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A B S T R A C T   

This comprehensive review explores the nexus between AI and the pursuit of net-zero emissions, highlighting the 
potential of AI in driving sustainable development and combating climate change. The paper examines various 
threads within this field, including AI applications for net zero, AI-driven solutions and innovations, challenges 
and ethical considerations, opportunities for collaboration and partnerships, capacity building and education, 
policy and regulatory support, investment and funding, as well as scalability and replicability of AI solutions. Key 
findings emphasize the enabling role of AI in optimizing energy systems, enhancing climate modelling and 
prediction, improving sustainability in various sectors such as transportation, agriculture, and waste manage
ment, and enabling effective emissions monitoring and tracking. The review also highlights challenges related to 
data availability, quality, privacy, energy consumption, bias, fairness, human-AI collaboration, and governance. 
Opportunities for collaboration, capacity building, policy support, investment, and scalability are identified as 
key drivers for future research and implementation. Ultimately, this review underscores the transformative 
potential of AI in achieving a sustainable, net-zero future and provides insights for policymakers, researchers, 
and practitioners engaged in climate change mitigation and adaptation.   

1. Introduction 

The urgent need to address climate change and transition to a sus
tainable future has propelled the exploration of innovative solutions 
across various sectors [66,92,104]. In recent years, artificial intelligence 
(AI) has emerged as a powerful tool with the potential to significantly 
contribute to mitigating climate change and achieving the ambitious 
goal of net-zero carbon emissions [29,78,100,103,106]. The background 
of this nexus lies in the recognition of the dire consequences of climate 
change, including rising global temperatures, extreme weather events, 
biodiversity loss, and threats to human health and well-being [16,100]. 
Governments, organizations, and individuals are increasingly acknowl
edging the need for immediate and effective action to combat these 
challenges. 

AI, with its ability to process vast amounts of data, analyze complex 
patterns, and make informed predictions, has the potential to drive 
transformative changes in areas such as energy, transportation, agri
culture, and waste management [8,46]. By harnessing the power of AI, it 
becomes possible to optimize energy systems, enhance renewable en
ergy integration, improve resource efficiency, develop intelligent 
transportation networks, and facilitate sustainable practices in various 
domains such as education and finance [48,57,76,126]. 

Recent empirical evidence underscores the profound impact that AI 
can have on sustainability initiatives. According to Chen et al. [25], 
smart manufacturing processes facilitated by AI can decrease energy 
consumption, waste, and carbon emissions by 30–50%, with similar 
reductions achievable in energy usage within buildings. In the trans
portation sector, intelligent systems have been shown to cut carbon 
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dioxide emissions by approximately 60%, offering a significant leap 
toward cleaner urban environments. Moreover, about 70% of the global 
natural gas industry is now leveraging AI to enhance the accuracy and 
reliability of weather forecasts, which in turn optimizes resource use and 
operational planning [25]. Additionally, [109] illustrate how corporate 
operations have benefited from AI integration, where AI-driven deci
sion-making and prediction tools have notably reduced carbon costs, 
substantiating the efficacy of AI in corporate sustainability strategies. Di 
Vaio et al. [34] also reported on how AI could be utilized in developing 
sustainable business models in agri-food systems, thereby reducing their 
carbon footprints. 

However, the deployment of AI technologies is a double-edged 
sword. Vinuesa et al. [115] highlight the substantial energy demands 
and consequent carbon footprint of large computing centers essential for 
advanced AI research and applications, including cryptocurrency oper
ations like Bitcoin, which alone consumes as much electricity as entire 
nations. The projected increase in global electricity demand by ICTs to 
up to 20% by 2030, from about 1% today, emphasizes the critical need 
for sustainable growth within the ICT sector [115]. Similarly, Nordgren 
(2022) stresses the importance of ethical considerations, as AI applica
tions, while beneficial, can also lead to significant emissions, necessi
tating a balanced and thoughtful approach to AI deployment [79]. 

These insights present a compelling argument for a thorough review 
of AI’s potential in driving net-zero sustainability efforts. By synthesiz
ing current evidence and evaluating both the positive outcomes and the 
challenges, this review aims to provide a balanced perspective that 
supports informed decision-making and strategic planning for inte
grating AI into sustainability initiatives. Such an examination is crucial 
for ensuring that AI contributes effectively to environmental goals 
without exacerbating other sustainability challenges. 

1.1. Objectives and scope of study 

The objectives of this comprehensive narrative review are multi-fold. 
First, it aims to provide a comprehensive overview of the current state of 
the relationship between AI and the pursuit of net-zero emissions. It 
explores the existing literature, research, and developments in this 
domain, highlighting the key themes, challenges, and opportunities. 
Second, the review aims to identify and examine the various applica
tions of AI that can contribute to achieving net zero across different 
sectors. These applications include but are not limited to energy tran
sition and grid optimization, renewable energy integration and fore
casting, smart buildings and energy efficiency, intelligent transportation 
and mobility solutions, sustainable agriculture and land use, waste 
management, circular economy, and emissions monitoring and tracking. 

Furthermore, the review examines the AI-driven solutions and in
novations that have been proposed and implemented to address the 
challenges of climate change. These solutions encompass machine 
learning for energy optimization, deep learning for climate modeling 
and prediction, robotics and automation in sustainable practices, natural 
language processing for policy and decision-making, Internet of Things 
(IoT) and AI for smart cities, and blockchain and AI for carbon markets. 

The scope of this review extends to exploring the challenges and 
ethical considerations associated with the application of AI in the 
context of net-zero emissions. It discusses issues related to data avail
ability, quality, and privacy, the energy consumption of AI systems, bias 
and fairness in AI algorithms, human-centered design, human-AI 
collaboration, and the governance and regulation of AI in climate 
applications. 

