Quick Search:

Effect of different walking break strategies on superficial femoral artery endothelial function

Carter, Sophie ORCID: https://orcid.org/0000-0003-2815-7360, Draijer, Richard, Holder, Sophie M., Brown, Louise, Thijssen, Dick H. J. and Hopkins, Nicola D. (2019) Effect of different walking break strategies on superficial femoral artery endothelial function. Physiological Reports.

[img]
Preview
Text
Carter(2019) Effect of different walking break strategies on superficialfemoral artery endothelial function.pdf - Published Version
Available under License Creative Commons Attribution.

| Preview

Abstract

reaking up prolonged sitting with physical activity (PA) breaks prevents conduit artery dysfunction. However, the optimal break strategy to achieve this, in terms of the frequency or duration of PA, is not known. This study assessed the effect of breaking up sitting with different PA break strategies on lower limb peripheral artery endothelial function. Fifteen participants (10 male, 35.8 ± 10.2 years, BMI: 25.5 ± 3.2 kg m−2) completed, on separate days, three 4‐h conditions in a randomized order: (1) uninterrupted sitting (SIT), (2) sitting with 2‐min light‐intensity walking breaks every 30 min (2WALK), or (3) sitting with 8‐min light‐intensity walking breaks every 2 h (8WALK). At baseline and 4 h, superficial femoral artery function (flow‐mediated dilation; FMD), blood flow, and shear rate (SR) were assessed using Doppler ultrasound. For each condition, the change in outcome variables was calculated and data were statistically analyzed using a linear mixed model. There was no significant main effect for the change in FMD (P = 0.564). A significant main effect was observed for the change in blood flow (P = 0.022), with post hoc analysis revealing a greater reduction during SIT (−42.7 ± 14.2 mL·min) compared to 8WALK (0.45 ± 17.7 mL·min; P = 0.012). There were no significant main effects for mean, antegrade, or retrograde SR (P > 0.05). Superficial femoral artery blood flow, but not FMD, was reduced following uninterrupted sitting. This decline in blood flow was prevented with longer duration, less frequent walking breaks rather than shorter, more frequent breaks suggesting the dose (duration and frequency) of PA may influence the prevention of sitting‐induced decreases in blood flow.

Item Type: Article
Status: Published
DOI: https://doi.org/10.14814/phy2.14190
Subjects: Q Science > QP Physiology
School/Department: School of Science, Technology and Health
URI: https://ray.yorksj.ac.uk/id/eprint/4030

University Staff: Request a correction | RaY Editors: Update this record