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Abstract

Nailfold capillaroscopy (NC) is a routine technique used to assess the characteristics and morphology of nailfold capillaries.

Observation of micro-blood vessels in the nailfold is important for diagnosing diseases that lead to morphological changes of

capillaries such as scleroderma, Raynaud’s phenomenon and other connective tissue diseases. In order to support a computer-aided

diagnosis approach to analysing NC images, several approaches have been proposed in the literature aiming to extract capillaries.

In general, such capillary skeletonisation algorithms involve an image pre-processing step, followed by binarisation and finally

extraction and definition of the capillary skeletons. Since image denoising and enhancement in the pre-processing step can have a

major impact on the subsequent analysis, in this paper, we evaluate the performance of five enhancement techniques for the purpose

for nailfold capillary skeletonisation. In particular, we investigate the α-trimmed filter, bilateral filter, bilateral enhancer, anisotropic

diffusion filter and non-local means and integrate them with three capillary extraction algorithms from the literature. We report

visual and quantitative performance on a set of diverse NC images. The obtained results indicate that a relatively simple α-trimmed

filter, combined with a skeletonisation algorithm incorporating a difference-of-Gaussian approach to address non-uniform lighting

and an iterative rule-based skeletonisation procedure, leads to the best results when comparing the obtained skeletonisations to a

manually obtained ground truth.

c© 2015 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.
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1. Introduction

Various diseases including systemic sclerosis1, Raynaud’s phenomenon2, as well as other connective tissue dis-

eases such as dermatomyositis, antiphospholipid syndrome3, and Sjögren’s syndrome4 lead to morphological changes

of blood capillaries and can hence be diagnosed using nailfold capillaroscopy (NC), a passive, inexpensive in-vivo

technique to observe micro-blood vessel characteristics in the nailfold region of fingers.

Diagnosis is typically performed by counting and/or identifying particular capillary types and other features such

as enlarged or giant capillaries, haemorrhages, loss of capillaries, disorganisation of the vascular array, and rami-

fied/bushy capillaries5. Specific NC patterns based on these features – early, active and late patterns – are routinely

used to characterise NC images and to identify scleroderma and other diseases6.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
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Inspection of NC images is conventionally conducted manually and based on measurement of morphological pa-

rameters and the consultant’s expertise. Thus, it constitutes a time consuming and specialised task which motivates

the use of a computer-aided diagnosis (CAD) approach. However, relatively little work has been reported aimed at

CAD from NC images. In7, a panoramic mosaic image is generated from several video frames, which in turn helps

to extract capillary shapes. In8, the authors focussed on semi-automatic extraction of morphological features using

various algorithms for vessel tracking, thickness analysis, and curvature analysis. Capillary condition analysis through

classification is proposed in9 and10, while in11 a set of rules is established to determine the progression of disease.

While classification into NC patterns typically involves the extraction and measurement of single capillaries, in12 a

holistic approach is presented that performs identification of scleroderma patterns based on global texture features.

NC CAD techniques are thus typically based on capillary extraction from the NC image before performing any

measurement analysis. Consequently, reliable enhancement and segmentation of capillaries in NC images is crucial

to be able to extract morphological features and hence allow for accurate diagnosis. In this paper, we investigate the

performance of five image enhancement techniques when integrated into three capillary skeleton extraction algorithms

and evaluate their suitability with respect to the resulting skeletonisation performance.

2. Image Enhancement Techniques

In general, any kind of capillaroscopic image analysis starts with an image enhancement process. The choice of

enhancement technique has a direct impact on the final result, since the image quality greatly influences the subsequent

analysis. However in the literature, with the exception of13,14, relatively little attention has been given to this pre-

processing step.

In the following, we briefly discuss the five enhancement techniques that we evaluated in our study (for further

details we refer to the original papers):

• α-trimmed filter15: a non-linear window-based filter. It can be considered as a hybrid filter derived from mean

and median filters. If the pixel values xk within a window around location (i, j) are sorted in ascending order

x1 ≤ x2 ≤ · · · ≤ xN , then the output of the α-trimmed filter is defined as

x̂i j =
1

N(1 − α1 − α2)

N−α2N∑
k=α1N+1

xk, 0 ≤ α1, α2 ≤ 0.5, (1)

where α1 and α2 are the parameters of the filter.