Lastly, the review identifies the opportunities and future directions 
in leveraging AI for net zero. It emphasizes the importance of collabo
ration and partnerships, capacity building and education, policy and 
regulatory support, investment and funding for AI in climate solutions, 
and scalability and replicability of AI-driven approaches. 

By addressing these objectives and exploring the defined scope, this 
comprehensive narrative review provides a holistic understanding of the 

nexus between AI and net-zero emissions, shedding light on the current 
advancements, challenges, and potential pathways for leveraging AI to 
combat climate change and achieve a sustainable future. 

2. Methodology 

A comprehensive literature search was conducted to identify rele
vant articles, research papers, reports, and publications related to the 
nexus between artificial intelligence (AI) and net zero solutions. The 
search was performed in academic databases, such as PubMed, IEEE 
Xplore, ScienceDirect. Articles and publications were selected based on 
their relevance to the topic and alignment with the specific threads 
identified for analysis. The inclusion criteria included studies published 
within the last five years (from 2018 to 2023) to ensure the inclusion of 
recent developments in the field. The selected articles and publications 
underwent a quality assessment to ensure the inclusion of reputable 
sources and reliable information. The assessment considered factors 
such as the credibility of the authors, the peer-review process, and the 
relevance and reliability of the data and findings. Relevant data and 
information from the selected articles and publications were extracted, 
focusing on the key themes of AI applications for net zero, AI-driven 
solutions and innovations, challenges and ethical considerations, op
portunities for collaboration and partnerships, capacity building and 
education, policy and regulatory support, investment and funding, and 
scalability and replicability of AI solutions. The extracted data were 
analyzed thematically, organizing the information based on the identi
fied threads. Patterns, trends, and key findings were identified across the 
different thematic areas to provide a comprehensive understanding of 
the current state of AI and its role in achieving net zero goals. This 
approach allows us to synthesize a wide array of sources and provide an 
extensive overview of the current scope and advancements of AI in 
supporting net-zero sustainability goals. Our methodology is particu
larly suited for this broad overview because it accommodates diverse 
types of data and facilitates a deep understanding of complex themes 
which are essential for comprehending the multifaceted role of AI in 
environmental sustainability. 

2.1. AI as an enabler of sustainable development 

Artificial intelligence (AI) has emerged as a key enabler of sustain
able development in the context of climate change. AI technologies 
possess the potential to optimize resource allocation, enhance decision- 
making processes, and drive efficiency across various sectors, thus 
enabling a more sustainable and climate-resilient future [10,50,112]. 

One area where AI plays a crucial role is in optimizing energy sys
tems and reducing greenhouse gas emissions [30]. Machine learning 
algorithms can analyze energy consumption patterns, identify in
efficiencies, and recommend strategies for energy optimization [5]. By 
optimizing energy generation, distribution, and consumption, AI can 
contribute to significant reductions in carbon emissions. Additionally, 
AI-driven algorithms can facilitate the integration of renewable energy 
sources into existing power grids [60], ensuring a more reliable and 
efficient transition to low-carbon energy systems [1,4,58]. 

Furthermore, AI aids in the development of intelligent transportation 
systems that optimize traffic flow, reduce congestion, and promote the 
use of low-emission vehicles [2,31,54]. Through real-time data analysis 
and predictive modeling, AI can enhance transportation planning and 
logistics, leading to reduced fuel consumption and greenhouse gas 
emissions. In the context of sustainable agriculture, AI technologies can 
support precision farming practices. By analyzing soil conditions, 
weather patterns, and crop data, AI algorithms can optimize irrigation, 
fertilizer usage, and pest control, thereby reducing water waste, chem
ical inputs, and environmental impacts [89]. 
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2.2. Climate change mitigation and adaptation 

AI contributes to both climate change mitigation and adaptation 
efforts. In terms of mitigation, AI plays a critical role in enabling 
renewable energy integration and forecasting [14,15,67,87,88,91]. 
Machine learning algorithms can analyze weather data, historical en
ergy generation patterns, and other relevant factors to optimize the 
integration of renewable sources such as solar and wind power into the 
grid [70]. Accurate forecasting of renewable energy generation helps 
balance supply and demand, reducing the reliance on fossil fuel-based 
energy generation [45,95,96]. 

Moreover, AI can support climate modeling and prediction, 
providing valuable insights into the impacts of climate change and 
guiding mitigation strategies [24,27]. Deep learning techniques can 
analyze vast amounts of climate data to identify trends, assess risks, and 
inform policymakers and stakeholders about potential future scenarios. 
This enables proactive decision-making and the development of effec
tive adaptation strategies [23,52]. In terms of climate change adapta
tion, AI technologies can assist in risk assessment and disaster 
management. By analyzing historical data and real-time information, AI 
algorithms can identify areas prone to natural disasters such as floods, 
wildfires, or hurricanes. This knowledge aids in early warning systems, 
evacuation planning, and emergency response coordination, enhancing 
community resilience and reducing the impacts of climate-related events 
[67,70]. 

2.3. Net zero: concept and challenges 

The concept of net zero refers to achieving a balance between the 
amount of greenhouse gases emitted into the atmosphere and the 
amount removed or offset. It entails reducing emissions through various 
measures and compensating for any remaining emissions through car
bon removal or offsetting initiatives. Achieving net zero is crucial to 
limit global warming and mitigate the impacts of climate change [39]. 
However, several challenges exist in the pursuit of net zero. One chal
lenge is the complexity of accurately measuring and tracking emissions 
across various sectors. AI can help address this challenge by developing 
advanced monitoring systems that analyze data from multiple sources, 
such as satellite imagery, sensors, and IoT devices [49,106]. AI algo
rithms can enable real-time emissions tracking, ensuring transparency 
and accountability in emission reduction efforts [90]. 

