigate
network interference sources, such as adjacent satellite interference, co-channel interference,
and inter-system interference. Thirdly, ML can optimize the energy consumption of the
O-RAN-assisted NTN, such as by reducing the power consumption of individual network
elements or adjusting the power levels based on traffic demand. Finally, as latency remains
one of the main challenges in Satellite NTN, reducing latency is important for Satellite NTN
to support a wide range of applications. Some recent papers introduce the use of generative
AI and digital twin in the communication system to deal with bandwidth limitation and,
particularly, the latency [74]. As O-RAN offers convenient hosting of ML models, ML
models can be pervasively deployed in O-RAN to encourage use of generative AI and
digital twin in satellite communications.

4.4. Massive MIMO

In the last two decades, the idea of using multiple antennas for transmitting and
receiving information over the air has evolved from the classic single-cell MIMO technol-
ogy, to the distributed cooperative massive MIMO with no cell boundaries technology,
also known as cell-free technology. With mMIMO and cell-free becoming ubiquitous in
5G and 6G, O-RAN will need to accommodate these technologies and provide the right
interfacing for making the most of their large spectral efficiency (SE) potential. In this
regard, the work of [75] looks at how mMIMO and cell-free can be integrated in O-RAN.
They provide several options of integrating the multi-antenna processing (mMIMO precod-
ing/beamforming) of cell-free MIMO in the O-RAN architecture, by adjusting the level of
coordination/cooperation between the open-distributed units (ODUs) and open-radio units
for performing this processing. It turns out that increasing the centralization (exchange
of information between the various units) increases significantly the SE. Even though the
current O-RAN architecture can, in their view, already support cell-free networks, there
are opportunities for achieving higher SE in the future by specifying the inter-O-DU inter-
face in O-RAN and performing the multi-antenna processing at the O-DU. Finally, they
also point out the importance of RU clustering (which is, itself, tied to user grouping)
for achieving better SE performance; this could be efficiently implemented at the Near-
RT RIC in O-RAN. We can foresee that AI and ML will help to dynamically adjust the
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level of coordination/cooperation between the ODUs, as well as efficiently perform the
RU clustering.

As pointed out by [75], the integration of the multi-antenna processing for the mMIMO/
cell-free technology is clearly an important issue in O-RAN, given the split of baseband
functionalities, and the work [76] investigates this issue in a more practical manner.
More specifically, it investigates how to effectively distribute the channel state information
(CSI) between the split baseband functions to minimize the performance degradation it
incurs when performing multi-antenna processing. This work also identifies further re-
search opportunities on the same topic, as for instance, the optimization of the fronthaul
bandwidth allocated to different users according to their mobility, priority, or channel
conditions, and reduce the exchange of information over the fronthaul interface between
O-DU and O-RU. This optimization process can obviously made more generic and efficient
by using ML.

Another important technology that will deploy in 6G is the intelligent reflective surface
(RIS) technology. The idea behind RIS is to increase the SE/EE of wireless communications
systems by dynamically improving the propagation environment, without the need of de-
ploying extra costly access points (APs). The work in [77] mentions the possible integration
of RISs in the O-RAN architecture, where RISs are managed via a dedicated controller.
This controller is then linked to O-RAN via a new interface at the Near-RT RIC.
Accordingly, it is clear that the design of a practical and effective signaling interface
will be the main challenge for integrating RISs into the O-RAN architecture. This work
sees the deployment of RISs as an the opportunity to create fully inter-operable so-called
’smart-radio environments’ which, in turn, can provides more openness and flexibility for
the network operators. The management of such ’smart-radio environments’ will require
intelligence provided by AI/ML.

4.5. Mobility Management

In V2X communication, the meticulous design of an efficient handover strategy holds
paramount importance in effectively managing challenges such as short stays, ping-pong ef-
fects, and remote cell scenarios. Furthermore, with the proliferation of UAVs across various
applications, such as agricultural plant protection, police enforcement, and environmental
monitoring, the reliability of connection, inherently influenced by mobility factors, emerges
as a critical area of investigation.