• Bilateral filter16: a non-iterative, relatively simple algorithm which smoothens an image while preserving edges

by means of a non-linear combination of nearby image values based on both their spatial closeness c(ξ, x) and

their photometric similarity s( f (ξ), f (x)). It is suggested that the two pixels can be close to one another (that

is, occupy nearby spatial locations c(ξ, x)) or they can be similar to one another (that is, have nearby values

s( f (ξ), f (x))). Bilateral filtering, basically the combination of domain and range filtering, is defined as

h(x) =

∫
Ω(x)

f (ξ)c(ξ, x)s( f (ξ), f (x))dξ∫
Ω(x)

c(ξ, x)s( f (ξ), f (x))dξ
. (2)

• Bilateral enhancer17: extends the concept of bilateral filters so that edge preserving smoothing and selective

sharpening is performed simultaneously. A weighted average is utilised that is independent of the design of c(.)

and s(.) in Eq. (2). Furthermore, it considers a special case when ξ = x and adds a constant g in this case. This

does not change the nature of the filter, but for ξ = x, the contribution of c(.) and s(.) is summarised into g. The

bilateral enhancer is defined as

j(x) = g f (x) +

∫
Ω(x)

x

c(ξ, x)p( f (x), f (ξ))dξ, (3)

where g = c(x, x)s( f (x), f (x)).
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• Anisotropic diffusion filtering18: an iterative algorithm which smoothens an image using a diffusion function.

Smoothing is formulated as a diffusive process which is stopped at boundaries by selecting locally adaptive

diffusion strengths. Diffusion functions allow the diffusion process to take place in the interior of regions while

not affecting edges. The anisotropic diffusion equation is defined as

It = div(c(x̄, t)∇u(x̄, t)), (4)

where diffusion is controlled by varying c(x̄, t), and u(x̄, t) represents the image intensity. The resulting image

is obtained after optimising c(x̄, t).

• Non-local means (NLM)19: a non-iterative algorithm which smoothens an image by a non-local averaging of

all pixels in the image. The weights depend on the similarity between two pixels which are defined by the

similarity of the intensity grey level in a square neighbourhood of fixed size. The similarity is measured as a

decreasing function of weighted Euclidean distance. The NLM filter is defined as

NLM[v](i) =
∑
j∈I

w(i, j)v( j), (5)

where the weights w(i, j) depend on the similarity between pixels i and j.

3. Nailfold capillary skeletonisation algorithms

In the following, we discuss the three NC skeletonisation algorithms that we employ in this study.

3.1. Wen et al. 9,10

Wen et al.9,10 first reduce the brightness of the image, and then perform histogram equalisation. A threshold-

ing method is subsequently applied to arrive at a binarised image. The authors present an iterative skeletonisation

algorithm where in each iteration every image pixel is checked against the following conditions:

• 2 ≤ N(P1) ≤ 6,

• S (P1) = 1,

• P2 × P4 × P6 = 0,

• P4 × P6 × P8 = 0,

where P1...P9 are the nine pixels in a 3 × 3 window, N(P1) denotes the number of non-zero neighbours of P1, and

S (P1) is the number of zero to one changes from Pn to Pn+1 with 1 < n < 9.

If all conditions are met, the pixel is flagged. Flagged pixels are then assigned to the background. In a second step,

pixels are inspected with regards to a second set of conditions, namely:

• 2 ≤ N(P1) ≤ 6,

• S (P1) = 1,

• P2 × P4 × P8 = 0,

• P2 × P6 × P8 = 0.

Again, if all conditions are met, the pixel is flagged, and flagged pixels are removed from the image. This procedure is

repeated until convergence, i.e., until no more pixels get flagged during an iteration. The resulting image then defines

the capillary skeletons.

3.2. Lo et al. 20

Lo et al. observe that the red and blue channels of NC images tend to be noisy while the green plane usually shows

the highest degree of contrast to separate capillaries from the background and is consequently used for subsequent

analysis. This channel is processed by local and global histogram equalisation methods in order to further enhance the

contrast between background and capillaries. Otsu’s thresholding method21 is then used on both globally equalised

and locally equalised images to produce a binary image where capillary areas are labelled with 0s and the background

with 1s. Oversegmentation and image noise is reduced by applying global and local thresholding methods. Globally
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thresholded images preserve the major non-capillary area while local thresholding allows for precise segmentation of

capillaries. These images are then combined through a logical OR operation.