Another challenge is the availability and quality of data required for 
effective AI-driven climate solutions. Data collection processes and 
standards need to be established, and data sharing among stakeholders 
must be encouraged to facilitate the development and training of AI 
models [53]. Additionally, privacy concerns related to the collection and 
utilization of personal data need to be addressed to ensure the respon
sible and ethical use of AI in climate applications. Furthermore, ensuring 
the fairness and impartiality of AI algorithms is essential. Biases in data 
or algorithmic decision-making could perpetuate existing inequalities or 
hinder progress toward achieving equitable and just climate outcomes. 
Efforts must be made to mitigate bias in AI algorithms and ensure fair
ness in their application [72,130]. 

Energy consumption is another challenge associated with AI systems. 
As AI requires significant computational power, the energy re
quirements of AI infrastructure and data centers can be substantial [43]. 
To address this challenge, efforts should focus on developing 
energy-efficient AI hardware and optimizing algorithms to minimize 
energy consumption without compromising performance. The use of 
renewable energy sources to power AI systems can also contribute to 
reducing their carbon footprint [128]. 

The scalability and replicability of AI-driven solutions are additional 
challenges to consider. While many promising AI applications have been 
developed, scaling them up to a global level and replicating their success 
across different regions and contexts can be challenging [116]. The 
availability of resources, expertise, and infrastructure varies, requiring 

tailored approaches and capacity-building efforts to ensure the wide
spread adoption of AI in achieving net-zero goals. Ethical considerations 
also play a crucial role in the application of AI for net zero. The potential 
unintended consequences of AI-driven decisions, the impact on 
employment and socioeconomic factors, and the need for transparency 
and accountability are important ethical dimensions to be addressed 
[101]. It is crucial to involve diverse stakeholders, including commu
nities, policymakers, and experts, in the design, implementation, and 
governance of AI systems to ensure that their deployment aligns with 
societal values and goals. 

In summary, the concept of achieving net zero requires addressing 
several challenges. However, AI has the potential to be a powerful tool in 
the fight against climate change. Through its application, AI can enable 
sustainable development, enhance climate change mitigation and 
adaptation efforts, and contribute to the realization of a net-zero emis
sions future. To maximize the benefits of AI in addressing climate 
change, it is essential to address challenges related to data availability 
and quality, energy consumption, bias and fairness, scalability, and 
ethical considerations. By doing so, we can harness the full potential of 
AI to accelerate the transition toward a sustainable and climate-resilient 
future. 

3. AI applications for net zero 

Civilization has led to more energy generation across the world 
leading to an increased generation of greenhouse gases. An energy 
conservation method (ECM) is an official approach that is commonly 
used to lower the energy consumption from sectors generating energy 
leading to the emission of greenhouse gases. The energy conservation 
method is digitized using modern sensor technology in the form of AI to 
enhance human activities [77]. This approach helps to achieve a net 
zero environment and to increase the efficiency, accuracy, and consis
tency of the measurement and verification protocols for a sustainable 
environment. The highlights for the applications of AI in achieving net 
zero is represented in Fig. 1. 

3.1. Energy transition and grid optimization 

AI applications play a crucial role in facilitating the transition to 
clean and renewable energy sources while optimizing energy grids for 
improved efficiency. AI algorithms can analyze energy consumption 
patterns, weather data, and grid conditions to optimize energy genera
tion, distribution, and storage [41,51]. By predicting demand and sup
ply patterns, AI can enable effective load balancing and grid 
management, leading to reduced reliance on fossil fuels and enhanced 
integration of renewable energy sources. 

Grid optimization is essential for maintaining grid stability and 
ensuring a reliable energy supply. AI can help identify potential bot
tlenecks, predict equipment failures, and optimize the scheduling of 
energy generation and distribution [18,105]. By dynamically adjusting 
energy flows and optimizing the operation of distributed energy re
sources, AI algorithms can enhance the resilience and efficiency of en
ergy grids, enabling the effective integration of intermittent renewable 
energy sources. 

3.2. Renewable energy integration and forecasting 

The variability and intermittency of renewable energy sources, such 
as solar and wind power, present challenges in their integration into 
existing energy grids. AI offers solutions for accurate renewable energy 
forecasting and improved integration strategies. AI algorithms can 
analyze historical and real-time data, including weather patterns, solar 
radiation, wind speed, and energy generation data, to predict and 
optimize the production of renewable energy. Accurate forecasting en
ables grid operators to balance supply and demand, reduce curtailment, 
and optimize energy storage and distribution [53]. 

D.B. Olawade et al.                                                                                                                                                                                                                             



Next Sustainability 4 (2024) 100041

4

Additionally, AI can optimize the placement and operation of 
renewable energy generation infrastructure. Machine learning algo
rithms can analyze geographical and topographical data, as well as 
environmental factors, to identify optimal locations for solar panels, 
wind turbines, and other renewable energy installations. This optimi
zation helps maximize energy generation while minimizing the envi
ronmental impacts and costs associated with renewable energy 
deployment. 

3.3. Smart buildings and energy efficiency 

AI plays a significant role in improving energy efficiency in buildings 
through the concept of smart buildings [3]. AI-powered systems can 
analyze data from sensors, smart meters, and building management 
systems to optimize energy consumption, heating, ventilation, air con
ditioning (HVAC) operations, and lighting control. Machine learning 
algorithms can learn occupancy patterns, weather conditions, and user 
preferences to automatically adjust energy usage and ensure optimal 

comfort while minimizing energy waste [6,40]. Furthermore, AI can 
facilitate demand response programs by predicting peak energy demand 
and optimizing energy usage during periods of high demand. By inte
grating AI with smart grid technologies, buildings can actively partici
pate in load shifting and demand response initiatives, reducing strain on 
the grid and promoting energy efficiency [26]. 

3.4. Intelligent transportation and mobility solutions 

AI offers innovative solutions for achieving sustainable and efficient 
transportation systems. Intelligent transportation systems leverage AI 
technologies to optimize traffic management, reduce congestion, and 
promote the use of low-emission vehicles [94]. AI algorithms analyze 
real-time data from sensors, cameras, and traffic patterns to optimize 
traffic signal timings, route planning, and congestion management. In 
addition, AI-enabled algorithms can provide personalized travel rec
ommendations, optimizing transportation modes and routes based on 
individual preferences, traffic conditions, and environmental factors. 

