Quick Search:

Energy Efficiency Optimisation of Joint Computational Task Offloading and Resource Allocation Using Particle Swarm Optimisation Approach in Vehicular Edge Networks

Alam, Amjad, Shah, Purav, Trestian, Ramona, Ali, Kamran and Mapp, Glenford (2024) Energy Efficiency Optimisation of Joint Computational Task Offloading and Resource Allocation Using Particle Swarm Optimisation Approach in Vehicular Edge Networks. Sensors, 24 (3001).

[thumbnail of Accepted on MDPI]
Preview
Text (Accepted on MDPI)
Energy Efficiency Optimisation of Joint Computational Task Offloading and Resource Allocation Using Particle Swarm Optimisation Approach in Vehicular Edge Networks.pdf - Published Version
Available under License Creative Commons Attribution.

| Preview

Abstract

With the progression of smart vehicles, i.e., connected autonomous vehicles (CAVs), and wireless technologies, there has been an increased need for substantial computational operations for tasks such as path planning, scene recognition, and vision-based object detection. Managing
these intensive computational applications is concerned with significant energy consumption. Hence, for this article, a low-cost and sustainable solution using computational offloading and efficient resource allocation at edge devices within the Internet of Vehicles (IoV) framework has been utilised.
To address the quality of service (QoS) among vehicles, a trade-off between energy consumption
and computational time has been taken into consideration while deciding on the offloading process and resource allocation. The offloading process has been assigned at a minimum wireless resource block level to adapt to the beyond 5G (B5G) network. The novel approach of joint optimisation of computational resources and task offloading decisions uses the meta-heuristic particle swarm optimisation (PSO) algorithm and decision analysis (DA) to find the near-optimal solution. Subsequently, a comparison is made with other proposed algorithms, namely CTORA, CODO, and Heuristics, in terms of computational efficiency and latency. The performance analysis reveals that the numerical
results outperform existing algorithms, demonstrating an 8% and a 5% increase in energy efficiency.

Item Type: Article
Status: Published
DOI: 10.3390/s24103001
Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
School/Department: London Campus
URI: https://ray.yorksj.ac.uk/id/eprint/13989

University Staff: Request a correction | RaY Editors: Update this record