Since devised for NC video sequences, a number of frames are processed using the above algorithm and combined

to generate one resulting binary image R. In our implementation, we slightly modify this step so as to work on static

images rather than video sequences. In particular, we apply different block sizes for local thresholding and then all

images are combined by

R(x, y) =

⎧⎪⎪⎨⎪⎪⎩
0 if count(x, y) ≥ ζ

1 if count(x, y) < ζ
(6)

with

count(x, y) =

N∑
t=1

C(x, y, t), (7)

and

C(x, y, t) =

⎧⎪⎪⎨⎪⎪⎩
0 if I(x, y, t) = 1

1 if I(x, y, t) = 0
(8)

where t = 1 . . . 10 representing 10 block sizes changing from 5×5 to 50×50 in steps of 5, ζ is a threshold and I(x, y, t)

are the pixels of the image at position (x, y) locally thresholded within a block size of t.

Finally, a morphological (erosion-based) algorithm is iteratively applied to thin the capillaries and extract their

skeletons.

3.3. Doshi et al. 22

Doshi et al. employ a bilateral enhancer17 for noise reduction, which is followed by histogram equalisation to

improve the contrast in the image. NC images typically exhibit a fairly high degree of non-uniform illumination

which makes them difficult to segment accurately. Capillary patterns have relatively high spatial frequencies, while

varying illumination is characterised by low spatial frequencies. This issue is address by employing a difference of

Gaussian (DoG) approach which effectively works as a band pass filter and is defined as

h(x, y) =
1

2π

[
1

σ2
1

exp

(
−

x2 + y2

2σ2
1

)
−

1

σ2
2

exp

(
−

x2 + y2

2σ2
2

)]
, (9)

where σ1 < σ2, σ2 is set as the average capillary radius and σ2/σ1 = 1.6. In our implementation, we set σ2 = 4 and

the block size of the Gaussian filter to 18.

After image enhancement, a binarisation step is conducted to arrive at a representation where capillaries are sepa-

rated from the background. This is achieved through thresholding using Otsu’s algorithm21, which is then followed

by two iterations of a median filter to remove small and isolated objects.

The skeletons of the capillaries are extracted using a thinning algorithm based on23. Here, based on 8-pixel

connectivity to preserve curvature information, the following conditions are iteratively checked for each pixel:

• C(P) = 1,

• 2 ≤ N(P) ≤ 3,

• One of the following

– (P2 ∨ P3 ∨ P5) ∨ P4 = 0 in odd iterations,

– (P6 ∨ P7 ∨ P1) ∧ P8 = 0 in even iterations,

where P2, P4, P6 and P8 are the immediate neighbours and P1, P3, P5 and P7 the diagonal neighbours of the inspected

pixel P, C(P) denotes the number of distinct 8-connected components of 1s in the pixel’s neighbourhood, with N(P) =

min(N1(P),N2(P)), N1(P) = (P1∨P2)+(P3∨P4)+(P5∨P6)+(P7∨P8), and N2(P) = (P2∨P3)+(P4∨P5)+(P6∨P7)+

(P8 ∨ P1), where ∨ represents a logical OR and ∧ a logical AND. Pixels which satisfy these conditions are assigned

to the background and the next iteration is started to check the same set of conditions. The process terminates when

no more pixels are removed; the resulting image then defines the capillary skeletons.
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4. Experimental Evaluation

In our experiments, we embedded the five enhancement techniques discussed in Section 2 in the three skeletonisa-

tion algorithms explained in Section 3 and inspect the resulting skeletonisation performance, both in terms of visual

results as a quantitative analysis.

For evaluation, we used a set of NC images obtained at the Dermatology Unit, Clinical Hospital of Chieti using an

Olympus SZ40 stereo microscope coupled with an external light source. To arrive at a set of representative images,

we chose two NC images of each of the following groups: control, early, active, and late which correspond to typical

classes of NC based diagnosis6.