Fig. 1. Highlights of the application of AI in achieving net zero.  
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This encourages the use of public transportation, shared mobility ser
vices, and active modes of transportation, reducing greenhouse gas 
emissions from the transportation sector [114]. 

Moreover, AI applications can support the development and opera
tion of autonomous vehicles. AI algorithms enable vehicles to navigate, 
sense their surroundings, and make informed decisions, improving fuel 
efficiency, reducing traffic accidents, and enhancing overall trans
portation efficiency [19,80]. 

3.5. Sustainable agriculture and land use 

AI applications are transforming agriculture and land use practices to 
promote sustainability and mitigate the environmental impacts of 
farming [111]. AI algorithms can analyze soil data, weather patterns, 
crop characteristics, and historical yield data to optimize irrigation, 
fertilizer usage, and pest control [17,69]. By providing precise recom
mendations, AI empowers farmers to adopt precision agriculture tech
niques, minimizing resource waste and environmental pollution while 
maximizing crop yields [89]. 

Furthermore, AI can support land use planning and management by 
analyzing satellite imagery, geospatial data, and ecological indicators 
[38]. Machine learning algorithms can identify patterns and classify 
land use types, aiding in the conservation and restoration of ecosystems, 
protection of biodiversity, and sustainable land management practices 
[63]. This enables stakeholders to make informed decisions regarding 
land use, ensuring the preservation of natural resources and reducing 
the environmental footprint of agricultural activities. 

3.6. Waste management and circular economy 

AI applications are revolutionizing waste management practices and 
promoting the transition to a circular economy. AI algorithms can 
optimize waste collection routes, reducing fuel consumption and 
greenhouse gas emissions from waste management vehicles [122]. By 
analyzing historical data and real-time inputs, AI systems can predict 
waste generation patterns, enabling proactive planning and resource 
allocation for waste collection and processing [56]. 

Additionally, AI can facilitate waste sorting and recycling processes. 
Advanced image recognition algorithms can accurately identify and sort 
different types of recyclable materials, enhancing recycling efficiency 
and reducing contamination [28,127]. AI-driven robotics and automa
tion systems can improve waste processing operations, enabling the 
extraction of valuable materials from waste streams, and promoting a 
more circular approach to resource utilization. Moreover, AI-powered 
platforms and marketplaces can connect waste generators with poten
tial users of recycled materials, facilitating the exchange and repur
posing of waste products. By promoting resource recovery and reducing 
waste generation, AI contributes to the development of a more sus
tainable and circular economy [73]. 

3.7. Emissions monitoring and tracking 

Accurate monitoring and tracking of greenhouse gas emissions are 
essential for effective climate change mitigation strategies. AI plays a 
vital role in improving the accuracy and efficiency of emissions moni
toring systems [107]. AI algorithms can analyze data from various 
sources, including remote sensing technologies, IoT devices, and in
dustrial processes, to monitor emissions in real-time and detect anom
alies [49,106]. 

AI-powered emissions monitoring systems can identify emission 
hotspots, track changes in emissions over time, and assess the effec
tiveness of emission reduction measures. This information enables pol
icymakers, industries, and stakeholders to make data-driven decisions 
and implement targeted interventions to reduce emissions. 

Furthermore, AI applications can support carbon accounting and 
reporting processes [74]. By analyzing data from diverse sources, 

including energy consumption, transportation, and production pro
cesses, AI algorithms can estimate and report carbon footprints at in
dividual, organizational, or city-wide scales. This enables the 
identification of emission reduction opportunities and the monitoring of 
progress toward net-zero targets [32,81]. 

AI applications have significant potential to contribute to achieving 
net zero emissions across various sectors. From optimizing energy grids 
and integrating renewable energy sources to promoting energy effi
ciency in buildings and transforming transportation systems, AI offers 
innovative solutions for sustainable development. Additionally, AI fa
cilitates sustainable agriculture, waste management, and emissions 
monitoring, supporting the transition to a low-carbon and circular 
economy. By harnessing the power of AI, we can advance climate change 
mitigation and adaptation efforts, paving the way toward a sustainable 
and net-zero future. 

4. AI-driven solutions and innovations 

In recent times, most selected policy initiatives are driven by in
novations from AI solutions characterized by the fast and efficient mode 
of handling a large volume of data through algorithms. Compared to the 
measurement and forecasting of the effects of climate change by prac
titioners and analysts, AI-driven innovations as presented dynamic ex
planations and conclusions through a minimalistic, object-oriented, and 
functional representation [82,124]. Fig. 2 represents the summary of 
AI-driven solutions and innovations. 

4.1. Machine learning for energy optimization 

Machine learning techniques are increasingly being employed to 
optimize energy systems and improve energy efficiency. These AI-driven 
solutions analyze vast amounts of data related to energy consumption, 
weather patterns, and grid conditions to identify patterns and optimize 
energy generation, distribution, and consumption [7,83]. For instance, 
machine learning algorithms can analyze historical energy consumption 
data from buildings and predict future demand patterns. This enables 
the implementation of demand response strategies, where energy usage 
is adjusted based on real-time pricing or grid. conditions, resulting in 
reduced energy costs and improved grid stability [61]. 

Machine learning also plays a critical role in optimizing renewable 
energy integration. By analyzing weather data, energy production pat
terns, and grid conditions, algorithms can predict renewable energy 
generation and optimize its integration into the grid. This facilitates the 
efficient utilization of renewable sources and reduces the reliance on 
fossil fuels. Furthermore, machine learning can optimize energy storage 
systems by predicting energy demand and supply, ensuring that energy 
is stored and released when most needed. This improves the overall 
efficiency of energy storage technologies, such as batteries, and en
hances the resilience of the energy system [20]. 