Within the framework of the O-RAN architecture, ML emerges as a powerful tool for
designing a proactive and data-driven strategy for mobility management. Specifically, lever-
aging Non-RT RIC, multi-dimensional data can be obtained, including metrics derived from
vehicle-related measurements based on UE reports, trajectory information pertaining to vehi-
cle paths, and spatial constraints. Subsequently, using this acquired data, the Non-RT RIC can
construct machine learning models by leveraging historical information, enabling informed
decisions to facilitate reliable connection support. These ML models, once constructed within
the Non-RT RIC, can be effectively deployed and executed by the Near-RT RIC, enabling it to
discern optimal radio resource configurations for establishing and maintaining dependable
communication links [78].

As highlighted in [79], the integration of flying UAV BSs with O-RAN introduces
notable challenges concerning agility, distributed computation, and dynamic mobility
of UAVs. The efficient control of UAV-BSs can be significantly enhanced through the
utilization of intelligent O-RAN functionalities, playing a pivotal role in addressing the
requirements of unforeseen applications where terrestrial networks may prove inadequate.
In this context, it would be imperative to explore innovative approaches rooted in ML for
jointly optimizing the trajectory of UAVs acting as flying BSs and the task offloading among
the diverse O-RAN elements, including O-RU, O-DU, and O-CU. The comprehensive
evaluation of performance metrics, encompassing resource utilization, service acceptance
rate, and utility values, alongside a multi-agent learning framework, becomes essential [79].
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In mobility management, location information provides an additional dimension of
inputs to improve its decision making. Localization techniques can also be enhanced using
ML techniques [80]. With O-RAN, not only can ML techniques can be introduced into the
network to enhance the localization, but the output of localization can, in turn, provide
useful inputs to improve the mobility management in O-RAN.

4.6. Network Management

As mobile networks become increasingly complex, there is a growing need for ad-
vanced solutions to effectively manage network operations. Although research has explored
the application of ML techniques for automating network management, further efforts
are required to enhance various aspects of network management. O-RAN, with its open
architecture, presents a convenient platform for leveraging ML techniques in network
management. The flexibility and openness of O-RAN enable the seamless integration of
ML-based approaches, providing opportunities to enhance and optimize various aspects of
network management.

For supporting different network slices (e.g., eMBB, URLLC, and mMTC slices), the
efficient placement of VNFs of slices onto the network infrastructure is crucial. The necessity
of the optimization of the functional split of individual RAN slices between CU, DU, and
RU entities, based on the functional split options defined by 3GPP, is studied in [81].
In addition, the optimal placement of RAN slices in a multi-tier 5G Open RAN architecture,
including multi-tier aggregation sites, has been emphasized in [81] by demonstrating that
a flexible functional split can lead to enhanced utilization of physical network resources.
Considering the various types of data available, such as network traffic patterns, resource
usage availability, and future resource demand, these can be leveraged to determine the
VNF split for each network slice. By harnessing the power of ML, characterized by its
remarkable ability to forecast future patterns and make data-driven decisions, the flexible
function split can be dynamically adjusted in response to evolving network environments,
thereby optimizing target objectives encompassing resource utilization, data rate, power
efficiency, and cost-effectiveness.

4.7. Data Privacy and Security

As ML relies heavily on data, ensuring the privacy and security of sensitive network
data are paramount. O-RAN handles vast amount of data, including user information
and network configurations. It is crucial to manage ML algorithms to access and utilize
these data without compromising user privacy. In addition, O-RAN often involves in
collaborations between different operators and vendors. Then, secure data sharing proto-
cols must be established to ensure that sensitive network information is shared only with
authorized parties. ML models requiring data from multiple sources should adhere to
strict data sharing policies. As O-RAN becomes more software-centric and dynamic, it can
be vulnerable to cyberattacks. While ML can be used to detect and respond to threats, it
is crucial to secure ML models themselves against adversarial attacks [16]. In this case,
what measures can be implemented to protect against potential data breaches or cyberat-
tacks targeting ML models is worth investigating. Striking the right balance between data
accessibility for ML and maintaining robust data security would be critical for network
operators and developers. Successfully addressing the data privacy and security challenge
will be essential to foster trust in ML applications with O-RAN and ensure compliance with
evolving data protection regulations.