The various parameters for the enhancement algorithms were set (empirically) as follows. For the α-trimmed filter,

we chose α1 = α2 = 0.5. For anisotropic diffusion, we used 15 iterations and an integration constant of 0.14; κ which

controls diffusion was set to 30. For the bilateral filter, a Gaussian of size 3 and with σ = 0.1 was chosen, while the

smoothing and enhancement factors in the bilateral enhancer were set to 0.3, with g = 1, ne = 0.5, and ns = 1. NLM

filtering was implemented with a radio search window of 5, a radio similarity window of 2 and a degree of filtering of

8.

For quantitative performance evaluation, in each image a region of interest (containing capillaries) is considered

and manually defined ground truth skeletons obtained for that region. As performance measure we employ Pratt’s

figure of merit24 which is a well-known measure to express the closeness of a generated edge map to an ideal (ground

truth) edge map, where a higher figure of merit signifies better agreement with the ground truth. If II and IA are the

number of ideal and actual skeleton points, d(i) the pixel missed distance of the i-th skeleton point detected, and α a

scaling constant, then the figure of merit (FoM) is defined as

FoM =
1

max{II , IA}

IA∑
i=1

1

1 + αd2(i)
, (10)

and penalises missing valid skeleton points, displaced skeleton points and classification of noise as skeleton points.

Baseline results, for all images and the three original skeletonisation algorithms, are given in Table 1. From there,

it is evident that the approach by Doshi et al. outperforms both other algorithms, giving an average figure of merit of

0.35 which is clearly superior to the 0.20 achieved by Wen et al. and the 0.10 by Lo et al.. The main reason for this is

that Doshi et al.’s algorithm better accounts for illumination and brightness variance within the image, which in turn

leads to improved binarisation results. We can also see that there is clearly scope for improvement, considering that

perfect skeletonisation would yield a FoM of 1.0. In particular, the results on the late images are quite poor for all

three methods, since these were both of poorer image quality compared to the others and as the capillary structures in

there are of higher complexity.

Table 2 gives the results of integrating the various image enhancement techniques into the skeletonisation algo-

rithms. For the methods by Wen et al. and Lo et al. this means applying the various image denoising/enhancement

methods prior to the actual algorithms. For Doshi et al.’s algorithm, the bilateral enhancer is replaced with the other

Table 1. Baseline results for the three skeletonisation algorithms.

Wen et al.10 Lo et al.20 Doshi et al.22

Control 1 0.33 0.09 0.45

Control 2 0.10 0.10 0.40

Early 1 0.26 0.12 0.48

Early 2 0.10 0.04 0.12

Active 1 0.16 0.21 0.45

Active 2 0.20 0.06 0.29

Late 1 0.12 0.05 0.14

Late 2 0.10 0.04 0.15

average 0.20 0.10 0.35
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Table 2. Results for combining image enhancement techniques and skeletonisation algorithms.

α-trimmed filter Bilateral filter Bilateral enhancer Anisotropic diffusion Non-local means

Wen Lo Doshi Wen Lo Doshi Wen Lo Doshi Wen Lo Doshi Wen Lo Doshi

Control 1 0.56 0.08 0.44 0.29 0.14 0.43 0.34 0.11 0.45 0.20 0.10 0.41 0.29 0.15 0.43

Control 2 0.21 0.10 0.43 0.28 0.20 0.34 0.38 0.19 0.34 0.28 0.12 0.22 0.46 0.19 0.30

Early 1 0.35 0.18 0.52 0.27 0.25 0.37 0.25 0.23 0.39 0.27 0.16 0.36 0.21 0.25 0.36

Early 2 0.18 0.06 0.13 0.16 0.11 0.15 0.23 0.09 0.15 0.20 0.11 0.13 0.24 0.10 0.12

Active 1 0.36 0.21 0.61 0.11 0.36 0.61 0.29 0.27 0.62 0.04 0.24 0.59 0.33 0.40 0.64

Active 2 0.51 0.09 0.41 0.00 0.17 0.41 0.16 0.11 0.42 0.00 0.10 0.37 0.00 0.16 0.47

Late 1 0.18 0.07 0.21 0.23 0.07 0.17 0.15 0.04 0.16 0.09 0.04 0.17 0.13 0.05 0.11

Late 2 0.29 0.06 0.39 0.14 0.08 0.33 0.20 0.07 0.36 0.09 0.07 0.27 0.26 0.08 0.27

average 0.38 0.12 0.45 0.21 0.19 0.40 0.29 0.16 0.41 0.17 0.14 0.36 0.27 0.20 0.39

enhancement methods. We also found the histogram equalisation step of Doshi et al.’s to be unnecessary and actually

to lead to lower performance and hence discarded it. For Wen et al. method, since no threshold is specified in the

algorithm, we run the experiments for multiple thresholds ranging from 10 to 250 and selecting the best value over all

images.