4.2. Deep learning for climate modeling and prediction 

Deep learning, a subset of machine learning, has shown remarkable 
potential in climate modeling and prediction. Deep neural networks can 
analyze large and complex climate datasets, including historical climate 
records, satellite imagery, and climate model simulations, to identify 
patterns, make accurate predictions, and simulate future climate sce
narios [38]. 

Deep learning models can capture intricate relationships and non
linearities in climate data, enabling more accurate projections of climate 
variables such as temperature, precipitation, and sea-level rise [13]. 
These models enhance our understanding of climate dynamics and aid in 
the development of climate change mitigation and adaptation strategies. 
Additionally, deep learning algorithms can analyze climate model out
puts and observational data to improve climate model performance and 
reduce uncertainties. This iterative process of model evaluation and 
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refinement helps refine climate projections and enhance the reliability 
of climate change impact assessments [9]. 

4.3. Robotics and automation in sustainable practices 

Robotics and automation technologies, powered by AI, are trans
forming various sustainable practices across sectors. In manufacturing 
and industry, AI-driven robots can optimize production processes, 
reduce energy consumption, and minimize waste generation. Robots 
equipped with sensors and AI algorithms can identify anomalies, opti
mize resource usage, and perform tasks with precision, leading to 
improved efficiency and reduced environmental impact [33]. 

In agriculture, robotics and automation contribute to sustainable 
farming practices. AI-powered robots can perform tasks such as preci
sion seeding, selective harvesting, and targeted pesticide application, 
reducing the need for chemical inputs and minimizing soil erosion [64]. 
Robotic systems can also monitor plant health, optimize irrigation, and 
manage crops individually, leading to improved resource efficiency and 
higher yields. Furthermore, in waste management, robotics, and auto
mation technologies aid in waste sorting, recycling, and disposal. 
AI-driven robots can accurately identify and separate recyclable mate
rials, improving recycling efficiency and reducing contamination. Ro
botic systems can also handle hazardous waste materials, ensuring 
worker safety and minimizing environmental risks [28,127]. 

4.4. Natural language processing for policy and decision-making 

Natural Language Processing (NLP) techniques enable computers to 
understand and process human language, facilitating policy and 
decision-making processes related to sustainability and climate change. 
NLP algorithms can analyze large volumes of textual data, including 
scientific literature, policy documents, and social media conversations, 
to extract relevant information, identify trends, and inform decision- 
making [71]. NLP-based sentiment analysis helps understand public 
opinion and perceptions regarding sustainability issues, enabling poli
cymakers to gauge public support and design effective communication 
strategies. NLP can also assist in policy analysis by extracting key policy 
insights from legal and regulatory documents, aiding in the development 
of evidence-based policies and frameworks [47]. 

Moreover, NLP-powered chatbots and virtual assistants provide 
interactive platforms for disseminating information, answering queries, 
and engaging with the public on sustainability and climate-related 
topics [47,71]. These conversational agents can educate and raise 
awareness, empowering individuals to make informed choices and 
contribute to sustainable practices. 

Furthermore, NLP techniques support the analysis of stakeholder 
feedback and engagement. By analyzing public discourse and social 
media conversations, NLP algorithms can identify emerging issues, 
concerns, and priorities related to sustainability. This helps policy
makers and organizations understand public sentiment, incorporate 
diverse perspectives, and develop more inclusive and effective policies 

Fig. 2. Summary of AI-driven solutions and innovations in achieving net zero.  
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and strategies. 

4.5. Internet of things (IoT) and AI for smart cities 

The combination of the Internet of Things (IoT) and AI is driving the 
development of smart cities, where interconnected devices and AI al
gorithms enable efficient resource management, improved infrastruc
ture, and enhanced quality of life. In smart cities, IoT sensors and 
devices collect real-time data on energy consumption, air quality, traffic 
patterns, and waste management. AI algorithms process and analyze this 
data to optimize energy usage, reduce pollution, and improve urban 
mobility [85]. For example, AI can analyze traffic patterns and adjust 
traffic signal timings in real-time real time, leading to reduced conges
tion and emissions. 

AI-powered smart grid systems, integrated with IoT devices, enable 
efficient energy management in buildings and infrastructure. Real-time 
energy monitoring, predictive maintenance, and demand response sys
tems optimize energy consumption, reduce costs, and enhance grid 
reliability. Moreover, AI and IoT facilitate the development of intelligent 
and sustainable transportation systems [113]. Connected vehicles, 
supported by AI algorithms, enable real-time traffic monitoring, efficient 
route planning, and personalized transportation services. This reduces 
traffic congestion, lowers emissions, and promotes the use of public 
transportation and shared mobility options efficiency [19,80]. 

4.6. Blockchain and AI for carbon markets 

The integration of blockchain technology and AI has the potential to 
transform carbon markets and enhance transparency, accountability, 
and efficiency in tracking and trading carbon credits. Blockchain tech
nology provides a decentralized and immutable ledger that securely 
records transactions and carbon emissions data. AI algorithms can 
analyze this data, validate emissions reductions, and ensure the integrity 
of carbon credits [55,93]. By combining AI with blockchain, the process 
of monitoring, reporting, and verifying carbon emissions becomes more 
streamlined and trustworthy. AI-driven algorithms can automate the 
calculation of carbon footprints, allowing businesses and organizations 
to measure their emissions accurately [110]. This enables the creation of 
reliable and transparent carbon credits, which can be traded in carbon 
markets. 

Additionally, AI and blockchain can enhance the monitoring and 
tracking of emissions throughout supply chains. By integrating IoT de
vices and sensors, data on energy usage, transportation, and production 
processes can be collected and securely recorded on the blockchain [42, 
59]. AI algorithms can analyze this data, identify inefficiencies, and 
provide recommendations for emission reductions, enabling organiza
tions to make data-driven decisions and improve sustainability perfor
mance [118]. 