4.8. Big Data Collection for Machine Learning

Given its openness, using O-RAN for big data collection in the context of ML offers
substantial advantages. O-RAN promotes interoperability among different vendors’ net-
work components, allowing for diverse data sources, which is vital for ML model training
and accuracy. It also fosters vendor neutrality, reducing lock-in and enabling network
operators to select the best-suited hardware and software components, enhancing data
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collection capabilities. The scalability of O-RAN accommodates the growing volume of data
generated by modern networks and encourages innovation by enabling custom software
applications, including data collection and analytic tools tailored to specific ML use cases.
O-RAN development can further advance with the more data available for ML, including
use of synthetic data from network simulators [82]. Simulation tools such as OpenRAN
Gym [83] and WiThRay [84] offer data generation for ML training when empirical data are
insufficient or difficult to collect. However, data may be out-of-distribution due to different
domains, and new learning techniques should be explored to tackle the out-of-distribution
issue [85].

5. Conclusions

ML applications have sparked significant interest in O-RAN for their potential to
revolutionize network automation. By exploiting ML to analyze vast amounts of network
data in real-time, identifying performance issues and optimizing network parameters on
the fly, ML is expected to facilitate predictive maintenance, intelligent resource allocation,
and network optimization. Furthermore, predictive analytics can help anticipate and
prevent network failures, reducing downtime and maintenance costs. Ultimately, ML holds
the promise of making O-RAN networks more efficient, reliable, and responsive to the
dynamic demands of modern communication environments.

In this paper, focusing on network automation in O-RAN using ML techniques, we first
presented the design principles and architecture of O-RAN, highlighted the openness and
disaggregation of RAN components, and its capability to extend network operation with
native ML support. The current research landscape of ML applications in O-RAN was then
presented. Several key aspects of network management were surveyed, including session
and user access management, radio resource management, network slicing, mobility and
traffic management, energy efficiency, O-RAN component deployment and function splits,
ML workflow management, and support for NTN and satellite networks. For instance, ML
can play a pivotal role in automating fault detection and recovery processes by meticulously
analyzing data traffic and identifying anomalies. This reduces the necessity for manual
intervention, subsequently bolstering network resilience. ML can also prove invaluable in
the realms of capacity planning and elevating customer experiences. By forecasting network
traffic growth, aiding in optimizing capacity, and analyzing user behavior and feedback,
ML can contribute to a more efficient and customer-centric network management approach.

However, numerous challenges must be surmounted to unlock the full potential of
ML in propelling O-RAN network forward. Upon identifying several pivotal research
domains, these challenges manifest across diverse realms encompassing data collection
and analysis, as well as the development, deployment, maintenance, and operation of
ML models. A fundamental hurdle arises from the various types of data emanating
from different vendor equipment, necessitating harmonization for effective data analysis.
Utilization of synthetic data collectible from network simulators could be also considered
when real-world empirical data are difficult to obtain. Once data acquisition hurdles
are overcome, data-driven decision-making processes must be thoughtfully tailored for
target optimizations, such as enhancing network capacity and mitigating interference.
In complex scenarios (e.g., O-RAN-including UAVs), consideration of multiple objec-
tives would be required simultaneously, such as optimizing the trajectory of UAVs and
task offloading among heterogeneous O-RAN components, including UAVs. The multi-
faceted nature of O-RAN components provide various options for deploying ML models,
prompting careful deliberation on compatible components and interface for ML model and
data exchange. When multiple components are selected for ML model deployment, the
level of coordination and cooperation between components should be also investigated.
Furthermore, the dependable operation of multiple ML modules such as xApps, rApps, and
dApps within O-RAN RIC, mandates unwavering attention to reliability. Equally critical is
the dynamic and autonomous responsiveness of deployed ML models to ever-changing
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network environments. Furthermore, we discussed the issue to find the balance between
data accessibility for ML and maintaining robust data security.

These challenges, when conquered, will usher in an era where ML empowers O-RAN
network automation, leading to heightened efficiency, reduced operational costs, fortified
security, and an enriched user experience. They also position network operators to adapt
to the evolving demands of the communication landscape, conferring a competitive edge
in this rapidly transforming terrain.
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