From Table 2, it is clear that modifying the pre-processing step of the various algorithms can improve the resulting

skeletonisation accuracy. The algorithms of Doshi et al. and Lo et al. are improved by almost 10%, whereas the

performance of Wen et al.’s algorithm is improved by 18%.

Interestingly, the α-trimmed filter, albeit being the simplest of the investigated approaches, leads to the highest

accuracy for Wen et al.’s and Doshi et al.’s algorithms. For Lo et al.’s approach, non-local means filtering leads to

the best performance. The bilateral enhancer leads to the second best performance for Wen et al.’s and Doshi et al.’s

algorithms, while the bilateral filter gives the second best results for Lo et al.’s method. The results also show that the

omission of the histogram equalisation step for Doshi et al.’s algorithm leads to better skeletonisation accuracy.

Comparing the results from Table 1 with those from Table 2 results, we can see that all enhancement techniques

lead to improved performance for all algorithms except for Wen et al. using anisotropic diffusion filtering. The α-

trimmed filter gives an improvement of 30%, bilateral enhancer and NLM filtering of 21%, and the bilateral filter

of 15%; the lowest performance improvement is observed for anisotropic diffusion (5%). ethods have shown bias

towards one particular method.

Now looking at Fig. 1, which shows some visual results for control and early images, we can observe that the skele-

ton images using α-trimmed filter (h,m,r) are nosier than the other images. The best performance using Doshi et al.’s

method is due to obtaining a uniform background using a DoG filter. The other filters (d,e,f,g) lead to comparatively

less noise in the image, but often at the expense of missing out completely some of the capillaries.

Turning our attention the Fig. 2, where active and late group images are shown, the same effect is observed. It

clear that Doshi et al.’s method to binarised the image works well in tandem with the enhancement techniques and

is capable of tackling most of the noise in the images. However, for the late image in Figure 2, the image quality is

rather poor and consequently it is difficult to extract the capillary skeletons.

Overall, an α-trimmed filter along with Doshi et al.’s method gives the best performance, while Lo et al.’s algorithm

together with α-trimmed filter leads to the worst skeletonisation accuracy. The stark difference between the obtained

results confirms that choosing an appropriate image enhancement technique is indeed crucial and also that this choice

depends on the subsequent processing stages.

5. Conclusions

Nailfold capillaroscopy (NC) is a passive, inexpensive in-vivo technique to observe micro-blood vessel characteris-

tics in the nailfold region of fingers. NC is of particular importance in diagnosing diseases that lead to morphological

changes of capillaries such as scleroderma, Raynaud’s phenomenon and other connective tissue diseases. Inspection

of NC images is typically performed manually and thus constitutes a time consuming and specialised task which

motivates the use of a computer-aided diagnosis (CAD) approach. Such CAD systems however depend on reliable

enhancement of the capillaries structures in the images. In this paper, we have evaluated five image enhancement tech-
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Fig. 1. Example NC images and their results: control (top) and early pattern (bottom). For each image we show: (a) the ROI image; (b) the

groundtruth image skeleton of image in (a); (c)-(g) after pre-processing using α-trimmed filter, bilateral filter, bilateral enhancer, anisotropic

diffusion filter and non-local means; (h)-(l) after skeletonisation using Wen et al.’s algorithm for all images in (c)-(g); (m)-(q) after skeletonisation

using Lo et al.’s algorithm for all images in (c)-(g); (r)-(v) after skeletonisation using Doshi et al.’s algorithm for all images in (c)-(g). All processed

images were inverted for display purposes.
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Fig. 2. Example NC images and their results: active (top) and late pattern (bottom), arranged in the same layout as Figure 1.
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niques in combination with three capillary skeletonisation algorithms on a challenging dataset of NC images. Both

visual inspection and quantitative evaluation based a manually defined ground truth show that α-trimmed filter along

with a skeletonisation algorithm incorporating a difference-of-Gaussian approach to address non-uniform lighting and

an iterative rule-based skeletonisation procedure leads to the best overall performance.
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