Furthermore, the combination of blockchain and AI can facilitate the 
creation of decentralized and peer-to-peer carbon trading platforms. 
Smart contracts, powered by blockchain technology, can automate the 
trading and verification of carbon credits, ensuring transparency and 
reducing transaction costs [117]. In summary, AI-driven solutions and 
innovations are revolutionizing various aspects of sustainable develop
ment and climate change mitigation. From optimizing energy systems 
and enabling climate modeling to enhance automation in sustainable 
practices and supporting policymaking, AI is driving transformative 
change. When combined with technologies like IoT, blockchain, and 
NLP, AI unlocks new possibilities for achieving net-zero emissions, 
promoting sustainable practices, and building a resilient future. 

5. Challenges and ethical considerations 

The widespread adoption of AI technologies for addressing climate 
change and achieving sustainable goals brings forth several challenges 
and ethical considerations. It is crucial to acknowledge and address 

these challenges to ensure the responsible and equitable deployment of 
AI in climate applications [102,120]. 

5.1. Data availability, quality, and privacy 

One of the key challenges in leveraging AI for climate-related tasks is 
the availability and quality of data. AI algorithms heavily rely on large 
datasets for training and validation. However, in the context of climate 
change, obtaining comprehensive and reliable data can be challenging. 
Climate-related data is often incomplete, fragmented, or limited in 
scope, making it difficult to train accurate and robust AI models [35]. 
Moreover, ensuring data privacy and protection is crucial when dealing 
with sensitive environmental and personal information. Proper mea
sures must be in place to safeguard data from unauthorized access, 
manipulation, or misuse [108]. Striking a balance between data avail
ability for AI applications and protecting individual privacy is a signif
icant ethical consideration that requires careful attention. 

5.2. Energy consumption of AI systems 

AI systems, particularly deep learning models, are computationally 
intensive and often require substantial computing resources. The energy 
consumption associated with training and deploying AI models raises 
concerns about its environmental impact. As the demand for AI appli
cations grows, it is essential to develop energy-efficient algorithms and 
hardware solutions to mitigate the carbon footprint of AI systems [37, 
68]. Furthermore, organizations and researchers must explore renew
able energy sources and adopt sustainable practices in their data centers 
and computing infrastructure to minimize the environmental impact of 
AI-driven solutions. 

5.3. Bias and fairness in AI algorithms 

AI algorithms are susceptible to bias, which can perpetuate and 
amplify existing inequalities. Biased training data, lack of diversity in 
the development teams, and algorithmic decision-making processes can 
lead to discriminatory outcomes and exacerbate social and environ
mental disparities [75,130]. Ensuring fairness, transparency, and 
accountability in AI algorithms is a critical ethical consideration. 
Rigorous testing and validation processes, diverse and representative 
training data, and continuous monitoring are necessary to detect and 
mitigate biases in AI systems. Moreover, promoting diversity and in
clusivity in AI development teams can help address biases and improve 
the fairness of AI applications [84]. 

5.4. Human-centered design and human-AI collaboration 

AI technologies should be designed with a human-centered 
approach, keeping human values, needs, and preferences at the fore
front. It is essential to involve stakeholders, including communities, 
policymakers, and experts, in the design, development, and deployment 
of AI solutions for climate applications [12,98]. Human-AI collaboration 
is crucial for effective decision-making and accountability. AI systems 
should be designed to augment human capabilities, providing mean
ingful insights and recommendations that empower individuals and 
communities to make informed decisions. Transparent communication 
and explainability of AI algorithms are necessary to ensure that humans 
can understand and interpret AI-generated results [97]. 

5.5. Governance and regulation of AI in climate applications 

As AI becomes increasingly integrated into climate applications, 
robust governance frameworks and regulations are necessary to address 
ethical, legal, and social implications. Clear guidelines are needed to 
ensure the responsible use of AI, including the collection and use of data, 
transparency in algorithmic decision-making, and accountability for the 
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impacts of AI systems [21,119]. International collaboration is essential 
to establish global standards and norms for the development and 
deployment of AI in climate applications [36]. Multidisciplinary efforts 
involving policymakers, scientists, technologists, and civil society are 
required to develop governance mechanisms that foster innovation 
while safeguarding against potential risks and unintended 
consequences. 

Ethical considerations, such as transparency, accountability, fair
ness, and privacy, should be embedded in the development and 
deployment of AI technologies for climate change mitigation and 
adaptation. By addressing these challenges and adopting responsible 
practices, we can harness the full potential of AI while ensuring a sus
tainable and equitable future for all [75,84,97,130]. 

6. Opportunities and future directions 

The integration of AI into climate solutions opens up significant 
opportunities for advancing sustainable development and combating 
climate change. As AI technologies continue to evolve, several key areas 
present opportunities for further exploration and development. 

6.1. Collaboration and partnerships 

Collaboration and partnerships across various sectors are essential 
for leveraging the full potential of AI in addressing climate challenges. 
Collaboration between academia, industry, governments, and civil so
ciety can foster knowledge sharing, data exchange, and joint research 
efforts [92,104]. By working together, stakeholders can pool their 
expertise and resources to develop innovative AI-driven solutions that 
have a broader impact. Public-private partnerships can also play a 
crucial role in accelerating the deployment of AI technologies for 
climate applications. Collaboration between technology companies, 
startups, and government agencies can facilitate the development of 
scalable and sustainable AI solutions, ensuring their effective imple
mentation across different sectors and regions [86]. 

An emerging trend in collaboration is the formation of multi- 
stakeholder platforms and consortia focused on AI and climate 
change. These platforms bring together diverse stakeholders, including 
researchers, policymakers, industry leaders, and NGOs, to share best 
practices, collaborate on research projects, and foster innovation. Such 
collaborations enable a holistic and integrated approach to addressing 
climate challenges using AI technologies [22,121]. 

