Quick Search:

Disruption of the pro-oncogenic c-RAF–PDE8A complex represents a differentiated approach to treating KRAS–c-RAF dependent PDAC

Cooke, Sean F., Wright, Thomas A., Yan Sin, Yuan, Ling, Jiayue, Kyurkchieva, Elka, Phanthaphol, Nattaporn, Mcskimming, Thomas, Herbert, Katharine ORCID logoORCID: https://orcid.org/0000-0001-9437-0253, Rebus, Selma, Biankin, Andrew V., Chang, David K., Baillie, George S. and Blair, Connor M. (2024) Disruption of the pro-oncogenic c-RAF–PDE8A complex represents a differentiated approach to treating KRAS–c-RAF dependent PDAC. Scientific Reports, 14 (1).

[thumbnail of 324599.pdf]
Preview
Text
324599.pdf - Published Version
Available under License Creative Commons Attribution.

| Preview

Abstract

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF–PDE8A protein–protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF–cAMP/PKA signaling axes and treating KRAS–c-RAF dependent PDAC. Through disrupting the c-RAF–PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS–c-RAF dependent PDAC.

Item Type: Article
Status: Published
DOI: doi10.1038/s41598-024-59451-3
Subjects: R Medicine > RC Internal medicine > RC0254 Neoplasms. Tumors. Oncology (including Cancer)
R Medicine > RM Therapeutics. Pharmacology
School/Department: School of Science, Technology and Health
URI: https://ray.yorksj.ac.uk/id/eprint/10698

University Staff: Request a correction | RaY Editors: Update this record