6.2. Capacity building and education 

Building capacity and promoting education on AI for climate appli
cations are vital for unlocking its full potential. Training programs, 
workshops, and educational initiatives should be developed to equip 
individuals, organizations, and communities with the necessary skills 
and knowledge to understand, develop, and deploy AI solutions [62]. 
Capacity-building efforts should focus on diverse stakeholders, 
including policymakers, scientists, engineers, and practitioners, to foster 
a multidisciplinary approach. By enhancing AI literacy and technical 
skills, stakeholders can effectively leverage AI tools and technologies for 
climate change mitigation and adaptation [67]. 

In recent years, there has been a growing emphasis on AI education 
and training programs specifically tailored to climate applications. 
Universities and research institutions are offering specialized courses 
and programs that combine AI, data science, and climate science. These 
initiatives aim to bridge the gap between domain expertise and AI skills, 
enabling professionals to apply AI techniques in the context of climate 
change. 

6.3. Policy and regulatory support 

Clear policy frameworks and supportive regulations are crucial to 

promote the responsible and ethical deployment of AI in climate solu
tions. Governments and international organizations can play a pivotal 
role in shaping policies that encourage innovation, data sharing, and 
collaboration while safeguarding against potential risks and ensuring 
fairness. Policy initiatives should focus on data governance, privacy 
protection, algorithmic transparency, and standards for AI in climate 
applications [75,84,97,129]. By providing a conducive regulatory 
environment, policymakers can stimulate investment, encourage 
research and development, and foster the adoption of AI technologies for 
sustainable development. 

Recent trends indicate an increasing recognition of the need for 
policy and regulatory support for AI in climate applications. Govern
ments are establishing dedicated task forces, committees, or regulatory 
bodies to develop guidelines and frameworks specifically addressing the 
intersection of AI and climate change [29]. These initiatives aim to 
create a balance between encouraging innovation and ensuring the 
responsible and ethical use of AI in tackling climate challenges. 

6.4. Investment and funding for AI in climate solutions 

Significant investment and funding are required to accelerate the 
development and deployment of AI technologies for climate solutions 
[44]. Governments, philanthropic organizations, and private investors 
should allocate resources to support research, development, and 
implementation of AI-driven initiatives. Investment in AI for climate 
applications can yield significant returns by unlocking cost savings, 
driving innovation, and achieving sustainable outcomes. Funding 
should prioritize projects that demonstrate scalability, feasibility, and 
clear potential for impact. Additionally, public-private partnerships and 
financing mechanisms should be established to facilitate access to 
funding for startups, small and medium-sized enterprises (SMEs), and 
developing countries. 

Recent trends indicate a growing interest from investors and funding 
agencies in supporting AI-driven climate solutions. Impact investment 
funds and venture capital firms are specifically focusing on investing in 
AI startups and initiatives that address climate challenges [65]. Gov
ernments are also launching funding programs and grants dedicated to 
AI in climate solutions. These funding opportunities aim to attract 
innovative projects and provide the necessary resources for their 
development and implementation. Furthermore, there is an increasing 
trend of corporate sustainability commitments and initiatives that 
involve investment in AI for climate solutions. Companies are recog
nizing the value of AI in achieving their environmental goals and are 
allocating funds to support AI-driven projects that contribute to carbon 
reduction, energy efficiency, and sustainable practices [103]. 

6.5. Scalability and replicability of AI solutions 

To maximize the impact of AI in addressing climate change, it is 
essential to focus on the scalability and replicability of AI solutions. AI 
models, algorithms, and frameworks should be designed to be adaptable 
to different contexts, sectors, and regions [125]. Efforts should be made 
to develop open-source AI tools and platforms, allowing for knowledge 
sharing and collaboration. This promotes the widespread adoption of AI 
technologies and facilitates the replication of successful solutions in 
diverse settings. 

The advancement of cloud computing and edge computing tech
nologies is contributing to the scalability and replicability of AI solutions 
[123]. Cloud-based platforms enable the deployment of AI models and 
algorithms at scale, making them accessible to a wide range of users. 
Edge computing brings AI capabilities closer to the data source, allowing 
for real-time analysis and decision-making in remote or 
resource-constrained environments [11]. Moreover, the concept of AI 
marketplaces and ecosystems is gaining traction. These platforms pro
vide a marketplace for AI models, algorithms, and data, allowing orga
nizations to access and utilize pre-trained models or collaborate with AI 
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experts. By leveraging AI marketplaces, organizations can scale their AI 
solutions more efficiently and tap into a global network of expertise 
[99]. 

In conclusion, the opportunities and future directions for AI in 
climate solutions revolve around collaboration and partnerships, ca
pacity building and education, policy and regulatory support, invest
ment and funding, and scalability and replicability. These trends reflect 
a growing recognition of the potential of AI to address climate chal
lenges and the need for collaborative efforts from diverse stakeholders to 
harness its full potential. By capitalizing on these opportunities and 
addressing associated challenges, we can accelerate the development 
and deployment of AI-driven solutions to achieve a sustainable and 
resilient future [59]. 

7. Conclusion 

As the urgency to tackle climate change intensifies, the integration of 
artificial intelligence (AI) offers transformative potential across multiple 
spheres of society. For individuals, especially at the household level, AI 
technologies provide powerful tools to monitor and manage the con
sumption of critical resources such as water, energy, and electricity. 
Smart home devices, for instance, can learn patterns of usage and 
optimize heating, cooling, and water usage to significantly reduce waste 
and environmental impact. 

Corporations, on the other hand, can leverage AI to enhance opera
tional efficiency and sustainability. An example is the use of AI in supply 
chain management, where algorithms predict demand more accurately, 
optimize routes for logistics, and reduce energy usage and emissions. 
This not only cuts costs but also aligns corporate operations with 
broader environmental goals, promoting a shift towards sustainability 
that benefits both the business and the planet. 

At the governmental and industrial level, AI tools are indispensable 
in the optimization of energy systems, management of waste, and effi
cient utilization of resources. By implementing AI-driven analytics to 
monitor and control public utilities and services, governments can 
ensure that cities operate more sustainably, thereby reducing the carbon 
footprint of urban centers. Moreover, AI can facilitate the development 
of green infrastructure by providing insights that help in planning and 
executing projects with minimal environmental impact. 

However, the expansive deployment of AI across these domains is not 
without risks. The significant energy consumption associated with 
advanced AI systems and the burgeoning field of digital currencies like 
Bitcoin can paradoxically contribute to the very problem AI seeks to 
solve. It is crucial, therefore, that this deployment is accompanied by 
stringent oversight to prevent such unintended consequences. Regula
tory bodies play a critical role here, necessitating the establishment of 
frameworks that monitor the environmental impact of AI technologies 
and ensure they contribute positively to net-zero goals. 

Governments should consider creating specialized departments 
focused on AI and sustainability to oversee these developments. Simi
larly, companies should invest in training or hiring AI sustainability 
specialists who can guide the ethical and efficient use of AI in opera
tions. This proactive approach will not only harness the benefits of AI for 
climate action but also mitigate risks, ensuring that we remain on the 
right side of history. 

In conclusion, while AI holds exceptional promise for advancing net- 
zero objectives, its application must be carefully managed to truly 
benefit the planet. By fostering collaboration among individuals, cor
porations, and governments and ensuring robust regulatory oversight, 
we can leverage AI to achieve a sustainable future, marking a significant 
step forward in the global fight against climate change. 

8. Recommendations 

Looking ahead, there are several implications for future research in 
the field of AI and net-zero solutions:  

(a) Further research is needed to advance the development of AI 
algorithms, models, and frameworks specifically tailored to 
address climate challenges. This includes improving the accuracy 
and reliability of climate modeling, optimizing energy systems, 
enhancing prediction, and forecasting capabilities, and inte
grating AI with other emerging technologies such as IoT and 
blockchain.  

(b) Ethical considerations in AI for climate solutions require ongoing 
attention and research. Efforts should focus on addressing biases, 
ensuring algorithmic transparency, promoting fairness and eq
uity, and developing robust governance frameworks to guide the 
responsible deployment of AI in climate applications.  

(c) The impact of AI on energy consumption and carbon footprint 
needs to be carefully studied. Research should explore ways to 
optimize AI systems to minimize their energy requirements and 
develop energy-efficient AI algorithms and hardware. 

(d) Long-term monitoring and evaluation of AI-driven climate solu
tions are crucial to assess their effectiveness, identify areas for 
improvement, and drive continuous innovation. Research should 
focus on developing metrics and indicators to measure the impact 
and sustainability of AI applications in achieving net-zero targets.  

(e) International collaboration and knowledge sharing should be 
fostered to address global climate challenges. Future research 
should focus on promoting data sharing, interoperability of AI 
systems, and best practices for AI implementation in different 
regions and contexts. 
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[19] M. Breunig, M. Kässer, H. Klein, J.P. Stein, Building smarter cars with smarter 
factories: How AI will change the auto business, McKinsey Digit. McKinsey Co. 
(2017). 

[20] Buechler, T., Pagel, F., Petitjean, T., Draz, M., & Albayrak, S. (2019, September). 
Optimal energy supply scheduling for a single household: Integrating machine 
learning for power forecasting. In 2019 IEEE PES Innovative Smart Grid 
Technologies Europe (ISGT-Europe) (pp. 1-5). IEEE. 

[21] R. Burkhardt, N. Hohn, C. Wigley, Leading your organization to responsible AI, 
McKinsey Anal. (2019) 1–8. 

[22] J. Butcher, I. Beridze, What is the state of artificial intelligence governance 
globally, RUSI J. 164 (5-6) (2019) 88–96. 

[23] W.Y. Chang, A data envelopment analysis on the performance of using artificial 
intelligence-based environmental management systems in the convention and 
exhibition industry, Ekoloji 28 (107) (2019) 3515–3521. 

[24] M. Chantry, H. Christensen, P. Dueben, T. Palmer, Opportunities and challenges 
for machine learning in weather and climate modelling: hard, medium and soft 
AI, Philos. Trans. R. Soc. A 379 (2194) (2021), 20200083. 

[25] L. Chen, Z. Chen, Y. Zhang, et al., Artificial intelligence-based solutions for 
climate change: a review, Environ. Chem. Lett. 21 (2023) 2525–2557, https:// 
doi.org/10.1007/s10311-023-01617-y. 

[26] C. Chen, Y. Hu, M. Karuppiah, P.M. Kumar, Artificial intelligence on economic 
evaluation of energy efficiency and renewable energy technologies, Sustain. 
Energy Technol. Assess. 47 (2021) 101358. 

[27] S.M. Cheong, K. Sankaran, H. Bastani, Artificial intelligence for climate change 
adaptation, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 12 (5) (2022) 
e1459. 

[28] B.S. Costa, A.C. Bernardes, J.V. Pereira, V.H. Zampa, V.A. Pereira, G.F. Matos, A. 
F. Silva, Artificial intelligence in automated sorting in trash recycling. In Anais do 
XV Encontro Nacional de Inteligência Artificial e Computacional, SBC, 2018, 
pp. 198–205. 

[29] J. Cowls, A. Tsamados, M. Taddeo, L. Floridi, The AI gambit: leveraging artificial 
intelligence to combat climate change—opportunities, challenges, and 
recommendations, Ai Soc. (2021) 1–25. 

[30] K.P. Das, J. Chandra, A survey on artificial intelligence for reducing the climate 
footprint in healthcare, Energy Nexus 9 (2023) 100167. 

[31] S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, K. Caldeira, 
Net-zero emissions energy systems, Science 360 (6396)) (2018) eaas9793. 
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